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A B S T R A C T

Quantitative assessment of metal sources in sediments is essential for implementation of source control and
remediation strategies. This study investigated metal contamination in sediments to assess potential ecological
risks and quantify pollutant sources of metals (Cu, Zn, Pb, Cd, Cr, Co and Ni) in the Wen-Rui Tang River
watershed. Total and fraction analysis indicated high pollution levels of metals. Zinc and Cd posed high eco-
logical risk based on the risk assessment code, with the highest ecological risk found in the southwestern of the
watershed. The positive matrix factorization (PMF) model was highly effective in predicting total metal con-
centrations and identified three contributing metal sources. An agricultural source (factor 1) contributed highly
to Cu (74.1%) and Zn (42.5%), and was most prominent in the west and south-central portions of the watershed.
Cd (93.5%) showed a high weighting with industrial sources (factor 2) with a hot spot in the southwest. Factor 3
was identified as a mixed natural and vehicle traffic source that showed large contribution to Cr (65.2%), Ni
(63.9%) and Pb (50.7%). Spatial analysis indicated a consistent pattern between PMF-identified factors and
suspected metal sources at the watershed scale demonstrating the efficacy of the PMF modeling approach for
watershed analysis.
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1. Introduction

Aquatic ecosystems often face serious metal contamination derived
from rapid industrialization, urbanization, and intensive agriculture.
Metal pollutants from these sources directly/indirectly accumulate in
aquatic sediments impacting benthic organisms. Further, sediment is a
potential threat to aquatic organisms through bioaccumulation/bio-
magnification of metals release to the water column. Numerous studies
have reported severe contamination in soil and sediments globally
(Boran and Altinok, 2010; Toth et al., 2016). For example, considerable
to very high degrees of contamination by Cr, Cu, Pb and Zn were re-
ported in Swarnamukhi River (India) sediments, which were attributed
to multiple anthropogenic sources, such as residential wastes, fertili-
zers, pesticides and traffic activities (Patel et al., 2018). Nickel and Cr
were identified to cause majority toxicity in sediments for fisheries in El
Temsah Lake in the Suez Canal area (Soliman et al., 2019). Sun et al.
identified Cu as the most prominent metal in urban river sediments and
found the most heavily polluted area was near a petrochemical in-
dustrial complex (Sun et al., 2019). Considering the toxicity, persis-
tence, non-biodegradability and lack of effective removal mechanisms,
there is an urgent need to understand the spatial distribution, chemical
fractionation, risk evaluation and contamination sources of metals in
riverine sediments at the watershed scale.

Metal contamination status evaluation, ecological/health risk as-
sessment and source identification are vital components necessary for
developing effective watershed metal contamination control and re-
mediation strategies. Numerous studies have evaluated contamination
status and risk assessment of metals in sediments based on both total
and various chemical fraction contents (Sundaray et al., 2011; Comero
et al., 2014; Zhang et al., 2017). In particular, research has demon-
strated the importance of characterizing various metal fractions for
evaluating metal contamination and assessing ecological/human risk
because mobile and exchangeable fractions are generally more bioac-
cessible and bioavailable to organisms, resulting in bioaccumulation/
biomagnification in the aquatic food web (Tessier et al., 1979; Pueyo
et al., 2008). For example, Ji et al. (2019) detected a high ecological
risk due to an elevated exchangeable metal fraction in Baiyangdian
Lake (China) and Nemati et al. (2011) identified medium and high risk
for Zn and Cd in Sungai Buloh sediments by RAC index derived form a
modified BCR sequential extraction procedure. Based on the perceived
of the various metal fractions, several indices have been developed to
provide comprehensive and reliable results for assessing potential metal
toxicity risks from contaminated in sediments (Wang et al., 2019a). As
an example, Siddiqui and Pandey applied a modified a modified con-
tamination index to evaluate ecological risk associated with sediment
metals at the basin-scale (Siddiqui and Pandey, 2019).

Multiple methods, including principle component analysis (PCA),
correlation analysis, geographical detector method and geographically
weighted regression have been applied to qualitatively identify various
sources of metals in sediments (Duodu et al., 2017; Xia et al., 2018; Luo
et al., 2019). These methods identify common characteristics among
metals and capture the features of potential sources, for example, Giri
and Singh used PCA method to recognize and extract two potential
common sources of innate and anthropogenic activities for metals in
surface water of the Subarnarekha River (Giri and Singh, 2014).
However, quantifying contributions originating from each pollution
source and the proportion contributed to each metal category cannot be
obtained by these methods. The positive matrix factorization (PMF)
model proposed by USEPA is recommended as an efficient receptor
model for quantitative source apportionment and contribution calcu-
lation of environmental pollutants (Schwarz et al., 2019). The original
contamination dataset is decomposed into a factor profile and a con-
tribution matrix to quantify pollution sources. For example, Mehr et al.
(2019) demonstrated that 85% of Zn contamination in rainwater ori-
ginated from industrial sources based on PMF modeling. Further, Wang
et al. (2019b) quantified four sources of metals in soils finding that

vehicle, industry, geologic and agricultural sources contributed 33.1%,
24.0%, 27.1% and 15.8%, respectively. In addition, the type of each
pollution source can be inferred according to the contributions of pol-
lutants on the source factors by PMF model. For example, Bhuiyan et al.
analyzed the common characteristics of metal contaminations in water
and sediments in Buriganga River and attributed them from tannery,
paint, municipal, sewage, textiles and agricultural activities by applying
PMF and correlation analysis (Bhuiyan et al., 2015). Most studies
combined statistical analysis to confirm the reliability of PMF result, for
example, Comero et al. compared PMF and PCA result of source iden-
tification of metals in Alpine lake sediments and demonstrated the
comparable results from these two methods (Comero et al., 2011).
There are few studies demonstrating the efficacy and spatial distribu-
tion of source apportionment of metals in soil/sediment by PMF
models. Comero et al. (2014) showed the spatial distribution of source
factors for Danube River sediments and found that anthropogenic
sources were more prominent in tributary sediments. Thus, spatial
analysis combined with PMF analysis allows exploration of detailed
information concerning factors regulating metal pollutant distribution
and provides advantages for effective classification and remediation of
metal contaminants. However, little information is available from
previous studies concerning spatial analysis from PMF results. Thus,
additional investigations are required to determine the robustness of
the PMF method across a wide range of metal contaminated river sys-
tems and explore the spatial influence of source factors derived from
the PMF model.

Previous studies have reported spatial characteristics of metal con-
tamination and qualitatively analyzed pollutant sources. However, little
information is available to quantify contributions derived from various
pollution sources or to evaluate the spatial distribution of source ap-
portionment. Our previous studies focused on the spatial distribution
and qualitative contribution of pollution sources for metals based on
land-use, population, industry (Wang et al., 2019a; Xia et al., 2018; Luo
et al., 2019). This study builds on our previous studies with the primary
objectives of (i) conducting risk assessments based on metal chemical
fractions; (ii) analyzing the correlations among metals to qualitatively
identify potential pollution source by PCA and co-occurrence network;
(iii) exploring source types and quantifying the proportion of various
sources for each metal and (iv) characterizing the spatial influence of
source intensity at the watershed scale. This study provides essential
information and guidance for source control and remediation of metal
contamination in riverine sediments at the watershed scale.

2. Material and methods

2.1. Study area

This research was conducted in the Wen-Rui Tang River watershed,
which is a coastal watershed with drainage of ˜740 km2 located in
Zhejiang Province of eastern China. The river plays fundamental roles
in local agriculture, industry, native fisheries/aquaculture and trans-
portation. Mean annual temperature is ˜18 °C and annual precipitation
˜1800mm. Sediment samples (0–10 cm) were collected in March 2017
from the mid-channel at 39 locations distributed throughout the river
network (Fig. S1). The original 96 detailed land-use categories were
amalgamated into six major classes based on their similarities: grass,
forest, agricultural, industrial, rural and urban. Samples were collected
using a clamshell bucket sampler and a well-mixed subsample was
sealed in a clean polyethylene bag. Samples were stored in a cryogenic
freezer (−80 °C) before freeze-drying and passing through a 100 μm
nylon sieve for chemical analysis.

2.2. Metal analysis

A mixed acid digest (HNO3-HCl-HF-HClO4) was used to determine
total metal content in sediments. Further, the modified European

F. Xia, et al. Journal of Hazardous Materials 381 (2020) 121230

2



Community Bureau of Reference (BCR) sequential extraction procedure
was used to obtain various operationally-defined metal fractions (Unda-
Calvo et al. (2017)). The extraction steps are briefly summarized as
follows: (F1) 0.1 M acetic acid to extract carbonates and exchangeable
metals, which represents the acid soluble fraction (Exch-); (F2) 0.5 M
hydroxylamine hydrochloride to extract metals bound to Fe-Mn oxides,
which represents the reducible fraction (Red-); (F3) combined 30%
hydrogen peroxide and 1M ammonium acetate to extract metals bound
to organic matter, which represents the oxidizable fraction (Org-); and
(F4) the mixed acid digestion (HNO3-HCl-HF-HClO4) of the residual
fraction, which represent metals trapped within crystal structures of
primary and secondary minerals (Res-). Detailed information con-
cerning the BCR method can be found in Shaike et al. (2014). Total
contents of Cu and Zn in extracts were determined by atomic absorption
spectrometry (PinAAcle 900, Perkin-Elmer) while total contents of Pb,
Cd, Cr, Co, and Ni in extracts were determined by inductively coupled
plasma mass spectrometry (Agilent 8800 ICP-MS, Agilent Technolo-
gies). The GBW-07312 reference sediment (Chinese Academy of Geo-
logical Sciences) and duplicate samples were used for quality control.
The relative standard deviation was±5% for all duplicate samples and
recoveries for total metal contents in the reference sediment were
89–107%.

2.3. Risk assessment code (RAC)

Risk assessment code (RAC) is an ecological risk index based on the
labile metal fraction. Previous studies have applied this index to eval-
uate potential risk and exchangeable fractions of metals in the en-
vironment (Sundaray et al., 2011; Zhang et al., 2017; Pejman et al.,
2017). In this study, the exchangeable fraction (F1 in BCR method) was
considered the labile fraction and used for the RAC calculation, which
was similar to Sun et al. (2019). Ecological risk levels were divided into
four levels based on the F1 proportion (Sundaray et al., 2011):
low,< 10%; medium, 10–30%; high, 30–50%; and extremely high,>
50%.

2.4. Bioavailable metal index (BMI)

Due to the importance of bioavailability in ecological risk assess-
ments of metals, the BMI was used to assess the bioavailability of metals
in sediments before ecological risk assessment. In contrast to the RAC
index that utilizes bioavailability for a single metal in sediment, BMI is
an integrated index to assess the total bioavailability of all selected
metals in sediment (Gao et al., 2018). The index was calculated fol-
lowing (Rosado et al., 2015):
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F1 fractions of metal n in sediment and background sample, respec-
tively. As the F1 content for background samples was unavailable, we
assigned site B22 as the reference background samples when calcu-
lating BMI due to its relatively remote location and similar metal con-
tents to reported background soil samples for the study region (Wang
et al. (2007)).

2.5. Ratio of secondary to primary phases (RSP)

Fraction-based metal risk was assessed by chemical assessment,
which is indicated by the ratio of secondary to primary metal phases. In
this research the secondary phase was considered the sum of F1, F2 and
F3, while the primary phase was represented by F4. Therefore, RSP was
calculated as follows (Lin et al., 2014):
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where F1, F2, F3 and F4 are fractions extracted by the BCR method.
Contamination levels were divided into 4 categories according to cal-
culated P values: no risk, P < 1; low risk, 1≤ P<2; medium risk,
1≤ P<2; and high risk, P≥3.

2.6. Positive matrix fractionalization (PMF)

PMF, a typical receptor model, was used for metal pollution source
apportionment (Mehr et al., 2019; Zhi et al., 2016). This model was
used to factorize the metal dataset into two matrices using the following
formula:
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where xij is metal concentration matrix; i is ith sampling site; j is metal j;
p is the source number; gik is factor contribution to the sample; fkj is
pollution source profile (factors); and eij is residual matrix.

Factor contribution gik and pollution source profile fkj were de-
termined by minimizing the PMF model’s object function Q (Paatero,
1997):
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where σj represents the relative standard deviation for metal j.
In this study, 7 metals in 39 sediments were included in the PMF

calculation. EPA PMF model (ver. 5.0) was used to quantify the metals
source in sediments from the Wen-Rui Tang River watershed. Detailed
information for input files and uncertainty calculation for metal data
can be found in previous reports (Paatero, 1997; Paatero and Hopke,
2009; U.S. Environmental Protection Agency, 2019).

2.7. Co-occurrence network

To visualize correlations among metals in sediments, co-occurrence
networks were generated by Gephi (ver. 0.9.2), which is based on
Spearman’s correlation coefficient analysis. To assure robust correla-
tions among entities, the Spearman’s ρ was set at> 0.6 with a statis-
tically significance of p < 0.01 (Barberán et al., 2012).

3. Results and discussion

3.1. Metal concentrations and chemical fraction in sediments

The mean ± std (range) concentrations (mg kg−1) for Cu, Zn, Pb,
Cd, Cr, Co and Ni in sediments were 310 ± 804 (29.5–5093),
1361 ± 1475 (263–7616), 115 ± 107 (34.5–644), 17.7 ± 53.7
(0.34–314), 192 ± 77.2 (94.2–440), 17.0 ± 4.7 (9.79–32.0), and
89.0 ± 39.9 (38.1–223.8), respectively (Fig. S2). In general, sediments
were highly contaminated by some metals in the investigated wa-
tershed when compared to soil background values (Wang et al., 2007).
Except for Co, the exceedance rates of the sites for total metal con-
centrations compared to background levels were 92–100%. The most
prominent metal was Cd, which was ˜100× times higher than back-
ground, followed by Zn and Cu (˜10× times). Cobalt had a lower oc-
currence of contamination with only 64.1% exceeding background le-
vels and only five sampling sites having concentrations greater than
150% of the background level. Spatial distribution for some metals was
reported in our previous work (Xia et al., 2018) while Co and Ni are
shown in Fig S3 as Supplementary information. In general, several
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distinct ‘hot spots’ were identified in the spatial patterns. Hot spots for
Zn, Pb and Cd were found in the southwest, Cu in the east and Ni in the
northern portion of the watershed. In contrast, Co did not show any
distinct spatial patterns. The extremely high concentrations associated
with these hot spot sites were mainly located in the vicinity of industrial
parks. The high total metal contents and high spatial variability are
indicative of anthropogenic inputs to the riverine sediments. Most of
these metals can be linked to local industrial wastes and wastewater
originating from electroplating, printing, dye chemicals and synthetic
leather industries/domestic workshops that have been active in this
watershed over the past few decades. These industrial effluents contain
high concentration of metals, including Zn, Pb and Cd (Shomar, 2009).
Due to rapid industrial development in the watershed, industrial ef-
fluents are often directly discharged to the river system with no was-
tewater treatment. In contrast to other metals, Co concentrations were
similar to background levels and showed no apparent spatial patterns,
implying that Co primarily originated from natural source.

The BCR-derived metal fractions impacting bioavailability and
bioaccessibility are summarized in Fig. 1. Zinc and Cd were dominantly
found in the exchangeable fraction (F1), while Pb, Cr, Co and Ni were
concentrated in the residual fraction (F4). The average Exch-Zn and
Exch-Cd percentages were 51.6% (range: 20.9–90.4%) and 52.2%
(range: 11.2–74.5%), respectively. Previous studies demonstrated that
the elevated proportions of exchangeable metals originated primarily
from human sources (Ji et al., 2019; Otansev et al., 2016) proving
support for anthropogenic inputs as the primary source of Zn and Cd in
the study watershed. The chemical fractions for Cu showed a distinct
distribution from the other metals. Copper was primarily associated
with F3 with a mean of 54.3% (range of 34.4–82.9%). While previous
studies have demonstrated a strong affinity between Cu and organic
ligands (Bruder-Hubscher et al., 2002), there was no significant corre-
lation between Cu and organic C concentrations in this study. The re-
maining metals were most abundant in the residual fraction (F4):

Pb= 43.8%, Cr= 62.4%, Co= 48.6% and Ni= 46.9%. The large
proportion associated with F4 suggests a relatively lower ecological risk
as these metals are primarily incorporated with crystalline silicate lat-
tices of primary minerals (Zhang et al., 2017).

The RSP index was calculated as a measure of metal contamination
(Fig. 2). The RSP for Zn exceeded 3 in more than 90% of the sites,
indicating a high pollution level throughout the watershed. The per-
centage of sites with high pollution level for Cd and Cu were 74.4% and
69.2%, respectively. In contrast, metal pollutant levels were lower for
Pb with 51.3% sites having low pollution and 25.6% no apparent ac-
cumulation. More than 80% of sites had low to no pollution levels for
Co and Ni, while Cr had no apparent pollution levels for most sampling
sites. Generally, metal pollution based on the RSP index followed: Zn
> Cd > Cu > Pb > Ni ≈ Co > Cr. The high RSP values for Zn, Cd
and Cu are consistent with the high total metal contents compared to
their background values in the watershed. Cobalt showed slight pollu-
tion, which was coincident with its relatively low total concentrations.
In contrast, RSP values for Pb, Ni and Cr indicated low-to-none pollu-
tion, while their total metal concentrations were highly elevated com-
pared to their background levels. This somewhat contradictory result is
attributed to differences in the distribution of chemical fractions among
these metals. Total Pb, Cr and Ni concentrations at most sites exceeded
background levels, but the majority of metals resided in F4. In contrast,
Zn, Cd and Cu had both high total metal contents and a high proportion
of available/accessible fractions (F1+F2+F3). These results highlight
the importance of incorporating metal fractionation methods into
evaluating pollution levels and risks of metals in the environment
(Gusiatin and Kulikowska, 2014).

3.2. Ecological risk assessment based on metal fractions

Several studies have previously assessed ecological risk of metals in
sediments (Zhang et al., 2017; Duodu et al., 2017) and we previously

Fig. 1. Metal fractions in sediments for 39 sampling sites in Wen-Rui Tang River watershed.
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Fig. 2. Percentage of metal contamination levels in sediments represented by ratio of secondary to primary phases (RSP) in sediments.

Fig. 3. Heatmap of RAC risk assessment for sampling sites.
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reported ecological risks based on total metal contents in various land-
use clusters for this watershed (Siddiqui and Pandey, 2019). As de-
scribed above, chemical metal fractions showed large variation
throughout the watershed, resulting in a considerable discrepancy for
ecological risk when compared to metrics based on total metal content.
The F1 fraction is defined as the fraction most easily accessible to or-
ganisms thereby posing the most potential for adverse ecological and
human-health risk. Risk assessment code (RAC) is used to assess the
ecological risk by comparing the F1 proportion to various RAC risk
levels. The average percentage of the exchangeable fraction relative to
total metal concentration followed: Cd (52.2%) ≈ Zn (51.6%)>Ni
(25.4%)>Co (17.9%)>Cu (16.5%)> Pb (3.5%)>Cr (1.1%). Gen-
erally, Cd and Zn showed extremely high ecological risk, while Ni, Co
and Cu were identified with medium risk. In contrast, Pb and Cr dis-
played low risk. In addition, ecological risk by RAC showed spatial
differences among sites. Most sites showed extremely high risk for Zn
and Cd due to their high exchangeable fraction (Fig. 3). Sites A6 and
B17 showed high risk for Cu while more than half of the sites showed a
medium risk. Cobalt and Ni showed overall medium risk at most sam-
pling sites. However, Ni displayed extremely high risk at site B32 due to
its high exchangeable fraction. In contrast, Pb and Cr showed con-
sistently low risk throughout all the sites in the watershed as a result of
a high proportion of the residual fraction. These results clearly de-
monstrate that Cd and Zn posed the highest ecological risk within the
watershed.

RAC assesses ecological risk for a single metal, but does not provide
an integrated index of risks for all metals. Therefore, we applied BMI to
assess the integrated ecological risk associated with all the metals; this
method is commonly used to evaluate metal pollution and risk in the
environment. B22 was assigned as the reference site due to its remote
location and its overall metal concentrations being comparable to
background levels. The average BMI was 6.2, ranging from 1.3 at site
B13 to 19.3 at site B28. Notably, sites A4, A5, B25, B28 and B31stood
out with high BMI values of 15.8, 14.3, 14.3, 19.3 and 15.5, respec-
tively. There is no specific threshold value to evaluate risk levels for
BMI; however, Omwene et al. (Omwene et al. (2018)) demonstrated
pollution risk when PLI index values were greater than 1, which in-
volves a similar calculation to BMI. As a result, the investigated wa-
tershed contains areas with potentially high ecological risk. A detailed
spatial analysis showed BMI generally decreasing from south to north
and the sites with highest BMI values were mainly located in the
southwest portion of the watershed (Fig. 4). BMI values were compared
to the exchangeable metal fractions to examine reliability between as-
sessment metrics. Sites with high BMI values had a high proportion of

Exch-Zn (Spearman correlation coefficient: 0.800, p < 0.01) and Exch-
Cd (0.828, p < 0.01), confirming a similar spatial pattern between BMI
and exchangeable fractions for these metals within the sediments.
These results highlight the large contribution of Zn and Cd to local
ecological risk and the consistency between RAC and exchangeable
metal fractions in identifying potential ecological risks.

3.3. Principle component analysis and co-occurrence network

PCA analysis is a typical method used to identify common char-
acteristics and recognize potential sources of metals (Zhi et al., 2016;
Kang et al., 2017). In addition, PCA analysis assists with determining
the number of factors for PMF models. In this study, PCA was applied
for total metal concentrations and three components were identified
based on their eigenvalues that explained 83.5% of the total variance
(Table S1). Zinc, Pb and Cd showed high loading on PC1 (45.4% of the
total variance), indicating a similar pollution source within the wa-
tershed. Similar spatial distribution patterns were found in our previous
work (Xia et al., 2018). Chromium and Ni had high loading on PC2
(24.2% of the total variance), while Cu had a high loading on PC3

Fig. 4. Spatial distribution of ecological risk evaluated by BMI method.

Fig. 5. Co-occurrence network of metals in sediments (Spearman’s ρ > 0.6 and
p < 0.01). Nodes represent metals while the connections between two nodes
represent correlation coefficient between them. The size of each node is pro-
portional to the correlations while the thickness of each connection is propor-
tional to the Spearman’s correlation coefficients.

F. Xia, et al. Journal of Hazardous Materials 381 (2020) 121230

6



(15.7% of the total variance). To further assess common sources among
the metals, we performed a co-occurrence network (Liu et al., 2015).
Spearman’s correlation coefficients (> 0.6) between metals were used
to construct the co-occurrence network (Fig. 5), which indicated sig-
nificant correlations between theses metals. Cobalt was excluded from

the co-occurrence network due to its weak or non-significant correla-
tions with the other metals. Significant co-occurrence correlations were
determined among metals, especially for Zn, Cd and Cu (Fig. 5). Copper
had high co-occurrence correlations with all the other metals, except
Co. Lead and Cr showed similar co-occurrence correlations with Cu, Zn

Fig. 6. Concentrations of measured and predicted metals in sediments (left panels). Black lines represent measured concentrations and red lines represent predicted
concentrations. Linear regression results are compared to one-to-one function line (y= x) in the right panels. Black dashed lines represent one-to-one function while
red lines represent linear regression result. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).

Table 1
Source contribution for metals in sediment by the PMF model.

Element Profile contribution (mg kg−1) Percentage contribution (%)

Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3

Cu 137.5 19.6 28.5 74.1 10.6 15.3
Zn 527.7 479.1 234.4 42.5 38.6 18.9
Pb 23.0 24.8 49.1 23.7 25.6 50.7
Cd 1.17 16.9 0 6.5 93.5 0
Cr 50.2 11.5 115.6 28.3 6.5 65.2
Co 3.1 1.4 11.2 19.8 8.8 71.4
Ni 23.5 5.4 51.3 29.3 6.8 63.9
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and Cd. Nickel showed relatively low co-occurrence correlations with
all the other metals. High co-occurrence correlations among metals are
suggestive of common anthropogenic sources, such as industrial waste
discharge or agricultural activities.

3.4. Assessment of metal sources by PMF model

The PMF model was used to identify possible sources of metals in
sediments in Wen-Rui Tang River watershed. Metal concentrations and
their corresponding uncertainty data were used as inputs to the PMF
model. As Co was near background level and posed none to low eco-
logical risk in the watershed, it was set as weak in the base model run
and the detailed results for Co was ignored. Based on results of the PCA
analysis, the number of factors for the base model run was set to three.
Three factors were identified as the optimum number of factors for this
metal dataset based on minimization of Q values and r2 values between
measured and predicted metal concentrations. Most sites were de-
termined with absolute residual values lower than 3 for measured and
predicted metal concentrations.

Predicted metal concentrations from the PMF model were compared
with measured concentrations (Figs. 6 and S4) and determination
coefficients (r2) were used to evaluate the efficacy of model predictions.
Most metals showed reasonable linear regression results with r2 values
greater than 0.52. The higher r2 values were found for Zn (0.895), Pb
(0.883) and Cd (0.999), indicating that the metal concentrations pre-
dicted by the selected source factors in the PMF model were well ex-
plained. The r2 values for Cu was only 0.129 when all the data were
included; however, this analysis was strongly influenced by a single
outlier at site 18 (5092.5 mg kg−1 and 27 ×average Cu concentration).
Following removal of this outlier, the r2 values increased to 0.961, in-
dicating a significant and disproportional influence of the outlier to
PMF prediction results (Men et al., 2019). Similarly, spatial analysis
indices, such as Moran’s I is sensitive to outliers, but is strongly in-
dicative of contaminated locations (Zhao et al., 2014, 2019). Abnormal
events commonly create outlier values in air pollution source appor-
tionment investigations, such as fire and fireworks, and the PMF model
is highly sensitive to these outliers (Norris et al., 2008). Site B18 was
located in the urban region surround by commercial and residential
areas, where no unique point source can be currently identified. The
extremely high Cu concentration may be attributed to an unexpected
legacy source and therefore not associated with current land-use ac-
tivities.

Details of the PMF result for factor profiles are shown in Table 1 and
Fig. S5. Factor 1 was strongly characterized by Cu and had a 74.1%
contribution. Zinc, Pb and Cr showed a contribution by factor 1 of

42.5%, 23.7% and 28.3%, respectively. Factor 2 was predominantly
represented by Cd with a 93.5% contribution. Factor 2 also showed a
medium contribution to Zn and Pb. These are primary metals attributed
to local industrial emissions, thus factor 2 probably represents an in-
dustrial pollution source. Factor 3 was represented by Pb, Cr, and Ni
with contributions of 50.7%, 65.2% and 63.9%, respectively. The
overall contributions from each source factor to the various metals are
summarized in Fig. 7. Combined with the PMF profile results (Table 1),
Cr and Ni showed similar source components while Zn and Pb shared
similar factors in their source contributions. In contrast, Cu was pre-
dominantly contributed by a single factor. The results from the PMF
model were generally consistent with the PCA analysis. For example, Cr
and Ni had high loadings on PC2 while they showed a high weighting
with factor 3 of the PMF analysis. The consistency between the two
approaches provides strong support for Cr and Ni sharing a similar
source. Similar results were also found for Zn and Pb. Cu was highly
characterized by factor 1 in the PMF analysis and showed high loading
on PC3, indicating a distinct source compared to the other metals. The
high levels of Cu in riverine sediments may be attributed to fertilizer,
pesticides and feed supplements associated with agricultural activities
in the watershed. Thus, factor 1 is most likely dominated by agricultural
emissions. Cd displayed some inconsistent results with the predominant
weighting in PMF factor 2contrasting with results from PCA and co-
occurrence network analysis. The inconsistency may be attributed to Cd
being from a predominant industrial source for factor 2 that will be
discussed with the combination of spatial intensity of source factors in
the next section.

3.5. Spatial intensity of source factors by PMF model

According to the contribution of PMF-derived source factors to
metal concentrations at each site, inverse distance weighting in ArcGIS
was used to predict spatial distribution patterns for these source factors
across the watershed (Fig. 8). Factor 1 strongly characterized Cu along
with medium weighting for Zn, Pb and Cr. Generally, two high-level
areas were identified for factor 1, in the west and central-south portion
of the watershed. Notably, sampling sites B32, B24 and A5 were iden-
tified as having a high value for factor 1. These sites with high Cu
concentration were mainly located in rural and agricultural land-use
areas within the watershed. Thus, we inferred that source factor 1 was
mainly related to agricultural activities, such as fertilizer, pesticides and
domestic animal feed supplements, which resulted in Cu accumulation
in the sediments (Song et al., 2018; Guan et al., 2018).

Cadmium was strongly associated with factor 2 (Fig. 7). A Cd hot
spot was identified in the southwestern portion of the watershed with
sites B31 and B28 also having high values for Cd and Zn (Fig. 8). This
high-level area was located in close proximity to an industrial park from
which contaminated wastewater was directly discharged into the river
in recent decades. As a result, we infer that factor 2 is primarily asso-
ciated with Cd originating from industrial sources.

Factor 3 was most strongly associated with Cr, Co and Ni, which all
showed a similar contribution of source factors dominated by factor 3.
Spatial differences for the intensity in factor 3 throughout the wa-
tershed were relatively small, with the exception of a few specific sites
(Fig. 8). The lack of a distinct spatial trend indicates a more homo-
geneous spatial distribution pattern of these metals at the watershed
scale. The highest values for factors 3 were found at sites B19 and B11
in the northeastern portion of the watershed. These sites were char-
acterized by high concentrations of Co, Cr and Ni and were mainly
located in urban areas. Previous studies indicated that Cr and Ni were
often inherited from geologic materials (Rodríguez Martín et al., 2006;
Xue et al., 2014). Chromium and Ni were generally comparable to the
background values of soils in the watershed. Lead also showed a rela-
tively strong association (49.1%) with factor 3 (Table 1). Previous
studies have identified Pb as originating primarily from vehicle traffic
sources that are concentrated in the urban district (Li et al., 2016;

Fig. 7. Contribution of different factors for each metal determined by the PMF
model.
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Murajanum et al., 2007). Thus, we interpret that factor 3 reflects a
combination of natural background metals and traffic sources within
watershed.

4. Conclusions

Riverine sediments in the Wen-Rui Tang watershed were con-
taminated by metals that resulted in potential risks to aquatic ecosys-
tems and human health, based on indices related to both total con-
centrations and chemical fractions. Notably, Zn and Cd showed high
ecological risk due to a high proportion of F1 fraction, and the

southwestern portion of the watershed was identified with higher risks
based on BMI calculation. PMF analysis demonstrated good prediction
ability for most metals with determination coefficients for linear re-
gressions in the range 0.521–0.999, and three main source factors were
extracted by the PMF model. Copper was mainly contributed by agri-
cultural sources (74.1%), while Cd was largely characterized by in-
dustrial sources (93.5%). Zinc received relatively equal contributions
from agricultural (42.5%) and industrial (38.6%) sources. A mixed
geologic and traffic source was dominant for Cr, Ni and Pb with con-
tributions of 65.2%, 63.9% and 50.7%, respectively. Spatially, the
agricultural source (factor 1) mainly impacted the west and south-

Fig. 8. Spatial distribution of source factor intensities for metals in sediments.
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central portions of the watershed, while the industrial source (factor 2)
occurred as ‘hot spot’ in the southwest. The mixed source (factor 3)
mainly influenced the urban areas. Results from this study provided
important information for guiding source control and remediation
strategies of metal contamination at the watershed scale.

Declaration of Competing Interest

None.

Acknowledgments

This work was financially supported by the Fundamental Research
Funds for the Central Universities (2019FZJD007), National Natural
Science Foundation of China (41907106, 41601248, 51979197),
Science and Technology Bureau of Wenzhou (S20180010), and Science
Research Funding of Wenzhou Medical University (QTJ16011).

Appendix A. Supplementary data

Supplementary material related to this article can be found, in the
online version, at doi:https://doi.org/10.1016/j.jhazmat.2019.121230.

References

Barberán, A., Bates, S.T., Casamayor, E.O., Fierer, N., 2012. Using network analysis to
explore co-occurrence patterns in soil microbial communities. ISME J. 6, 343–351.
https://doi.org/10.1038/ismej.2011.119.

Bhuiyan, M.A.H., Dampare, S.B., Islam, M.A., Suzuki, S., 2015. Source apportionment and
pollution evaluation of heavy metals in water and sediments of Buriganga River,
Bangladesh, using multivariate analysis and pollution evaluation indices. Environ.
Monit. Assess. 187, 4075. https://doi.org/10.1007/s10661-014-4075-0.

Boran, M., Altinok, I., 2010. A review of heavy metals in water, sediment and living
organisms in the Black Sea. Turk. J. Fish. Aquat. Sci. 10, 565–572. https://doi.org/
10.4194/trjfas.2010.0418.

Bruder-Hubscher, V., Lagarde, F., Leroy, M.J.F., Coughanowr, C., Enguehard, F., 2002.
Application of a sequential extraction procedure to study the release of elements from
municipal solid waste incineration bottom ash. Anal. Chim. Acta 451, 285–295.
https://doi.org/10.1016/S0003-2670(01)01403-9.

Comero, S., Vaccaro, S., Locoro, G., De-Capitani, L., Gawlik, B.M., 2014. Characterization
of the Danube River sediments using the PMF multivariate approach. Chemosphere
95, 329–335. https://doi.org/10.1016/j.chemosphere.2013.09.028.

Comero, S., Locoro, G., Free, G., Vaccaro, S., De Capitani, L., Gawlik, B.M., 2011.
Characterisation of Alpine lake sediments using multivariate statistical techniques.
Chemometr. Intell. Lab. 107, 24–30. https://doi.org/10.1016/j.chemolab.2011.01.
002.

Duodu, G.O., Goonetilleke, A., Ayoko, G.A., 2017. Potential bioavailability assessment,
source apportionment and ecological risk of heavy metals in the sediment of Brisbane
River estuary, Australia. Mar. Pollut. Bull. 117, 523–531. https://doi.org/10.1016/j.
marpolbul.2017.02.017.

Gao, L., Wang, Z.W., Li, S.H., Chen, J.Y., 2018. Bioavailability and toxicity of trace metals
(Cd, Cr, Cu, Ni, and Zn) in sediment cores from the Shima River, South China.
Chemosphere 192, 31–42. https://doi.org/10.1016/j.chemosphere.2017.10.110.

Giri, S., Singh, A.K., 2014. Risk assessment, statistical source identification and seasonal
fluctuation of dissolved metals in the Subatrnarekha River, India. J. Hazard. Mater.
265, 305–314. https://doi.org/10.1016/j.jhazmat.2013.09.067.

Guan, Q.Y., Wang, F.F., Xu, C.Q., Pan, N.H., Lin, J.K., Zhao, R., Yang, Y.Y., Luo, H.P.,
2018. Source apportionment of heavy metals in agricultural soil based on PMF: a case
study in Hexi Corridor, northwest China. Chemosphere 193, 189–197. https://doi.
org/10.1016/j.chemosphere.2017.10.151.

Gusiatin, Z.M., Kulikowska, D., 2014. The usability of the IR, RAC and MRI indices of
heavy metal distribution to assess the environmental quality of sewage sludge com-
posts. Waste Manage. 34, 1227–1236. https://doi.org/10.1016/j.wasman.2014.04.
005.

Ji, Z.H., Zhang, Y., Zhang, H., Huang, C.X., Pei, Y.S., 2019. Fraction spatial distributions
and ecological risk assessment of heavy metals in the sediments of Baiyangdian Lake.
Ecotox. Environ. Safe. 174, 417–428. https://doi.org/10.1016/j.ecoenv.2019.02.
062.

Kang, X.M., Song, J.M., Yuan, H.M., Duan, L.Q., Li, X.G., Lin, N., Liang, X.M., Qu, B.X.,
2017. Speciation of heavy metals in different grain sizes of Jiaozhou Bay sediments:
Bioavailability, ecological risk assessment and source analysis on a centennial time-
scale. Ecotox. Environ. Safe. 143, 296–306. https://doi.org/10.1016/j.ecoenv.2017.
05.036.

Li, F., Zhang, J.D., Huang, J.H., Huang, D.W., Yang, J., Song, Y.W., Zeng, G.M., 2016.
Heavy metals in road dust from Xiandao District, Changsha City, China:
Characteristics, health risk assessment, and integrated source identification. Environ.
Sci. Pollut. Res. 23, 13100–13113. https://doi.org/10.1007/s11356-016-6458-y.

Lin, C., Liu, Y., Li, W.Q., Sun, X.W., Ji, W.D., 2014. Speciation, distribution, and potential

ecological risk assessment of heavy metals in Xiamen Bay surface sediment. Acta
Oceanolog. Sin. 33, 13–21. https://doi.org/10.1007/s13131-014-0453-2.

Liu, L.L., Wang, Z.P., Ju, F., Zhang, T., 2015. Co-occurrence correlations of heavy metals
in sediments revealed using network analysis. Chemosphere 119, 1305–1313.
https://doi.org/10.1016/j.chemosphere.2014.01.068.

Luo, L.L., Mei, K., Qu, L.Y., Zhang, C., Chen, H., Wang, S.Y., Di, D., Huang, H., Wang, Z.F.,
Xia, F., Dahlgren, R.A., Zhang, M.H., 2019. Assessment of the Geographical Detector
Method for investigating heavy metal source apportionment in an urban watershed of
Eastern China. Sci. Total Environ. 653, 714–722. https://doi.org/10.1016/j.
scitotenv.2018.10.424.

Mehr, M.R., Keshavarzi, B., Sorooshian, A., 2019. Influence of natural and urban emis-
sions on rainwater chemistry at a southwestern Iran coastal site. Sci. Total Environ.
668, 1213–1221. https://doi.org/10.1016/j.scitotenv.2019.03.082.

Men, C., Liu, R.M., Wang, Q.R., Guo, L.J., Miao, Y.X., Shen, Z.Y., 2019. Uncertainty
analysis in source apportionment of heavy metals in road dust based on positive
matrix factorization model and geographic information system. Sci. Total Environ.
652, 27–39. https://doi.org/10.1016/j.scitotenv.2018.10.212.

Murajanum, M., Nakajima, F., Furumai, H., Tomiyasu, B., Owari, M., 2007. Identification
of particles containing chromium and lead in road dust and soakaway sediment by
electron probe microanalyser. Chemosphere 67, 2000–2010. https://doi.org/10.
1016/j.chemosphere.2006.11.044.

Nemati, K., Bakar, N.K.A., Abas, M.R., Sobhanzadeh, E., 2011. Speciation of heavy metals
by modified BCR sequential extraction procedure in different depths of sediments
from Sungai Buloh, Selangor, Malaysia. J. Hazard. Mater. 192, 402–410. https://doi.
org/10.1016/j.jhazmat.2011.05.039.

Norris, G., Vedantham, R., Wade, K., Brown, S., Prouty, J., Foley, C., 2008. EPA Positive
Matrix Factorization (PMF) 3.0 Fundamentals & User Guide. US Environmental
Protection Agency Office of Research and Development, Washington, DC.

Omwene, P.I., Öncel, M.S., Celen, M., Kobya, M., 2018. Heavy metal pollution and spatial
distribution in surface sediments of Mustafakemalpasa stream located in the world’s
largest borate basin (Turkey). Chemosphere 208, 782–792. https://doi.org/10.1016/
j.chemosphere.2018.06.031.

Otansev, P., Taskin, H., Bassari, A., Varinlioglu, A., 2016. Distribution and environmental
impacts of heavy metals and radioactivity in sediment and seawater samples of the
Marmara Sea. Chemosphere 154, 266–275. https://doi.org/10.1016/j.chemosphere.
2016.03.122.

Paatero, P., 1997. Least squares formulation of robust non-negative factor analysis.
Chemometr. Intell. Lab. 37, 23–35. https://doi.org/10.1016/S0169-7439(96)
00044-5.

Paatero, P., Hopke, P.K., 2009. Rotational tools for factor analytic models. Chemometr.
Intell. Lab. Syst. 23, 91–100. https://doi.org/10.1002/cem.1197.

Patel, P., Raju, N.J., Reddy, B.C.S.R., Suresh, U., Sankar, D.B., Reddy, T.V.K., 2018. Heavy
metal contamination in river water and sediments of the Swarnamukhi River Basin,
India: risk assessment and environmental implications. Environ. Geochem. Hlth. 40,
609–623. https://doi.org/10.1007/s10653-017-0006-7.

Pejman, A., Bidhendi, G.N., Ardestani, M., Saeedi, M., Baghvand, A., 2017. Fractionation
of heavy metals in sediments and assessment of their availability risk: a case study in
the northwestern of Persian Gulf. Mar. Pollut. Bull. 114, 881–887. https://doi.org/
10.1016/j.marpolbul.2016.11.021.

Pueyo, M., Mateu, J., Rigol, A., Vidal, M., Lopez-Sanchez, J.F., Rauret, G., 2008. Use of
the modified BCR three-step sequential extraction procedure for the study of trace
element dynamics in contaminated soils. Environ. Pollut. 152, 330–341. https://doi.
org/10.1016/j.envpol.2007.06.020.

Rosado, D., Usero, J., Morillo, J., 2015. Application of a new integrated sediment quality
assessment method to Huelva estuary and its littoral of influence (Southwestern
Spain). Mar. Pollut. Bull. 98, 106–114. https://doi.org/10.1016/j.marpolbul.2015.
07.008.

Rodríguez Martín, J.A., Lopez-Arias, M., Grau Corbí, J.M., 2006. Heavy metals contents in
agricultural topsoils in the Ebro basin (Spain). Application of the multivariate
geoestatistical methods to study spatial variations. Environ. Pollut. 144, 1001–1012.
https://doi.org/10.1016/j.envpol.2006.01.045.

Schwarz, J., Pokorna, P., Rychlik, S., Skachova, H., Vlcek, O., Smolik, J., Zdimal, V.,
Hunoval, I., 2019. Assessment of air pollution origin based on year-long parallel
measurement of PM2.5 and PM10 at two suburban sites in Prague, Czech Republic.
Sci. Total Environ. 664, 1107–1116. https://doi.org/10.1016/j.scitotenv.2019.01.
426.

Shaike, M.M., Nath, B., Birch, G.F., 2014. Partitioning of trace elements in contaminated
estuarine sediments: the role of environmental settings. Ecotox. Environ. Saf. 110,
246–253. https://doi.org/10.1016/j.ecoenv.2014.09.007.

Shomar, B., 2009. Source and buildup of Zn, Cd, Cr and Pb in the sludge of Gaza. Environ.
Monit. Assess. 155, 51–62. https://doi.org/10.1007/s10661-008-0417-0.

Siddiqui, E., Pandey, J., 2019. Assessment of heavy metal pollution in water and surface
sediment and evaluation of ecological risks associated with sediment contamination
in the Ganga River: a basin-scale study. Environ. Sci. Pollut. Res. 26, 10926–10940.
https://doi.org/10.1007/s11356-019-04495-6.

Soliman, N.F., Younis, A.M., Elkady, E.M., 2019. An insight into fraction, toxicity, mo-
bility and source apportionment of metals in sediments from El Temsah Lake, Suez
Canal. Chemosphere 222, 165–174. https://doi.org/10.1016/j.chemosphere.2019.
01.009.

Song, H.Y., Hu, K.L., An, Y., Chen, C., Li, G.D., 2018. Spatial distribution and source
apportionment of the heavy metals in the agricultural soil in a regional scale. J. Soil
Sediment 18, 852–862. https://doi.org/10.1007/s11368-017-1795-0.

Sun, C.Y., Zhang, Z.X., Cao, H.N., Xu, M., Xu, L., 2019. Concentrations, speciation, and
ecological risk of heavy metals in the sediment of the Songhua River in an urban area
with petrochemical industries. Chemosphere 219, 538–545. https://doi.org/10.
1016/j.chemosphere.2018.12.040.

F. Xia, et al. Journal of Hazardous Materials 381 (2020) 121230

10

https://doi.org/10.1016/j.jhazmat.2019.121230
https://doi.org/10.1038/ismej.2011.119
https://doi.org/10.1007/s10661-014-4075-0
https://doi.org/10.4194/trjfas.2010.0418
https://doi.org/10.4194/trjfas.2010.0418
https://doi.org/10.1016/S0003-2670(01)01403-9
https://doi.org/10.1016/j.chemosphere.2013.09.028
https://doi.org/10.1016/j.chemolab.2011.01.002
https://doi.org/10.1016/j.chemolab.2011.01.002
https://doi.org/10.1016/j.marpolbul.2017.02.017
https://doi.org/10.1016/j.marpolbul.2017.02.017
https://doi.org/10.1016/j.chemosphere.2017.10.110
https://doi.org/10.1016/j.jhazmat.2013.09.067
https://doi.org/10.1016/j.chemosphere.2017.10.151
https://doi.org/10.1016/j.chemosphere.2017.10.151
https://doi.org/10.1016/j.wasman.2014.04.005
https://doi.org/10.1016/j.wasman.2014.04.005
https://doi.org/10.1016/j.ecoenv.2019.02.062
https://doi.org/10.1016/j.ecoenv.2019.02.062
https://doi.org/10.1016/j.ecoenv.2017.05.036
https://doi.org/10.1016/j.ecoenv.2017.05.036
https://doi.org/10.1007/s11356-016-6458-y
https://doi.org/10.1007/s13131-014-0453-2
https://doi.org/10.1016/j.chemosphere.2014.01.068
https://doi.org/10.1016/j.scitotenv.2018.10.424
https://doi.org/10.1016/j.scitotenv.2018.10.424
https://doi.org/10.1016/j.scitotenv.2019.03.082
https://doi.org/10.1016/j.scitotenv.2018.10.212
https://doi.org/10.1016/j.chemosphere.2006.11.044
https://doi.org/10.1016/j.chemosphere.2006.11.044
https://doi.org/10.1016/j.jhazmat.2011.05.039
https://doi.org/10.1016/j.jhazmat.2011.05.039
http://refhub.elsevier.com/S0304-3894(19)31184-7/sbref0110
http://refhub.elsevier.com/S0304-3894(19)31184-7/sbref0110
http://refhub.elsevier.com/S0304-3894(19)31184-7/sbref0110
https://doi.org/10.1016/j.chemosphere.2018.06.031
https://doi.org/10.1016/j.chemosphere.2018.06.031
https://doi.org/10.1016/j.chemosphere.2016.03.122
https://doi.org/10.1016/j.chemosphere.2016.03.122
https://doi.org/10.1016/S0169-7439(96)00044-5
https://doi.org/10.1016/S0169-7439(96)00044-5
https://doi.org/10.1002/cem.1197
https://doi.org/10.1007/s10653-017-0006-7
https://doi.org/10.1016/j.marpolbul.2016.11.021
https://doi.org/10.1016/j.marpolbul.2016.11.021
https://doi.org/10.1016/j.envpol.2007.06.020
https://doi.org/10.1016/j.envpol.2007.06.020
https://doi.org/10.1016/j.marpolbul.2015.07.008
https://doi.org/10.1016/j.marpolbul.2015.07.008
https://doi.org/10.1016/j.envpol.2006.01.045
https://doi.org/10.1016/j.scitotenv.2019.01.426
https://doi.org/10.1016/j.scitotenv.2019.01.426
https://doi.org/10.1016/j.ecoenv.2014.09.007
https://doi.org/10.1007/s10661-008-0417-0
https://doi.org/10.1007/s11356-019-04495-6
https://doi.org/10.1016/j.chemosphere.2019.01.009
https://doi.org/10.1016/j.chemosphere.2019.01.009
https://doi.org/10.1007/s11368-017-1795-0
https://doi.org/10.1016/j.chemosphere.2018.12.040
https://doi.org/10.1016/j.chemosphere.2018.12.040


Sundaray, S.K., Nayak, B.B., Lin, S., Bhatta, D., 2011. Geochemical speciation and risk
assessment of heavy metals in the river estuarine sediments-a case study: Mahanadi
basin, India. J. Hazard. Mater. 186, 1837–1846. https://doi.org/10.1016/j.jhazmat.
2010.12.081.

Tessier, A., Campbell, P.G.C., Bisson, M., 1979. Sequential extraction procedure for the
speciation of particulate trace metals. Anal. Chem. 51, 844–851. https://doi.org/10.
1021/ac50043a017.

Toth, G., Hermann, T., Da Silva, M.R., Montanarella, L., 2016. Heavy metals in agri-
cultural soils of the European Union with implications for food safety. Environ. Int.
88, 299–309. https://doi.org/10.1016/j.envint.2015.12.017.

U.S. Environmental Protection Agency EPA Positive Matrix Factorization (PMF) 5.0
Fundamentals and User Guide. Available at: https://www.epa.gov/sites/production/
files/201502/documents/pmf_5.0_user_guide.pdf.

Unda-Calvo, J., Martinsz-Santos, M., Ruiz-Romera, E., 2017. Chemical and physiological
metal bioaccessibility assessment in surface bottom sediments from the Deba River
urban catchment: harmonization of PBET, TCLP and BCR sequential extraction
methods. Ecotox. Environ. Safe. 138, 260–270. https://doi.org/10.1016/j.ecoenv.
2016.12.029.

Wang, Q.H., Dong, Y.X., Zheng, W., Zhou, G.H., 2007. Soil geochemical baseline values
and environmental background values in Zhejiang, China (in Chinese). Geol. Bull.
China 26, 590–597.

Wang, Z.F., Zhou, J.Y., Zhang, C., Qu, L.Y., Mei, K., Dahlgren, R.A., Zhang, M.H., Xia, F.,
2019a. A comprehensive risk assessment of metals in riverine surface sediments
across the rural-urban interface of a rapidly developing watershed. Environ. Pollut.
245, 1022–1030. https://doi.org/10.1016/j.envpol.2018.11.078.

Wang, S., Cai, L.M., Wen, H.H., Jie, L., Wang, Q.S., Liu, X., 2019b. Spatial distribution and
source apportionment of heavy metals in soil from a typical county-level city of

Guangdong Province, China. Sci. Total Environ. 655, 92–101. https://doi.org/10.
1016/j.scitotenv.2018.11.244.

Xia, F., Qu, L.Y., Wang, T., Luo, L.L., Chen, H., Dahlgren, R.A., Zhang, M.H., Mei, K.,
Huang, H., 2018. Distribution and source analysis of heavy metal pollutants in se-
diments of a rapid developing urban river system. Chemosphere 207, 218–228.
https://doi.org/10.1016/j.chemosphere.2018.05.090.

Xue, J.L., Zhi, Y.Y., Yang, L.P., Shi, J.C., Zeng, L.Z., Wu, L.S., 2014. Positive matrix fac-
torization as source apportionment of soil lead and cadmium around a battery plant
(Changxing County, China). Environ. Sci. Pollut. Res. 21, 7698–7707. https://doi.
org/10.1007/s11356-014-2726-x.

Zhang, G.L., Bai, J.H., Xiao, R., Zhao, Q.Q., Jia, J., Cui, B.S., Liu, X.H., 2017. Heavy metal
fractions and ecological risk assessment in sediments from urban, rural and re-
clamation-affected rivers of the Pearl River Estuary, China. Chemosphere 184,
278–288. https://doi.org/10.1016/j.chemosphere.2017.05.155.

Zhao, K.L., Fu, W.J., Liu, X.M., Huang, D.L., Zhang, C.S., Ye, Z.Q., Xu, J.M., 2014. Spatial
variation of concentrations of copper and its speciation in the soil-rice system in
Wenling of southeastern China. Environ. Sci. Pollut. Res. 21, 7165–7176. https://doi.
org/10.1007/s11356-014-2638-9.

Zhao, K.L., Fu, W.J., Qiu, Q.Z., Ye, Z.Q., Li, Y.F., Tunney, H., Dou, C.Y., Zhou, K.N., Qian,
X.B., 2019. Spatial patterns of potentially hazardous metals in paddy soils in a typical
electrical waste dismantling area and their pollution characteristics. Geoderma 337,
453–462. https://doi.org/10.1016/j.geoderma.2018.10.004.

Zhi, Y.Y., Li, P., Shi, J.C., Zeng, L.Z., Wu, L.S., 2016. Source identification and appor-
tionment of soil cadmium in cropland of Eastern China: a combined approach of
models and geographic information system. J. Soil Sediment 16, 467–475. https://
doi.org/10.1007/s11368-015-1263-7.

F. Xia, et al. Journal of Hazardous Materials 381 (2020) 121230

11

https://doi.org/10.1016/j.jhazmat.2010.12.081
https://doi.org/10.1016/j.jhazmat.2010.12.081
https://doi.org/10.1021/ac50043a017
https://doi.org/10.1021/ac50043a017
https://doi.org/10.1016/j.envint.2015.12.017
https://www.epa.gov/sites/production/files/201502/documents/pmf_5.0_user_guide.pdf
https://www.epa.gov/sites/production/files/201502/documents/pmf_5.0_user_guide.pdf
https://doi.org/10.1016/j.ecoenv.2016.12.029
https://doi.org/10.1016/j.ecoenv.2016.12.029
http://refhub.elsevier.com/S0304-3894(19)31184-7/sbref0220
http://refhub.elsevier.com/S0304-3894(19)31184-7/sbref0220
http://refhub.elsevier.com/S0304-3894(19)31184-7/sbref0220
https://doi.org/10.1016/j.envpol.2018.11.078
https://doi.org/10.1016/j.scitotenv.2018.11.244
https://doi.org/10.1016/j.scitotenv.2018.11.244
https://doi.org/10.1016/j.chemosphere.2018.05.090
https://doi.org/10.1007/s11356-014-2726-x
https://doi.org/10.1007/s11356-014-2726-x
https://doi.org/10.1016/j.chemosphere.2017.05.155
https://doi.org/10.1007/s11356-014-2638-9
https://doi.org/10.1007/s11356-014-2638-9
https://doi.org/10.1016/j.geoderma.2018.10.004
https://doi.org/10.1007/s11368-015-1263-7
https://doi.org/10.1007/s11368-015-1263-7

	A comprehensive analysis and source apportionment of metals in riverine sediments of a rural-urban watershed
	Introduction
	Material and methods
	Study area
	Metal analysis
	Risk assessment code (RAC)
	Bioavailable metal index (BMI)
	Ratio of secondary to primary phases (RSP)
	Positive matrix fractionalization (PMF)
	Co-occurrence network

	Results and discussion
	Metal concentrations and chemical fraction in sediments
	Ecological risk assessment based on metal fractions
	Principle component analysis and co-occurrence network
	Assessment of metal sources by PMF model
	Spatial intensity of source factors by PMF model

	Conclusions
	mk:H1_17
	Acknowledgments
	Supplementary data
	References




