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Remarkably little is known about the postnatal cellular develop-
ment of the human amygdala. It plays a central role in mediating
emotional behavior and has an unusually protracted development
well into adulthood, increasing in size by 40% from youth to
adulthood. Variation from this typical neurodevelopmental trajec-
tory could have profound implications on normal emotional devel-
opment. We report the results of a stereological analysis of the
number of neurons in amygdala nuclei of 52 human brains ranging
from 2 to 48 years of age [24 neurotypical and 28 autism spectrum
disorder (ASD)]. In neurotypical development, the number of
mature neurons in the basal and accessory basal nuclei increases
from childhood to adulthood, coinciding with a decrease of
immature neurons within the paralaminar nucleus. Individuals with
ASD, in contrast, show an initial excess of amygdala neurons during
childhood, followed by a reduction in adulthood across nuclei. We
propose that there is a long-term contribution of mature neurons
from the paralaminar nucleus to other nuclei of the neurotypical
human amygdala and that this growth trajectory may be altered in
ASD, potentially underlying the volumetric changes detected in
ASD and other neurodevelopmental or neuropsychiatric disorders.

autism | amygdala | stereology | neuroanatomy | neuronal maturation

The human amygdala comprises a cluster of 13 nuclei in the
rostral temporal lobe which play a critical role in fear,

emotion, and social behavior (1–3). The typical human and
nonhuman primate amygdala undergoes a remarkable 40%
volumetric growth into early adulthood, despite little growth of
the cerebral cortex (4, 5). Prolonged amygdala maturation likely
underlies the increasing functional integration of this structure as
it modulates responses to an ever-changing environment. Early
perturbations in amygdala cellular development could lead to a
cascade of maladaptive neurodevelopmental events that affect
the entire trajectory of maturation. Revealing the underlying
neurobiology of this prolonged growth is critical not only for a fun-
damental understanding of neurotypical development but also for
pinpointing when these processes deviate in disorders such as autism
spectrum disorder (ASD) and other neuropsychiatric disorders (6, 7).
Although the primate amygdala is formed early in gestation

and is well developed at birth (8–11), structural and functional
changes extend well into adulthood (12, 13). A number of factors
likely contribute to the dramatic increase in postnatal amygdala
volume, including dendritic enlargement, synaptogenesis, and
gliogenesis. We propose that other neuronal factors may con-
tribute, such as (i) the maturation of a large population of im-
mature neurons within the paralaminar nucleus (6, 14–17) and/
or (ii) the migration of postnatally generated neurons (18, 19).
Immature neurons have been identified in both monkey and
human amygdala using immunohistochemistry with protein
markers such as doublecortin (DCX) and B cell lymphoma 2
(bcl-2) (14, 16–18, 20, 21). The protracted maturational trajec-
tory of the amygdala well beyond the perinatal period allows it to
continually be shaped by external stimuli. In fact, the immature
neurons within the paralaminar nucleus may develop in an
activity-dependent manner (20, 22). This lengthened maturational

process, however, may also make the amygdala more susceptible
to developmental or environmental insults.
ASD is characterized by impairments in social communication

combined with restricted interests and behaviors. Alterations in
amygdala growth can be detected as early as 2 y of age (23–26)
and persist into late childhood (5, 27). The severity of the indi-
vidual’s social and communicative symptoms positively correlates
with amygdala enlargement, suggesting a potential structure–
function relationship (23). Individuals with ASD also show
atypical amygdala activation during socioemotional tasks (28,
29). Microanatomical alterations to the cellular structure of the
amygdala were first noted by Bauman and Kemper (30) and
subsequently by Schumann and Amaral (31) and Wegiel et al.
(32). These studies found a general reduction of neurons in the
amygdala of adults with ASD. However, an examination of
younger subjects with either neurotypical development or ASD
has not yet been performed. The present study aimed to carry
out a large systematic evaluation of the developmental trajectory
of neuron number from youth to adulthood in the human
amygdala in both neurotypical individuals and in those di-
agnosed with ASD. In addition, we examined the presence of
immature neurons in the amygdala and evaluated whether dif-
ferences in this population across the life span may contribute to
the gradual decreases in neuron number we have observed in our
previous studies of adults with ASD.

Results
Case Information. Subject-specific information from all 52 subjects
is presented in Table S1. Briefly, the neurotypical-subject (i.e.,
NT) group contained 24 subjects (mean age, 20.17 ± 13.28 y;
range, 2 to 48 y), 5 of whom were female. The ASD group
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contained 28 subjects (mean age, 17.46 ± 11.25 y; range, 4 to
44 y), 4 of whom were female and 11 of whom had seizure dis-
order (n = 2 overlap). The groups did not statistically differ on
age. While there is not sufficient statistical power to systemati-
cally examine sex or seizure status, excluding these subjects from
the analysis did not change the pattern of results (Table 1).

Developmental Trajectory of Neuronal Numbers in the Neurotypical
Amygdala. Mean estimates of neuron number and SDs across
each region of interest are presented in Fig. 1 and Table 1. The
univariate two-way ANOVA results are presented in Table 1.
There is a significant (P < 0.05) age group × diagnosis in-
teraction in total amygdala, basal, accessory basal, and central
nuclei. These large effects (partial η2 range = 0.12 to 0.25) were
further analyzed using a Fisher least significant difference (LSD)
post hoc comparison (Table 1). Within the NT group, average
total amygdala neuron number gradually increases by ∼11% with
increasing age from youth to adulthood. This overall trend is
primarily driven by a significant 30% increase in basal nucleus
neurons (P = 0.003) and 17% increase in accessory basal nucleus
neurons (P = 0.042). There is no significant increase of neuron
number with age in the lateral or central nuclei.

Differences in Amygdala Neuron Number in ASD Compared with NT
Cases. The pattern of age-related change in amygdala neuron
number is very different in individuals with ASD, in that total
amygdala neuron number gradually decreases with increasing age
(Fig. 1 and Table 1). By adulthood, on average, there are ∼17% fewer
amygdala neurons in adults with ASD compared with children with
ASD (P = 0.007). This same pattern was observed across all nuclei
examined: basal, −16% (P = 0.042); accessory basal, −22% (P =
0.003); central, −18% (P = 0.017); and lateral, −12% (P = 0.065).
When comparing the two groups, children with ASD have sig-

nificantly more neurons compared with neurotypical children in
the basal (P = 0.047) and central (P = 0.021) nuclei. Adults with

ASD have significantly fewer neurons relative to neurotypical
adults in total amygdala (P = 0.001), lateral (P = 0.009), basal (P =
0.002), and accessory basal nuclei (P = 0.001). Omitting females
[n = 9 (4 ASD, 5 NT)] or cases with seizure disorder (n = 11, all
ASD) did not influence the pattern of results (Table 1).

Bcl-2 Immunohistochemistry of Immature Neurons. Bcl-2+ cells in
the amygdala have a small, round morphology that is roughly
5 μm in diameter (Fig. 2) (6, 15–17, 33). The highest concen-
tration of these immature neurons occurs in the most ventral
aspects of the amygdala bordering subjacent white matter in the
paralaminar nucleus near the emergence of the temporal horn of
the lateral ventricle (Fig. S1). We observed an age-related de-
cline of immature (bcl-2+) neurons within the paralaminar nu-
cleus across the age range examined in both NT (β = −0.80, P =
0.016; Fig. 2 B and C) and ASD (β = −0.84, P = 0.003; Fig. 2 E
and F) cases. There is also intense bcl-2+ immunoreactivity on
fibers (Fig. 2G) upon which these immature cells may migrate
dorsally from the paralaminar nucleus to the overlying amygdala
in accordance with other anatomical reports (14, 16). Immuno-
histochemistry for DCX using adjacent tissue sections reveals an
almost identical staining pattern to that of bcl-2 in age-related
decline of immature neuron numbers (Fig. 2 H and I).

Discussion
This extensive stereological study of the amygdala from youth to
adulthood in 52 human brains led to three major findings. First,
the number of mature neurons in the amygdala of typically de-
veloping humans increases, on average, by ∼11% from youth to
adulthood (from 2 to 48 y in the present study). This increase is
primarily driven by a 30% increase in the number of neurons in
the basal nucleus over this age range. Second, the number of
amygdala neurons in children with ASD is initially greater than
age-matched neurotypical children, but by adulthood, there are
fewer amygdala neurons in individuals with ASD. The number of

Table 1. Neuron numbers across each age group suggest a reduction of neurons in autism across all amygdala
subregions examined

Region Age group

No. of neuronsa

F tests,b partial η2ASD NT

Total amygdala Child 12.40 (1.18)c,** 11.46 (1.29) (All) F(2,41) = 5.69, P = 0.007, η2 = 0.22
Adolescent 11.32 (0.91) 12.22 (0.75) (− Girls) F(2,33) = 4.35, P = 0.021

Adult 10.64 (1.67)d,* 12.75 (1.58) (− Seizure) F(2,31) = 8.54, P = 0.001
Lateral Child 3.74 (0.45) 3.81 (0.52) (All) F(1,39) = 5.24, P = 0.028e, η2 = 0.12

Adolescent 3.46 (0.46) 3.82 (0.60) (− Girls) F(1,32) = 6.91, P = 0.013e

Adult 3.29 (0.61)d,** 3.91 (0.32) (− Seizure) F(1,29) = 6.90, P = 0.014e

Basal Child 3.14 (0.54)c,*,f,* 2.62 (0.27) (All) F(2,41) = 7.13, P = 0.002, η2 = 0.26
Adolescent 3.00 (0.36) 3.00 (0.36) (− Girls) F(2,33) = 4.44, P = 0.020

Adult 2.65 (0.52)d,** 3.42 (0.70)g,** (− Seizure) F(2,31) = 5.08, P = 0.012
Accessory basal Child 1.21 (0.16)c,** 1.07 (0.14) (All) F(2,41) = 6.85, P = 0.003, η2 = 0.25

Adolescent 1.11 (0.21) 1.20 (0.27) (− Girls) F(2,33) = 7.23, P = 0.002
Adult 0.94 (0.20)d,*** 1.25 (0.14)g,* (− Seizure) F(2,31) = 6.85, P = 0.003

Central Child 0.39 (0.04)c,*,f,* 0.31 (0.08) (All) F(2,39) = 4.23, P = 0.022, η2 = 0.18
Adolescent 0.36 (0.07) 0.38 (0.01) (− Girls) F(2,31) = 7.58, P = 0.002

Adult 0.32 (0.05) 0.36 (0.04) (− Seizure) F(2,30) = 3.59, P = 0.040

aMean (SD) number of neurons in millions.
bF tests reveal a significant interaction between age category and diagnosis among all regions, except for the lateral nucleus, which
showed a main effect of diagnosis. Excluding girls (− Girls) or individuals with seizure disorder (− Seizure) did not change the pattern of
results.
cChild ASD > adult ASD.
**P < 0.01. Post hoc results regarding adolescents are omitted for clarity.
dAdult ASD < adult NT.
*P < 0.05.
eMain effect of diagnosis on F test; all others are age group × diagnosis interactions.
fPost hoc: child ASD > child NT.
gChild NT < adult NT.
***P < 0.001.
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neurons in the amygdala of ASD cases appears to decline from
childhood to adulthood by about 17% and is significantly re-
duced in all regions we examined. Third, in the amygdala from
both neurotypical and ASD cases, there is a large pool of bcl-2+
immature neurons in the paralaminar nucleus, which declines
with age from childhood into adulthood.
Together, our data indicate that as the number of mature neu-

rons increases in the neurotypical amygdala across life, the number
of immature neurons in the paralaminar nucleus decreases.
Therefore, it is possible that a gradual maturation and migration of
immature neurons from the paralaminar nucleus contributes to the
increasing number of mature neurons in the neurotypical amyg-
dala, particularly in the basal and accessory basal nuclei. Individ-
uals with ASD demonstrate a similar decrease in immature
neurons in the paralaminar nucleus with age, yet the net number of
mature neurons does not increase with age. Rather, cases of ASD
show a decline in mature neuron number across the life span, sug-
gesting a substantial loss of amygdala neurons throughout life in in-
dividuals with ASD.We discuss the rationale for this hypothesis below.

Typical Pattern of Amygdala Neuronal Development from Youth
Through Adulthood. Structural MRI studies have demonstrated
that the amygdala in neurotypical individuals continues to grow
in size by ∼40% throughout adolescence into adulthood. This is
in contrast to most of the cerebral cortex, which ceases to grow
appreciably after 6 y of age (4, 5, 12, 13). There was little or no
understanding of the neurobiological substrate for this postnatal

increase in volumetric growth of the human amygdala. We now
report that the number of mature neurons in the amygdala in-
creases by ∼11% from early childhood into adulthood. However,
the extent of neuronal increase varies across the different subre-
gions of the amygdala, where it was greatest in the basal nucleus
(∼30%), more modest in the accessory basal nucleus (∼17%), and
much less so in the lateral nucleus (∼3%).
One hypothesis to account for this increase in neuron number

is the slow maturation and migration of a large pool of immature
neurons within in the paralaminar nucleus produced prenatally.
Here, we document a marked reduction in the number of im-
mature (bcl-2+) cells in the human paralaminar nucleus, while
mature basal nucleus neuron numbers increase from youth to
adulthood. Bcl-2 immunoreactivity has been used to identify
immature neurons in both human (16, 17) and nonhuman pri-
mate amygdala (6, 15, 18). A variety of other immature and
migratory neuronal markers, including DCX, polysialylated-
neural cell adhesion molecule, and class III β-tubulin (14),
confirm their presence. Although the majority of bcl-2+ and
DCX+ cells are found in the paralaminar nucleus ventral to the
parvicellular portion of the basal nucleus, the paralaminar nu-
cleus has a broad expanse, wrapping around the rostral amyg-
dala. We also observed bcl-2+ and DCX+ cells in the ventral
lateral nucleus, periamygdaloid cortex, and intercalated islands
(15–17, 21, 33). Our data and others’ indicate that immature bcl-
2 immunoreactive cells likely undergo a protracted maturational
period well into adulthood (14), with numbers declining during

Fig. 1. Mature neuron number across amygdala nuclei between ASD and NT subjects. Young subjects with ASD show an increased number of mature
neurons relative to NT subjects (in total amygdala, basal, accessory basal, and central nuclei). By adulthood, the number of mature neurons in ASD is well
below the adult NT average in every nucleus examined (17%). Error bars ±1 SEM. When considering the monkey basal + paralaminar nuclei (6) as a single unit
(as we have done with the human basal nucleus, Lower Right), there is a comparable increase of mature neurons (∼32%) across life between the two species.
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normal aging in nonhuman primates (17, 21) in the paralaminar
nucleus. However, the origin of these cells is debatable. In macaque
monkeys, Chareyron et al. (6) found that immature paralaminar
neurons, defined morphologically in Nissl-stained series, decreased
in number from infancy to adulthood coincident with an increase in
mature paralaminar neurons. Because the sum of these populations
remained constant with age, they suggested that the paralaminar
nucleus may contain a reservoir of immature neurons that mature
over time. When we add together neuron numbers in basal and
paralaminar nuclei in the monkey from Chareyron et al. (6) to more
directly relate to our human measure, we find that macaque numbers
increase by ∼32% from juveniles to adults, similar to humans (Fig.
1). This suggests a developmental mechanism shared by both species.
A second hypothesis is that postnatally generated neurons drive

the neuronal increase (18). The paralaminar nucleus may repre-
sent the remnants of the fetal ganglionic eminence, making it
plausible that this region retains neurogenic properties postnatally
(14). Alternatively, immature neurons could migrate to the
amygdala from a nearby neurogenic zone. In adult squirrel mon-
keys, Bernier et al. (18) observed a stream of pulse-labeled BrdU+
cells near the presumptive subventricular zone of the temporal
horn of the lateral ventricle that they interpreted as newly gen-
erated neurons. The hypothesis is that newly born neurons mi-
grate into the ventral amygdala, including the paralaminar region,
where there is a high density of neurons that express the markers
of immaturity previously described. We observed many bcl-2+ or
DCX+ cells directly contacting immunoreactive fibers that extend
dorsally into the basal nucleus, suggesting a substrate for imma-
ture neuronal migration from the paralaminar region into the
amygdala (Fig. 2). It is important to note that regardless of the
mechanism driving mature neuron increase in primates, similar
age effects have not been observed in rats, and the presence of the
paralaminar nucleus is debated in this species (34, 35). Thus, this
developmental pattern may be unique to, or more extensive in,
primates. However, more detailed comparative research is needed
to assess the evolutionary and translational significance of these
data and relevance for human susceptibility to diverse mental
disorders presenting across the life span.

Atypical Pattern of Amygdala Neuronal Development Across the Life
Span in ASD. The trajectory of neuronal development in the
amygdala of individuals with ASD is substantially altered from
neurotypical development and suggests that processes that gov-
ern postnatal cellular maturation are dysregulated in individuals
with ASD. Initially, the number of neurons in the amygdala is

elevated in young children with ASD relative to neurotypical
children, a finding also observed in the prefrontal cortex (36).
However, in adults with ASD, amygdala neuron numbers
are reduced relative to neurotypical adults. This altered de-
velopmental trajectory mirrors findings from MRI studies in
which the amygdala is initially larger in childhood, but then does
not undergo the corresponding age-related increase in size that
occurs during neurotypical adolescence (23, 27, 37). The re-
mainder of this discussion is divided into two developmental
periods: childhood, followed by adolescence to adulthood.
Childhood—ASD. Alterations in prenatal neurodevelopmental pro-
cesses, such as disruptions to neuron proliferation, migration,
maturation, and/or apoptosis, may cause this initial increase of
amygdala neuron numbers during childhood in ASD. The nuclei-
specific pattern of excessive neurons in children with ASD may be
explained by the developmental origins of the individual amygdala
nuclei. During fetal development, the medial and lateral gangli-
onic eminences differentially contribute to the formation of
amygdala nuclei in a spatiotemporal manner (8–10). Specifically,
the medial eminence is diencephalic, emerges first, and forms
most of the amygdala nuclei; the lateral eminence is telencephalic
and forms the lateral nucleus (38). We report here that the
amygdala lateral nucleus does not show increased neuron num-
bers in children with ASD. Thus, the initial increases in neuron
numbers in other nuclei may be explained by excessive contribu-
tions prenatally from the medial ganglionic eminence.
The increased amygdala neuron number in childhood ASD that

we observed may also occur through disruptions to postnatal neu-
rodevelopmental processes, namely those involving the paralaminar
nucleus. The present study examined the possibility that this pop-
ulation of immature (bcl-2+) neurons within the paralaminar nu-
cleus matures at an accelerated rate in autism, which might explain
our observed increase of mature amygdala neuron number in
childhood ASD. However, we actually observed a similar age-
related decline of bcl-2+ cells with age in both groups, suggesting
that this maturational process may be intact in individuals with ASD.
At this time, we are unable to exclude other disruptions involving
the paralaminar nucleus and its immature neurons. For example,
while this age-related decline of bcl-2+ cells is present in ASD, it is
possible that these neurons never actually mature and/or migrate
into the dorsal amygdala. One limitation of the present study is that
the youngest age evaluated was 2 y in the neurotypical group and 5 y
in the ASD group. It remains possible that the postnatal changes in
the number and maturational trajectories of bcl-2+ immature neurons
are occurring earlier in postnatal development.

Fig. 2. The paralaminar nucleus in a
Nissl-stained section (A) relative to a bcl-
2–stained section from a 2-y-old NT
subject (B) and a 44-y-old NT subject
(C) showing age-related differences. The
immature neuron morphology for each
is shown in their respective Insets. (D)
Stereological assessment of bcl-2+ be-
tween ASD and NT groups from indi-
viduals aged 2 to 44 y showing an age-
related decline of bcl-2+ cells in both
groups across the life span. (E and F) Bcl-
2 sections from a 5-y-old ASD subject (E)
and a 36-y-old ASD subject (F) showing
similar staining patterns relative to NT
subjects. (G) A bcl-2–stained fiber upon
which immature neurons appear to mi-
grate. (H and I) DCX-stained sections
from the same two subjects as in B and C
showing similar patterns of immunore-
activity with bcl-2. (Scale bars: A =
500 μm, Inset = 10 μm; B and C = 100 μm,
Insets = 10 μm; E, F, H, and I = 100 μm;
G = 25 μm.)

Avino et al. PNAS | April 3, 2018 | vol. 115 | no. 14 | 3713

N
EU

RO
SC

IE
N
CE

PS
YC

H
O
LO

G
IC
A
L
A
N
D

CO
G
N
IT
IV
E
SC

IE
N
CE

S



Another postnatal factor that may explain the increase of ma-
ture neuron number in the amygdala of individuals with ASD
involves the activity-dependent maturation of immature amygdala
neurons. Previous work has shown that neurons within the paral-
aminar nucleus may mature in an experience-dependent way (22).
A recent report demonstrated that hippocampal-lesioned animals
show an increased number of mature and immature neurons in the
amygdala, suggesting that the lesions might not only drive neuronal
differentiation but also stimulate the production of immature
neurons in the nearby subventricular zone (20). It is possible that
the hyperactivity of the amygdala frequently observed in individuals
with ASD is in some way comparable to the stimulatory effects of
these hippocampal lesions. In both instances, insults to the devel-
opment and connectivity of the amygdala could conceivably lead to
excessive neuronal differentiation and production.
Adolescence to adulthood—ASD. During the time when the number
of mature neurons within the amygdala is gradually increasing in
neurotypical development, adolescents with ASD begin showing
a reduction of neurons. The substantial decline of neuron num-
bers by adulthood in ASD may be driven by prolonged hyper-
activation of the amygdala throughout life. There is some support
for this hypothesis in other disorders, such as depression, where
prolonged overactivation could result in decreases to amygdala
and hippocampal volume, potentially through excessive gluco-
corticoid activity leading to excitotoxic neuron loss (39, 40).
Similarly, this excitotoxicity may be occurring in ASD, which fre-
quently cooccurs with anxiety such that by adulthood, the number
of amygdala neurons in ASD is reduced relative to both adult-
aged neurotypical and pediatric-aged ASD individuals. This ex-
citatory/inhibitory imbalance of the amygdala in ASD may be
caused by a number of factors, including a lack of habituation to
sensory stimuli (41, 42), a lack of inhibitory control from frontal
cortical areas, and changes to cellular and synaptic function. It is
also plausible that the decline of neuron numbers in the amygdala
of individuals with ASD may also be influenced by glia–neuron
interactions or other immune factors. Specifically, microglia have
been shown to regulate cell proliferation during the late stages of
neurogenesis through phagocytosis of neural progenitors (43).
Their role continues in the mature brain where they are re-
sponsible for the removal of apoptotic cells. Abnormal microglial
presence and activation has been reported in ASD in the dorso-
lateral prefrontal cortex (44) and in the amygdala (45); however,
these alterations were present only in a subset of ASD cases and
unrelated to decreases in neuron number.
Together, our results suggest that there is an atypical de-

velopmental trajectory in the amygdala of individuals with ASD
that results in substantial neuron loss by adulthood. Our findings
are in accordance with other neuroanatomical studies that have
observed increased numbers of prefrontal cortical neurons in
children with ASD (36), as well as reduced neuron numbers in the
fusiform gyrus and lateral nucleus of the amygdala (32, 46).
However, the findings presented here may not be specific to au-
tism and have extensive implications for a number of neuro-
developmental and neuropsychiatric disorders (7). Amygdala
dysfunction has traditionally been implicated in a broad range of
neuropsychiatric illnesses, including anxiety, mood disorders,
posttraumatic stress disorder, and schizophrenia (47, 48). How-
ever, the precise contribution of amygdala dysfunction in these
diseases and the developmental time course are not well un-
derstood. Future studies will need to address the origin, timing,
plasticity, and neuronal fate of these immature neurons to further
elucidate their role in neurological diseases and how they may be
used as a potential therapeutic target for mental health.

Conclusion
We found that the number of mature neurons in the typical
human amygdala increases over a protracted postnatal period,
extending into at least late adolescence. We propose that this is
due to the maturation and migration of immature neurons that
are located initially in the paralaminar nucleus of the amygdala.
The stimulus for this slow accretion of mature neurons is

currently unclear but appears to be a unique feature of the
postnatal development of the amygdala. The trajectory of neu-
ronal development in the amygdala of individuals who had ASD
during life drastically deviates from the typical developmental
trajectory. There are ∼11% more neurons in the amygdala in
very young individuals with ASD, but ∼20% fewer neurons in
adults with ASD. This altered growth pattern may lead to altered
amygdala function, manifesting in increased anxiety and further
contributing to social impairments. Hyperactivity of the amyg-
dala may also lead to neuron loss through excitotoxicity, espe-
cially in instances where the amygdala and its neurons are
particularly vulnerable to stress. Understanding the regulation of
neuron number at a fundamental level in this brain region will be
important for interpreting the normal role of the human amyg-
dala during life and may provide insight into some of the neural
disturbances that contribute to the behavioral pathology of
multiple neurodevelopmental and psychiatric disorders.

Experimental Procedures
Brain Samples. Tissue series from 52 individuals, aged 2 to 48 y at death, were
used for stereological quantification and contained the entire rostrocaudal
extent of the amygdala (28 ASD, 24 NT; Table S1). All subjects were included
from two cohorts, which differed in tissue-processing protocol. Cohort 1 in-
cluded 19 ASD and 15 neurotypical brains processed in our laboratory
obtained from the NIH NeuroBioBank or Autism BrainNet (formerly Autism
Tissue Program). Partial data and diagnostic information from a subset of
cohort 1 (n = 19) have previously been published by Schumann and Amaral
(31). Cohort 2 included nine ASD and nine neurotypical brains from the
Autism Celloidin Library distributed by Autism BrainNet. Cohorts 1 and
2 were combined for neuron number estimates and separated for cell vol-
umetric analyses to avoid potential confounding factors due to variation in
processing protocols. This study was exempt from Institutional Review
Board approval.

Tissue Processing. Detailed descriptions of tissue processing are available in
previous studies from cohort 1 (31) and cohort 2 (49, 50) and in SI
Experimental Procedures.

Stereological Design. The amygdala and its lateral, basal, accessory basal, and
central nuclei (Fig. S2) were delineated using previously published criteria
(51). The paralaminar nucleus was identified using adjacent Nissl-stained
sections. We sampled mature (Nissl) and immature (bcl-2+) neurons (100×
objective, N.A. 1.3) through the entire structure of interest to derive

Fig. 3. A methodological summary of our stereological approach. The en-
tire rostrocaudal extent of the amygdala is sectioned. For experiment 1, we
used Nissl-stained sections at a 1/5 sampling interval, and for experiment 2,
we used alternating bcl-2–stained sections at a 1/10 sampling interval from
the same brains. Each section has a virtual grid overlaid on top which des-
ignates physical locations to place sampling boxes. The numbers of objects
are counted in each sampling box, and an estimate is extrapolated based on
the size of the sampling box, the density of the sampling grid, the number of
sections examined, and tissue thickness. Stereological parameters are pre-
sented in Table S2. (Scale bars: Left four, 2 mm; Right two, 10 μm.)
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numerical estimates using the optical fractionator as in our prior publica-
tions (52, 53). Stereological design is summarized in Fig. 3. Sampling pa-
rameters are presented in Table S2.

Statistical Analysis. Subjects were classified a priori into three age groups:
pediatric [2 to 13 y old; n = 17 (10 ASD, 7 NT)]; adolescent [14 to 20 y old; n =
11 (6 ASD, 5 NT)]; and adult [21+ y old; n = 19 (9 ASD, 10 NT)]. Univariate
two-way ANOVA was used to test for effects of age group and diagnosis on
neuron number, region volume, and neuron somal or nuclear volume within
each amygdala nuclei. Significant age group × diagnosis interactions were
further analyzed using a Fisher LSD post hoc test. The data met parametric
assumptions for normality using a Shapiro–Wilk test (P > 0.05), and for ho-
mogeneity of variance using Levene’s test for equality of variance (P > 0.05).
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