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Reconstructing vascular homeostasis by growth-based 
prestretch and optimal fiber deposition
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bInstitute of Biophysics, Medical University of Graz, Graz, Austria
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Abstract

Computational modeling of cardiovascular biomechanics should generally start from a 

homeostatic state. This is particularly relevant for image-based modeling, where the reference 

configuration is the loaded in vivo state obtained from imaging. This state includes residual 

stress of the vascular constituents, as well as anisotropy from the spatially varying orientation of 

collagen and smooth muscle fibers. Estimation of the residual stress and fiber orientation fields is 

a formidable challenge in realistic applications. To help address this challenge, we herein develop 

a growth based algorithm to recover a residual stress distribution in vascular domains such that 

the stress state in the loaded configuration is equal to a prescribed homeostatic stress distribution 

at physiologic pressure. A stress-driven fiber deposition process is included in the framework, 

which defines the distribution of the fiber alignments in the vascular homeostatic state based on a 

minimization procedure. Numerical simulations are conducted to test this two-stage homeostasis 

generation algorithm in both idealized and non-idealized geometries, yielding results that agree 

favorably with prior numerical and experimental data.
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1 Introduction

Mathematical modeling of the mechanical behavior of vascular tissue requires consideration 

of many important factors. While the mechanical characterization and constituent models 

of arterial tissue have been well developed, a challenging factor is the consideration of 

residual stress in the material in vivo. This residual stress determines the overall stress state 

of the material in the loaded in vivo configuration, as well as vascular homeostasis, which 

represents the preferred mechanical configuration in which vascular constituents operate 

[26]. Thus, while proper constituent models are necessary to capture the detailed mechanical 
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behavior of vascular tissue, the inclusion of residual stress is also an essential factor for 

predicting biomechanical behavior in vivo and vascular remodeling [39].

Another important factor in modeling arterial tissue is the consideration of fiber orientation. 

Arteries are generally composed of three layers (intima, media, and adventitia) and 

the major mechanical constituents are elastin, collagen, and smooth muscle fibers [43]. 

Elastin is effective under small strain, while collagen bears the majority of loading when 

deformation is large [58], and smooth muscle fibers provide additional and vasoactive 

support [27]. To model these components, different constitutive relations have been 

proposed, including Fung-type models [11] and formulations proposed by Holzapfel et al. 

[36]. Notably, the arterial wall is often considered to be a two-layer fiber-reinforced material. 

A non-collagenous ground matrix, including elastin, is typically described as an isotropic 

neo-Hookean material [17]. The collagen and smooth muscle impart anisotropic behavior 

and are often described by a Fung-type response [36, 7]. To characterize the deformation 

of the various constituents, a constrained mixture model [44, 13] is often employed, 

particularly in vascular growth and remodeling studies [20, 71, 68]. Fiber orientations 

have traditionally been prescribed from statistical analyses of histological data [37] and 

rule-based approaches [4], with more recent works [28, 41] considering the dispersion 

of fiber orientation. Nonetheless, prescription of fiber orientation is nontrivial in realistic 

branched vascular models.

The in vivo stress state of vascular tissue relies critically on residual stress and fiber 

orientation. Namely, the homeostatic state is hypothesized to be defined by relatively 

uniform stress distribution in the transmural direction of each layer in the vessel wall, and 

that non-uniform residual stress helps to maintain this condition [26]. In idealized cylindrical 

vascular geometries, the residual stress field is often specified based on an opening angle 

[2], however, this approach is often inadequate in realistic vascular geometries. Pierce 

et al. [57] prescribed residual stress by specifying the deformation gradient to map the 

stress-free configuration to the actual mixture configuration of the vessel wall. Bellini et 

al. [7] incorporated a prestretch ratio into the total deformation to model the effect of 

residual stresses and showed that the stress distribution tends to be more uniform when 

residual stress is included. Holzapfel et al. investigated the 3D behavior of the residual stress 

experimentally [42] and developed a theoretical framework to incorporate residual stress in 

different vascular layers [39]. Previous works have often required parameter information that 

can be difficult to obtain or is of challenging applicability when realistic geometries are 

considered. Likewise, the residual stress distribution is rarely considered when the vascular 

homeostatic state needs to be reconstructed in non-idealized geometries, see, e.g., [51, 53]. 

To the best of our knowledge, this is the first time that a residual stress field is reconstructed 

in general vascular geometries with anomalies such as bifurcations.

We propose a two-stage approach to the reconstruction of the vascular homeostatic state. 

The first stage aims to generate an appropriate residual stress level for a given configuration 

of the vessel, and the second stage aims to generate optimal fiber alignments based on 

the stress field. Inspired by kinematic G&R models [59], [61], and [62], we introduce a 

prestretch tensor, obtained through an iterative process to match a prescribed homeostatic 

stress distribution at physiologic pressure. The deposition angle of the collagen fibers is 
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then defined by the solution of an optimization problem, which enables the vessel to 

sustain the stress with minimal amount of biomass, while stochasticity is incorporated 

into this process to account for fiber dispersion. We propose supervised learning to predict 

the pre-stretch in vascular bifurcations or other geometric anomalies, where theory-based 

methods struggle due to topological singularities. Based on this overall framework, the 

numerical stability of the generation of the residual stress field and fiber directions is 

improved for realistic vascular geometries. Beyond addressing the vascular homeostatic state 

reconstruction problem, the method proposed here provides a starting point for general 

biomechanical analyses, such as vascular tissue mechanics or fluid-structure interaction 

simulations, where residual stress and proper fiber alignment set the stage for the mechanical 

response of the tissue.

2 Methods

2.1 Constrained mixture model

The vessel wall is considered a constrained mixture [44] of collagen, elastin, and smooth 

muscle fibers, where all constituents deform as a continuum. The turnover of collagen and 

smooth muscle fibers is a process of degradation of existing material and production of new 

material, described mathematically as

Mk t = Mk 0 Qk t + ∫
0

t
mk τ qk t − τ dτ , (1)

where k denotes different collagen or smooth muscle fiber families; M k(t) is the local mass 

density of constituent k in the reference configuration κ 0; and mk (t) is the corresponding 

mass production rate. Qk (t) is the remaining fraction of the initial mass for constituent k at 

time t, and qk (t − τ) is the remaining fraction at time t for the constituents produced at time 

τ. In contrast to collagen and smooth muscle fibers, functional elastin is assumed to be only 

produced during early development. Therefore, the time evolution of the mass density for 

elastin is given by

Me t = Me 0 Qe t , (2)

where M e(0) is the initial mass density for elastin, and Qe (t) is the remaining fraction of the 

initial mass.

Following Holzapfel et al. [36], elastin fibers are modeled as an incompressible isotropic 

neo-Hookean material and the constitutive relation is given by the strain energy function per 

unit mass

W e C = c1
2 I1 C − 3 , (3)

where c 1 > 0 is a stress-like material parameter and I 1(C) = tr(C) is the first invariant of the 

right Cauchy-Green deformation tensor C defined with respect to the reference configuration 

κ 0. Collagen and smooth muscle fibers are modeled as anisotropic Fung-type materials with 

Wu et al. Page 3

J Mech Behav Biomed Mater. Author manuscript; available in PMC 2022 April 11.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



a constitutive relation for each family that is given by the strain energy function per unit 

mass

W k C = c2
4c3

exp c3 Ik C ,Ef
k − 1 2 − 1 , (4)

where Ik C,Ef
k : = C : Ef

k ⊗ Ef
k is the fiber invariant corresponding to the square of the 

stretch λk of fiber family k; Ef
k is the fiber direction in the reference configuration κ 0.

Based on the mixture rule [44], the total strain energy of the constrained mixture is

w C, t = Me 0 Qe t W e C, t
+∑

k
Mk 0 Qk t W k C, t

+∑
k
∫

0

t
mk τ qk t − τ W k C, t, τ dτ

≔ we C, t + ∑
k

wk C, t .

(5)

The strain-energy function for collagen and smooth muscle fibers, Wk (C, t, τ), depends on 

both the current time t and the time that the fibers are produced τ, which also determines the 

natural configurations for the fibers.

To incorporate the nearly incompressible behavior of vascular tissue, a standard 

decomposition [24, 36] of the strain energy was used

w(C, t) = U(J) + w(C, t), (6)

w(C) is termed the isochoric component and

C = J−2/3C . (7)

The volumetric component U(J) is given by

U(J) = κ
2 (J − 1)2, (8)

with κ the bulk modulus and J the determinant of the deformation gradient tensor. By way of 

Eq. (8), changes to Mk affect both the referential and spatial density of fibers in the tissue; 

this has to be taken into account when setting initial values for the mass densities in Eq. (5).

Note that the multiplicative decomposition of the deformation gradient [24] leading to Eqs. 

(6, 7) may lead to locking effects and nonphysical results, even for isotropic hyperelastic 

models [18, 33]. This problem can be mitigated by using more advanced finite elements 

[48, 67], augmented Lagrangian methods [31], or – in the case of fiber-reinforced materials 

– decompositions without the multiplicative split in the anisotropic contribution [60, 35, 

33]. The underlying approach presented herein, i.e., the reconstruction of the vascular 

homeostatic state, does not inherently depend on the particular decomposition and the finite 
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element used. To keep the formulation as general and concise as possible we use the 

approach as presented above; the particular choice of the numerical method is beyond the 

scope of this paper.

Once the total strain energy of the mixture is formulated, the deformation of the vessel wall 

can be obtained by applying the virtual work principle

δI = ∫Ω0
δw dV + ∫∂Ωt

P nt ⋅ δx da = 0, (9)

where δI is the virtual work; Ω0 is the vessel tissue in the reference configuration; ∂Ω t is 

the inner surface of vessel in the current configuration; P is the transmural blood pressure; 

n t is the outward normal; and δx is the virtual displacement. This variational equation for 

momentum balance can then be discretized (i.e., by finite element analysis) and numerically 

solved to compute stress or strain.

2.2 Residual stress field generation

2.2.1 Basic methodology—We derive residual stress implicitly through a “growth 

tensor” F g that maps the unstressed reference configuration κ 0 of the vessel to the unloaded 

(unpressurized) configuration with residual stress κ R, see Figure 1(B). This approach is 

similar to prior works [59] and [61] that have used a similar F g to broadly describe 

deformation due to growth and remodeling in development. Tensor F* in Figure 1(B) 

describes additional deformation due to loading, i.e., pressurization by pressure P. Thus, the 

total deformation F with respect to the reference configuration κ 0 is given by

F=F* Fg, (10)

where the growth tensor F g is determined by the growth stretch ratios in local (r, θ, 

z)-directions

Fg = diag λgr , λgθ , λgz . (11)

If the growth stretch ratios are known (see §2.2.2 below), the elastic deformation gradient 

tensor F* and right Cauchy-Green deformation tensor can be written as

F* =FFg
−1 , C* =Fg

−T CFg
−1, (12)

and substituted into Eq. (5) to yield the total strain energy of the constrained mixture

w C*, t = we C*, t + ∑
k

wk C*, t . (13)

Note, if the strain energy in Eq. (13) is decomposed via Eq. (6), near-incompressiblity is 

imposed by
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U J = κ
2 J* − 1 2, (14)

where J* = det(F*). In general, for processes involving growth and remodeling (especially 

for development), constant volume should not be assumed. However it is a reasonable 

assumption here since the contribution from F g, which captures the main volumetric 

change, is excluded.

2.2.2 Growth stretch ratios—Above we assume the growth stretch ratios are known. 

Here we discuss how these can be computed. The basic premise is residual stress (and hence 

growth stretch ratios) tend to help homogenize the stress state in the loaded configuration, 

thus helping to define a homeostatic stress state. While the concept of homeostatic stress is 

fundamental to vascular biomechanics, there is no consensus on its exactness. It has been 

shown that residual stress homogenizes circumferential stress in the radial direction, but it 

remains unclear whether homeostatic stress varies spatially. Therefore, for generality we 

assume that there exists a (known) homeostatic stress distribution σ h and that the growth 

stretch ratios homogenize circumferential stress in the radial direction. In §2.2.3, we discuss 

computation of σ h; however, the method here can be applied for any desired homeostatic 

stress distribution.

In solving the variational equations for momentum balance, the growth stretch ratios are 

updated to produce a desired homeostatic stress distribution σ h. Namely, following [61] and 

[62], the growth stretch ratios are updated according to the following evolution equations

λ̇gθ
λgθ

= 1
τθ

σθ t
σh

− 1 , λ̇gr = 0, λ̇gz = 0, (15)

where τθ is a time constant controlling how fast the growth stretch evolves and σθ (t) is 

the circumferential component of the Cauchy stress tensor, see also later in Section 2.3. 

Thus, the momentum equations are coupled with these evolution equations and solved 

in a staggered procedure until convergence of the stretch ratios (and, based on Eq. 

(15), circumferential stress). The algorithm for this iterative procedure can be found in 

Algorithm 1a. Note, radial stress is governed primarily by the boundary conditions at the 

inner and outer surfaces, not residual stress [45]. It is also small in comparison to the 

circumferential stress, which has been shown experimentally [52] and computationally [36, 

46, 10]. Additionally, the axial stress component is mainly determined by the boundary 

condition and geometry of the vessel. Therefore, only convergence of circumferential stress 

is considered in Eq. (15). More details can be found in [63, 62, 43, 47].

We note that the computation of the prestretch distribution is first based on treating the 

collagen fibers as isotropic, the constitutive relation of which is given by the dispersion 

model [28]
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W k C = c2
4c3

exp c3 I*
k − 1 2 − 1 ,

I*
k := ωdI + 1 − 3ωd Ef

k ⊗ Ef
k :C

(16)

with the dispersion parameter ω d equal to 1
3  . This is because prestretch is mainly caused 

by unbalanced growth during the early development when the vascular material is more 

isotropic [66]. Once the proper amount of pre-stretch is incorporated, the isotropic collagen 

fiber network is then replaced by anisotropic fibers by setting the dispersion parameter ω d 

= 0 (which recovers the original anisotropic constitutive relation Eq. (4)) and deposited in 

the optimal directions as defined below in §2.3. This replacement of isotropic constituents 

with anisotropic fibers will result in a deviation of the circumferential stress from the preset 

homeostatic stress. Our observation is that this this stress deviation is small. More generally, 

however, this deviation can be corrected for by adjusting the the homeostatic stress defined 

in Section 2.2.3.

2.2.3 Defining a homeostatic stress distribution—The method above can be 

applied for any homeostatic stress σ h. Fung [26] demonstrated that residual stress tends 

to make the stress distribution uniform primarily in the transmural direction. Hence, we 

aim to formulate a target homeostatic stress distribution σ h(x) that is uniform in the 

transmural direction, but may vary in the circumferential and axial directions according to 

the local geometry. This can be formulated through the steady-state solution of the following 

diffusion equation defined in the vessel wall domain Ω0 as

∂
∂t σh x, t = D∇2σh x, t , for x ∈ Ω0 , t ∈ 0, T

σh = g x , for x on Γinner ,
n ⋅ ∇σh = 0, for x on Γouter ,

(17)

where D is a virtual diffusion constant, and Γinner and Γouter denote the inner and outer 

wall of the vessel, respectively. Following [6] and [22], the stress distribution g(x) can be 

obtained from a passive nonlinear elasticity membrane problem with constitutive relations 

Eqs. (3) and (4), and is effectively used here to assign the variation of stress in the 

circumferential and axial directions. Other approaches to generate g(x) are possible. Eq. 

(17) is solved until steady state, which yields a stress distribution that is uniform in the 

transmural direction, and defines the target homeostatic stress under normal blood pressure.

Although the steady version of Eq. (17) could alternatively be used to obtain the steady 

state solution, we retain the unsteady version for generality since, as shown in § 3, the 

unsteady formulation enables the ability to generate a quasi-uniform stress distribution 

in the transmural direction by controlling the simulation ending time T. This quasi-

uniform distribution is generally in better agreement with expectations of transmural stress, 

particularly when considering deviations of blood pressure from the mean arterial pressure 

(see e.g., Figure 7 in [7]).
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2.2.4 Estimating residual stresses near bifurcations and boundaries—
Generating the stretch ratios λ gr, λ gθ , λ gz is based on an iterative algorithm that 

couples the structural mechanics (momentum) equations (9) with the evolution equations 

(15). The iterative method can struggle to converge in bifurcation regions where the irregular 

geometry may cause stress to deviate significantly from the target homeostatic value. 

Nonetheless, the overall theoretical framework provides a governing connection to guide 

how geometric and mechanical factors determine the growth stretch ratio. Therefore, the 

convergence of this method otherwise throughout the model may be used indirectly to guide 

specification at locations where the problem becomes poorly conditioned. Thus, instead of 

explicitly defining the growth stretch ratios at bifurcations or boundaries (or potentially 

other geometric anomalies), we exclude computational nodes close to these geometrical 

features, compute the growth stretch ratios in the rest of the domain according to the 

formulations above, and use that data along with supervised learning to estimate the growth 

stretch ratios at the excluded locations.

For the supervised learning process, random forest regression was chosen based on its 

general accuracy and robustness against overfitting [25]. In order to take both mechanical 

and geometric factors into account, the initial local stress σ 0(xi ) and the local curvature 

tensor R(xi ) are used as the prediction features, while local growth stretch ratio λ g(xi ) is 

the training label.

The data pair (σ 0(xi ), R(xi ); λ g(xi )) associated with each location xi in the vascular 

geometry contributes to one data point in the overall training data sets. The mapping

ℳ: σ0 xi , R xi λg xi (18)

is obtained by constructing a random forest regressor. In random forest regression, the 

prediction of λ g(x) is determined by the average of B individual regression trees 

characterized by their parameters Θ b 

f rf
B σ0 x , R x = 1

B ∑
b = 1

B
Tb σ0 x , R x Θb . (19)

Each individual tree Tb (•) is constructed based on randomly sampled features and 

bootstrapped data sets, and the optimal tree parameters are obtained by minimizing the 

least square error

Θb* = arg min
Θb

∑
i = 1

N
λg xi − Tb σ0 xi , R xi Θ b

2 . (20)

Once Θb* is obtained in the training process, given a new input (σ 0(x new), R(x new)), the 

growth stretch ratio λ g at the new location x new can be computed as
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λg xnew = f rf
B σ0 xnew , R xnew

= 1
B ∑

b = 1

B
Tb σ0 xnew , R xnew Θb* .

(21)

We used the random forest regression implementation available from the Python package 

Scikit-learn [55].

To compute the local curvature tensors R(xi ) we define a local coordinate system consisting 

of the radial, circumferential, and axial direction. For non-ideal, anatomically-relevant 

geometries this local coordinate system is defined using a Laplace–Dirichlet rule-based 

algorithm as described in [4]. We then use the local radial directions to define the local 

normal direction of the tangential surface at a given point in the geometry. Then the 

curvature can be calculated from the gradient of the local normal vector.

2.3 Optimal stochastic fiber deposition

After the residual stress field is generated, stress-driven fiber deposition is incorporated to 

capture the fiber alignment in the homeostatic state. In most prior studies, collagen fibers 

are deposited in predefined directions [22], and all subsequently produced collagen fibers 

are deposited to align with the existing corresponding collagen families. In this work, we 

assume fibers can be freely deposited in orientations based on the stress state at the time 

of deposition. Inspired by Cyron and Humphrey [14], the deposition angle is given by the 

solution of an optimization problem. Although the stress state is in fact triaxial for the 3D 

vascular geometry, the radial component of stress is much smaller compared to the axial 

and circumferential component. Therefore, for simplicity, we assume the vessel is under a 

biaxial stress condition (see Figure 1A) with T 11 and T 22 as the two largest eigenvalues of 

the Cauchy stress tensor T (we use T to denote the full Cauchy stress tensor and σ to denote 

scalar quantities derived from T), which is given by

T = 2
J F∂ω

∂CFT . (22)

2.3.1 Derivation of the optimal directions for newly produced collagen fibers
—Note that in this section we derive the optimal directions for newly produced collagen 

fibers based on theoretical considerations. Only the final result, Eq. (28), is used in the 

algorithm, hence, no default values are given for parameters introduced below. We denote 

by σ f,max the maximum stress that fibers can sustain when the fiber mass density is equal 

to some baseline value M 0. The maximum stress is assumed proportional to the fiber mass 

density. Thus, for any arbitrary fiber density M f, the maximum stress that fibers can sustain 

is σf, max
Mf
M0

, and the contribution of the fiber family to the local stress tensor is

Tf : = σf, max
Mf
M0

ef ⊗ ef . (23)
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Here, e f = [cos θ f, sin θ f] T is the fiber direction represented in the local coordinate system 

defined by the circumferential and axial directions and θ f is the fiber deposition angle (see 

Figure 1A). Note that the circumferential and axial directions and the deposition angle θ f 
are all defined in the current configuration κt. Further, the local circumferential and axial 

directions are computed as the eigenvectors corresponding to the two largest eigenvalues T 

11 and T 22 of the local Cauchy stress tensor T [16]. The projections of the fiber stress tensor 

T f in the circumferential and axial directions are

T f,circ = [1, 0]Tf[1, 0]T = σf, max
Mf
M0

cos 2θf, (24)

T f,axial = [0, 1]Tf[0, 1]T = σf, max
Mf
M0

sin 2θf . (25)

Assuming the body tends to minimize the mass needed for vascular fibers, while 

maintaining the ability to sustain circumferential and axial loading, the optimization 

problem to determine the deposition angle θ f is given by

min
Mf, θf

Mf such that

σf, max
Mf
M0

cos 2θf ≥ T11,

σf, max
Mf
M0

sin 2θf ≥ T22 .

(26)

The solution of Eq. (26) is

Mf* = T11 + T22
σf,max

M0, (27)

θf* = ± arctan T22
T11

, (28)

which defines the optimal directions for newly produced collagen fibers. As T 11 and T 

22 may change with time, θf* is generally not constant. The “±” sign in Equation (28) 

corresponds to the two collagen families. It is worth noting that the optimal angle θf* depends 

on the fiber mass density M f indirectly via T 11 and T 22.

2.3.2 Stochasticity of fiber deposition—It has been observed that fiber deposition 

exhibits a stress-dependent stochasticity [23]. We assume that the deposition angle follows a 

Gaussian distribution

θf
k N θf

* , k, ∑ σf
* , k , (29)
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with mean value θf* . The variance Σ(σ f) is defined as a function of the fiber stress σ f

∑ σf
* , k = ∑0

σscale
σf

* , k (30)

where σ scale is a scale parameter for vessel wall stress, and Σ0 is the nominal value of the 

variance. To avoid numerical instabilities when σf
* , k is very small, a small positive number 

ϵ is added to the denominator of Equation (30). The stress in the new fiber direction is given 

by the projection of the Cauchy stress tensor onto the fiber direction

σf
* , k = T:ef

* , k ⊗ ef
* , k . (31)

∑ σf
* , k  is designed to be a decreasing function of the stress projection in the fiber direction 

σf
* , k so that fibers are aligned more coherently when σf

* , k is higher [23]. Note that the 

optimal deposition direction ef
* , k and the actual fiber deposition direction ef

k are defined 

respectively as

ef
* , k = cos θf

* , k, sin θf
* , k ⊤, (32)

ef = cos θf, sin θf
⊤ . (33)

2.3.3 Total strain energy function—Once the fiber deposition directions ef
k at the time 

τ are determined in the deformed configuration κ τ , the fiber direction in configuration κR 

can be computed as

Ef
k τ =

F* τ −1ef
k τ

∥ F* τ −1ef
k τ ∥

, (34)

and the invariant of this fiber at a later time t is

Ik C* t , Ef
k : = C* t :Ef

k τ ⊗ Ef
k τ . (35)

Substituting the fiber invariants into Eq. (4) yields the strain energy for the collagen fiber

W k C* t , Ef
k τ = c2

4c3
exp c3 Ik C* t , Ef

k τ − 1 2 − 1 , (36)

and therefore the total strain energy for fiber family k can be computed based on Eq. (5) as
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wk(C∗, t )= ∫
−∞

t
mk(τ)qk(t − τ)W k(C∗(t), Ef

k(τ))dτ

= ∫t − tls

t
mk(τ)qk(t − τ)W k(C∗(t), Ef

k(τ))dτ

≈ ∑
i = 0

N
mk(τi)qk(t−τi)W k(C∗(t), Ef

k(τi)) Δ τ,

(37)

where t ls is the lifespan of the fibers. N is the number of discretization intervals for 

computing the time integral. Note that, for each time slice Δτ = τ i+1 – τi , the strain energy 

of the fiber produced at τi depends on the deposition angle at that time θ f(τi ). In Eq. (37) 

qk (t – τi ) is the remaining fraction at time t for the constituents produced at time τi ; we 

choose

qk(t) =

0 for t > tls,
1 for t < tnd,
1
2cos π

tls − tnd
t − tnd + 1

2 otherwise,
(38)

with t nd < t ls a given period of time where there is no decay of the constituent.

We further assume that during our iterative procedure the amount of functional elastin is not 

changing, hence, we set Qe (t) = 1 in Eq. (2).

This gives us the total strain energy of the constrained mixture

w(C∗, t) = Me(0)W e(C∗, t) + ∑
k

wk(C∗, t), (39)

for the current moment t. Finally, the balance equation (9) is solved with respect to the 

reference configuration κ R which gives us the stress distribution for the current iteration 

step. This is used to compute the new optimal fiber deposition angle for the next iteration 

step.

In Eq. (39) we chose k = 10, as, e.g., suggested in [65]. That means that 10 fiber cohorts 

are bearing the load at the current iteration step; in addition to the elastin part that is always 

present. As the function qk decays to zero, the amount of load that is taken up by the 

disappearing old collagen is negligible. Further, due to the stochasticity of fiber deposition, 

Section 2.3.2, we used a maximum number of iterations n max = 50 to end this iterative 

procedure; rather than a designated convergence criterion.

A summary of the general algorithm for applying the above method is described in 

Algorithm 1a and 1b and in Figure 2.
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Algorithm 1a

Generate residual stress field by incorporating proper amount of growth 
prestretch.

  1: Initialize growth prestretch

Fg
0 = I, i . e . , λgθ

0
= 1, λgr

0 = 1, λgz
0 = 1.

  2: Estimate homeostatic stress target distribution, σ h, see Section 2.2.3.

  3: Restrict computational domain to cylindrical regions.

  4: Set tolerance ϵ and maximal number of iterations t max.

  5: for t < t max do

  6:       Solve the balance equation (9)

δI = ∫κ0
δwdV + ∫∂κt

Pnt ⋅ δxda = 0,

             to obtain current stress σθ
(t) .

  7:       if σθ
t − σh < ϵ then

  8:            break                ⊳Current stress converged to homeostatic stress.

  9:       end if

            Update growth tensor Fg
(t + 1) by solving Eq. (15) for the updated prestretch ratios:

λgθ
t + 1

= λgθ
t

+ Δ t
τθ

σθ
t

σh
− 1 λgθ

t
, λgr

t + 1 = 1, λgz
t + 1 = 1.

11:       t = t + 1

12: end for

13: Estimate residual stresses near bifurcations and boundaries using data from 

cylindrical regions, see Section 2.2.4.

Algorithm 1b

Generate fiber deposition angles and incorporate fibers into the vascular 
mixture

1: Set maximal number of iterations nmax = 50.
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2: for nt < nmax do

3:       Solve the balance equation (9)

δI = ∫κR
δwdV + ∫∂κt

Pnt ⋅ δxda = 0,

            using (39) to obtain current stress tensor T, and then compute two principal stress 

components T 11 and T 22.

4:         Compute the optimal deposition angle using Eq. (28)

θf* = ± arctan
T22
T11

.

5:         Generate the actual deposition angles based on the distribution introduced in Eq. 

(29)

θf ∼ N θf*, ∑ σf .

6:         Modify the strain energy function, Eq. (37), to incorporate the new fibers

wk C, t = ∑
i = 0

N
mk τi qk t − τi W k C, θf τi , t Δ τ,

            where

t = nt * Δ τ, τi ∈ t − tls, t − tls + Δ τ, t − tls + 2 Δ τ, …, t − Δ τ, t

7:         nt = nt + 1

8: end for

3 Results

The framework proposed above was implemented to first generate a residual stress field 

based on the evolution equations (15) and then to iteratively generate collagen fiber 

directions based on the optimality conditions (28) along with deposition randomness (29). 

The code was developed in Python, and the finite element solution was implemented using 

FEniCS [50]. All computations were performed using linear tetrahedral elements with an 

average edge size smaller than 0.7 mm. The constitutive material parameters were taken 

from literature [29], [71], and [21] and are summarized in Tab. 1 along with the other 

parameters used for the simulations.
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Figure 3 illustrates the results of the algorithm applied to an idealized cylindrical vessel. 

Panel (A) shows the circumferential stress distribution for a passive inflation with a pressure 

of 100 mmHg in which the material properties are assumed to be constant throughout the 

vessel wall and no residual stress is incorporated. As expected the resulting circumferential 

stress is nonuniform along the transmural direction. Panel B displays the circumferential 

stress distribution after prestretch is incorporated by the stretch evolution equation (15) 

using a prescribed homeostatic stress σ h = 150 kPa. The convergence of the stress to the 

homeostatic value over the iterations of the algorithm is plotted in Figure 4.

Once prestretch is generated, the residual stress distribution can be obtained by releasing 

the internal pressure and removing the tethering boundary conditions. Figure 3C shows 

the residual stress distribution after a virtual pressure release. It is noteworthy that the 

circumferential stress in the inner layer is negative – the tissue is under compression – 

and the stress in the outer layer is positive – the tissue is under extension – which is 

consistent with prior published results [2]. Qualitatively the pattern of the stress distribution 

also matches with experimental results on rabbit arteries [12]. The randomness of the stress 

distribution is mainly due to the stochasticity of the fiber deposition. Note that for this 

virtual pressure release experiment, a small axial stretch is needed to achieve numerical 

stability. Namely, this applied axial stretch makes the inner layer of the vessel less prone 

to buckling while under compression. While this can be done for an idealized cylinder 

geometry by applying a small displacement to one of the free ends, this is not a trivial task 

for more general vascular geometries and results may become unreliable (cf. [40] and [49]), 

which was confirmed for the patient-specific geometry presented below.

Numerical simulations were carried out for a patient-specific (image-based) aortic 

bifurcation geometry. The image data was obtained from the Vascular Model Repository 

(http://vascularmodel.com), and a membrane model was constructed using SimVascular 

[64]. A 3D volumetric mesh was generated using Gmsh [30], and the local thickness of 

vessel wall is set to 10% of the local radius (obtained from maximum inscribed sphere). 

A homeostatic stress distribution σ h(x) was generated by solving Eq. (17) with g(x) set 

to be the solution of a passive inflation membrane problem at mean arterial pressure of 

100 mmHg. Figure 5A displays the steady-state σ h(x), which serves as the target stress 

distribution for the residual stress generation process. For comparison, Figure 5B displays 

the stress distribution of a passive inflation with a pressure of 100 mmHg with no residual 

stress incorporated. As an intermediate step, Figure 5C displays the stress distribution when 

residual stress generation is applied only to the cylindrical portions of the domain-namely 

nodes near the inlet, outlet, and bifurcation are excluded. The prestretch distribution at the 

excluded nodes were then predicted by a random forest regressor trained via the data from 

the remainder of the simulation domain. The resulting final stress distribution is shown in 

5D, which qualitatively and quantitatively matches the nominal target stress distribution 

shown in Figure 5A. To better visualize the stress distribution near the bifurcation and the 

effectiveness of the prediction by the random forest regressor, a rescaled and zoomed-in 

view is provided in Figure 5E. It can be seen that higher stress is concentrated along the 

bifurcation ridge, consistent with previously published results [56]. We also note that the 

homeostatic stress values outside of the bifurcation ridge vary within the range of 150–220 

kPa, which is consistent with the range 150–300 kPa given in Cyron and Humphrey [15].
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To evaluate the stress distribution along the transmural direction cross-sectional views are 

provided in Figure 6, with panel (A) corresponding to the simulation without residual 

stress and panel (B) corresponding to the simulation with residual stress incorporated. 

Additionally, a line plot of circumferential stresses along the transmural direction is shown 

in Figure 7, further demonstrating that stress becomes more uniform along the transmural 

direction when prestretch is included, (and becomes generally more homogenized in other 

directions although this is not imposed).

Figure 8 shows the two helical fiber directions generated by the optimal fiber deposition 

algorithm for both idealized and patient-specific geometries. It can be seen that in the 

two cases the mean directions and dispersion of the helical fibers are consistent with the 

previous experimental observations and numerical simulations [54, 38]. Figure 8B also 

shows the fiber directions in the bifurcation region of the patient-specific geometry, which is 

qualitatively consistent with the results in [34].

Since in most practical applications the vascular geometry is derived from in vivo imaging, 

it is important to consider how the generation of residual stress affects the final loaded 

configuration. Comparison of the loaded, pre-stretched geometry to the original image-based 

geometry is shown in Figure 9C, which indicates that the proposed algorithm changes the 

shape of the geometry to relatively smaller degree. By comparison, an inflation that does 

not consider residual stress results in a more curved and displaced loaded configuration as 

shown in Figure 9A. Also for comparison, we considered the case of prescribing a uniform 

homeostatic stress distribution, which as shown in Figure 9B tends to undesirably straighten 

the artery; indeed such configuration would be expected to achieve more uniform stress. 

Additionally, we compared the vessel diameter of the original image-based geometry with 

the diameter resulting from a passive inflation experiment and the diameter of the vessel 

with residual stress included, see Figure 10. Diameters for this density plot were computed 

using VMTK [3] as the diameters of the maximal inscribed spheres along the centerline 

of the geometries. These results demonstrate that inclusion of residual stress demonstrate 

clear improvement. While passive inflation leads to an increase of the diameter by around 

2 mm to 3 mm, the diameter distribution of the vessel with residual stress generated by 

the proposed algorithm is generally within 1 mm of the original geometry. Although not 

controlled for here, adjusting the value of the desired homeostatic stress distribution σ h(x), 

see Section 2.2.3, could be used to better impose matching of the inflated geometry with that 

from the image.

4 Discussion

A computational framework to generate the vascular homeostatic state has been proposed, 

which includes the generation of appropriate prestretch distribution and the specification 

of physiological vascular fiber deposition directions. A benefit of this framework is 

that in order to generate the residual stress distribution only a homeostatic stress value 

(or distribution) needs to be specified. In particular, the specification of the natural 

configurations of the different constituents and the mechanobiological mechanisms that form 

the residual stress distribution are not explicitly required and the effects of the residual stress 

distribution can be incorporated into a growth tensor F g. This greatly facilitates a more 
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practically feasible determination and generation of the residual stress distribution needed 

to achieve a homeostatic stress condition for the pressurized in vivo state for a particular 

vascular model geometry. While the approach for generating the residual stress and fiber 

distribution through a growth tensor is inspired by classical G&R theories [44, 13, 32], it 

should not be confused with trying to reproduce the actual G&R process (but rather focuses 

on the end result of deriving an appropriate loaded and pre-stressed homeostatic state).

A unique feature of this work is the combination of the constrained mixture model with 

an optimal fiber deposition process. In the classical constrained mixture model of G&R, 

fibers are deposited in predefined fiber family directions, with new fibers aligned in the 

same direction as the existing fiber family directions. In this work, fibers are deposited 

based on a physiologically-motivated angle that depends on the current local stress state, 

instead of predefined directions. And since the local stress may vary over the iterative 

deposition process, the deposition angle of newly produced fibers also varies. This iterative 

process, along with stress dependent stochasticity introduced in Eq. (29), results in fiber 

dispersion, which has been well documented in human arteries, see, e.g., [54]. While 

prior works [28] have accounted for fiber dispersion using a set dispersion parameter κd , 
the method herein leads to dispersion as a result of a stress-driven process. Also while 

prior work [34] has suggested a nominal deposition angle of the form tan θf* =
T22
T11

, the 

physiologically-motivated optimal deposition angle employed herein suggest an alternative 

square root relation of the form tan θf* = T22/T11 consistent with the results in [14].

For cylindrical regions, the prestretch distribution can be readily computed using iterative 

methods, as have been applied previously, e.g, [7], [2], and [57]. However, this method 

is often unstable when applied to more complex geometries, particularly since topological 

features (e.g. bifurcations) cause irregular stress distribution that can significantly deviate 

from the presumed homeostatic distribution. Thus, instead of being directly computed, 

the prestretch in such regions can be predicted based on local geometric and mechanical 

properties from surrounding regions using machine learning. Namely, a random forest 

regressor was used to learn the physical principles based mapping from mechanical and 

geometric factors to the growth stretch ratio. This provided a way to deal with realistic 

applications where geometric complexities are difficult to handle numerically using strictly 

theory-based methods, while maintaining specification based on a governing theory. As with 

most machine learning, the mapping is not necessarily guaranteed to satisfy a theoretical 

(fiber-deposition) principle, it is rather trained from the principle. However, it is possible to 

mathematically constraints inference problems to satisfy deterministic constraints [69].

While prior work has proposed the inclusion of residual stresses on a fully three-

dimensional patient-specific geometry [1], this approach results in a largely deformed loaded 

configuration, whereas the method proposed here results in relatively minor distortion of the 

loaded configuration when compared to the image-derived configuration (see Figure 9C). 

We note that the distortion that does persist could be due in part to the lack of external tissue 

support from surrounding organs, which is missing in our model. Additionally, although not 

explored herein, patient-specific calibration of simulation parameters could be incorporated 

in the residual stress generation procedure such that, as an additional constraint, the 
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final loaded configuration matches as closely as possible with the image-based geometry. 

This is a reasonable addition since model parameters are generic and often fitted from 

ex-vivo experimental data. Also, compared to [8] where the authors presented a backward 

displacement method to generate prestrech for a patient-specific geometry, our approach 

additionally incorporates stress homogenization and a more physiological material model 

including the generation of fiber directions.

Although prior studies have assumed that there is a unique homeostatic stress value 

[20, 5, 68], there is sparse experimental data confirming this. The seminal work of 

Fung [26], indicates that stress tends to be homogenized in the transmural direction, 

and hence the approach presented herein assumes only homogenization of homeostatic 

stress in the transmural direction. Using a constant homeostatic stress value results in 

unphysiologic model deformation as shown in Figure 9(B). Nonetheless, the algorithm 

presented herein can accommodate any desired homeostatic stress distribution. For example, 

a presumed constant value can be taken from literature [6, 70], or obtained from additional 

computations, such as using the stress distribution from an equivalent membrane problem 

as proposed herein, or computed as the mean stress throughout the geometry from a 

passive inflation simulation. Likewise, while this method was applied to reconstruct the 

nominal, healthy homeostatic state, it could potentially be applied to specify a residual stress 

distribution and fiber alignment in diseased vessels through appropriate change to model 

parameters.

We note here several limitations of this work: First, the numerical robustness of the 

generation process should be further verified with a larger number of patient specific 

geometries. Second, the vessel wall in our study was modeled as a single effective layer 

while in reality the blood vessels consists of multiple layers that are mechanically relevant. 

However, this framework can be readily extended to a multi-layer setting (i.e., explicitly 

modeling the media and adventitia) with corresponding parameters specified for each 

layer. Third, the influence of external tissue support has been neglected. As noted above, 

inclusion of external support may be useful to improve matching the loaded, pre-stressed 

configuration with the image-based configuration. And forth, the in-vivo tension in axial 

direction is not accounted for in the computation of growth stretch ratios, while several 

publications, e.g., [9, 19], indicate that tensional homeostasis in axial direction may play a 

significant role.

5 Conclusions

A framework was presented to reconstruct the vascular homeostatic state by developing a 

method to compute the residual stress distribution and fiber directions. The residual stress is 

implicitly incorporated by iteratively computing a growth prestretch based on a prescribed 

homeostatic stress distribution. Vascular fiber directions are further incorporated based 

on the solution of a physiologically-motivated optimization problem. The methodology 

was applied to an idealized cylindrical geometry and a patient-specific aortic bifurcation 

geometry. Simulation results for residual stress distribution and fiber alignment match 

with numerical and experimental results in prior works. In contrast to previous studies the 
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proposed framework is not limited by geometrical restrictions such as bifurcations making it 

more applicable to patient-specific modeling scenarios.
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Figure 1. 
(A) T 11 and T 22 are the two principal stress directions of the Cauchy stress tensor T; θ f 
is the deposition angle of fiber family e f; and e n the fiber normal direction. (B) Relation 

between different configurations. κ 0 is the unstressed reference configuration (T = 0); κ 
R is the configuration with residual stress incorporated; κt is the current configuration with 

external pressure imposed.
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Figure 2. Detailed schematic for the algorithm to generate the vascular homeostatic state.
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Figure 3. 
Circumferential stress distribution (A) of a standard passive inflation simulation; (B) with 

residual stress incorporated. (C) Residual stress distribution.
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Figure 4. Convergence of circumferential stress to homeostatic value after prestretch is 
incorporated.
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Figure 5. 
(A) Nominal homeostatic stress distribution. (B) Stress distribution from standard passive 

inflation. (C) Stress distribution after incorporation of residual stress. (D) Stress distribution 

after residual stress and machine learning repair. (E) Stress distribution near bifurcation 

(note change in color scale).
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Figure 6. 
Circumferential stress distribution in the patient-specific geometry for (A) a standard passive 

inflation and (B) with residual stress incorporated.
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Figure 7. 
Transmural circumferential stress distribution from the inner (0%) to outer (100%) wall in 

the patient-specific geometry for a standard passive inflation (dashes lines) and with residual 

stress incorporated (solid lines). Plotted are stresses along transmural lines at 3 arbitrary 

locations: one in each of the cylindrical regions, with the main branch in red.
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Figure 8. 
(A) Fiber directions in both helical directions for the cylinder geometry; (B) Fiber directions 

for the patient-specific geometry near the vascular bifurcation.
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Figure 9. 
Comparison of the original geometry taken from imaging (transparent gray) with the 

displacement field of (A) an inflation experiment without the application of the residual 

stress; (B) an inflation experiment with residual stress generated from the uniform 

homeostatic stress distribution; (C) an inflation with residual stress generated from the 

residual stress distribution that is uniform only in transmural direction.
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Figure 10. 
Density plot and histogram of diameters measured in the original geometry taken from 

imaging (black) in comparison with the displacement field of an passive inflation experiment 

(yellow, see Figure 9A) and an inflation with residual stress (blue, see Figure 9C). Diameters 

were computed as the diameters of the maximal inscribed spheres along the centerline of the 

geometries.
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Table 1

Parameters used in the numerical experiments. Note that all time constants are normalized with respect to the 

lifespan of the fibers.

Used for Parameter

Material model c 1 = 688 Pa/kg c 2 = 917 Pa/kg c 3 = 25 [−]

Eqs. (3, 4, 8) κ = 5 × 106 Pa

Residual stress field Cylinder: σ h = 150 kPa

generation Patient-specific model, nominal blood pressure: P = 100 mmHg

Eqs. (15, 17) D = 1.0 τθ = 2.0

Fiber deposition Σ0 = 0.5 σ scale = 200 kPa ϵ = 0.001

Eqs. (30, 37, 39) t ls = 1 t nd = 0.2 N = 20

k = 10
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