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Chapter 6 

Market-Share Models* 

Lee G. Cooper 
Anderson Graduate School of Management, University of California at Los Angeles, Los Angeles, 
CA 90024-1481, USA 

1. lntroduetion 

The topic of market-share models overlaps substantially with Roberts and Lilien's 
discussion of choice models (This Handbook,  Chapter 2), since consumer choice 
underlies the process of market-share formation; with Gatignon's  discussion of 
marketing-mix models (This Handbook,  Chapter  15), since market-share modets 
should be useful in planning the marketing mix for a brand in light of competitive 
forces, with the Hanssens and Parsons discussion of enconometric and time-series 
models (This Handbook,  Chapter  9), since market-share models deal with market 
response over time as weil as over geography and over competitors, and with the 
Blattberg and Neslin discussion of sales-promotion models (This Handbook,  
Chapter 12), since market-share models have been us ed extensively to analyze the 
effects of retail promotions. What  this chapter contributes to management  science 
in marketing beyond that offered by these other chapters is hopefully an undero 
standing of how increasingly rich specification of market-share models can guide 
the systematic study of market  and competitive structures. 

By marke t  and compet i t ive  s tructures  we mean the complex pattern of competitive 
interplay within a market. Take the cereal market  as an example. The presweetened 
cereals such as Frosted Flakes or Honey Nut  Cheerios serve a predominantly 
different segment than the mainly unsweetened cereals such as Cheerios, Ketlogg's 
Corn Flakes, or Wheaties. Substitution within these submarkets is likety to be 
more frequent than between them. But we cannot treat them as totally separate 
markets since dramatic  price reductions for Cheerios might entice consumers to 
switch from the presweetened segment and sweeten at home. Even within the 
unsweetened cereals, we expect more substitution within varieties of corn flakes, 
than between corn flakes and wheat flakes, or more substitution within varieties 

*This chapter relies heavily on the developments in Chapters 2 and 3 of Cooper & Nakanishi [1988]. 
The numerous contributions of Masso Nakanishi to this work are gratefully acknowledged. I also 
thank M.J. Snyder for her assistance with the numerical illustration, A.C. Nielsen for providing the 
data used in the numerical illustration, and the reviewers for their many helpful comments. 
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of granolas than between granolas and single-grain cereals. Media advertising for 
one of Kellogg's brands may help other Kellog brands, have little effect on other 
premium national brands, and hurt each store's private-label brand. In return the 
large price differential between a store's private-label brand and the corresponding 
national brand (e.g. Honey Nut Cheerios and Honey Nut Tasteeos-two to one 
according to a recent Wall Street Journal story, Gibson [1991]) can create 
long-term cross-competitive influences within this dyad that are not felt throughout 
the market. 

Three basic principles motivate the specification of the market-share models 
discussed in this chapter. Market-share models should be competitive, descriptive 
as well as predictive, and proflt-oriented, Being fundamentally competitive implies 
that we cannot know the effect or effectiveness of a marketing action without 
accounting for the actions of competitors. Say we try an eight-week promotion 
for a bar soap that combines a newspaper feature with a high-value coupon and 
a low feature price, and observe only a 10~o gain over baseline sales. Management's 
reaction to such a disappointing response would be very different ifall other brands 
were sitting quietly at shelf price, than if the other national brands were temporally 
exhausting demand with four-for-the-price-of-three multipacks. While single-brand 
sales models can be specified to include the actions of particular competitors, only 
market-share models include competition as a fundamental part of their composi- 
tion. Market-share models are models for understanding how the marketing efforts 
of every brand impact the results in a competitive marketplace. Only by describin 9 
the inftuence of each marketing instrument can we gain a basis for marketing 
planning. Prediction alone is not enough. Time-series models that forecast the 
future from the past sales provide no insight into how those sales were generated. 
The emphasis on being descriptive also embraces the need to understand the areas 
in which consumer choice probabilities are synonymous with market shares as 
well. Part of the goal of description transcends what can be done by market-share 
models alone. Managers need to understand that their efforts have (potentially) 
competitive effects and (potentially) market-expansive effects. In sales-response 
models these effects are comingled, but by combining descriptive market-share 
models for the competitive effects with descriptive category-volume models for the 
market-expansive effects, managers obtain a much richer understanding of the 
market. The profit-oriented goal of market-share analysis urges us to ask how the 
firm's allocations of resources to aspects of the marketing mix produce bottom-line 
results. It reminds us that maximizing market share is not the same as maximizing 
profits. Systematically understanding how the actions available to a brand impact 
the market results of all competitors would be a very important gain for marketing 
science. 

We begin by discussing the fundamental relations between marketing effort and 
market shares. In this context we discuss the derivation of the basic theorem that 
relates marketing effort to market share. We then develop, present and discuss 
five alternative market-share models, and evaluate them in terms of how we expect 
market-share elasticities to behave. We then discuss the relations between the 
aggregate concept of market share and the disaggregate concept of choice probability, 
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with special emphasis on the threats to parameter  stability in market-share modets. 
The topic then shifts to the sources and representation of asymmetries in markets 
and competition, and the issue of the distinctiveness of marketing activities. A 
numerical example illustrates the diagnostic richness of these models. A concluding 
section discusses some of the challenges that market-share models must confront 
in the next decade. 

2. Market share and marketing effort 

We use the term market share to signify the share of total market  sales (in quantity 
sold) for a product in a given period and in a given geographical area. This concept 
of market  share is more explicitly stated in the following manner: 

Qi si - (1) 
Q 

where 

s i = the market  share of brand i, 
Qi = the sales of brand i's product, 
Q = the total sales for the market, 

Q= ~ Q »  
j 1 

m = the number of competing brands. 

The quantity Q in the above equation is commonly called the industry sales, 
primary demand, all commodity  volume (ACV), or simply the market. Market 
shares are temporally and spatially specific. They are defined and measured only 
for a specific period and a specific geographical area, but the time or occasion 
subscript is dropped in these preliminary developments for notational convenience. 
It does not make much sense for one to talk about a brand's  share in general; 
one taust say instead a brand's share of the Chicago trading area in 1990, that of 
the New York market  in 1991. This is because both the numerator  and denominator  
of Equation (1) are time- and area-specific, and will have to be matched for the 
same period and geographical area for this ratio to make sense. 

Kotler [1984] sets up the basics for using market-share models in brand planning 
by asserting that a brand's market  share is proportional to the marketing eßòr~ 
supporting it. We may represent this by: 

where 

sl = k 'Mi  (2) 

Mi = the marketing effort of brand i, 
k = a constant of proportionality. 
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This simplest representation asserts that the greater the brand's marketing effort, 
the greater should be its market share. 

Setting aside for the time being the question ofhow one might measure marketing 
effort, one must know the value of the proportionality constant, k, before Equation 
(2) is useful. But since market shares for an industry must sum to one, i.e. 

• s i  = l ,  
i = 1  

we know that 

• k ' M  i l 
i = 1  

o r  

M i ~ , 
i=1 k 

Hence 

1 
k ~  

i = 1  

By substituting this value of k in Equation (2), we have 

M i  
si - ,,, (3) 

M j  
j = l  

This last equation says that the market share of brand i is equal to the brand's 
share of the total marketing effort, a statement which certainly seems plausible. 
Equation (3) is what Kotler calls the fundamental  theorem of market share [Kotler, 
1984, p. 231]. 

On important variation on this fundamental theorem indicates if brands tended 
to differ in terms of the effectiveness of their marketing effort; one may write 

o~i" M i 
s i  ~- m 

a f  M j  
j =  1 

(4) 

where :z i is the effectiveness coefficient Ihr brand i's marketing effort. This implies 
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that, even if two brands expend the same amount of marketing eflbrt, they may 
not have the same market share. If one brand's marketing effort is twice as effective 
as that of the other, the former will achieve a market share twice as large as the 
other's share. 

Specification and measurement of what goes into marketing effort is an important 
topic. Kotler assumes that a brand's marketing effort is a function of its marketing 
mix, both past and current. Mathematically, we may write 

Mi =f (Pi ,  Ai, Dl . . . .  ) (5) 

• where 

Pi = the price of brand i's product, 
A i = the advertising expenditures of brand i, 
D~ = the distribution efforts (e.g. the percent of stores carrying brand i). 

There are wide choices in the specification of the functional form for Equation 
(5). For  example, if we believe that components of the marketing mix interact we 
may choose a multiplicative function 

M, = P7"ATDf 

where p, a, d are parameters to be estimated reflecting the importance of each 
component of the marketing mix. If one substitutes this expression in (3) or (4), 
the resultant market-share model will be the simplest version of an MCI (multipli- 
cative, competitive-interaction) model. Or if we choose an exponential function 

Mi = exp(p'Pi + a 'A i  + d'Di), 

the market-share model is the simptest version of the multinomial logit (MNL) 
model. 

2.1. Market-share theorem 

Kotler's market-share-as-share-of-marketing-effort representation makes a lot of 
intuitive sense, but there are other ways to derive such a representation. We will 
review some of them in a later'section, and only look here at one important 
theorem derived by Bell, Keeney & Little [1975]. 

Bell, Keeney & Little (BKL) consider a situation where, in purchasing a product, 
consumers must choose one brand from a set of alternative brands available in 
the market. They posit that the only determinant of market shares is the attraction 
which consumers feel toward each alternative brand, and make the following 
assumptions about attractions. Letting Æ~ be the attraction of brand i (i = 1, 2 . . . . .  m) 
and si be its market share, 

Axiom AI° ~~i ~> 0 for all i and Z'i"_ 1dl > 0 (i.e., attractions are nonnegative and 
their sum is positive). 
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Axiom A2. d l  = 0~s~ 0. (The symbol should be read lmphes, 1.e., zero attrac- 
tion implies zero market share.) 

AxiomA3. d ~ = a J j » s ~ = s j  ( iC j) (i.e., equal attraction implies equal market 
share). 

Axiom A4. When ~ j  changes by A, the corresponding change in s i (i =A j) is 
independent o f j  (e.g. a change in attraction has a symmetrically or proportionally 
distributed effect on competitive market share). 

From those four axioms they show that the following relationship between 
attractions and market shares may be derived: 

S i  z . . . . .  . 

j = l  

(6) 

The first three axioms are not controversial. But, as will be developed later, 
Axiom A4 has been the subject of much critical discussion. While Equations (3) 
and (6) represent two rather distinct schools of thought regarding the determinants 
ofmarket  shares (a brand's marketing effort for the former and consumer attraction 
for the latter), few would argue the fact that these equations are extremely similar. 
An additional assumption that the attraction of a brand is proportional to its 

market ing effort (which has intuitive appeal) is all that is required to reconcile 
these two equations. 

BKL also show that a slightly different set of assumptions also yield Equation 
(6). Let C be the set of all alternative brands from which consumers make their 
choice. 

Axiom Blo sJ i 1> 0. 

Axiom B2. The attraction of a subset S(_~ C) is equal to the sum of the ättractions 
of elements in S. 

Axlom B3. s~~ is finite for all i and nonzero for at least one element in C. 

Axiom B4. If the attractions of subsets S ~1) and S ¢2) are equal, their market shares 
are equal. 

The last axiom establishes the relationship between attractions and rnarket 
shares. BKL observe that, if we add an assumption that 

~~=1 
i = l  

in lieu of B4, Æi in this set of axioms satisfies the assumptions tor probabilities in 
a finite (discrete) sample space. Because of this BKL suggest that attractions may 
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be interpreted as unnormalized probabilities. However, this in turn suggests that if 
attractions were to follow axioms B1 through B4, by normalizing the ,~'/s through 
(6), market shares (si) may be interpreted as probabilities. This confuses an aggregate 
concept (market shares) with an individual (or disaggregated) concept (probabilities). 
When the market is homogeneous (i.e. not composed of systematically different 
consumer segments), market shares and choice probabilities may be used inter- 
changeably. But, as is discussed later, in other circumstances we must be careful 
not to use these concepts interchangeably. 

2.2. Alternative models of market share 

The previous sections gave the rationales behind the MCI model and its close 
cousin, the MNL model. We now give explicit specifications to the simplest versions 
of those models. 

MCI model: 
K 

sC i = exp(c@ 1-I X~; 'ei, 
k=l  

sei 
S i  = ;n  " 

2~j  
j = l  

M N L  model: 

(7) 

where 

Si : m - - '  

j = l  

(8) 

S i == 

~ =  
m =  

X k i  = 

K ~  

flk = 

the market share of brand i, 
the attraction of brand i, 
the number of brands, 
the value of the kth explanatory variable X k for brand i (e.g. prices, 
product attributes, expenditures for advertising, distribution, sales 
force), 
the number of explanatory variables, 
a parameter to be estimated, 
a parameter for the constant infiuence of brand i, 
an error term. 

In what follows we will ase attraction, rather than marketing eßort, to describe d i, 



266 L.G. Cooper 

because it is a more accepted terminology, keeping in mind that this impties the 
assumption that attraction is proportional to marketing effort. 

The MCI and MNL models are not the only models of market shares. The 
linear model assumes simply that a brand's market share is a linear function in 
marketing-mix variables and other relevant variables. The multiplicative and 
exponential models represent market shares as a product of a number of variables 
(shrunk or stretched by appropriate parameters). Although there are other more 
complicated market-share models, for our purposes at present we need only define 
these three alternative models. 

Linear model: 

1,2 

Si = O; i At- 2 flk " X k i  -1- F'i" (9) 
k - 1  

Multiplicative model: 

K 
s i = exp(Œi)-[1 X ~ki .... «.i. (10) 

k 1 

Exponential modeh 

si = exp(c¢i + k=l~ [~k'XkiAr-,~i). (11) 

The five models MCI, MNL, linear, multiplicative and exponential are closely 
related to each other. For example, if we take the logarithm of both sides of either 
the multiplicative or exponential model, we will have a linear model (linear in the 
parameters of the respective models, and not in variables). In other words, while 
the conceptuat difference may be great, the mathematical difference between the 
linear model and the multiplicative and exponential models is merely in the choice 
of transformations for variables, that is, whether or not the logarithmic transforma- 
tion is applied to the explanatory variables. (The specification for the error term 
may be different in those three models, but this is a technical issue that will not 
be addressed hefe.) 

The most interesting relationship is, however, the one between the MCI and 
multiplicative models (and the corresponding relationship between the MN L and 
exponential models). The multiplicative model, of course, assumes that market 
shares a r e a  multiplicative function in explanatory variables, while in the MCI 
model attractions are multiplicative in variables and market shares are computed 
by normalizing attraction (making the sum of market shares to be equal to one). 
Obviously, the key difference between the two is normalization. In this connection, 
Naert & Bultez [1973] proposed the following important conditions for a 
market-share model: 
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(1) Estimated market  shares from the model are nonnegative. 
(2) The estimated market  shares sum to one over all the competitors. 

These conditions, commonly known as the lo9ical-consistency requirements, are 
clearly not met by either the multiplicative or the exponential model, but are met 
by their respective normalized forms (i.e., MCI  and MNL) - a clear advantage for 
MCI and M N L  models. Note that the linear model does not satisfy the logical- 
consistency requirements. 

Why, then, are the MCI  and M N L  models not used more extensively? The 
answer is that for a time both of those models were considered to be intrinsically 
nonlinear models, requiring estimation schemes that were expensive in analysts' 
time and computer  resources. This, however, turned out to be a hasty judgment 
because Nakanishi [1972; Nakanishi & Cooper,  1974] showed that those models 
may be changed into a linear model (in the model parameters) by a simple trans- 
formation. Using the M C / m o d e l ,  for example, we can first take the logarithm of 
both sides. 

K 

log si = oq + ~' tig log Xki + log ci 
k = l  

- log c~j X ej . 

k j = l \  k = l  / )  

If we sum the above equatlon over i (i = 1,2 . . . .  , m) and divide by m, we have 

l o g g =  0~ + fiklOgY(k + lOge--log C~j ~ X~jej 
k = l  L . j = I  \ k = l  

where ~, J~k and e are the geometric means of s~, X«~ and e~, respectively. Subtracting 
the above from the previous equation, we obtain 

log(S~) --'C~* +k~l [3«log(Xki~+Z* 
= \ X k /  

(12) 

where 

~* - (cq -- ~), e* = log(~i/~. 

The last equation is linear in model parameters c~* ( i=  1,2 . . . .  ,m) and fl~ 
(k = 1, 2 . . . . .  K). (In addition, there is another parameter  cr~, the variance of el, to 
be estimated, but this parameter  does not concern us here.) This transformation 
is called the lo9-centering transformation. The importance of this transformaton 
is that it leads to ways to estimate the parameters of the original nonlinear model 
using linear-regression techniques. Note also that if we apply the inverse of this 
transformation to the estimates that result from a linear regression we must obtain 
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market-share estimates that satisfy the logical-consistency conditions. That is, 

exp)~i 
S i - -  m 

expyj 
j = l  

where gi is the estimate market share for brand i and 9~ is the estimated dependent 
variable from the reducedfi)rm of the regression model. This is known as the inverse 
log-centerin 9 transformation. 

If we apply the log-centering transformation to the MNL model, we obtain the 
following linear form: 

K 

k = l  

where c~, )(k and gare  the arithmetic means of cq, X«~ and c~, respectively. If we 
let c~* = ( ~ i -  ~) and e* = (e i - e-), 

(~) log =c~*+ ~ [3k(Xk,--Xk)+e*. (13) 
k = l  

Both Equations (12) and (13) are linear functions of the model parameters, and 
hence can be called log-linear models. The multiplicative and exponential models 
are also log-linear models. In other words, both the MCI and MNL models are 
really special cases of log-linear modets. Compare the reducedforms of these models. 

Linear model: 

K 

si = «i + ~ù /3~Xki + ~:i. 
k = l  

Multiplicative model: 

K 

logs i = cq + ~ [4klOgX«i + loge/. 
k = l  

Exponential model: 

K 

log si = (zi + ~ flk Xki + ei. 
,k=1 

MCI model: 

k=l \Xk/ 
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M N L  model: 

(~) log = «* + y, /?k(Xki- Jf«) + ~*. 
k = l  

In all five equations the right-hand side is linear in both ~i or c~* (i = 1, 2 . . . . .  m) 
and fl« (k = 1,2 . . . . .  K). The left-hand side is a market share, the logarithm of a 
market share, or a log-centered form of a market share. Ignoring the differences 
in the specification of the error term (e i, logei or e*), note that the number of 
parameters in the five formulations are the same, one would expect that those 
models would be just as accurate in predicting the dependent variable, namely, the 
left-hand side of each equation. Which one, then, makes the most accurate 
prediction of market shares? Many studies on predictive accuracy of market-share 
models [Brodie & De Kluyer, 1984; Ghosh, Neslin & Shoemaker, 1984; Leeflang 
& Reuyl, 1984; Naert  & Weverbergh, 1981, 1985] found the logical-consistency 
property of the MCI and M N L  models to produce only marginally better predic~ 
tions than the linear and multiplicative models. Whey then all this fuss about the 
MCI and MNL models? First, these tests did not include the more sophisticated 
versions of the models specified later in this chapter. And second, as was stated 
in the Introduction, we do not believe that predictive accuracy is the only important 
criterion for judging the value of a model. We would rather find the answer in the 
construct validity (i.e. intrinsic meaningfulness) of those models. Is the model 
descriptive in a way that facilitates brand planning? Is the model profit-oriented 
so that the revenue implications can be investigated? Do the elasticities make 
managerial sense? This latter issue is addressed in the next section. 

2.3. Market-share elasticities 

Simply stated, market-share elasticity is the ratio of the relative change in a market 
share corresponding to a relative change in a marketing-rnix variable. Expressed 
mathematicaUy, 

zlsi/sl Asi Xki 
e~, . . . . . . .  (14) 

AXki/X«i AXkl si 

where s i is the market share and X«i is the value of the kth marketing-mix variable, 
for brand i. The symbol A indicates a change in respective variables. There is 
nothing conceptually difficult in market-share elasticity. For  example, if a brand's 
share increased 10~ (say from 30 share points to 33) corresponding to a price 
reduction of 5~, the above equation would give a (price) elasticity of - 2 ;  or if 
advertising expenditures were increased by 3~  and as a result the share increased 
by 1~o, the (advertising) elasticity would be 0.33; and so forth. We should really 
use e («) to denote the elasticity of share with respect to a particular instrument k~ s i  • 

but drop the superscript for notational convenience. 
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There is no way to estimate elasticities directly from empirical data without 
adopting a model. This may not be intuitively clear because the formula for 
computing elasticities (14) appears to contain only those terms which may be 
empirically measurable. But note that the As~ term in Equation (14) must 
correspond to the change in a specific marketing-mix variable, AXk~. Suppose that 
one observed that a brand's share increased 3~o in a period. How does orte know 
how much of that increased share is due to price reduction? Or due to increased 
advertising? To assess those so-called partial efJècts one needs a market-share 
model. 

The reader may be cautioned at this point that the estimated values of elasticities 
vary from one model to another, and hence one taust choose the model that 
conceptually fits the situation best. To iltustrate, we will derive the share elasticity 
with respect to Xk~ for the simplest version of each model. For  that purpose, 
however, one needs another concept of share elasticity which is slightly different 
from the one defined by (14). Technically, (14) is called the arc elasticity. This is 
because both Asi and AXkg span a fange over the market-response curve which 
gives the relationship between market shares and marketing-mix variables. The 
other elasticitiy formula is called the point elasticity and takes the following form: 

i~si . X « i  (15) 
G« = ~, ,  

O.A ki Si 

Note that the only difference between the two formulas is that (Asl/AX«i) in 
Equation (14) is replaced by (8si/DX«i) in (15). Formula (15) utilizes the slope of 
the market-response curve at a specific value of Xki. The reason for using the 
point-elasticity formula rather than the arc formula is that the former gives rauch 
simpler expressions of share elasticity. We may add that (15) is a close approximation 
of (14) for a small value of AXkf, that is, when the change in Xk~ is very small. The 
point etasticity for each model is given below. 

Linear model: 

G, = flgXki/Si" 

Multiplicative model: 

esl-- [~k" 

Exponential model: 

ex, ~- G X k i .  

MCI model: 

e~, = f lk(  l - si)o 
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M N L  modeh 

esi = []k(1 - -  s i ) X k i .  

Though the five market-share models are similar in the sense that they are either 
linear or log-linear models, the share elasticities implied from the models are quite 
different. One may wish to disqualify some models on the basis of those expressions 
on some a priori grounds. 

Market-share elasticities should have the following properties: 

(l) Since Qi = Q'si, we can show that eo,.x = eo. x + e ..... 
(2) If s i is an increasing function in X, e .... --+ 0 as sl --+ 1. This is because, as si --+ 1, 

Q i ~ Q  and therefore eQ,.x--+ eo. ~ in property (1) above. 
(3) If s~ is a strictly increasing function in X,  %.x--+ 0 as X --» m. This is derived 

from property (2) above, since as X -+ 0% s i--+ 1. If si is an increasing function 
in X but approaches a constant ( < t )  as X ~ m ,  then e .... -+0 (since 
d s j d X  --+ 0). 

The first property is a strict mathematical consequence of the relation of brand 
sales to market  share and industry sales. While none of the currently considered 
models fails to satisfy this condition, it should be kept in mind for evaluating other 
alternatives. The second property reflects that a brand's share elasticity should 
approach zero as the share for that brand approaches one. The multiplicative 
model implies that share elasticity is constant regardless of the share level, and 
therefore seems rather inappropriate as a market-share model. 

The third property reflects the generally accepted view that it becomes harder 
to gain market shares as a brand increases its marketing effort. In other words, 
one would expect market-share elasticity to approach zero as Xki goes to infinity 
(or minus infinity, depending on the variable in question). But the exponential 
model impties an opposite: share elasticity may be increased indefinitely as the 
value of Xki increases. This is an uncomfortable situation, especially if variable 
Xkl iS a promotional  variable (such as advertising expenditures, number  of salesmen, 
etc., since it implies ever-increasing market-share returns for increasing promotional 
expenditures. In addition, the exponential model has the same problem as the 
multiplicative model: for a fixed value of Xk~, % is constant for all levels of si. 

Note that the elasticity expression for the linear model reflects that share elasticity 
declines as the share increases, but, when the share approaches one, the elasticity 
does not approach zero. In fact, share elasticity approaches 1 as X«~ increases to 
infinity (or minus infinity, as the case may be). Thus the linear model produces a 
highly unreasonable share-elasticity expression. 

Considering what we expect from share elasticities, one may conclude that the 
linear, multiplicative and exponential models are not proper market-share models 
for use in marketing decision-making. This leaves us the MCI  and M N L  models 
as feasible alternatives. Figure 6.1 shows the change in share elasticity over the 
positive range of Xk~ values. 
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Fig. 6.1. Share elasticities for (a) MCI and (b) MNL models. 

The share is assumed to increase as Xki increases. Accounting for this share 
increase, the share elasticity for the MCI model  monotonical ly  declines as Xki 
increases (Figure 6.la), while that for the M N L  model increases to a point and 
then declines. Which expression is a better one for share elasticity depends on the 
nature of the explanatory variable Xki. The relevant issue is how share elasticity 
should behave for low values of the variable. If Xk~ is product price, for example~ 
it is more likely that share elasticity is fairly large even when price is near zero. 
Hence, one would be inclined to use the MCI model for price. On the other hand, 
if the variable is advertising expenditure, it is not unreasonable to assume that, at 
an extremely low level of  expenditure, advertising is not very effective. This 
assumption, of  course, leads to the adoption of the M N L  model  for advertising 
expenditure. Gruca & Sudharshan [1991], however, point out some issues when 
using M N L  forms of variable as a basis for resource allocation. For firms with 
less than half of the market, the M N L  formulation of an advertising variable 
implies that it is optimal to increase spending as rauch as possible. While these 
authors advise using the MCI version for advertising, another interpretation is 
possible. It might in fact be optimal for a firm to allocate as much to advertising 
as possible until it gains 50~o of the market. In any case, careful consideration of 
the nature of each explanatory variable could rightfully lead to a mixture of MCI 
and M N L  variables within a single market-share model. The general attraction 
framework encompasses both MCI and M N L  models. 

General attraction model: 

K 

s~ i = exp(cq-h ei) 1-[ J),(Xkl) ~k' (16) 
k = l  
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S i  - -  _ _  

j = l  

where Jk is a monotone transformation of Xki. If one chooses an identity 
transformation for k (that is, fk(Xki)= Xk~ ), (16) becomes the MCI model; iff« is 
an exponential function (that is, fk(Xk~)= exp(Xkl)), then (16) becomes the MNL 
model. But there is no reason for one to have to choose either the identity or 
exponential transformation for allfk'S in (16). Depending on the nature of variable 
Xk, one should be free to choose either the identity or exponential transformation 
(or any other appropriate monotone transformation, for that matter). This is why 
in (16)fk has subscript k. 

3. Market shares and choice probabilities 

So rar we have chosen to treat market shares as an aggregate quantity, namely, 
the ratio of a firm's (brand) sales to the relevant industry sales. But, since aggregate 
sales are composites of many purchases made by individual buyers (consumers 
and industrial buyers), market-share figures must be related to individual buyers' 
choices of various brands. In analyzing the relationships between market shares 
and individual choice probabilities, we will have to consider the variability of two 
fac tors -  choice probabilities and purchase frequency for individual b u y e r s -  over 
the population of buyers in the market. Let us first define those two concepts. 

Suppose that each buyer purchases a number of units of the product per period~ 
We will assume that the purchase frequency (i.e. the number of purchases per 
period) by an individual buyer is a random variable that has a statistical 
distribution. We shall call this distribution an individuat purchase-[requency 
distribution, since it is defined for each buyer in the market. The specific form of 
this distribution does not concern us here except that it has its own mean (mean 
purchase frequency). 

Let us assume, not unreasonably, that a buyer does not atways purchase the 
same brand from a set of alternative brands. In additon, it is assumed that a 
buyer's choice of a brand at one purchase occasion is made independently from 
his/her previous purchase and the buyer's selection is governed by probabilities 
specific to each brand (i.e. each buyer's brand setection in a period follows a 
zero-order Bernoulli process). While this zero-order assumption has been debated 
for the last thirty years [Frank, 1962; Kuehn, 1962], and it is a more reasonable 
assumption for the household than for the individual within a household [Kahn, 
Morrison and Wright, t986], it is a palatable starting point for these developments 
[Bass, Givon, Kalwani, Reibstein & Wright, 1984; Givon 1984]. The probabilities 
for alternative brands in the industry are catled individual choice probabilities. 

Whether or not the buyer's behavior is truly probabilistic or determinis'tic is 
not an issue here. A buyer's choice behavior may be largely deterministic, but the 
environmentat conditions surrounding purchase occasions may be such that they 
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involve probabilistic elements that, ffom the viewpoint of an outside observer, 
make the buyers' choices appear probabilistic. We also posit that the attractions 
of alternative brands affect choice probabilities. This is to be consistent with our 
position that brand attractions are the determinants of market shares. 

We distinguish four cases regarding the homogeneity (or heterogeneity) of the 
buyer population with respect to individual choice probabilities and purchase 
frequencies. 

Case 1: Homogeneous purchase frequencies and choice probabilities 
If mean individual-purchase frequencies are equal for all buyers and the brand 
selection of every buyer in the market is governed by the same set of choice 
probabilities, it is rather obvious that the market share of a brand will be approxi- 
mately equal to the choice probability for the brand. (Actually, it is the expected 
value of the market share of a brand which will be equal to the choice probability for 
the brand.) In this case market shares may be interpreted as individuat choice 
probabilities. For example, if the market share for a brand is 30 share points, one 
may say that each buyer chooses this brand with a 0.3 probability. 

Case 2: Homogeneous purchase frequencies and heterogeneous choice probabilities 
The interpretation of market shares will have to be changed a little if each buyer 
has a different set of choice-probability values for alternative brands. We still 
assume that mean purchase frequencies are equal for all buyers in the market. 
Under those assumptions it is easy to show that the expected value of a brand's 
market share is equal to the (population) average of choice probabilities for that 
brand. In other words, a market share of 30 share points may be interpreted as 
meaning that the average of the choice probabilities across the buyer population 
is 0.3. 

Case 3: Heterogeneous purchase frequencies and homogeneous choice probabilities 
This is the case where, while a common set of choice probabilities is shared by all 
buyers, mean purchase frequencies vary over buyers and have a statistical 
distribution over the buyer population. In this case the expected value of a brand's 
market share is still equal to its choice probability. 

Case 4: Heterogeneous purchase frequencies and choice probabilities 
In this case both choice probabitities and purchase frequencies are assumed to be 
variable over the buyer population. We need to distinguish further two cases within 
this. 

(a) Uncorrelated case: choice probabilities and purchase frequencies are uncorre- 
lated (i.e. independently distributed) over the buyer population. 

(b) Correlated case: choice probabilities and purchase frequencies are correlated 
over the buyer population. 

If purchase frequencies and choice probabilities are uncorrelated, the expected 
value of market shares is, as is shown below, still equal to poputation averages of 
choice probabilities (as in the case of homogeneons purchase frequencies). Turning 
to the correlated case, one finds that market shares are no longer directly related 
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to choice probabilities. Case 4(b) is perhaps more realistic for many products, since 
orte often hears that so-called heavy users and light users exhibit remarkably 
different purchase behavior. Heavy users are said to be more discriminating in 
taste, to be more price-conscious, and to tend to purchasefamily-size or economy 
packages. It is not surprising, then, to find heavy users, preferring some brands 
or brand/size combinations to those preferred by light users. If there were 
differences in the value of choice probability for a brand between heavy and light 
users, individual purchase frequencies and choice probabilities would be correlated 
and the market share for the brand will be biased toward the choice probability 
values for heavy users simply because they purchase more units of the brand. Thus 
market shares and choice probabilities generally do not coincide in this case. The 
results above may be stated more formally. The expected value of unit sales for 
brand i is obtained by averaging (over the buyer poputation) individual purchase 
frequencies multiplied by the individual's choice probability for the brand. Hence 
the expected value of market share for brand i is given by: 

OF 

average number ofunits purchased for brand i 
market share i = average purchase frequency (for all brand]s) 

1 ; ~ ;  ~ 
E(si)=/TJo Jo t~nig(l~'nl)dn'dt~ (17) 

where 

E(si) = the expected value of market share for brand i, 
# = the mean purchase frequency per period (per individual), 
bi = the population mean of/t, 
n~ = the individual choice probability for brand i, 

g(#, Th) = the joint density function for/~ and rc~. 

Equation (17) shows that the expected value of market share for" brand i is a 
weighted average of choice probabilities (weights are individual mean purchase 
frequencies) divided by average (over individuals) mean purchase frequency bi. 
From (17) we directly obtain the following result. 

where 

E(s0 = ~, q cov(~, ~~i)/bi 

n~ = the population mean of n~, 

cov(p, nl) - the covariance of g and ni. 

This is because, by definition, cov(/~, ni)= fiE(si)- biff~. This equation shows that 
in general E(sz) is not equal to ffz. Since cov(/~, n~) may be positive or negative, one 
cannot say if market shares are greater or smaller than population mean of the 
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Table 6.1 
Relations between market shares and choice probabilities 

Choice probabilities Purchase frequencies 

Homogeneous Heterogeneous 

Case 1: Case 3: 
Homogeneous E(si) = nl E(si) = 7~i 

Case 2: Case 4(a) Uncorrelated: 
Heterogeneous E(si) = ~i E(si) = ~i 

Case 4(b) Correlated: 
E(s~) - ~~ + cov(l~, n~)/f~ 

choice probabilities. But if # and "a i are positively correlated, E(si) is greater than 
ic i. If  the correlation is negative, E(si) is less than ~i. Note also that, if cov(g, ~i) = 0 
(that is, if there is no correlation between the market  share and choice probability), 
then the expected market  share and the average choice probability are equal. In 
other words, in the uncorrelated case the expected value of a brand's market  share 
is equal to its average choice probability (r~~). The foregoing results are summarized 
in Table 6.1. 

It is apparent  from the table that the only case where we are uncertain of the 
correspondence between market  shares and choice probabilities is Case 4(b). This 
fact might tempt one to look at this case as an exception or anomaly, but it is 
probably the most prevalent condition in the market. A practical implication of 
the preponderance of Case 4(b) is that, for the purpose of market-share forecasts, 
it is not sufficient for one to be able to predict the choice behavior of individuals 
accuratety; rather it becomes necessary for one to be able to predict choice prob- 
abilities for each different tevel of purchase frequencies. 

Of  course, the situation cannot be changed by merely assuming that # and 7c~ are 
uncorrelated over the buyer population (Case 4(a)). Since # and reg are arithmeticatly 
related, that is, n~ = ~ i / ~  where #~ is the expected number of units of brand i 
purchased by an individual, and Em = ~= 1/~~ # where m is the number  of alternative 
brands in the industry, the assumption that cov(/~, rci) = 0 (for all i) implies a very 
restrictive form of joint  distribution for/~ and ~~. Indeed, it may be shown that/~ 
is distributed as a gamma function and the ~~'s are jointly distributed as a Dirichlet 
distribution. No other distributional assumption will give cov(#,~z~)=0. (See 
Cooper  & Nakanishi [1988, pp. 52 54] for the proof  of this result.) 

What  does alt this argument about  the relationship between purchase frequencies 
and choice probabilities suggest to analysts and marketing managers? If the 
correlation between purchase frequencies and choice probabilities is suspect, 
there may be an aggregation problem. One should segment the market  in terms 
of purchase frequencies and analyze each segment separately. One may discover 
that marketing instruments have different effects on different segments and may 
be able to allocate marketing resources more efficiently. Also forecasting of brand 
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sales and market shares will become more accurate if market shares are forecast 
for each segment and weighted by the mean purchase frequencies for the segments 
to obtain the estimate of overall market shares. Segmentation analysis of this type, 
however, requires more refined data than the usual aggregate market-share data, 
such as consumer-diary or scanner-panel data. Such data are currently available 
in the single-source data sets, and an illustration integrating the aggregate store 
data and the information in the associated consumer panels is presented later. 

3.1. Individual choice probabilities 

The focus of this section is to relate individual choice probabilities to attractions 
of alternative brands. We can of course assume that the choice probability for a 
brand is proportional to its attraction, and obtain a result similar to Kotler's 
fundamental theorem discussed earlier. But there are other more axiomatic 
approaches to deriving choice probabilities, and here we will be dealing with two 
basic models which are closely related to each other. It may be added that the 
terms attraction and utility will be used interchangeably in this section. 

3.1.1. Constant-utility models 
The simplest model for choice probabilities is the constant-utility model which 

is also called the Luce model or Bradley-Terry-Luce model. Its basic assumption 
(or axiom) may be stated as follows. 

Axiom 1. Let an object, x, be an element of the choice set (i.e. set of choice 
alternatives), C, and also of a subset of C, S (i.e. S __ C). The probability that x is 
chosen from C is equal to the product of the probability that x is chosen from S 
and the probability that (an element of) S is chosen from C. 

Luce [1959] calls this assumption the individual choice axiom, which may be 
expressed mathematically as: 

Pr(x] C) = Pr(x]S) Pr(SI C) 

where Pr(x]C) is read as ~the probability that x is chosen from C'. 
This axiom for choice probabilities leads to results similar to that of the 

market-share theorem for market shares. If we ler 

Pr(xIC) 
U x - -  

P r (z[ C) 

for an arbitrary object in C, then for two objects x and y in C 

ux Pr(x]C) 

uy Pr(yf C) 
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and this ratio does not change with the choice of z. Also, since 

Y, P r (y IC)=Pr (x IC)  ~ u y =  1 
y~C y~C Œx 

we have 

Pr(x] C) = ux/ )~cUs. 

The quantity u x is called the constant utility of object x, and presumably 
determined for each individual as a function of marketing activities for x. 

This model formed a basis of various models of individual choice behavior 
[Huff, 1962; Haines, Simon & Alexis 1972; Nakanishi & Cooper, 1974] and was 
also implicitly adopted for many market-share models. But this model exhibits the 
so-called independence from irrelevant alternatives (IIA) property which produces 
some quite counterintuitive results. From the axiom we have 

Pr(xIC) Pr(xIS) 

Pr(yl C) Pr(ylS) 

for any subset of S of C which contains both x and y. Since this relationship must 
hold for set {x,y}, 

ux Pr(xt{x,y}) 
uy Pr(y]{x,y})" 

This ratio is independent oi the choice of z. Since z is supposedly irrelevant to the 
odds of choosing x over y, this has been called the independence of irrelevant 
alternatives (IIA) property. The classic counterexamples are from Debreu [1960]. 
Although Debreu proposed a record-buying situation, the issues are often more 
clearly itlustrated using a transportation-choice example. Suppose a person is 
indifferent between riding on a red bus (RB) or a blue bus (BB) if offered just these 
two alternatives, but prefers riding a taxi (T) four-to-one over a red bus, if offered 
this pair, or four-to-one over a blue bus, if offered that pair of alternatives. The 
choice axiom would summarize this case by noting that Pr(RB] {RB, BB})= 0.5, 
Pr(Tt {T, RB}) = 0.8, and Pr(TI {T, BB}) = 0.8. While it seems clear that the proba~- 
bility of choosing a taxi shouldn't decrease if it is offered in a choice set along 
with both a red bus and a blue bus (i.e. Pr(T• {RB, BB, T}) should still be 0.8), the 
choice axiom insists that Pr(Tt { RB, BB, T }) = 0.67 and Pr(RB ] {RB, BB, T}) = 0.16. 
The choice axiom forces this so that the ratio of the utility of RB to T is constant 
regardless of the choice set in whieh they are offered. 

The concept of constant utility for a brand and the IIA property are really two 
sides of the same coin. If we think of utility is an inherent property of a brand 
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that doesn't change regardless of the context in which a choice is made, we will be 
trapped by the IIA property into counterintuitive positions. There are two ways 
out of this problem. First, we can explicitly consider how the context in which 
choices are made affects the attractions of the alternatives. This is the path we 
follow in discussing the temporal distinctiveness of marketing efforts. Second, we 
can consider utility to be a random variable, rather than a constant. This is the 
topic of the next section. 

3.1.2. Random-utility models 
A choice model can be based on the assumption that the attractions an individual 

feels toward various objects (in our application, brands in an industry) on each 
purchase occasion are random variables, and the individual selects the brand that 
happens to have the largest utility value among the alternatives on that occasion. 
This random-utility model is defined as follows. Let U» U 2 ..... Um be the utilities 
for alternative brands where m is the number of brands in the choice set, C, of all 
competing brands in the industry, and let g(U1,U 2 . . . . .  Um) be the joint density 
function for them. The probability that brand i is chosen on a purchase occasion 
is given by 

Pr(i[C) = Pr(Ui/> Uj for all jeC). 

In order to evaluate this probability, however, one must evaluate an integral 
function. For three brands, the probability that brand 1 is chosen is given by the 
following integral: 

Pr(11 C) = g(u 1, U2, U3) du3 du2 du1. 
- - o o  

(18) 

Similarly, Pr(2l C) and Pr(3IC) are given by suitably changing the upper limits of 
integration. Integral (18) may be defined for any number of choice objects (e.g. 
brands). 

A large number of variants of random utility models may be created from this 
definition by selecting different specifications for g. However, the usefulness of 
random-utility models is limited because, unless the density function g is so very 
special as to give an analytical solution, the evaluation of this integral will in 
general require numerical integration. For  example, if g is a joint~normal density 
(known as a probit or multivariate-probit model), there is no analytical (of 
closed-form) solution to this integeral. The probit model is a reasonable mode1 
for many applications, but its use has been hampered by the fact that the evaluation 
of (18) for a large number of objects involves tedious numerical integration. 

There is orte noted exception, however, to the need for cumbersome numerical 
integration of (18). McFadden [1974] showed that, if the joint distribution for 
random utilities { U ~, U 2 . . . .  ,Um} is a so-called multivariate extreme-value distribution 
of type I, then lntegral (18) has a closed-form solution. A multivariate extreme-value 
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distr ibution takes the following form: 

G(u»u2 . . . .  um) = f i  e x p [ -  exp(c~i - ui) ] 
i = 1  

where c~i(i = I, 2 ,  , m) are parameters.  This distr ibution is convenient  because the 
maximum value among a sample of r andom utilities {u»u  2 . . . .  ,um} from this 
distribution is also distributed as an extreme-value distribution of the following 
form: 

F(u .... ) = e x p  - e x p ( - U m a x )  ~ exp(ch) 
i = 1  

where u .... is a realization of a new random variable, 

Umax = max(U 1, U 2 . . . . .  Uù,). 

Using this property,  the distribution function for random variable 

Umax* i = max{ Uj: for a l l j  ~ i} 

is given by 

F(umax,i) = e x p l  - e x p ( -  u .... *i) j~i  exp(%) ] 

Then  the probabil i ty that  brand i is chosen at a purchase occasion is given by 

Pr(i] C) = Pr(U i > U . . . . .  *i) 

= dG(ui) dF(umùx,i) 
-- oo J -- oo 

ù e x p l -  exp(ei ui) ] exp(c~i --ui) 
--',x3 

B "j~iexp(°~J) 1 ~exp .... exp(ui) dui = exp(c~i) exp (c~j). (19) 
j = l  

If we let the at t ract ion of brand i, sei, be equal to exp(c~i), this expression is 
similar to an M N L  model. Indeed the foregoing argument  has been used to derive 
M N L  models for individual-choice behavior.  However,  one may derive an 
expression similar to more  straightforward at t ract ion models in Equat ion (6), il, 
instead of an extreme-~alue distribution of type I, one chooses an extreme-value 
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distribution of type II, namely, 

G(u,, u2 , . . ,  Um) = ~ exp [ -  ~ i u ?  bI 
i = 1  

where ~~'i (i = 1 ,2 , . . ,  m) are parameters. To show this, first note that the distribution 
function for random variable 

U .... *i=max{Uj: for a l l j  ¢ i}  

is given by 

F(umax,i) = exp - Umäx, / ~ Æj . 
j ~ : i  J 

Using this, 

Pr(i]C) = Pr(U, > Um~~*i) (20) 

f ~  fu,  dG( )dF( ) : =  /,4 i U m a x *  i 

oo oo 

= expl-Æiui-b](s~ibu; -v 1)exp - u [  b ~~(i dui 
0o j e i  

J 

Thus individual-level versions of MCI models as well as MNL modets are derivable 
if extreme-value distributions are assumed for the joint distribution of random 
utilities. So if we substitute an extreme-value distribution of type II, then what 
McFadden showed for MNL lnodels can be generalized to MCI models. 

Although both Equations (19) and (20) are derived for individual choice 
probabilities, one may derive an attraction model for aggregate market shares, if 
the definition of distribution functions is slightly changed. Suppose that random 
utilities for alternative brands, U~, U2 . . . . .  U m, are jointly distributed over the 
population of individual buyers, rather than within an individual. Each individual 
has a set of realized values for utilities, u» u2 . . . . .  Um, and will select that brand 
which has the maximum utility value among rn brands. Cast in this manner, the 
problem is to find the proportion of buyers who will purchase brand i, but 
Equations (19) and (20) give precisely this proportion (that is, market share) for 
two extreme-value functions. 

Although random-utility models in general do not have the IIA property, it 
should be noted that some random-utility models do. Yellott [1977] proved that 
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a random-utility model is equivalent to a constant-utility model (and hence 
possesses the IIA property) if and only if the joint distribution for random utilities 
follows a multivariate extreme-value distribution. The basic forms of MN L and 
MCI models belong to this special case. But we wish to emphasize that it is possible 
to construct attraction modets of probabilistic choice which do not have the IIA 
property. We will discuss two such models - the fully extended and distinctiveness 
m o d e l s -  later in this chapter. 

4. Asymmetries in markets and competition 

Up to this point we have dealt with the simplest attraction models and the 
foundations that underlie them. These models have been symmetric in that a 
change in the market share of one leads to symmetricalty distributed changes in 
the market shares of the other brands (i.e. each brand gains or loses from the 
actions of others in proportion to its market share). An even cursory observation 
of competitive interactions in the marketplace reveals that some firms (brands) 
are capable of exerting inordinately strong influence over the shaping of demand 
and competition, while other firms (brands) are not. On-package ads such as 
General Mills' Total Corn Flakes claim "more nutritious and bettet tasting than 
Kellogg's Corn Flakes" are offered in the managerial belief that going after specific 
competitors can have a disproportionate impact [Gibson, 1991]. Split-cable ad tests 
have shown some companies how to choose ads that will give more market-share 
boost for the same media buck. Recent work by Blattberg & Wisniewski [1989J 
emphasizes how national brands can draw market shares from regional brands 
much more readily than vice versa, and how regional brands can draw from 
economy brands more easily than economy brands can fight back. Further, all 
brands do not receive the same return from advertising or promotional expenditures. 
Such cases illustrate both differential effectiveness of brands and asymmetries in 
market and competitive structures. Differential effectiveness among brands reflects 
that firms (brands) have different degrees of effectiveness in carrying out their 
marketing activities. That such differences exist in real markets is obvious, but 
differential effectiveness alone does not create or reflect asymmetries. Shares will 
still be gained or lost according to the rules of the symmetric market. There are 
two fundamental sources of asymmetries. First, asymmetries are reflected in stable 
differential cross-effects between brands. Brands are differentially effective not only 
with respect to their own shares and sales, but also with respect to their ability 
to influence the shares and sales of other brands (that is, clout). Furthermore, 
brands seem to differ in the degree to which they are influenced by other brands' 
actions (that is, vulnerability). The second source of asymmetries derives from the 
temporal distinctiveness that a brand achieves in the marketplace by differentiating 
itself from the competition. We will first deal with differential effect and differential 
cross-effects, and look at market and competitive structure in terms of the patterns 
of clout and vulnerability of the competitors. Then we will address the issues 
concerning the temporal distinctiveness of marketing activity. 
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4.1. Differential efJectiveness 

In the initial discussion of differential effectiveness a solution at that time was 
to inctude some parameters in market-share models to take account of the overall 
marketing effectiveness of each brand. In the general specification of an attraction 
model, 

K 

ag i = exp(oq + el) ~ Jk(Xki) &', 
k - 1  

S i ~ 

J 

the parameters cq (i = 1,2 . . . . .  m) represented the marketing effectiveness of each 
brand. But the inclusion of the e's in attraction models, does not account fully for 
differential effectiveness among brands. The differential effectiveness may be specific 
to each marketing instrument, such as a brand that has a particularly effective 
pricing policy or an effective advertising campaign. The ei's do not appear  directly 
in the elasticity formulas for a particular marketing instrument, X« (namely, 
% =f lk (1 - s i )  for MCI models and % = fl«Xki(1--Sl) for M N L  models). The 
marketing-effectiveness parameters may reflect differences in brand equity, the brand 
J?anchise, or brand loyal ty- t i teral ly ,  they are the constant component  of each 
brand's attraction, but have nothing directly to do with elasticities. As a result, 
elasticity formulas for simple-effects attraction models do not reflect differential 
effectiveness. 

I fwe wish to modify market-share elasticities to account for differential effective- 
ness, this may be achieved in only one way, that is, by specifying parameters fl«'s 
in such a manner that each brand has a special parameter,  fl«i, for variable X~. 
The attraction model becomes: 

K 

,~'i = exp (cq + ei) l~ X ,t~« f«( kO i, (21) 
k = l  

J 

This modification does not change the basic structure of direct and cross- 
elasticities for attraction models. The self-elasticities, for example, are 

M C I  model: 

% = flki(1 - si). 

M N L  model: 

% = [3kiX«i(l ..... si). 
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As variable Xk~ increases, the elasticity decreases for MCI models, but it increases 
and then decreases for MNL models. (The cross elasticities are given in the next 
section.) By expanding the parameterization of the model we are now able to 
capture brand-by-brand differences in market responsiveness to each element of the 
marketing mix. If all brands are equally effective then flk~ = fl«j = tig V i,j, and the 
elasticity expressions reduce to those for simple-effects attraction models. 

4.2. DifJerential cross-elasticities 

If we are interested in knowing what efl'ects other brands' actions will have on 
a brand's share, or what effects a brand's marketing actions will have on other 
brands' shares, then we need to consider cross elasticities. Suppose that brand j 
changed variable Xkj by a small amount AXk~. The cross elasticity of brand i's 
(i ¢ j )  share with respect to variable Xkj may be verbally expressed as 'the ratio 
of the proportion of change in market share for brand i corresponding to the 
proportion of change in variable X« for brand j,' and is defined as follows: 

Asi/si As i "  Xk'i (22) 
% '  = XX«.,/X~, = AXk,  s, 

Note that es~.j has two subscripts: the first indicates the brand that is influenced 
and the second, the brand that exerts inttuences. This is an arc cross-elasticity 
formula and the corresponding point cross-elasticity is defined as: 

&i/si =_Osi .XkJ (23) 
e«,.j = Ü X k j / X k j  ~ X « j  s i 

Point cross-elasticities for differential-effects attraction models are as follows: 

M C I  model: 

es« j := . _  flkjSj. 

M N L model: 

es« j =- _ [3kjXkjSj.  

Let us consider what the above tormulas imply. For the raw-score versions of 
both MCI and MNL models cross elasticities with respect to variable X«j are 
constant for any brand i(i ¢ j ) .  This means that the relative changes of other brands' 
shares (i.e. & j s i )  caused by brand j's actions are the same for any brand, though 
actual changes in shares (i.e. ~si) are different from orte brand to another, depending 
on the current share level for each brand (i.e. s~). 

Table 6.2 shows the pattern of direct and cross elasticities we might get from a 
differential-effects attraction model. The direct elasticities are on the diagonal of 
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Table 6.2. 
Elasticities for a differential-effects model 

Brand 1 2 3 4 5 6 

1 --1.2 0.6 0.5 0.1 0.3 0.7 
2 0.3 --1.7 0.5 0.1 0.3 0.7 
3 0.3 0.6 -0 .9  0.1 0.3 0.7 
4 0.3 0.6 0.5 -0 .8  0.3 0.7 
5 0.3 0.6 0.5 0.1 - 1 . 6  0.7 
6 03 0.6 0.5 0.1 0.3 - 1 . 7  

this matrix and the cross elasticities are oft the diagonal showing how the brand 
indicated by the column exerts influence on the brand indicated by the row. The 
diagonal entries can differ between columns due to different market  shares between 
columns as well as due to differing parameters flkj. The oft-diagonal entries can 
also differ between columns due to different market  shares as well as due to differing 
parameters flkj. But within each column the oft-diagonal entries are identical. This 
reflects the symmetry of Axiom 4 of the market-share theorem discussed earlier. 
It is a pattern that tells us that the differential-effects attraction model developed 
so rar is an IIA model. 

The equality of cross elasticities implied by such attraction models does not fit 
what we observe in the marketplace. There are brands that seem to be nearly 
immune from other brands'  price changes; some brands seem to be able to ignore 
promotional  activities of other brands with little loss of their shares, while others 
seem to be particularly vulnerable. It is therefore desirable to specify market-share 
models that reflect inequality of cross elasticities that we believe exists in the 
marketplace. As indicated before, there are two ways to attack this problem. On 
one hand, we could reflect the asymmetries which might arise from the temporal 
distinctiveness of marketing efforts. This is pursued in the section on the 
distinctiveness of marketing activities. The other way involves extending the 
parameters of the attraction model to reflect asymmetries due to systematic and 
stable cross-competitive effects. Fortunately, this can be accomplished wjth relative 
ease within the framework of attraction models as shown below~ 

The fully extended attraction model 

, ~ ' i = c x p ( ~ i - ~ - ~ 3 i )  l ~1 f i  o ' X  "~ßkj Jkt k j) ~ 
k = l j = l  

j = l  

(24) 

where [Jkij is the parameter  for the cross-competitive efl~ct of variable Xkj on brand i. 
Equation (24) is called an attraction model with differential cross-competitive 

effects or afully extended attraction model to distinguish it from the differential° 
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effects attraction model shown in Equation (21). The most important feature of the 
fully extended model is that the attraction for brand i is now a function not only 
of the brand's own actions (variables Xki'S, k = 1,2 ..... m) but also of all other 
brands' actions (variables Xkj's , k = 1, 2 ..... K; j = 1, 2, . . ,  m). The flkiSS for which i 
is different from j are the cross-competitive effects parameters, which partly 
determine cross elasticities. The flu/s for which j equals i (i.e., flkU) are direct-effècts 
parameters and are equivalent to the flkz'S in the differential-effects model (21). This 
notation is cumbersome, but it is necessary to keep track of who is influencing 
whom. Note that the fully extended model has many more parameters (with rn 2 x K 
Bk~SS and m c~i's) than the original attraction model (with K + m parameters) and 
the differential-effects model (with mK + m parameters). But even for extremely 
large markets these parameters are possible to estimate by the procedures discussed 
in Cooper & Nakanishi [1988, Chapter 5]. Since we get ( m - 1 )  independent 
observations from each store each week, scanner data provides enough degrees of 
freedom to overdetermine most models. For  example, there are around 100 brands 
of cereal. If we track price, feature, display, coupon and brand-specific effects we 
have to estimate around 40 100 parameters. While this is a daunting numerical 
task that no one has yet undertaken, data from only ten stores over a year's time 
provide enough independent observations (51480) to overdetermine a solution. 
This, of course, assumes homogeneity of parameters across stores. If differences 
in store format (e.g. every-day low-price versus advertised specials) indicate this 
assumption is questionable, then data from only ten stores per format would still 
overdetermine a solution. When other, less obvious, forms of heterogeneity across 
stores exist, methods for discovering latent classes in other marketing arenas may 
be adaptable to the current context [cf. Kamakura  & Russell, 1989; Ramaswamy 
& DeSarbo, 1990]. 

4.3. Properties of fully extended atrraction models 

The fully extended attraction model is not an IIA because the choice between 
two brands can be affected by the cross-competitive influences of the other brands 
available in the market. To see what market and competitive structures can be 
revealed by the fully extended model (24), ler us look at the direct and cross 
elasticities for this model. 

M C I  model: 

es, j ..... flkij ~ ShÆkhj" 
h = l  

M N L  model: 
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D i r e c t  E f f e c t  

B r a n d  j [ - -  - - - ~  (1 - si) Pkij - ~ B r a n d  i 

V a r i a b l e  Xki j ~ M a r k e t  S h a r e  
I n d i r e c t  E f f e c t s  t" 

1 

- - - ~  s l l3k] j  - --J 

- -  ) S2~k2j - - - J  
e e o  

- - - - - ~  Sm~km j ----J 
Fig. 6.2. Cross elasticities in the fully cxtended model. 

These formulas apply to both direct and cross elasticities. If i is equal to j, then 
we have the direct elasticities for brand i, otherwise we have the cross elasticity, e~,~ 
of market share for brand i with respect to changes in marketing variable Xkj for 
brand j, and it is given by flkU minus the weighted average of f lkh jS  over  h, where 
the weights are the market shares of respective brands (Sh) [cf. McGuire, Weiss & 
Houston, 1977]. Figure 6.2 describes the effects that influence market shares 
according to the fully extended model. 

Assume that variable Xkj is the price for brand j. Then parameter flku for which 
i is not equal to j is likely to have a positive value. When brand j reduces its price 
the share of brand i tends to decrease. This effect of brand j's price change on 
brand i's share is shown in Figure 6.2 as a direct competitive eflèct. Note that a 
direct competitive effect is weighted by the complement of brand i's share (as we 
show below). When brand i's share is large, brand i is less affected directly by the 
moves by brand j. The influence of brand j's price change is not limited to the 
direct competitive effect on brand i, however. When brand j reduces its price, its 
own share should increase. Furthermore, the market shares of brands 1 through 
m (other than brands i and j) will also receive a negative effect, which in turn 
should have a positive effect on brand i's share. Influences of these kinds are 
indirect competitive effects shown in Figure 6.2. 

In order to examine formally the points raised above, rewrite the cross-elasticity 
formula for MCI models as follows: 

es,.j = (1 - s~)/3,~j - s j / ~ , j j  - ~ s,,#, j. 
h# i,j 

The first term, of course, represents the direct competitive effects. The second 
term shows the indirect eompetitive effects through brand j. The tast term consists 
of indirect competitive effects through all other brands. If Xkj is brand j's price, 
one expects that flkjj < 0 and flkU > 0 (for i ß  j). Since the first and last terms are 
expected to be positive and the second term negative, we do not know the sign 
of es«j. It is dependent on the relative size of (1 - Si)flk u -- Sjflkj j and Z~'~ ijShflkhj " 

Consider the following special cases. 

Case 1: All cross-elasticity parameters (flku, i 4:j) are zero. In this case, es,. ~ . . . .  sjfi«~r 
This is the same as the cross-elasticity formula for the differential-effects MCI 
models. 
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Case 2: All cross-elasticity parameters (flkij, i ¢ j )  are approximately equal. In this 
case, 

ShF~hj ~ (1 S~-- Sj)[3«ij. 
h7 ~ i,j 

Then 

es,.j "~ Sj(flkij --  flkjj)" 

This suggests that es, q has the same sign a s  ~kij" 

Case 3: flk~~ is nearly zero, but 

Sh[~kh j > Sjflkj j. 
h~ i,j 

In this case es,. j may have a sign different from/3ki j. 

Case 3 is an interesting situation because, in this case, it is possible that brand 
i eren gains share when brand j reduces its price. For Case 3 to occur brand j's 
share should be relatively small, but the impact of its actions on brands other 
than i must be large. (This brings to our mind an image of an aggressive small 
brand j which is frequently engaged in guerilla price-wars.) In addition, brand i 
taust be reasonably isolated from the rest of the market, implying that it is a 
niche-er. This case illustrates the richness of market and competitive structures 
that can be revealed by the futly extended attraction models. 

It may be added that if i =j ,  we may write 

e~c j ----- ( 1  - -  Si)f lki i--  ~ Shflkh i. 
h¢ i  

The first term represents the direct effect of Xki on brand i's share. The second 
term gives the sum of all indirect competitive effects on brand i's share. This 
formula suggests a possibility that, eren if the direct effect is negligible (e.g. flkii 
is small), direct elasticity, es. i, may be sizeable due to the combination of indirect 
competitive effects. In other words, a brand may be able to increase its share merely 
by reducing other brands' shares. Simple-effects or differential-effects attraction 
models do not altow such a possibility. This is another  indication of the descriptive 
richness of the fully extended attraction models. 

While issues in estimation are beyond the mandate of this chapter, readers may 
have noted that not all of the parameters of the fully extended model are identified. 
McGuire, Weiss & Houston [1977] showed that only the deviations fl~ij = fl«~j - fik.j 
and the brand-specific parameters c~~ are estimable. But Cooper & Nakanishi [1988, 
p. 145] showed that only fl~~j is needed to estimate all the elasticities. 
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4.4. Revealin9 competitive structures 

Once cross-elasticity parameters  are introduced in market-share  models, it 
becomes possible to specify market  and competitive structures on the basis of 
cross elasticities among  brands. An example will serve to illustrate this concept. 
Suppose that the market ing variable in question is price. One may  estimate share 
elasticities with respect to price using a differential cross-elasticities market-share 
model. Table 6.3 shows the matrix of  direct and cross elasticities a m o n g  six brands 
in a hypothetical  market.  

Some readers familiar with matrices may manage  to see the market  and competi-  
tive structure with a little work. However,  we can always graph the pattern of an 
elasticity matrix using the simplest form of a competitive map [Cooper ,  1988]. If 
we think of brands  as vectors emanat ing from the origin of a space, the stronger 
the cross elasticity between two brands, the more correlated those brands '  vectors 
woutd be. The closer the compet i t ion the smaller the angle between the vectors 
for two brands. The more  complementary  two brands are, the more  opposite 
(closer to 180 °) these brands should be in the map. If two brands to not  compete 
at all, the vectors should be at right angles to each other. If  some subset of brands 
does not  compete with any of  the brands in the market,  the noncompet ing  brands 
should reside at the origin of  the space. This space will be a joint  space - showing 
both how brands  exert influence (i.e. clout) and how they are influenced by other 
brands '  actions (vulnerability). The cross elasticities are represented in a competitive 
map as if they were the scalar products of the coordinates of the brands. 

iEj = ~V t,tCj + ~Aj (25) 

where iEj is the matrix of cross elasticities, iV r is a matrix showing the coordinates 
of the brands on dimensions that  describe the vulnerability of the brands, tCj is 
a matrix showing the coordinates  of the brands on dimensions that  describe the 
clout of  the brands, and iA~ is a matrix of  errors. Singular-value decomposi t ion 
can be used to obtain the smallest (least-squares) error for any given choice of the 
dimensionality of  the competit ive map. 

The two-dimensional  competit ive map for Table 6.3 is given in Figure 6.3. We 
expect the market ing actions of a brand to help itself. In  a map  this would be 

Table 6.3. 
Elasticities for a fully extended attraction model 

Brand 1 2 3 4 5 6 

1 - 1 . 2  1.0 0.2 0.2 0.3 1.2 
2 0.9 -1.6 0.3 0.4 0.1 1.4 
3 0.1 0.2 -0.4 0.6 0.2 0.2 
4 0.2 0.3 0.0 --1.7 1.1 0.3 
5 0.3 0.5 0.4 1.0 -1.8 0.3 
6 0.9 1.0 0.3 0.1 0.2 --0.7 
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Fig. 6.3. Scaling of elasticities from Table 6.3, based on singular value decomposition. 

].5 

reflected by having the vector representing the clout for one brand be about 180 ° 
from the vector representing vulnerability for that same brand. This occurs 
throughout Figure 6.3. Note that brand 2 is aligned to exert a good dem of 
competitive pressure on both brands 1 and 6; but these brands are positioned to 
return the pressure. Brands 4 and 5 are aligned to compete with each other, but 
there is not much competition between these two submarkets. Additionally, brand 
3 is isolated at the origin competing with neither group of brands. 

This simple version of competitive mapping provides a snapshot of the com- 
petitive structure implied by a single matrix of elasticities. Mapping the elasticities 
for this marketing instrument over time and/or regions can give brand managers 
a view of what events produce changes in competitive patterns. And the full story 
on the competitive structure of this market is not known until the elasticities for 
each marketing instrument are mapped. Some analysts worry that looking at maps 
for different instruments will reveal brands as substitutes with respect to one 
instrument and complements with respect to another. This is certainly possible, 
but not necessarily undesirable. National brands seem to compete fiercely with 
each other on price maps, but ad maps might show that ads for one premium 
national brand help other premium national brands (at the expense of regional 
and private-label brands). Brand managers need to know if such patterns exist, 
for surely brand planning is affected by such knowledge. 

4.5. Hierarchies of market segments 

Ambiguities in interpreting the nature of competition ffom the tables of 
elasticities may be caused by the aggregation, that is, by not explicitly recognizing 
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segments of buyers in the market. As was already pointed out, the overt pattern of 
brand grouping does not necessarily give hints about the underlying patterns of 
buyer demand. There are two possible interpretations on the nature of brand 
groups in Figure 6.3, for example. One interpretation is that two market segments 
exist and the cross elasticities reflect the difference in product perception between 
segments. The buyers who belong to the first segment might have only brands 1, 
2 and 6 in their consideration set; those who belong to the second segment might 
consider brands 4 and 5 as the only relevant alternatives. In this interpretation 
brand groups correspond one-to-one with market segments of buyers. 

The second interpretation of brand groups is that brands rend to be grouped 
in accordance with different types of buyer needs they serve. Suppose that the 
consumer uses plain and fruited yogurts for different occasions (e.g. plain yogurt 
for salad dressings and sauces, but fruited yogurt for desserts and snacks). This will 
cause the yogurt market to be divided into the plain and fruited brand groups, 
and minor price differences between the two groups will not affect demand for 
either. This type of segmentation on the basis of needs or a bene f i t  segmentation, 
does not produce distinct buyer segments in the market, since the same household 
purchases both plain and fruited yogurts. Of course, if two brand groups serve two 
entirely isolated buyer needs, they should be treated as two distinct industries 
rather than one. But if the price of plain yogurt is drastically reduced, buyers 
might start cutting up their own fruit and the demand for fruited yogurt may be 
affected. A plain-yogurt brand with an aggressive price policy may have some 
cross elasticities with fruited brands, or vice versa. Moderate cross elasticites 
between groups would force one to treat them as a single market. 

As in the above example, if the elasticities are measured only for the entire 
market, if will be impossible to establish the propriety of the above two interpre- 
tations solely on the basis of tables such as Table 6.3. In order to evatuate the 
correctness of these two interpretations, one will need data sets such as consumer 
panels (either diary or scanner panels). Moreover, it is desirable to have accompany- 
ing data on the buyer perception of alternative brands. Lacking such detailed data 
sets, however, one should at least understand well the aggregate implications of 
variabilities in elasticities among buyer segments. We will first look at the nature 
of elasticities in a multisegmented market. 

Suppose that there are two segments in the market, containing N 1 and Ns 
buyers, respectively. We sill use the notation qi(~) and si(t) to indicate, respectively, 
the sales volume and market share of brand i in the / th  segment. Since 

where 

s i = [_q(a)Si(1) + q(2)si(2)]/q 

q(z) = sales volume in segment l (l = 1,2), 
q = total sales volume (q(1) + q(2)), 

The point share elasticity of brand i with respect to Xkj is given by 

e~,.j = [(q(1) /q)(asi(1) / i )Xkj)  + (q(2)/q)(asi(2)/c~Xkj)] (Xk j / s i ) .  
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This shows that an overall elasticity is the weighted average of corresponding 
segment elasticities, weights being the relative sales volumes for respective segments. 
If we write the segment elasticity as e~,i(z), then the general expression for es,.i is 
given by 

L 

e~~.j = ~ (qi(t)/ql)es,.i(l) (26) 
l = l  

where L is the number of segments and qi is the sales volume for brand i for the 
entire market. This expression gives one the means to compute the overall elasticity 
matrix from matrices for segments. It also hints at ways to redress the problems 
created by the heterogeneity in purchase frequency discussed earlier. If we segment 
the market into heavy users and light users, and parameterize an attraction model 
in each segment, we still can compute the overall elasticities from the segment 
elasticities. 

We could achieve this segmentation by using panel data in each trading area to 
identify the heavy users and the light users in a category. The problem then becomes 
how to obtain an estimate of the market-level aggregate sales of a brand for each 
segment, when we have only the corresponding sales in the panel. Simple aggre- 
gation of the contemporaneous panel sales is not a good idea. Early research 
indicated that data aggregated this way did not allow for good estimation of cross- 
competitive effects. Panel data in a particular week is too sparse, even with large 
panels, to allow for reliable estimation of cross-competitive effects. 

A simple remedy for this is to think that each panel segment has a long-term 
attraction to a brand as well as a contemporaneous attraction that incorporates the 
impact of the immediate promotional environment. Using long-term average sales 
in the panel segment and contemporaneous sales in each panel segment, we wish 
to develop weights that split the total sales for a brand in a period (Sit) into patts 
that correspond to each segment. In the two-segment case we want to estimate 
weights WEi t and Wnjt for that light- and heavy-user segments respectively, such 
that 

WLj~ + WHjt = 1, 

WL~t × S~t = SLjt, 

WH~t × Sjt = SH~r 

This way the segment sales we estimate add up to the known aggregate sales in 
the market. The theoretical relations could be specified in a simple linear model as 
below: 

SLjt :z= ~ j f f  Lj. -]- ~L jPLj t ,  

SHj~ = 7jPHj. + 2HjPH~~, 
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where 

SLj t 
SHj t 
PLjt = 
PHjt = 

?j= 

~'Lj = 

• ~Hj = 

the aggregate sales for brandj  in period t in the light-user segment, 
the aggregate sales for brandj  in period t in the heavy-user segment, 
the panel sales for brand j in period t in the light-user segment, 
the panel sales for brand j in period t in the heavy-user segment, 
a parameter expressing the influence of long-term panels sales for 
brand j in each segment, 
a parameter expressing the influence of the contemporaneous 
marketing environment on the relation between panel sales for 
brand j in period t and the corresponding aggregate sales for the 
light-user segment, 
a parameter expressing the influence of the contemporaneous 
marketing environment on the relation between panel sales for 
brand j in period t and the corresponding aggregate sales for the 
heavy-user segment. 

The weights we desire could be based on a simple linear model such as 

Sjt = ¢j(PLj.  + ~õHj.) -I'- 2LjPLj, + ~HjPHjt -[- ei,. (27) 

We then obtain estimates of the required weights from 

l~Lä, = SLit/,~j,, (28) 

~VHjt ~-- ~ j , / S j t .  (29) 

A similar segmentation scheme could be developed for any number of mutually 
exclusive and exhaustive segmentation. With minor modification a scheine based 
on fuzzy segments could be developed. We end up with an estimated brand-sales 
vector for each segment. For  all practical purposes we may calibrate segment 
models just as we do for the aggregate market sales. In this way information (such 
as manufacturer's coupon redemption) that has previously been the exclusive 
domain of panel data, can be incorporated into aggregate (store-level) attraction 
models. A numerical illustration of this is given in Section 5. 

4.6. Distinctiveness of marketing activities 

Fully extended attraction models have advanced our ability to reflect the 
complexity of market and competitive structures, but there are other aspects of 
competition which have not been properly dealt with even in the fully extended 
models. We will turn to some of the more critical issues in this section and the 
next one. Here we will take up the issue of distinctiveness of marketing activities 
by competing brands. 

The main thesis of this section is that a brand's marketing actions must be 
distinct to be effective. Even casual observations bear out this proposition. Price 
reduction by a brand would have more effect on market shares when other brands' 
prices are kept high than it would when all competitors match the price reduction. 
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The market-share impact of one brand's promotion would be significantly greater 
when the brand is alone in promotion than it would when all brands engage in 
promotional activities. 

If it is the differences between brands, rather than the absolute levels of marketing 
activities that materially affect buyers' preference, then we will have to bring the 
distinctiveness of marketing activities among brands into the market-share models. 
Attraction models handle the distinctiveness issue quite naturally. 

Cooper & Nakanishi [1988, pp. 70-72] showed that one may express the 
variables in MCI and MNL models in a deviation form without changing the 
properties of the models. In other words, we may express a variable either as 

X*ki = Xki/Xk or X*ki = Xgi -- Xk 

and substitute X'kl for X«i in MCI or MNL models, respectively. This property of 
attraction models does not change if we move from the simple-effects form to 
differential-effects models and fully extended models, or if monotone transforma- 
tions (fk) other than identity or exponential are used. Substituting 

f t ( x , , )  = L(x , , ) /Y«(x , ) ,  

where fk(Xk) is the geometric mean of fk(Xki) over i, for fk(Xki) in an attraction 
model, will not change the nature of the model. Thus, the variables in attraction 
models may be replaced by some equivalent form of deviations from the industry 
mean, and those models operate, in essence, on the principle of distinctiveness. If 
Xk is price in an MCI model, each brand's price may be expressed as deviations 
from the average price for the industry. If all brands charge the same price, X* i 
will be equal to one, and price will not affect the shares of brands. Only when the 
prices for some brands deviate from the industry mean do they influence market 
shares of themselves and others. 

The handling of distinctiveness by attraction models becomes technically difficult 
when the variable in question is qualitative. Product  attributes are exampte of 
qualitative variables - a make of refrigerator may or may not have an ice-maker; 
or an automobile model may or may not have an automatic transmission. Such 
variables take onty two values, typically, one if the product (or brand) has an 
attribute and zero if it does not. Of course, one may compute the industry average 
for a binary (two-valued) variable (which is the same as the proportion of products 
or brands that have the attribute) and subtract it from the value for each 
product/brand. But by this operation the transformed variable may take either 
positive or negative values, and hence it may be used only with an MNL model. 
In order to incorporate binary variables in an MCI model a simple, but effective, 
transformation - the index ofdistinctiveness was developed [Nakanishi, Cooper 
& Kassarjian, 1974]. 

Suppose that X k is a variable associated with the possession or nonpossession 
of an attribute. Ler the proportion of products (or brands) in this industry which 
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have the attribute be r. If  there are ten brands and two brands have the attribute, 
r will be 0.2. The value of the index of distinctiveness for each brand is determined 
by the following simple operation. 

If brand i has the attribute, Xki = 1/r. 

If brand i does not have the attribute, Xki ~- 1 - - r .  

Thus i f r  equals 0.2, those brands with the attribute are given the value of 5 and 
those without the attribute will be given the value of 0.8. Note  that the smaller r~ 
the greater the value o f X  k for those brands that have the attribute. This represents, 
in essence, the effect of the distinctiveness of a brand. If a brand is the only one 
which has the attribute the index value (l/r) becomes maximal. 

This index has a rather convenient property that it is ratio-wise symmetrical to 
the reversal of coding a particular attribute. If we reversed the coding of possession 
and nonpossession of an attribute in the previous numerical example, r would be 
0.8, and the value of X k for those brands with the attribute would be 1.25 (=  i/0.8) 
and that for the brands without the attribute would be 0.2 ( =  1/5). In other words, 
those brands without the attribute become distinctive in the reverse direction. 

The index of distinctiveness shown above transforms a binary variable such that 
it is usable in an MCI  model. Cooper  & Nakanishi [1983] found that this index 
is a special case o fa  more general transformation applicable not only for qualitative 
variables but also for any quantitative variable. First, convert any variable X«~ to 
a standardized score by the usual formula: 

where 

zug = (X«~  - £ , « ) / o~  

Bk = the arithmetic mean of Xki o v e r  i, 
trk = the standard deviation of Xki o v e r  i. 

Since standardized z-stores (Zk[S) may take both positive and negative values, 
they may be used in an M N L  model in the form of exp(zk~), but cannot  be used 
in an MCI  model. To create a variable usable in the latter model transform z-scores 
in turn in the following manner: 

(kl = ( 1  --4--Z2"11/2ki/ ' i f z k i ~ O '  

Z 2 1/2, ~ O, (kl = (1 7 t- ki) if Zki (30) 

This new transform, (»  (to be called the z e t a - s c o r e  for Xk) takes only positive 
values and has a property that it is ratio-wise symmetrical when the positive and 
the negative directions of variable X« are reversed. For example, let the value of 
(kl be 2.5. If X«i is multiplied by - 1, (ki will take a value of 0.4 ( =  1/2.5). It may 
be easily shown that the zeta-score includes the inde× of distinctiveness as a speciat 
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case for binary variables. For  a binary variable X »  9(« = r and «~ = r(l - r). Hence 

Z2ki = ( 1  - -  r)/r if Xki  = 1, 

2 = r / ( l _ r )  i fXki=O.  Zki 

Substitution of the equivalent 2, . of zki s m the zeta-score formula yields squared roots 
of distinctiveness indices. 

We can think of brands as point masses in space. The zeta-score is based on 
the ratio of the noncentral moment  of inertia about  brand i to the central moment  
of inertia thus reflecting how an object stands out from a group. This ratio is 
not affected by a general linear transformation of Xt, making it an appropriate  
transformation of interval-scale ratings - thus allowing interval-scale rating to be 
used in MCI  as well as M N L  models. The ratio has a minimum value of one for 
brands at the center (i.e., the mean of X 0, and increases as a particular brand gets 
farther away from the center. To translate this ratio into a usable index we invert 
it at the mean of the underlying variable. This allows us to tell if a brand is 
distinctively high or distinctively low in an attribute compared to the other brands 
in the competitive offering. (Instead of thinking of brands as point masses in space, 
we could think of brands as points in space with masses equal to their market  
shares. This leads to a new, and as yet untested, version of distinctiveness that has 
great appeal to this one-time student of physics.) Figure 6.4 gives the comparison 
of the zeta-score with the exp(zki ) transform. 

Although the shapes of the two transforms are quite similar, the choice between 
the two may be made by the form of the elasticities. The direct and cross elasticities 
for the exp(z«z) transforms are given by 

E = (I -- J D s ) B S D x  

and those for the zeta-transforms are given by 

E = (I - JD«)BSD~ 

2.00 ~m~l~m 

~~~~~-~ o~~~~_ù~ ...... 
0.50 • æ_m_m_l_i~m--l--w--n--I 

0.(30 

~Score 

Fig. 6.4. Comparison of zeta and exp z, 
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where 

S = the m × m matrix with elements {C3Zkj/C~Xk~ }, i.e., 

S=t7  m m 

D« -: an m × m diagonal matrix with the / th  diagonal element sl, 
Dx = an m × m diagonal matrix with the / th  diagonal element X«~, 
ak = the standard deviation of X« over i, 
J = an m x m matrix of l's, 
Z = an m × 1 vector of standardized scores (i.e. Zki = (Xki -- X«)/a«), 

D z = an m × m diagonal matrix with the/th diagonal elementlz«il/(1 + z~~). 

eigure 6.5 compares the elasticities of the zeta-score with the exp(zki ) transform. 
The dip in the middle of the elasticity plot for zeta-scores corresponds to the flat 
portion of the zeta-score function depicted in figure 6.5. With zeta-scores, change 
is always depicted as slower in the undifferentiated middle portion of the distribu- 
tion. Consider what this might imply for a frequently purchased branded good 
(FPBG). If it establishes an initial sale price about one-half a standard deviation 
below the average price in the category, the price is distinctively low and market- 
share change is relatively rapid. If the price drops further from this point, market 
share increases, but at a slower and slower rate. Bargain-hunting brand-switchers 
have already been attracted to the brand, and little more is to be gained from 
further price cuts. If the price increases from this initial sale price, market share 
drops rapidly at first, as the value of being distinctively low-priced is dissipated. 
At the undifferentiated position at the middle of the price distribution, market 
share is changing least rapidly as minor changes on either side of the average price 
go largely unnoticed. This indistinct region is similar to what DeSarbo, Rao, 
Steckel, Wind & Columbo [1987] represent in their friction-pricing model and 
similar to what Gurumurthy & Little [1986] discuss in their pricing model based 
on Helson's adaptation-level theory. On the high-priced side an analogous series 
of events happen. Small price increases around the average price are not noticed, 
but once the brand price is high enough to be distinguished from the mass, the 
loss of market share becomes more rapid. At some point, however, the change in 
rnarket share must decline, as the brand loses all but its most loyal following. 

In many categories of FPBG's  the brands pulse between a relatively high 
self-price and a relatively low sale-price. In such cases the middle of the elasticity 
curve is vacant and the values of the elasticities for zeta-scores and exp(z-scores) 
might be quite similar. The exp(z-score) elasticities might be most descriptive of 
the path of market-share change from aggregate advertising expenditures, with 
increasing market-share growth as the expenditures move from zero up to the 
industry average, and diminishing growth rate for additional expenditures. 
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Fig. 6.5. Comparison of (a) zeta-score and (b) exp (z-score) elasticities. 

Zeta-scores or exp(z-scores) explicitly model the temporal distinctiveness of brands 
by separating the underlying importance of a feature from the particular pattern 
of shared features in any given choice context (i.e. its salience). If two brands are 
both promoted in a store they do not each get the same boost in market share as 
if they were promoted alone. By specifically modeling such contextual effects we 
overcome the limitations imposed by the IIA (context-free) assumption of Luce 
choice models discussed earlier. Since the IIA assumption does not recognize that 
the value of a major promotion is somehow shared by all the brands on sale in 
that time period, the parameters of a raw-score (Luce-type) model will always 
reflect both the underlying value of the feature and the particular pattern of shared 
features in the contexts used for calibration. By using a distinctiveness index 
explicitly to model the changing pattern of feature-sharing from one period to the 
next, the parameters of the market-share model are free to reflect the underlying 
value of a feature. In forecasting, orte again uses either zeta-scores or exp(z-scores) 
to help translate the underlying value of a feature to the particular pattern of 
shared features in new periods. So while the models in Nakanishi & Cooper [1974] 
were IIA models, as indicated above, the first real application of MCI models 
[Nakanishi, Cooper & Kassarjian, 1974] found a way out of the counterintuitive 
results imposed by the IIA assumption. All we need to do is provide a representation 
of how the context in which choices are made affects those choices. 

The dramatic swings in market shares from week to week that analysts observe 
in scanner records of store sales encourages us to apply distinctiveness transforma. 
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tions in each time period to produce a generalized attraction model: 

Nit = exp(oq + ei) f i  F[ .[kt(Xkjt) pkij, 
k = l j = l  

sù=Nù d;,. 
J 

Here f«, has two subscripts to indicate not only a choice of functional form 
for the representation of an explanatory variable (i.e. MCI versus MNL repre- 
sentations), but also the kind of distinctiveness transformation to be applied 
within each period (i.e. zeta-scores or exp(z-scores)). Transformations such as 
exp(z-scores) and zeta-scores in each time period or choice situation not only high- 
light the distinctiveness of brands but serve to standardize variables. This reduces 
the collinearity otherwise inherent in the differential-effects forms of market- 
response models Icl. Cooper & Nakanishi, 1988, Chapter 5]. 

50 A numerical illustration from single-source data 

The last decade has witnessed a tremendous explosion of research on how to use 
scanner data to learn about consumer and market response. The intense efforts 
at developing methods to deal with scanner data have fallen into two separate 
camps. On one hand, there has been extensive development of discrete choice 
(mainly logit-based) models and methods for understanding individual-level choice 
processes [Bawa & Ghosh, 1991; Bawa & Shoemaker, 1987; Bucklin & Lattin, 
1991; Carpenter & Lehmann, 1985; Currim, Meyer & Le, 1988; Currim & 
Schneider, 1991; Elrod, 1988; Fader & McAlister, 1990; Grover & Srinivasan, 
1989; Guadagni & Little 1983; Gupta, 1988, 1991; Jain & Vilcassim, 1991; Kalwani, 
Yim, Rinne & Sugita, 1990; Kamakura & Russell, 1989; Kannan & Wright, 1991; 
Krishnamurthi & Raj, 1991; Lattin & Bucklin, 1989; Meyer & Cooper, 1987; 
Moore & Winer, 1987; Neslin, 1990; Neslin, Henderson & Quelch, 1985; Pedrick 
& Zufryden, 1991; Ramaswamy & DeSarbo, 1990; Tellis, 1988; Vilcassim & Jain, 
1991; Wheat & Morrison, 1990a; Winer, 1986, 1989; and Zufryden, 1984, 1987] 
On the other hand, there have been substantial efforts to develop market-response 
models and methods that address both the vast size and detail of store-tracking 
data [Abraham & Lodish, 1987; Allenby, 1989, 1990; Bemmaor & Mouchoux, 
1991; Blattberg & Wisniewski, 1989; Bolton, 1989; Bultez & Naert, 1988; Cooper, 
1988; Cooper & Nakanishi, 1988; Doyle & Saunders, t990; Kumar & Leone, 1988; 
Russell & Bolton, 1988; Shugan, 1987; Vilcassim, 1989; and Walters & MacKenzie, 
1988]. The few efforts that have tried to use both panel and store data have been 
like Wheat & Morrison [1990b] which uses the percentage of times deals occur 
(computed from store-level data) in a panel-data investigation of purchase-timing 
models, or like Pedrick & Zufryden [1991] where store-level causal variables are 
used in panel-level modeting efforts. In spite of the common modeling frameworks 
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(i.e. discrete MNL models and aggregate MNL models) used in some of these 
undertakings referenced above, no work has focused on bridging between these 
two research streams. 

There are very pragmatic reasons for attempting to merge the two traditions. 
Consumer panels contain information that is missing from the store-tracking data. 
Panel data tell for example about brand-usage frequency, about redemption of 
manufacturers' coupons, and about television-advertising exposures - information 
that is simply not available in store-tracking databases. If such data are not 
incorporated into market-response models, the diagnostic value of the models is 
necessarily impaired, and the forecasting ability of the models may also be affected. 

This section proceeds by: 

(1) developing a segmentation scheme that divides the consumer panel into 
mutually exclusive and exhaustive groups based on usage frequency; 

(2) aggregating panel variables to the segment level; 
(3) estimating the store-level sales for each segment (for each brand); 
(4) calibrating an asymmetric market-share model for the store-level sales of 

each segment; 
(5) combining segment-level market-share models into a single forecast; 
(6) calibrating and forecasting from an aggregate market-share model; and 
(7) comparing forecasts and diagnostics. 

5.1. Developing a segmentation scheine 

While there are many useful bases for segmenting consumer panels [cf. Wind, 
1978], one of the most fruitful areas for investigation of market-share models 
concerns differences in usage frequency. As pointed out earlier, parameters from 
aggregate market-share models will not reflect the individual choice processes if 
the heavy users in a category systematically purchase different brands than the 
light users (Case 4(b)). 

Without a consumer panel to go along with store-tracking data a model- 
developer would not know if there was a correlation between brand choice and 
usage frequency. But with single-source databases come both the knowledge of 
the problem (if it exists) and the opportunity to address it through segmentation~ 

The problematic correlation between brand choice and purchase frequency can 
be detected with a simple Zz test on expected purchase frequencies. The theoretical 
market shares can be estimated from the long-term sales data in the store-tracking 
data or the panel (using the overall panel would eliminate any rejections due to 
the panel failing to track the store). The market shares times the total number of 
purchases in each panel segment provides the expected purchase frequency for 
each brand, while the observed purchase frequency is readily obtainable for each 
panel segment. The great size of the panels may make it very likely that triviM 
differences will be confirmed as statistically significant. Only experience over diverse 
categories will tell if extremely conservative testing procedure (i.e. extreme type-one 
error rates) should be invoked. 
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But before we can test for the correlation between brand choice and purchase 
frequency, we have to decide who are the heavy users and who are the light users. 
Cooper [1989a, 1989b] split Nielsen's single-source panels into heavy- and 
light-user segments in 19 different ways (depending on different definitions of how 
heavy the heavy users had to be). All but the most extreme definitions led to 
groups that were significantly discriminable on the basis of actionable variables 
such as income, number of members in the family, number of years at the same 
residence, number of TV's in the household, hours-per-week worked by the male 
head-of-household (HOH), highest degree obtained by male HOH,  and number 
of hours-per-week worked by female HOH. Given this latitude, we decided to 
define heavy users as those panel households that purchased the top half of the 
total volume in the category. We know that in general it is tougher to predict 
more extreme events. This specification of segment membership means we will 
have ultimately to forecast less extreme volumes than with any other split. 

In the catsup category 50~ of volume is purchased by the top 20~ of the 
households. In the yogurt category the top 10~o of the households purchased 50~ 
of the volume. We expect the concentration to vary from one category to another. 
Further, in any historical period the record of which households have purchased 
the most in a category is an imperfect indicator of who are the real heavy users. 
But since Schmittlein, Cooper & Morrison 1-1993] have shown that the longer the 
term on which manifest concentration is estimated the closer the manifest concen- 
tration is to the true concentration, our approach is to use all available panel data 
to classify households into heavy- and light-user segments. 

Using the approximately 50 50 split of volume to define segments in the catsup 
market, the market and segment shares for Heinz, Hunts, Del Monte, and a 
combination of the private-label and generic catsups appear in Table 6.4. That 
the store shares for Heinz and Del Monte are slightly higher than either panel- 
segment share or that the store shares for the private-label and generic brands are 
slightly higher, indicates that to a minor extent the panels do not track the stores. 
While such minor discrepancies should not harm the overall analysis, in such a 
case the expected frequencies for the )~2 should (and did) come from overalt panel 
sales. The )~2 for the independence of segment and share is 372 with 3 degrees of 
freedom. The significance indicates that we are in a Case 4(b) situation and 
segmentation should be undertaken. This extreme significance, however, is due 

Table 6.4. 
Store and segment market shares 

Brand Store Heavy- Light- 
share (%) segment segment 

share (~) share (~o) 

Heinz 67.40 68.79 68.25 
Hunts 15.80 15.98 15.31 
Del Monte 7.60 8.15 8.52 
PvtGeneric 9.20 7.08 7.91 
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mainly to the large size of the panel, since the q) coefficient is only 0.019 for this 
same cross tabulation. 

5.2. Aggregate panel variables to the segment level 

The kinds of variables that would be useful to incorporate from the panel file into 
a market-response analysis are relatively obvious. We aren't interested in the 
number of toasters or dogs in the household, not only because we have no 
hypotheses as to why certain brands would differentially benefit from the various 
levels, but more fundamentally because these kinds of variables do not vary across 
weeks to any appreciabte degree. They would act like segment-specific constants 
or intercepts. 

The obvious candidates for inclusion are those variables we wished were in the 
store-tracking database to begin with. Highest on this list would be information 
on manufacturer's coupon redemptions. While store-coupon redemptions have 
been reported, and used in market-share analysis Icl. Cooper & Nakanishi, 1988], 
manufacturer-coupon redemptions have not. It may be that inclusion of this 
information will alter our understanding of price or store-coupon sensitivity. 

A less obvious, but no less important, variable is commercial exposures. GRP's  
or TRP's could be recorded in a store-tracking databse. But it is not obvious how 
commercial exposures would be routinely included in anything but a panel 
database. In the catsup category both manufacturer coupons and commercial 
exposures were initially aggregated for each segment. But in the catsup category 
too few brands engaged in TV advertising to obtain meaningful results. Thus only 
manufacturer coupons are used in this first application. 

5.3. Estimating the store-level sales for each segment (for each brand) 

There are three basic assumptions that lead to the estimation Equations (27) (29). 

(1) The long-term average panel sales for a brand has an influence on contempo- 
raneous store sales. This implies that even if there are no  sales in the panel segment 
for a particular brand in a given week there still might be sales in the corresponding 
store segment. The higher the historic average sales the more likely it is that there 
will be sales in the store segment ceteris paribus, even in the absence of sales in the 
panet segment. 

(2) The contemporaneous panel sales for a brand has an influence on contempo- 
raneous store sales. Of course, we expect the contemporaneous brand sales in a 
panel segment to be positively related to brand sales for the corresponding store 
segment. Each panel segment can have its unique sensitivity, i.e. the regression 
weight that relates contemporaneous panel sales for the heavy panel segment to 
contemporaneous store sales for the heavy store segment may be different from 
the regression weight that relates the corresponding sales figure for the light 
segments in the panel and in the store. 

(3) The sensitivity of contemporaneous store sates to long-term panel sales is 
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the same within brand across segments. There is no reason that would force us 
to speculate that long-term historic sales for a brand affects one segment differently 
than another. We do, of course, expect different levels of average sales across 
segments, but this restriction is much more specific than that. It merely says that 
the sensitivity of contemporaneous sales to historic sales for a brand is the same 
for each panel segment. This amounts to a necessary restriction on the intercept 
for the regression model. 

The regression model in (27) was estimated using the Nielsen single-source 
database tracking catsup sales in Sioux Falls, SD, for 138 weeks. Table 6.5 presents 
the regression-model results for Heinz, Hunts, Del Monte, control (private-label) 
brands, generic catsup, and aggregation of all other branded catsups, and an 
aggregation of all catsup called ALLBRAND in the analysis. The top 20~o of users 
in this market purchased approximately 53~o of the catsup volume. These house- 
holds constituted the heavy-users segment in the panel. 

The models have very high R-square values (except for the aggregate of all other 
branded catsup), but one taust be careful to recognize that since the normal 
intercept is suppressed, R-square is more like a congruence coefficient than the 
coefficient of multiple determination we expect. All of these models are highly 
significant when compared to the simulation results for congruence coefficients 
reported by Korth & Tucker [1975]. All of the parameters are also statistieally 
significant. These tables also report the split of the baseline volume into the average 
historical weekly volume (in ounces) for each panel segment. 

Table 6.5 
Summary of regression analyses Sioux Falls panel 

Brand R-square F(3, 138)  Alpha Beta Beta Average volume 
baseline light heavy 

Light Heavy 

Heinz 0.976 1827 8.596 15,137 10.562 2403 2784 
(t-values) 10.811 5.248 3.429 

Hunts 0.965 1233 8.273 11.786 15.617 539 647 
(t-values) 11.98 5.837 8.761 

Del Monte 0,923 539 5.024 14.287 13.298 300 330 
(t-values) 6.095 6.746 7.314 

Control-brands 0.967 1315 13.381 8.623 t4,585 233 243 
(t-values) 17.993 5.173 10,519 

Generic 0.931 604 26.599 11.813 6.014 45 44 
(t-values) 17.95 7.504 3,11 

All others 0.578 62 10.496 4.737 6,843 3 3 
(t-values) 6.401 4.301 6.283 

All brands 0.983 2645 9.719 8.545 14.798 3524 4050 
(t-values) 11.01 3.268 5.024 
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5.4. Calibratin 9 an asymmetric market-share model for the store-level 
sales of  each segment 

Remember  we have created one sales stream that we believe corresponds to the 
part  of total  b rand  sales that was purchased by the entire light-users segment, and  
a corresponding sales stream for the entire heavy-users segment. Except for the 
aggregated informat ion  from the panel  file (which in this i l lustrat ion concerned 
only the redemption of manufacturer ' s  coupons),  the causal env i ronment  encoun-  
tered by these segments is the same. So we cal ibrated an asymmetric  M C I  model  
using the procedures out l ined in Cooper  & Nakan i sh i  [1988, p. 168] and Carpen te r  
et al. [1988]. Basically these procedures est imate all differential effects and b rand-  
specific intercepts, search among  the residuals for potential ly significant cross 
effects, and  finally re-estimate all effects using weighted least squares. Given  the 
t iny shares of the aggregate representing all other branded  catsups, this aggregate 
was dropped from the analysis. The private-label and generic catsups were 
combined  into an aggregate simply called Private Labels. Each b rand  was 
represented by a brand-specific intercept (Int) and  a differential effect for line ads 
(Ad-L), major  ads (Ad-M), end-of-aisle display (D-EA), front-aisle display (D-FA), 

Table 6.6, 
Summary of market-share model -light-users segment 

Brand Int Ad-L Ad-M D-EA D-FA D-IN D-AO Cp-S Cp-M Price 

Heinz 2.00 0.14 + NS + NS 0.29 + NS + NS 0.57 - NS 0.49 
Cross effects Heinz is less influenced by Del Monte's D-FA, 

Heinz is more influenced by Hunt's Cp-M, 
Heinz's D-AO has more influence on private labels, 

than predicted by the symmetric model. 

NS 0.26 0.36 0.22 -NS 0.24 0.28 0.72 0.16 - N S  
Del Monte's Price has more influence on Hunts, 
Heinz is more influenced by Hunt's Cp-M, 
Del Monte's D-EA has more influence on Hunts, 
Private labels' D-EA has less influence on Hunts, 
Hunt's Price has more influence on private labels, 

than predicted by the symmetric model. 

0.00 -NS 0.29 0.75 1.09 0.15 0.38 -NS 0.51 -0.61 
Heinz is less influenced by Del Monte's D-FA, 
Del Monte's Price has more influence on ttunts, 
Del Monte's D-EA has more influence on Hunts, 
Private labels' Price, D-EA and Cp-M have more infiuence on Del Monte, 

than predicted by the symmetric model. 

-0.62 -NS 0.17 0.35 +NS 0.27 +NS 0 .68  +NS -0.73 
Heinz's D-AO has more influence on private labels, 
Private labels' D-EA has less influence on Hunts, 
Hunt's Price has more influence on private labels, 
Private labels' Price, D-EA and Cp-M have more inflaence on Del Monte, 

than predicted by the symmetric model. 

Hunts 
Cross effects 

Del Monte 
Cross effects 

Private labels 
Cross effects 
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in-aisle d isp lay  (D-In),  an aggregate  of all o ther  d isplays  (D-AO),  percen t  of b rand  
volume sold on s tore  c o u p o n  (Cp-S), and  price (Price). Manufac tu r e r ' s  coupon  
(Cp-M) was represented  as the percent  of pane l -segment  sales on which a manu-  
facturer 's  c o u p o n  was redeemed.  All var iables  were represented  as exp(z-scores).  

Tables  6.6 and  6.7 repor t  the  pa ramete r s  es t imated  for the  m a r k e t - s h a r e  models  
for the light and  heavy segments ,  respectively. Both mode l s  fit very weil in 
cal ibra t ion.  The  l ight -segment  R-square  is 0.824 52 (F3210 = 288). The  heavy  segment 
R-square  is 0.828 4s (F3214 = 323). One  would  hope  that  this wou ld  be the  case since 
the c ross -compet i t ive  effects are selected so tha t  they are very l ikely to be significant 
in the ca l ib ra t ion  da t a  set ( app rox ima te ly  two- th i rds  of the  s tore  weeks are used 
for cal ibrat ion) .  The  mode l s  also fit quite weil in cross ca l ib ra t ion  in which the 
specif icat ion deve loped  in the ca l ib ra t ion  da tase t  is appl ied  to the r ema in  one- thi rd  
of the store weeks. Here  the R-squares  were 0.803 and  0,814 respectively.  And  
finally the mode l s  also c ross -va l ida ted  qui te  weil. The cross  va l ida t ion  used the 
p a r a m e t e r  values form the ca l ib ra t ion  da tase t  to forecast  m a r k e t  shares for the 
un touched  da t a  in the final one- th i rd  of the store weeks. Hefe  we form a single 
compos i te  for each segment  and  perform a s imple regression on the app rop r i a t e ly  
t ransformed ( log-centered) dependen t  measure.  The R-squares  are  0.756 and 0.766 
respectively for models  with one p red ic to r  and  1607 degrees  of  freedom. The 
compar i son  to the aggregate  mode l  is discussed in Sect ion 5.7. The  cross effects 
are descr ibed verbally,  by c o m p a r i s o n  with wha t  would  be expected from a sym- 
metr ic  ma rke t - sha r e  mode l  [cf. Bell, Keeney  & Little, 1975]. In  symmet r i c  marke t -  
share models,  when one b r a n d  loses share the o ther  b r ands  are represented  as if 

Table 6.7. 
Summary of market-share-model - heavy-users segment 

Brand Int Ad-L Ad-M D-EA D-FA D-IN D-AO Cp-S Cp-M Price 

Heinz 2.30 0.15 +NS 0.07 0.22 0.03 +NS 0.61 0.11 - N S  
Cross effects Heinz is less influenced by Del Monte's D-FA and private labels' Cp-M than 

predicted by the symmetric model. 

- N S  0.21 0.34 0.21 +NS 0.24 0.25 0.71 0.16 -0.50 
Hunts is less influenced by private labels' Price than predicted by the 

symmetric model. 

0.00 - N S  0.44 0.78 1.07 +NS 0.32 - N S  0 . 2 6  - i .13 
Del Monte's D-FA has less inftuence on Heinz, 
Private labels' D-EA has more influence on Del Monte, and 
Del Monte's Price has less influence on private labels 

than predicted by the symmetric model. 

--0.87 +NS 0.22 0.38 - N S  0.35 0.16 0.54 -NS -1.30 
Heinz is less influenced by private labels' Cp-M, 
Hunts is less influenced by private labels' Price, 
Private labels' D-EA has more influence on Del Monte, and 
Del Monte's Price has less influence on private labels 

than predicted by the symmetric model. 

Hunts 
Cross effects 

Del Monte 
Cross effects 

Private labels 
Cross effects 
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they gain share strictly in p ropor t ion  to their prior market  shares. Fur ther  inter- 
pre ta t ion  is deferred to the section below where diagnostics are also compared.  

5.5~ Combining segment-level market-share models into a single forecast 

C o m b i n i n g  the segment-level forecasts ment ioned  in the previous section into 
a single market-share  forecast is relatively straightforward since we already have 
the weights from Equat ions  (28) and (29). Combined  forecast of market  share for 
each b r and  merely applies these weights to the estimated b rand  shares from the 

segment models. 
The variance accounted for (VAF) in the forecast period of the combined forecast 

is over 71%. This is a s trong indicat ion of very good forecasting ability. The 
roo t -mean-squared  error (RMSE) of 0.128 might  seem high, but  we must  remember  
that  there are t remendous swings in market  share when looked at on a week-by.. 
week and  store-by-store basis. 

5.6. Calibrating and forecasting Jrom an aggregate market-share model 

Excluding the manufacturer ' s  coupons,  the procedures for specification of the 
aggregate market-share model  were the same as those for the segment-level 
models. The R-square in cal ibrat ion was 0.845 45 (F3217 = 390), in cross ca l ibra t ion  

Table 6.8. 
Summary of market-share model aggregate market 

Brand Int Ad-L Ad-M D-EA D-FA D-IN D-AO Cp-S Cp-M Price 

Heinz 2.06 0.17 0.07 0.08 0.20 +NS 0.13 0.60 -0.70 
Cross effects Heinz is less influenced by Del Monte's D-FA, 

Heinz is less influenced by Hunt's Price, 
than predicted by the symmetrie model. 

-NS 0.26 0.35 0.19 +NS 0.29 0.22 0.84 -0.40 
Heinz is less influenced by Hunt's Price, 
Del Monte's Price has more influence on Hunts~ 
Private labels' D-IN has less influence on Hunts, 

than predicted by the symmetric model. 

0.00 -NS 0.38 0.75 1.08 +NS 0.33 ~--NS 0.57 
Heinz is less influenced by Del Monte's D-FA, 
Del Monte's Price has more inllunce on Hunts, 
Private labels' Price and D-EA have more influence on Del Monte, 

than predicted by the symmetric model. 

-0.79 -NS 0,19 0.35 -NS 0.39 0.17 0.61 -0.84 
Private labels' D-EA has more influence on Hunts, 
Hunt's Price has more influence on private labels, 
Private labels' Price, D-EA and Cp-M have more influence on Del Monte, 

than predicted by the symmetric model. 

Hunts 
Cross effects 

Del Monte 
Cross effects 

Private tabels 
Cross effects 
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was 0.816, and in cross validation was 0.772 - j u s t  slightly higher in all cases than 
the corresponding values for the segment-level models. 

The parameter  values are reported in Table 6.8. Here too the cross effects are 
described verbally, in relation to what we expect from a symmetric market-share 
model. Further interpretation of the parameters is postponed to the next section. 

5.7. Comparing forecasts and diagnostics 

Table 6.9 compares the summary statistics on model calibration, cross calibration, 
cross validation, and forecasts. The similarities are remarkable. Although a slight 
edge might seem to go to the aggregate model (there are no statistical tests to 
compare these R-square values), when it comes to forecasting, the models are 
identical to three decimal places. 

The condition index is also reported for the models in each of the calibration 
datasets. This number  is the ratio of the largest singular value (square root of the 
eigenvalue) to the smallest singular value in the sum-of-squares-and-crossproducts 
(SSCP) matrix for the (reduced-form) regression model. This index is discussed by 
Belsley, Kuh & Welsch [1980] as an indicator of the degree of collinearity in the 
regression system. These authors indicate that condition indices over 100 can cause 
'substantial variance inflation and great potential harm to regression estimate' 
[p. 153]. Indices from 21 to 35 are moderate at worst and give further evidence 
that asymmetric market-share models that use exp(z-scores) [cf. Cooper & 
Nakanishi, 1988, pp. 141 143] are exempt from the warnings concerning collinearity 
first given by Bultez & Naert  1-1975]. 

We may begin the comparison of the diagnostic value of this approach by 
looking at the parameter  values listed in Table 6.10. This table shows only the 
differential-effect parameters  for the three models calibrated earlier. There are no 
statistical tests for the equality of parameters across equations of this sort. What 

Table 6.9. 
Comparison of market-share models 

Light-users Heavy-users Aggregate 
segment segment market 
R-square R-square R-square 

Calibration 0.824 0.829 0.845 
D.F, 52-3210 48 3214 45-3217 
Condition index 32,5 34.8 21.6 

Cross calibration 0.803 0.814 0.816 
D.F. 51 1558 47-1562 44-1565 

Cross validation 0.756 0.766 0.772 
D.F. 1-1607 1 1607 1-1607 

Forecast accuracy Combined Ag~]rega~e 
RMSE 0.128 0.128 
VAF 0.711 0.711 
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Table 6.10. 
Brand summary across models 

L.G. Cooper 

Brand Int Ad-L Ad-M D-EA D-FA D-IN D-AO Cp-S Cp-M Price 

Heinz 
Aggregate 
Heavy users 
Light users 

Hunts 
Aggregate 
Heavy users 
Light users 

Del Monte 
Aggregate 
Heavy users 
Light users 

Private labels 
Aggregate 
Heavy users 
Light users 

,- . . . . . .  r . . . .  , . . . . .  - --0.70, 2.06 0.17 '0.07 , 0.08 , 0.20 + N S  10.13 ; 0.60 ~- . . . .  -' . . . . . . .  , . . . . . .  ~ -  -~~- 
2.30 0.15 + N S '  0.07 I 0.22 10.03 , + .  S 0 .61  ,i)Äl-"-i-----N-S-" 
2.00 0.14 + N S  + N S  0.29 + N S  + N S  0.57 - N S  I, -ÖÄ9-', 

NS 0.26 0.35 0.19 + N S  0.29 0.22 0.84 ,'- LÖ.-4Ö] 
+ N S  

i 
- N S  0.21 0.34 0.21 0.24 0.25 0.71 0.16 , ~0.50! ___. 
- N S  0.26 0.36 0.22 - N S  0.24 0.28 0.72 0.16 - -NS 

0.00 - N S  0.38 0.75 1.08 + N S  0 . 3 3  - N S ~  -0.571 

100~~61 I ò:~6~F 0.00 - N S  0.44 0.78 1.07 + N S  0.32 - N S  
0.00 - N S  0.29 0.75 1.09 ~_Ö_.-l_-5~- 1 0.38 NS 

-0.79 - N S  0.19 0.35 - N S  0.39 ,Ö_17 0.61 
i 

--0.87 + N S  0.22 0.38 - -NS 0.35 i 0.16 I 0.54 - N S  
-0.62 - N S  0.17 0.35 + N S  0.27 + N S  0.68 + N S  

we are undertaking is not a statistical comparison, but rather a comparison of 
how differently these models would be interpreted by managers having to develop 
brand plans in a competitive environment. 

For  convenience the parameters have been grouped into four classes. Those 
with no border are relatively stable across analyses. Note that 28 of the 40 groups 
(70~o) fall into this stable class, which is reassuring in many ways. The brand-specific 
intercepts, line-ad parameters, front-aisle display parameters, and store-coupon 
effects all seem stable within brands across analyses. 

The solid, dark lines highlight parameter groups with major differences in levels 
(although no changes in the pattern of statistical significance across analyses). For  
Del Monte the aggregate price parameter is -0 .57,  but the introduction of the 
manufacturer's coupon and segmentation leads to a heavy-user segment that is 
very price-sensitive ( f i H j ' P r i c e  = - -  1.13) and somewhat coupon-sensitive (flH~.Coupoù = 
0.26), while the light-user segment is rauch less price-sensitive (flL~.Prioe = --0.61) 
and more opportunistic users of manufacturer's coupons (flL~.Coupon = 0.51) for 
private-label brands the manufacturer's coupon effect is not significant in either 
segment (as should be the case), but the segmentation still leads to major differences 
in the price pa rame te r -wi th  the heavy-user segment being much more price- 
sensitive than the light-user segment. 

The dotted lines highlight groups in which the analyses reveal differences in the 
pätterns of significance across analyses. In the aggregate analysis of Heinz there is a 
significant price effect. Segment-level analysis indicates that the heavy-user segment 
is not price-sensitive, but is sensitive to manufacturer's coupons, while the light-user 
segment is somewhät price-sensitive and not affected by manufacturer's coupons. 
For  Hunts we see both segments are somewhat sensitive to the presence of 
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manufacturer's coupons, but all of the price sensitivity that appears in the aggregate 
is due to the sensitivity of the heavy-users segment. 

Particularly for Heinz (the dominant brand in the category) we see diagnostically 
different patterns comparing the segment analyses and the aggregate analysis. 
Major ads and other displays appear effective in the aggregate, but have no 
significant effect in either segment. The end-of-aisle displays that seem effective in 
the aggregate analyses influence the heavy users but not the light users. All of 
these differences lead us to believe that segment-based analyses provide a diagnosti- 
cally richer picture of this brand and of the market without a sacrifice in forecast 
accuracy. 

5.8. Conclusion 

The goal of this section was to illustrate a method for bridging the too-long~- 
separate traditions of individual-choice modeling and market-response modeling. 
We have shown that some kinds of information in panel databases can be used 
to segment otherwise aggregate market-response models, and other kinds of 
information can be integrated into these segment models to provide a diagnosticalty 
richer representation of market and competitive influences. And we have shown that 
these diagnostically rich, asymmetric market-share models can be estimated 
without the fear of collinearity. 

This was a modest effort involving segmentation by usage frequency and the 
integration ofa single variable from the panel database. But the underlying methods 
are so simple and robust that more venturesome applications seem readily doable. 

6. Issues facing attraction models 

This section deals with three issues that attraction models need to confront in the 
coming decade. The first feals with the tension between tactical and strategic uses 
of these models. The second concerns incorporating effects with greatly varying 
temporal impacts. And the third concerns new areas of application. 

6.1. Strategy versus tactics 

Resource-allocation decisions are typically made at the brand (or strategico 
business-unit) level. Optimal allocation rules are elasticity-based. So we need 
models calibrated at this level to support strategic decisions. Promotion-planning 
involves decisions such as what combinations of brand versions and sizes should 
be co-promoted. Should fruited 4 oz. yogurts be promoted with plain yogurt of 
all sizes? Which topping combination of frozen pizza is best to feature in an ad? 
Such questions require very detailed specification of market-share models. Cross 
effects may relate to aggregates of versions and sizes within a brand line. Current 
illustrations of market-share models are between these two extreme levels of 
specification. 
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What is needed is a way of specifying and estimating attraction models in great 
detail (to satisfy tactical requirements), and a means of aggregating elasticities over 
versions and sizes of a brand to satisfy strategic requirements. As computations 
become amazingly cheaper, estimating detailed models becomes more practical. 
But aggregating elasticities over brand versions or sizes (without estimating a more 
aggregate model) involves mathematical developments that have yet to be under- 
taken. Specification of a more aggregated model for strategy than for tactics seems 
an obvious alternative, but there is no guarantee that the complex of competitive 
forces that appears in detailed models will appear in models with more aggregated 
competitors. Detailed study of the competitive structures reveated by models of 
the same underlying data, at different levels of brand aggregation is needed. 

6.2. Differences in temporal impact 

Scanner data have helped us grow accustomed to calibrating models at the 
weekly level. The promotional environment is largely constant throughout a week 
within a trading area. Models that account for the huge swings in sales (and shares) 
that accompany promotions are useful for planning coupons, displays and news.- 
paper features. But what about advertising? TV ads are rauch slower in showing 
any effect they might have. If they are effective, the impact is spread out over a 
much longer time period. In the numerical illustration of the previous section, 
advertising effects are probably tumped into the brand-specific effects c~ i. So effects 
that are slow with respect to the periodicity of a calibrated model might show up 
as the constant component of a brand's attraction. This makes evaluating advertising 
effectiveness very difficult. 

We are greatly aided in the search for a remedy, by the proof in Cooper & 
Nakanishi [1988, pp. 78-85] that distributed-lag models can be specified for both 
explanatory variables and lagged market-share effects without losing the logical- 
consistency property of attraction models, if the specification is done in the loß- 
centered form of the variables. But eren with this capability we might face a 
situation in which each week there are very weak, lagged advertising effects from 
the prior twelve (of more) weeks of advertising. With the possibility of differential 
lagged effects and cross-competitive lagged effects, the number of possible para- 
meters could become unmanageable for dynamic forces that we expect to be weak 
in each time period. 

Another alternative might be to estimate the brand-specific parameters as 
sequentially varyin9 parameters with their values varying systematically as functions 
of advertising expenditures. Chapter 9 by Hanssens and Parsons discusses such 
models. 

6.3. New application areas 

The rapid evolution of single-source, scanner databases, with their rich description 
of the competitive influences affecting all brands in a market, has given new 
momentum to the study and development of attraction models. The trend is bound 
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to continue and strengthen as manufacturers and retailers come to grips with the 
complexities of what it means to manage in an information-rich environment. But 
the new areas of application are likely to be rar removed from the brand- 
management context that has dominated the discussion in this chapter so rar. 

Attraction models have their roots in the interface between marketing and 
geography Icl. Huff, 1962, 1963; Haines, Simon & Alexis, 1972]. How shoppers 
in neighborhoodj  were attracted to retail center i, was the type of problem broached 
in these early studies. But the Huff model was an IIA model incapable of reflecting 
asymmetries in attraction. We believe that some of the most challenging problems 
to which attraction models can be applied return to these roots, but in a much 
more mature form. 

For example, the nations of the world can be thought of as centers of attraction. 
The asymmetric flows of trade between nations could be represented by extended 
attraction models. Even at an aggregate level implied by investigating the balance 
of trade in gross dollars (or other monetary units), asymmetric attraction models 
provide a framework for valuing the various forces that are theorized to drive 
trade imbalances (e.g. differences in labor rates, tariff barriers, barriers in the 
distribution channels). The relative values of currencies themselves could be 
represented with asymmetric attraction models. If these representations are descrip- 
tive as well as predictive, we would enrich the empirical basis for understanding 
currency markets. 

There are fundamental inadequacies, however, in representing the asymmetric 
flows of resources between countries in terms of capital. Some capital has its roots 
in targely renewable resources, while other capital is generated by the depletion 
of finite and fixed resources. The implications of the differences in the resource 
base are grave, but glossed over by purely aggregate representations of capital 
flows. For  example, the trade surpluses that most first-world countries have with 
many third-world countries drains capital from the third world. It makes a 
considerable difference it" this need for capital is sated by the export of rapidly 
renewable resources (e.g. coffee, sugar beet, or other cultivated agricultural 
commodities), versus the diminishing supply of exotic hardwoods from the world's 
rainforests. It eren makes a difference if the agricultural land is claimed by the 
destruction of rainforests as opposed to balanced reuse of existing agricultural 
lands 

The weighty and complex problems we face in establishing a sustainable balance 
of resource flows between nations requires modeling techniques rich enough to 
capture the diversity of the causal influences driving these problems. In the hands 
of creative researchers, asymmetric attraction models can help us understand the 
forces driving imbalance, and perhaps help provide insight into what can be done. 
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