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Abstract

The increasing prevalence of dementia and cognitive impair-
ments in the aging global population poses significant chal-
lenges to healthcare and society. Detecting cognitive impair-
ment is crucial for managing diseases like Alzheimer’s, yet
current research faces limitations such as reliance on cross-
sectional studies and a lack of understanding of causal rela-
tionships. In response, our study introduces a dynamic causal
graph-based learning approach for predicting cognitive impair-
ment risk in middle-aged and older adults. Employing a lon-
gitudinal perspective, we uncover causal structures through
causal discovery methods, offering profound insights into cog-
nitive changes over time. Our model, utilizing dynamic input
variables, outperforms traditional algorithms while enhancing
interpretability. This innovative approach not only improves
prediction accuracy but also contributes to a deeper compre-
hension of the causal mechanisms underlying cognitive impair-
ment. The longitudinal insight offers a comprehensive under-
standing of evolving factors associated with cognitive changes,
making our model valuable for both research and practical ap-
plications.

Keywords: Artificial Intelligence; Causal Reasoning; Cog-
nition of Time; Cognitive Architectures; Dynamic Systems
Modeling

1Corresponding author.

Introduction

The escalating prevalence of dementia and its associ-
ated cognitive impairments in our aging global popu-
lation presents formidable healthcare and socioeconomic
challenges(Organization et al., 2012; Walsh et al., 2024).
Cognitive impairment, an intermediate stage between normal
aging and dementia, represents a decline in cognitive func-
tions that is noticeable but does not severely impair daily
activities(American Psychiatric Association, Association, et
al., 2013). Often, individuals remain unaware of neurodegen-
eration until cognitive impairment progresses to a point where
it results in disability and dependency(Petersen, 2011). De-
mentia significantly affects the elderly population, as seen in
China, where over 360,000 new diagnoses of cognitive im-
pairment are reported annually. Projections suggest that by
2060, China will have approximately 48.68 million individu-
als with cognitive impairment(Prince et al., 2016). Therefore,
early detection of cognitive impairment is crucial in slowing
the progression of diseases like Alzheimer’s.

However, the existing researches expose certain con-
straints. The majority of studies rely on cross-sectional re-
search, which lack a longitudinal perspective capable of of-
fering profound insights into cognitive changes over an ex-
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tended period. Moreover, the current state of knowledge re-
garding causal relationships in the progression of cognitive
impairment is limited. While statistical knowledge suffices
for prediction and diagnosis, a comprehensive understanding
of causation is indispensable for guiding effective actions and
interventions (Danks & Davis, 2023).

In response to these challenges, our study introduces a
novel dynamic causal graph based learning approach that in-
tegrates causal discovery to predict the risk of developing
cognitive impairment in middle-aged and older adults. We
capture the interactions among variables and reveal dynamic
causal structures by generating causal graphs. Leveraging the
insights gained from the causal discovery phase, our model
significantly reduces the number of input variables, outper-
forming mainstream algorithms that rely on all variable in-
puts. By incorporating a temporal dimension, this approach
not only aids in elucidating the mechanisms underlying cog-
nitive impairment but also provides interpretable outcomes
for the model. The structure of the model is shown in Fig-
ure 1. The contributions of this work can be summarized as
follows:

• Dynamic causal graph generation. We construct a mod-
ule to get dynamic subset of features that captures the most
resilient relationships influencing Cognitive Impairment.

• Enhancing model performance with interpretability.
We present a novel prediction model DGCog that inte-
grates dynamic causal graph, leading to a reduction in in-
put variables and superior performance compared to tradi-
tional algorithms. Simultaneously, this approach enhances
our comprehension of causal relationships in the progres-
sion of cognitive impairment.

• Offering longitudinal Insight. Longitudinal data analy-
sis offers a more profound understanding of the evolving
factors associated with cognitive impairment.

Materials and Methods
Participants and Data Sources
Our study is a longitudinal investigation based on data
obtained from the China Health and Retirement Longi-
tudinal Study (CHARLS)(Zhao, Hu, Smith, Strauss, &
Yang, 2014). CHARLS is a high-quality, publicly available
longitudinal survey representative of individuals aged 45 and
older and their spouses across China. CHARLS conducts
face-to-face computer-assisted personal interviews (CAPI)
with respondents every 2 years. Physical measurements are
taken during each 2-year follow-up, with blood samples
collected once every two follow-up periods. Utilizing a
multi-stage probability sampling method, the CHARLS
team surveyed residents across 28 provinces in China. The
baseline survey took place in 2011, followed by subsequent
rounds in 2013, 2015, 2018, and 2020. After excluding
participants lost to follow-up and those with missing data,
a cohort of 3,660 individuals (1,877 males, 1,783 females,

average age 62) was selected for our longitudinal investi-
gation. The study protocol of CHARLS received approval
from the Peking University Biomedical Ethics Commit-
tee(https://opendata.pku.edu.cn/dataverse/CHARLS).

Cognitive Impairment Labeling
In this study, we employ a range of variables based on
previous research for cognitive classification. These vari-
ables include demographics, family structure and dynamics,
health status and functioning, past and present general health,
physician-diagnosed chronic illnesses, lifestyle and behav-
iors, and emotional status, among others.

As illustrated in Figure 1 ‘Label Setting’, this study eval-
uates cognitive function using a global cognitive score com-
posed of 2 main components: Episodic Memory (EM) and
Mental Intactness (MI) (McArdle, Fisher, & Kadlec, 2007).
EM was assessed through recall and delayed recall tests of
memory using 10 words, wherein participants were asked to
recall 10 Chinese words immediately and after a 5-minute
delay. MI was evaluated based on information from the Tele-
phone Interview of Cognition Status form, which included
self-rated memory, awareness of today’s date, day of the
week, and current season, along with tests of serial subtrac-
tions of 7 from 100 and the ability to reproduce a picture of
two overlapped pentagons. In the analysis, a global cogni-
tive score was computed by combining scores from EM and
MI tests. A higher score generally indicates better cognitive
function among middle-aged and elderly individuals. Raw
scores were transformed into z-scores based on the baseline
mean and standard deviation of each respondent in the cohort.
Cognitive impairment at baseline was defined as a global cog-
nitive score in the bottom 10 percent of the distribution, using
established methodologies (Chen, Ho, & Chau, 2023).

Dynamic Causal Graph based Learning
To enhance the applicability of deep learning algorithms, we
preprocess the data into temporally structured sequences. The
missing values are imputed using the prior round value. In
predicting cognitive impairment, it’s crucial to go beyond in-
vestigating causes and equally important to explore effects.
These features provide essential signals for cognitive decline
development.

Causality learning. In the field of causal discovery,
constraint-based and score-based methods work well in the-
ory but fall short in real-world scenarios when inferring
causal graphs(Ng, Zhu, Chen, & Fang, 2019). Recent re-
search has explored the integration of graph neural networks,
aiming to capture the intricacies of nonlinear causal rela-
tionships and improve practical performance(Deng, Zheng,
Tian, & Zeng, 2022; Zanga, Ozkirimli, & Stella, 2022).
The gradient-based method demonstrates enhanced accuracy
and computational efficiency in practical scenarios, prov-
ing adept at navigating the complexities inherent in causal
relationships. Therefore, we apply Graph Autoencoder
(GAE)(Ng et al., 2019) and Causal Generative Neural Net-

5811



Figure 1: Cognitive impairment prediction framework in CHARLS. (a) shows how to process data, variables and label. (b)
shows the structure of our prediction model.

works (CGNN)(Goudet et al., 2018) methods to generate
causal structure. GAE is applied to capture latent represen-
tations of variables and their relationships within a causal
graph, aiding in the identification of causal structures. CGNN
integrates causal modeling principles with graph neural net-
works, providing a nuanced understanding of complex sys-
tems compared to conventional causal discovery methods.

To enhance the interpretability and efficiency of our model
in the face of complex survey data, we adopt a focused strat-
egy targeting robust causal edges associated with Cognitive
Impairment. Utilizing Directed Acyclic Graphs (DAGs) de-
rived from both GAE and CGNN, we conduct an analysis
of edge frequency and weight. This involves calculating the
occurrence rate of each edge with Cognitive Impairment and
considering edge weights. The edges are subsequently ranked
based on a composite measure of frequency and weight, de-
noted as the Causal Probability (CP = ⟨x,Y ⟩), where CP rep-
resents the probability of causal relationship between a fea-
ture x in the feature set X and the label Y (cognitive impair-
ment). Let xi be a feature in X , p(xi → Y ) and p(xi ← Y )
denote the probabilities of xi causing or being caused by Y ,
respectively. The Causal Probability is then defined as:

CP(xi,Y ) = ⟨xi,Y ⟩= p(xi→ Y ) · p(xi← Y ) (1)

By selecting the top n edges based on the ranking of CP,
we curate a subset of features that encapsulates the most ro-
bust relationships contributing to Cognitive Impairment. This
refined set of features, denoted as Xtop, is then employed in
training our model, streamlining the input space and focus-
ing on key variables. This selection process ensures that the
model prioritizes the most influential features in contributing
to the prediction of Cognitive Impairment. Xtop is defined as:

XTop = {xi | ⟨xi,Y ⟩ ∈ Topn} (2)

With the accumulation of survey data, we adopt a dynamic
approach to model the evolving causal relationships. Specif-
ically, let G(N) denote the causal graph obtained at Round N,
where N is the round index. The cumulative causal graph
at Round N + 1 (G(N+1)) is determined by the union of the
causal graph from the previous round (G(N)) and the DAG
learned from the most recent round (G(N+1)

new ):

G(N+1) = G(N)∪G(N+1)
new (3)

The newly acquired causal knowledge from each round
continuously incorporates into the evolving causal graph. The
union operation ensures that the causal graph dynamically
adapts and expands with the accumulation of survey data
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over successive rounds, capturing the changing landscape of
causal relationships.

Prediction model. The proposed model DGCog is de-
signed to predict Cognitive Impairment with neural network.
The architecture of our model is designed to accommodate
inputs comprising both historical round data and discovered
CP score. The model incorporates an LSTM (Long Short-
Term Memory) layer designed to capture sequential depen-
dencies within the historical round data. On the other hand,
certain features, such as ’Gender’, remain constant through-
out the historical rounds. To effectively handle these fixed
features, they are fed into an MLP. The outputs from both
the LSTM and the MLP are concatenated, forming a compre-
hensive feature vector. This combined representation is then
passed through a final fully connected layer, followed by a
sigmoid activation function to facilitate binary classification.

The predicted probability P is calculated as the output of
the neural network fφ, where P = fφ(Input). The network
parameters φ are updated during the training phase by mini-
mizing the Binary Cross-Entropy (BCE) Loss function Lpred .
The BCE Loss function is defined as:

Lpred(P,Y )=−
1
N

N

∑
i=1

[Yi · log(Pi)+(1−Yi) · log(1−Pi)] (4)

Here, Pi represents the predicted probability for the i-th
sample, Yi is the corresponding true label (binary), and N is
the total number of samples. This loss function quantifies
the discrepancy between the predicted probability distribution
and the actual labels, guiding the iterative parameter updates
during training to improve the model’s ability to accurately
predict the probability of Cognitive Impairment based on the
selected features from the curated subset Xtop.

Results
In this study, we evaluate the performance of models: Logis-
tic Regression (LR), Random Forest (RF), eXtreme Gradient
Boosting (XGBoost), an Ensemble model and DGCog across
4 rounds of data. For ensemble learning approach, we utilize
stacking framework with XGBoost and RF as base models,
and LR serves as the meta-model. The hyperparameters for
baseline models are optimized using the GridSearchCV tech-
nique. Data instances are divided into 3 sets based on unique
IDs, maintaining a ratio of 6:1:3 for training, validation, and
testing.

Our network is implemented using PyTorch and CUDA,
and trained on an NVIDIA Titan XP GPU. The metrics in-
clude: Area Under the Receiver Operating Characteristic
Curve (AUROC), Area Under the Precision-Recall Curve
(AUPRC), Accuracy, Precision, F1-Score and Recall.

Persistent Indicators in Prediction Model
Our DGCog has exhibited increasing effectiveness through
successive causal iterations, as highlighted by the recurrent
identification of specific features across four rounds of data

collection. These variables encompass a broad range of
categories including demographic data (Age, Gender, Ed-
ucational Level, Job), health status (Self-assessed Health,
IADL, Heart Disease), lifestyle activities (Smoking, Sleep,
Social Activities), blood tests (Creatinine, Hemoglobin, Fast-
ing Blood Glucose, Uric Acid, Blood Weight), and physi-
cal examinations (Waist Circumference, Diastolic Pressure,
Hand Grip Strength, BMI, Weight). Significantly, these ele-
ments are not mere transient correlates; they are pivotal in-
dicators of cognitive health trajectories. As depicted in Fig-
ure 2, their enduring association with cognitive outcomes un-
derscores their potential as robust markers for monitoring and
predicting cognitive impairment.

Figure 2: River plot for 4 rounds of variables. Different colors
represent the categories to which the variables belong. The
presence of this color indicates that the variable is a predictor
variable in this round.

Performance in Predicting Cognitive Impairment

Model performance on different feature sets: We assess
the performance of 2 feature sets: models leveraging dynamic
top causality features (TopF) and models incorporating all
available features (AllF). In Round 1, TopF’s AUROC ranges
from 0.7422 to 0.7687, AUPRC from 0.1901 to 0.2232, while
AllF achieves higher AUROC (0.8316 to 0.839) and AUPRC
(0.299 to 0.3412). From Round 2 onwards, TopF consis-
tently outperforms AllF. Notably, in Round 2, TopF’s AU-
ROC ranges from 0.8266 to 0.845, surpassing AllF’s AUROC
(0.8163 to 0.8367). This trend persists in subsequent rounds
3 and 4, underlining the efficacy of prioritizing top causality
features for enhanced model performance.
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Table 1: Performance evaluation for Round 4 on full feature set and dynamic top causality feature set is presented, showcasing
mean values for each metric, with corresponding 95% confidence intervals (CI) in parentheses. The best value of each metric
is highlighted in bold.

All features
ROC AUC PRC AUC Accuracy Precision Recall F1

LR 0.8538 (0.8529-0.8548) 0.6466 (0.6432-0.6501) 0.8142 (0.8106-0.8179) 0.6247 (0.615-0.6343) 0.5395 (0.5308-0.5482) 0.5792 (0.5714-0.587)
RF 0.8412 (0.8377-0.8448) 0.6064 (0.5914-0.6213) 0.8201 (0.8124-0.8279) 0.6364 (0.6187-0.654) 0.5577 (0.5308-0.5846) 0.5959 (0.5753-0.6165)

XGBoost 0.8472 (0.8422-0.8523) 0.6186 (0.6025-0.6348) 0.8137 (0.8051-0.8224) 0.6315 (0.6084-0.6546) 0.5115 (0.4826-0.5405) 0.564 (0.5395-0.5885)
Ensemble 0.8477 (0.8445-0.851) 0.6189 (0.6061-0.6317) 0.8199 (0.8128-0.827) 0.6467 (0.6291-0.6644) 0.5288 (0.5077-0.55) 0.5811 (0.5629-0.5994)

Dynamic Features
ROC AUC PRC AUC Accuracy Precision Recall F1

LR 0.858 (0.8571-0.8589) 0.6337 (0.6311-0.6363) 0.8163 (0.8133-0.8192) 0.6341 (0.6256-0.6427) 0.5308 (0.5231-0.5385) 0.578 (0.5711-0.5849)
RF 0.8373 (0.8335-0.8412) 0.5975 (0.5864-0.6085) 0.8185 (0.8119-0.8252) 0.6318 (0.6141-0.6496) 0.5625 (0.5403-0.5846) 0.5939 (0.5778-0.6099)

XGBoost 0.8497 (0.8442-0.8552) 0.6091 (0.5947-0.6236) 0.8206 (0.8119-0.8293) 0.6495 (0.6268-0.6723) 0.5317 (0.5057-0.5577) 0.5858 (0.5626-0.6091)
Ensemble 0.8483 (0.8449-0.8517) 0.6145 (0.6047-0.6243) 0.8237 (0.8155-0.832) 0.6506 (0.6299-0.6713) 0.5518 (0.5267-0.5769) 0.5975 (0.5765-0.6184)
DGCog 0.8787(0.8786 - 0.8787) 0.7215(0.7213 - 0.7218) 0.8252(0.8252 - 0.8252) 0.6107(0.6104 - 0.6109) 0.8530(0.7060 - 1.0000) 0.6563(0.6538 - 0.6588)

Figure 3: Evaluating model performance across diverse cog-
nitive impairment sub-groups, including gender, accommo-
dation, childhood health, and education status. AUROC val-
ues of all models and the AUPRC of DGCog within these
sub-groups are shown. Childhood health comprises five cat-
egories: ’CH-MH’ (Much healthier), ’CH-SH’ (Somewhat
healthier), ’CH-AVE’ (About average), ’CH-SLH’ (Some-
what less healthy), and ’CH-MLH’ (Much less healthy). The
education category also encompasses five groups: ’NPR’
(Did Not Finish Primary School but can Read), ’ES’ (El-
ementary School), ’MS’ (Middle School), and ’LSE’ (Less
than lower secondary education).

Performance of DGCog across rounds: We conduct
multi-round experiments on our model, observing a notable
progression in performance. In Round 1, our model does not
surpass the baseline, attributed to its early stage and limited
data availability, resulting in an AUROC of 0.7555 (95%CI:
0.7554 to 0.7556) and AUPRC of 0.2035 (95%CI: 0.2034
to 0.2036). However, as subsequent rounds unfold and the
dataset accumulates, our model’s efficacy becomes increas-
ingly evident. In Round 2, it achieves an AUROC of 0.8595
(95%CI: 0.8594 to 0.8596) and AUPRC of 0.4067 (95%CI:
0.4066 to 0.4067). This trend continues with further improve-
ment in Round 3, reaching an AUROC of 0.9022 (95%CI:
0.9021 to 0.9023) and AUPRC of 0.5643 (95%CI: 0.5641
to 0.5646). In Round 4, our model consistently outperforms
all baseline models, attaining an AUROC of 0.8787 (95%CI:
0.8786 to 0.8787) and AUPRC of 0.7215 (95%CI: 0.7213 to
0.7218). The detailed Round 4 results are presented in Table
1, highlighting the significance of temporal data accumula-
tion and dynamic causal graph in showcasing the enhanced
performance and effectiveness of our proposed model.

Comparing our results with those of recent studies provides
valuable insights. (Liu, Zhang, Liu, & Chong, 2023) explored
the predictive value of machine learning in cognitive impair-
ment and found that RF showed high accuracy for various
outcomes at different time points (Year 2, Year 4, and cross-
sectional Year 4) with AUCs of 0.81, 0.79, and 0.80, respec-
tively. (Pu et al., 2023) utilized the least absolute shrinkage
and selection operator (LASSO) technique to select impor-
tant predictors and evaluated the discriminative power of the
model, achieving an AUC of 0.727. Our model’s superior per-
formance shows its potential to provide accurate predictions
of cognitive impairment, especially as it continues to evolve
with further data accumulation and refinement.

Cognitive Impairment Subgroup

To investigate the models’ capacity in discerning subtle varia-
tions within cognitive impairments, we conducted sub-group
analyses. Our evaluation systematically covers sub-groups
differentiated by gender, accommodation, childhood health
status, and education status, as detailed in Figure 3. We
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present the AUROC scores of all models across these 4 sub-
groups, with distinct colors representing the models’ perfor-
mance at various stages within each subgroup. Additionally,
we illustrate the AUPRC scores of our model across differ-
ent subgroups, providing detailed insights into the predictive
performance within each population subset. Notably, individ-
uals classified as illiterate and those with less than lower sec-
ondary education demonstrate better predictive performance.
Similarly, individuals whose childhood health status is cate-
gorized as ”Somewhat healthier” and ”About average” also
exhibit good predictive performance. These findings shed
light on the models’ ability to capture subtle distinctions
within specific demographic and health-related subgroups.

Discussion

In our study, we focused on improving the prediction of
cognitive impairment through a deep learning model that it-
eratively enhanced its effectiveness over 4 data collection
rounds. We identified key persistent indicators spanning de-
mographic, health, lifestyle, and physical examination cate-
gories. Our model leverages dynamic top causality features,
leading to superior performance from Round 2 onwards, as
evidenced by higher AUROC and AUPRC scores compared
to models using all features. Notably, the model’s predic-
tive accuracy improved with each round, achieving its best
performance in Round 4. Additionally, subgroup analyses
revealed nuanced predictive capabilities across different de-
mographics, with the model showing better performance for
individuals with lower education levels or average childhood
health. This progression underscores the significance of our
approach in enhancing the prediction and subsequent inter-
vention of cognitive impairment, by dynamically adjusting to
influential factors and capturing subtleties in various popu-
lation subsets. While longitudinal data allow us to observe
changes over time and improve our model iteratively, it may
not always be feasible to collect such data. However, our
dynamic model can also be applied to cross-sectional data,
widening its applicability.

Early detection of risk factors for cognitive impairment is
a fundamental strategy to prevent or minimize cognitive de-
cline, which in turn supports preventive intervention efforts.
The causality revealed in our study is substantiated by the
consistent identification of factors widely documented in sci-
entific literature as crucial for cognitive health. This rein-
forces the robustness and validity of the identified causal re-
lationships. For instance, obesity, as denoted by Body Mass
Index (BMI) and waist circumference, has been associated
with neuroinflammation and cerebral atrophy, both of which
play significant roles in the onset of cognitive decline (Ren
et al., 2021). Moreover, hand grip strength serves as an indi-
cator of overall muscular health, which, in turn, is connected
to cerebral wellness via vascular and metabolic mechanisms
(Fritz, McCarthy, & Adamo, 2017). The process of aging is
intrinsically linked to cognitive degeneration, attributed to the
cumulative impact of cellular and molecular alterations over

time.
The model’s interpretative capacity is particularly laud-

able, elucidating both direct and indirect pathways by which
various factors—such as sleep patterns (Keil et al., 2023), ed-
ucational attainment (Sattler, Toro, Schönknecht, & Schröder,
2012), and vascular health markers like diastolic pressure (Ou
et al., 2020) and Creatinine(Wang & Lu, 2023)—influence
cognitive functionality. This comprehensive analysis under-
scores the complex interrelation between biological markers,
lifestyle factors, and socio-demographic variables in deter-
mining cognitive trajectories, thereby underscoring the need
for interventions that are specifically tailored to these identi-
fied determinants.

Limitations. While the longitudinal nature of our data
confers a robust temporal dimension to our findings, the
model’s predictive accuracy is contingent on the quality and
completeness of the data inputs. Additionally, the generaliz-
ability of our results may be constrained by sample character-
istics and the variability of individual responses to the iden-
tified risk factors. Hence, our conclusions necessitate vali-
dation in larger, more diverse cohorts to solidify their appli-
cability across populations. The study is based on data from
CHARLS, which may limit its generalizability to other pop-
ulations. Future research could explore the application of the
model to diverse datasets to enhance the generalizability of
our findings.

Broader Impacts. By integrating dynamic causal graph,
our research advances the interdisciplinary field of compu-
tational psychiatry, fostering a more profound understanding
of cognitive impairment’s underpinnings. Beyond this, our
methodology has potential for application in various subfields
of cognitive science. For instance, in clinical psychology, our
methodology can aid in the development of personalized in-
terventions for individuals at risk of cognitive decline. By
identifying modifiable risk factors(such as physical activity
and sleep quality), clinicians can tailor interventions target-
ing specific lifestyle changes to improve cognitive health out-
comes. This research thus not only advances scientific un-
derstanding but also has the potential to inform policies and
practices that could mitigate the global challenge posed by
cognitive impairment and dementia.

Disciplinary Diversity & Integration. By harnessing dy-
namic causal computing methods, we have transcended tradi-
tional cross-sectional studies to capture the longitudinal inter-
play between diverse factors and cognitive impairment. This
advanced application unites domains such as neurobiology,
gerontology, and epidemiology, paving the way for holistic
models that reflect the intricate reality of human health and
disease progression.
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