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Abstract

Identifying serological markers of recent P. falciparum exposure for precision malaria
surveillance

By

Joanna Vinden

Doctor of Philosophy in Infectious Diseases & Immunity

University of California, Berkeley

Dr. Bryan Greenhouse, Co-chair
Dr. Eva Harris, Co-chair

Surveillance plays a key role in malaria control and elimination efforts by allowing for
informed and effective allocation of often limited resources. Current methods for
estimating malaria exposure are limited either by cost or accuracy. Serological data
offers the potential to provide inexpensive and accurate estimates of exposure, but to
date there is no consensus on which antibody responses are informative and how they
can be interpreted. Previous studies have been limited to single age groups,
transmission intensities, and geographic locations that are not generalizable across
populations. This dissertation describes an investigation into serologic biomarkers of
recent exposure to Plasmodium falciparum, the most deadly species causing malaria,
using samples from 8 cohort studies representing diverse populations. Using an
innovative approach that combined detailed individual-level exposure data,
high-throughput screening of hundreds of antibody responses, and robust statistical
methods, we were unable to identify a set of antibody responses predictive of recent
exposure that was generalizable across settings. Although universal seromarkers may
not exist, we found that accurate prediction of recent exposure was possible in a cohort
of return travelers, suggesting the potential for seromarkers to be developed for specific
settings, particularly those with limited cumulative exposure.
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Introduction

Background
Malaria is a significant global health burden with >200 million cases per year worldwide
causing roughly 400,00 deaths, primarily in African children less than five years old.1

Malaria is a blood-borne parasitic disease caused by protozoa of the Plasmodium
genus. There are five species of Plasmodium that infect humans, of which P. vivax and
P. falciparum are the most common. Whereas P. vivax causes the majority of cases in
Southeast Asia, the Eastern Mediterranean, and the Americas, P. falciparum – which is
the focus of this work–is the most fatal and accounts for >99% of malaria cases on the
African Continent.2

Plasmodium species have complex life cycles involving several morphological stages in
humans and mosquitoes. Infection in humans occurs through the bite of an infected
female Anopheline mosquito. Upon infection, the sporozoite stage of the parasite enters
the bloodstream and travels to the liver. Inside hepatocytes, the parasite reproduces
asexually and matures into merozoites, which rupture the hepatocyte and enter the
bloodstream to infect red blood cells. Infection of red blood cells marks the beginning of
the asexual erythrocytic stage of infection, which is responsible for the symptoms of
malaria. In the erythrocytic phase, merozoites cyclically infect red blood cells, undergo
asexual reproduction, and rupture the red blood cell to release merozoites that infect
more red blood cells. Eventually, some merozoites mature into gametocytes, which are
taken up by a mosquito, where sexual reproduction of the parasite occurs.3

Studying malaria epidemiology is complicated by clinical immunity,
multiplicity of infection, and heterogeneity of exposure
Infection with Pf leads to one of three clinical outcomes: severe malaria, uncomplicated
malaria, or asymptomatic infection. Severe malaria is the most deadly and is defined as
the presence of parasitemia with fever, anemia, and at least one severe outcome (i.e.,
coma, kidney failure, etc). Uncomplicated malaria is defined as the presence of
parasitemia with fever and with or without mild anemia. Asymptomatic infection is
defined as the presence of parasitemia with no fever. Outcome of infection is
determined by age and ‘clinical immunity’—immunity against the symptoms of malaria
(but not against infection).4 Clinical immunity develops gradually with repeated
infections such that, in a malaria-endemic setting, incidence of malarial disease peaks
in childhood, while incidence of asymptomatic parasitemia continues throughout life.5–7

Although clinical immunity does not offer protection from infection, it does result in
infections with lower parasite density, making these infections more difficult to detect.8
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Improved surveillance methods are critical for malaria control
Control and prevention of malaria depends on interventions such as insecticide-treated
bed nets, indoor residual spraying, and the use of artemisinin combination therapy.
Increased investment in access to malaria control measures between 2000-2015 led to
a substantial decrease in malaria burden.9 however, the decline has reached a plateau
as we face new challenges in malaria elimination.10

As transmission declines, exposure becomes increasingly heterogeneous, with a small
proportion of the population experiencing a majority of infections.11–16 To address this
challenge, WHO’s Global Technical Strategy emphasized improved malaria surveillance
as a necessary tool to detect and target resources towards transmission hotspots and
evaluate effectiveness of interventions.17 Particularly as global funding for malaria
control is decreasing,10 using surveillance data to allocate limited resources effectively
will be paramount to the success of intervention strategies.

Existing methods of surveillance are limited by high cost or low
accuracy
Clearly, affordable and accurate methods for measuring surveillance are essential.
Unfortunately, existing methods force a trade-off between cost and accuracy. The most
accurate methods to measure exposure, using cohort studies or entomological
methods, are time-consuming and far too costly for routine surveillance. The most
commonly used surveillance metric is the proportion of individuals in a population with
parasitemia, termed the parasite prevalence, or parasite rate (PR). PR is estimated via
cross-sectional studies, which are inexpensive and can be done rapidly. However, since
they only capture active infections at a single point in time, they may be biased by
seasonality or antimalarial treatment levels. At very high transmission intensities, the PR
becomes saturated—where a large change in transmission yields a small change in
PR—and at low transmission intensity a prohibitively large sample size is needed to
maintain statistical power.18 Further, the accuracy of PR is limited by the sensitivity of
the diagnostic test used. Because acquired immunity decreases parasite density of
infections, false negative tests caused by infections below the limit of detection will be
more likely with increased age and exposure.

The use of routine passive surveillance at healthcare facilities is another inexpensive
method of measuring exposure. In this case, detection may not be able to detect spatial
heterogeneity if information on where transmission occurred is not collected. The value
of these data also depends on the accuracy of the diagnostic test and the completeness
of reporting, which can vary significantly between settings. Further, these data will fail to
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capture asymptomatic cases and populations without access to formal healthcare
systems.

Serological methods of measuring exposure offer a means of
increasing accuracy of surveillance at low cost
Serological methods, which measure antibody responses against malarial antigens,
offer a means of measuring exposure that is both accurate and affordable.19–21 The
genome of malaria encodes over 5000 genes, hundreds of which are known to elicit IgG
antibody responses. The antibody response will have a distinct rate of boost and decay
following exposure, offering a wealth of information on previous exposure—if we know
how to interpret it. With serological data, samples from a cross-sectional study could be
used to detect exposure over a period of time, rather than being limited to active
infections as with PR. This would allow exposure to be estimated in low-transmission
settings with an achievable sample size, and resolution for detection of spatial hotspots
or changes in transmission over time. Although there has been increased interest in
recent years as to the potential for using serology for routine surveillance, currently
there is no consensus as to which antibody responses to measure in order to determine
recency of exposure.
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Chapter 1

Serological markers of recent Plasmodium
falciparum exposure in a cohort of Chinese overseas

laborers returning from sub-Saharan Africa

Abstract
Improving precision of malaria surveillance methods will be paramount to the effort to
eliminate malaria, particularly in areas of declining transmission. Using serological
responses to assess exposure at the individual level represents a potential method to
improve the power of surveillance methods by detecting infection over a period of time,
rather than at a single point in time. This would allow for accurate estimates using
smaller sample sizes, which will be vital in declining transmission or elimination settings,
where required sample sizes for detecting infection at a single time point become
prohibitively large. Currently, few studies have investigated which combinations of
antigen-specific antibody responses are predictive of recent exposure, and there is no
consensus between studies on which antigens to use. In this study, we measured
antibody responses against a panel of 19 malarial antigens (18 Pf antigens and one
mosquito salivary protein) in plasma samples taken at varying times post infection from
a cohort of Chinese nationals who tested positive for Pf malaria upon return from
sub-Saharan Africa where they were overseas laborers. We find that several
combinations of antigens can predict exposure within the previous 6 months with
sens95 (sensitivity at 95% specificity) above 50%. Future studies will be required to
assess the validity of these results in individuals with endemic exposure levels.

Introduction
The promising decline of the global malaria burden achieved in the early 2000s has
plateaued since 2015 as countries with declining endemicity face new challenges in
malaria control.22 Among the main challenges is the increasing heterogeneity of malaria
exposure that occurs with declining endemicity, making it increasingly relevant to target
limited resources to the areas where they will have the most impact.23–25 Improved
surveillance systems to better identify hotspots and evaluate interventions will be
important in overcoming this challenge, as outlined in the WHO Global Technical
Strategy for Malaria.26
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Currently, most malaria surveillance programs rely on clinical case counts and
prevalence surveys.27 Clinical case counts can help identify where malaria is occuring,
but fail to capture asymptomatic cases and exclude subpopulations that do not engage
in formal healthcare. Prevalence surveys in low transmission settings require sample
sizes that are prohibitively large.

Using serology to detect recent exposure (i.e. identifying individuals with at least one
infection in the previous 6 months) could improve the accuracy and power of
surveillance methods over incidence and prevalence measurements alone, particularly
in low transmission settings.19,28 By capturing infections that occurred over a period of
time rather than at a single time-point, testing for recent exposure requires smaller
sample sizes than testing for active infection, or alternatively offer more spatial
resolution for a given sample size. It could also capture recently cleared infections that
have contributed to transmission. Additionally, being able to detect infections over a
period of time could add flexibility to the timing of active surveillance.

Antibodies present an opportune method of measuring recent exposure as they remain
detectable for months to years after infection. Further, antibodies can be measured with
relatively simple assays, including inexpensive laboratory-based assays and
point-of-contact tests, which makes them a feasible option for surveillance programs in
resource-limited settings. For low transmission settings in particular, antibodies against
AMA1 and MSP1 have been shown to be strongly linked with population-level
cumulative exposure.29–32 However, a serological tool that provides accurate information
about the recency of infection has yet to be developed.

A small number of studies have identified individual level seromarkers of recent
exposure to P. falciparum in different settings,33,34 but there is no consensus between
these studies on the optimal seromarkers to use. At an individual level, the magnitude of
the antibody response is dependent not only on the time since the most recent
exposure but may also depend on the also the individual’s number and timing of prior
exposure throughout life.35 Therefore it is possible that the performance of putative
seromarkers may vary based on factors including the transmission intensity of the
setting and the age distribution of the population.

Studies in returned travelers to non-endemic areas offer a way of observing antibody
responses to natural infection in individuals with limited pre-existing immunity and in
complete absence of reinfection. A study by Yman et al investigated the kinetics of
antibody responses against 111 Pf antigens in 65 return travelers followed longitudinally
after a natural malaria infection. They identified panels of 5 serological markers that
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could detect exposure within 3 months with sensitivity and specificity above 80%. These
results are promising but have yet to be replicated in a larger population.

In order to investigate seromarkers of recent exposure in return travelers, we
established a cohort of Chinese overseas laborers who tested positive for malaria upon
return to China from sub-Saharan Africa. Samples were collected from a range of
time-points since antimalarial treatment and were probed with a Luminex panel of 19
malarial antigens selected for their potential to provide information on Time Since
Infection) based on previous studies36. We demonstrate that in this population, we can
use a small set of antigens to predict recent exposure with reasonable accuracy.

Results
The study population consists of 99 Chinese adults, nearly all males aged between 22
and 64 years, who spent varying durations (ranging from 2 weeks to 3 years) working
as overseas laborers in Sub-Saharan Africa (Table 1, Supplemental Table 1). Overseas
labor placements occurred in 20 countries across West, Central and East Africa, with
Nigeria and Angola as the most common countries visited. Most participants were
sampled once (93), but 2 participants were sampled three times and 4 participants were
sampled twice. For the purposes of our analyses, all samples were treated as
independent.

Our study assessed antibody responses to a panel of 19 Plasmodium falciparum
antigens . On average, the breadth of antibody responses, defined as the number of
antigens for which antibody levels exceeded two standard deviations above the mean of
naive controls was 8, but declined as a function of time since infection from a median
(IQR) of 12 (8-16) in the first 3 months after infection to 6 (3-9) after one year (Figure
2b). MFIs of antibody responses against single antigens showed varying negative
non-linear associations with TSI. On average, MFIs decreased by 50% (range 22-68%)
during the first 6 months after infection (FIgure 1a and 2c). Notably, antibodies against
GLURP and ETRAMP5 displayed the strongest correlations with Time Since Infection
(TSI), with correlation coefficients of -0.42 and -0.33, respectively (Fig 2a).

We next assessed the ability of antibody responses to predict whether individuals had
been recently infected (defined as an infection occurring in the 6 months prior to sample
collection). We calculated area under the receiver operating characteristic curve (AUC)
as a general measure of classification performance, and sensitivity at 95% specificity
(sens95) as a more relevant measure of the potential utility of antibody response(s) for
surveillance. The average AUC and sens95 of the single antigen predictors was 0.68
(range 0.56-0.82) and 27% (range 12-41%), respectively. In terms of overall
classification, GLURP.R2 emerged as the best performing single antigen predictor, with
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an AUC of 0.82 (sens95 35%). However, MSP2.Dd2 had the highest value of sens95 at
41% (AUC 0.70) (Figure 3).

In order to identify a parsimonious combination of antigens that maximized predictive
accuracy, we evaluated random forest models using all possible 2-5 way combinations
of the 20 antigens. We evaluated cross-validated prediction performance using both
AUC and sens95. There was modest improvement in the best cvAUC with each increase
in panel size from 1 to 5 antibody responses, with GLURP included in all of the best
combinations. sens95 also improved with each increase in panel size from 1 to 5
antibody responses. The overall best sens95 of 68% was obtained for a panel of 5
antigens: CSP, Hyp2, MSP2.CH150, Rh2.2030, and Rh5.1. Out of 21,699 possible
combinations, 220 had sens95 of 50% or above. Of these, MSP2.CH150, Hyp2,
GLURP.R2, CSP, and Rh2.2030 were present in 115, 106, 105, 93, 82, respectively
(Table 2). All combinations of the 6 antigens most frequently included in the best
performing combination models showed robust performance, with AUC ranging from
0.86-0.91 and sens95 ranging from 0.32 to 0.62 (Figure 4).

We also assessed the predictive accuracy of combinations of antibody responses using
a random forest classifier that incorporated all 20 antigens. Combining all responses
provided a modest improvement over single antigen performance (cross-validated AUC
(cvAUC) of 0.86 (95% CI: 0.79 to 0.93) vs. 0.82 for the best single antigen (Figure 5a).
Improvements in sensitivity were even more modest, with sens95 improving from 27%
from a single antigen to 41% (95% CI: 21 to 62%) with all 20. GLURP demonstrated the
highest variable importance within this model, followed by Rh2.2030 and MSP2.Dd2
(Figure 5b).

Discussion
Our study assessed the ability to use antibody responses to predict whether individuals
had been infected with Plasmodium falciparum in the previous 6 months. We screened
plasma samples from 99 returned travelers for IgG antibody responses against 18 Pf
antigens and one mosquito salivary antigen. While responses to single antigens failed
to achieve sensitivities (at 95% specificity, sens95) above 40%, we found that several
combinations of antibody responses accurately predicted recent exposure with a
sens95 above 50%. Ultimately, a useful serological tool for routine surveillance would
require higher specificity and benefit from higher sensitivity than the combination of
antigens and assay evaluated here, particularly in low transmission settings where
detection methods with 95% specificity will yield more false positives than true positives.
However, the performance achieved by combination models in this study from a limited
panel of 19 antigens evaluated using a generic bead-based platform demonstrate the
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potential for serological tools to be developed with further development of antigen
panels.

Many combinations of antibody responses were able to predict recent exposure with
sens95 above 50%. In particular, combinations from a subset of 6 of the 19 antigens
used in this study (GLURP.R2, Hyp2, CSP, Rh5.1, MSP2.CH150, Rh2.2030) had better
performance than combinations including other antigens. Interestingly, although
MSP2.Dd2 had the highest sens95 when evaluated independently, it did not improve
performance of models in combination with other antigens. These results indicate that
while all combinations are not equivalent, there are several interchangeable
combinations of antigens that may provide useful information on recent exposure.

To date, few other studies have attempted to identify seromarkers of exposure using
cohorts of individuals with known exposure levels. Two studies in particular, by Helb et
al and Yman et al have used machine learning methods to identify seromarkers
predictive of recent infection.33,34 Yman et al identified candidate seromarkers from a
cohort of 65 adult returned travelers followed longitudinally after a natural malaria
infection. They identified combinations of 5 antibody responses that were able to predict
exposure in the previous three months with >80% sensitivity and specificity. Eight of the
111 Pf antigens assessed in their study were included here, including three of the 28
identified as informative in the prior study. Of these three, only one (MSP2) was found to
be reasonably informative here.

Helb et al identified candidate seromarkers using a cohort of children in two malaria
endemic regions of Uganda. Whereas in cohorts of return travelers there is no
possibility of reinfection, in endemic areas TSI is measured using data from monthly
active follow-up visits where children are monitored for parasitemia via microscopy.
They identified combinations of 3 antigens that accurately classified exposure in the
previous 6 months with an AUC of 0.86, which is comparable to the AUCs generated
from the combination models here. Of the 655 Pf antigens assessed by protein
microarray in Helb et al, 12 were included in our study’s Luminex panel (GLURP, Hyp2,
Rh5.1, CSP, Etramp5, Rh2.2030, PfAMA1, Etramp4, EBA140.RIII.V, Gexp18, PfMSP19,
EBA175.RIII.V). Of the 31 antigens selected by Helb et al as informative of recent
exposure, 7 were included in our Luminex panel (Hyp2, CSP, Etramp5, PfAMA1,
Etramp4, Gexp18, PfMSP119), of which Hyp2, Etramp5, and CSP were also found to
be informative in our study. Surprisingly, between this study, Yman et al, and Helb et al,
no marker was selected as informative across all 3 studies. The lack of overlap between
the antigens identified in these studies underscores the difficulty in identifying
serological responses that can provide accurate estimates of exposure across
populations with different Plasmodium falciparum exposure histories, including the
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intensity, timing, and possibly genetic makeup of parasites, presence of other
Plasmodium species, and genetic and environmental factors influencing the host
response. Further, differences in the quality of antigen expression and antibody
detection may affect results significantly.

One of the main motivations for identifying robust markers of recent exposure is to
improve malaria surveillance, particularly in regions of low or declining transmission.
Because the magnitude of an individual’s antibody response is dependent not only on
the time since the most recent infection, but also the prior history of infection35, the
responses measured in our cohort of return travelers in this study is unlikely to be
representative of individuals living in some endemic areas who will have higher levels of
historic exposure. It is possible that elimination settings could be comparable, but
further studies will need to be conducted. Additionally, as the cohort only included adults
and was 94% male, further studies will need to be done to compare results in children
and women.

Our results were generated using a magnetic bead assay of 18 Pf antigens and 1 An.
gambiae antigen that were selected based on results from previous studies of
seromarkers of recent exposure.37 This study has demonstrated that many of the 19
antigens are moderately informative of recent exposure when considered in
combination, however there may be antigens not included in our assay that could
further improve performance. Further, antigen quality may have a large impact on
results. A study by Kobayashi et al assessed antibody responses to antigens produced
as both IVTT-expressed exon products as well as E. coli-derived purified proteins on the
same protein microarray and found that in many cases, reactivity to purified protein was
significantly higher.38 Although the antigens used in this study were purified, it is
possible that further optimization of the expression system could better mimic protein
folding in biological settings which may enhance reactivity. Future studies will be
needed to assess more potential seromarkers and antigen expression systems.

Methods

Sample collection
Study participants were selected from a retrospective study of imported malaria cases in
Jiangsu, China as described previously.39 Briefly, imported malaria cases were identified
using routine surveillance data from China Information System for Disease Control and
Prevention (CISDCP), the national disease reporting system in China. Serum samples,
as well as clinical information and travel history were collected at follow-up
investigations as part of the study. Time Since Infection (TSI) was calculated as the
number of days between malaria treatment and sample acquisition.
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P. falciparum antigens
Magnitude of antibody responses to a panel of 20 recombinant antigens (18 P.
falciparum antigens, 1 mosquito salivary antigen, and tetanus toxoid) was measured
using a Luminex platform as described previously.40 All antigens were expressed via
E-coli GST-tagged fusion proteins except for AMA-1, which was expressed in Pichia
pastoris as a histidine-tagged construct.41 Antigens included in the panel were selected
based on association with exposure or protection in previous studies. Namely,
PfAMA1,41 PfMSP1-19,42 GLURP R2,43 MSP2 CH150,44 MSP2 Dd244 were included as
markers of historic exposure; Etramp4 Ag2,45 Etramp5 Ag1,45 GEXP18,33 HSP40 Ag1,33

Hyp2,46 SBP1,47 PfSEA-1,48 gSG649 as markers of recent exposure and Rh2 2030,50

Rh4.2,51 Rh5.1,52,53 EBA140 RIII-V,54 EBA175 RIII-V,54 CSP55 as markers of protection.
Tetanus toxoid and glutathione S-transferase (GST) were included as internal controls
for vaccine reactivity and GST-tag cross-reactivity, respectively. However, many of the
study subjects were not vaccinated against tetanus,56 and thus did not show reactivity.

Multiplex bead assay to measure IgG response
Antigen-bead coupling concentrations were optimised and coupled to MagPlex
microspheres, or “beads”, as described previously.20 Patient plasma samples were
diluted 1:400 in Luminex assay buffer B (1xPBS, 0.05% Tween, 0.5% BSA, 0.02%
sodium azide, 0.1% casein, 0.5% polyvinyl alcohol, 0.5% polyvinyl pyrrolidone, 15.25
g/mL E. coli lysate) the day before screening and stored overnight at +4°C.
Total IgG responses to the antigen panel were measured using a multiplex bead array
assay described previously.20 Briefly, 50 µl of a pooled antigen-coupled bead
suspension was added to each well of a 96-well plate, washed with PBS/Tween-20 and
incubated with 50 µl of 1/400 sample plasma. for 1.5 hours at 700RPM on a shaking
platform at room temperature. A 6-point, 5-fold curve of pooled hyperimmune serum
from Tanzania (CP3) from 1/10 was included on each plate to control for inter-plate
variability, and two wells containing buffer B served as blanks. In addition to the 111
samples from returned overseas laborers, serum from 10 malaria-naive UK residents
(Public Health England, 2016) were run as negative controls. Plates were then washed
(PBS/Tween-20) and incubated for 1.5 hours with 50ul of fluorescent secondary
antibody (Jackson Immuno 109-116-098: Goat anti-human Fcy-fragment specific IgG
conjugated to R-Phycoerythrin (R-PE) at 700 RPM at room temperature. After washing,
plates were incubated with 50ul of Luminex assay buffer A (1xPBS, 0.05% Tween, 0.5%
BSA, 0.02% sodium azide) for 30 minutes at 700 RPM at room temperature. After a
final wash, 100ul of PBS was added to each well and the plates were read on a MagPix
bioanalyser and xPONENT 4.2 software (Luminex Corp, Austin, Texas). The
background-adjusted median fluorescence intensity (MFI) of antibody responses
achieving a bead count >30 were measured using a MAGPIX© bioanalyser. The CP3
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curve on each plate was then used to standardise for inter-plate variability using loess
normalization.

Data Analysis
R (R: A language and environment for statistical computing, v4.1.1) was used for data
processing and analyses.

Recent exposure was defined as the infection having occurred within 6 months of
sample collection. All samples were categorized as obtained from either a “recently
infected” or “not recently infected” individual depending on whether or not they were
collected within this specified time frame.

To evaluate if the antibody response to any single P. falciparum antigen was informative
of recent exposure, binary classification using a threshold antibody level was applied to
the data for each of the 20 antigens individually using ROC analysis. Performance of
the threshold models was assessed by estimating the 5-fold cross-validated AUC, and
95% confidence intervals were estimated using the method described by LeDell et al.57

To assess the ability of combinations of antibody responses to predict recent exposure,
random forest classifiers were fitted to the dataset containing all 20 antigens, as well as
all possible two- to five-way combinations. Classifier performance and confidence
intervals were determined by 5-fold cross-validated AUC, as for the single antigen
threshold models. We assessed variable importance within these models using Mean
Decrease in Accuracy, a permutation test-based metric.58
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Table 1: Descriptive statistics of the study participants

Number of participants
99

Number of samples 107

Number female (%)
6 (6%)

Median age, years (range)
46.5 (22-64)

Median cumulative time of residency in endemic area, days (range)
220 (16-1222)

Median time since infection (TSI), days (range)
431 (2-2027)

Number of participants
returning from endemic
country

Country of travel

Angola 18

Nigeria 18

Equatorial Guinea 9

Republic of Congo 8

Guinea 7

Other 40
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Figure 1a: A heatmap of the MFI of the antibody response to each of
the 20 antigens included in the Luminex panel
Rows correspond to individual antigens while columns correspond to individual samples. Samples are
sorted from left to right by increasing TSI, except the 10 rightmost samples which come from naive
individuals from the UK. Antigens are sorted from top to bottom by decreasing average MFI across all
samples. Antibody responses against tetanus toxoid were also measured as a reactivity control, however
vaccination of children against tetanus did not begin in China until 1978, and thus many of the adults in
this cohort were unreactive.
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Figure 2: Antibody responses to a panel of 20 antigens show distinct
relationships with TSI

Figure 2a
Points are colored by country of travel category as in Table 1. The black line represents the mean plus 2
standard deviations of the MFI across all naive control samples.
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Figure 2b
Beeswarm plot overlaid with boxplot of the breadth of individuals’ antibody responses over time. Breadth
is expressed as the total number of antigens to which the individual has an MFI above that of the mean
plus two standard deviations of the naive control samples. The lower and upper hinges of the boxes
correspond to the first and third quartiles of the data and the center lines of the boxes represent the
median.
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Figure 2c
Beeswarm plot overlaid with boxplot of the mean MFI of individuals’ antibody responses across all 20
antigens over time. The lower and upper hinges of the boxes correspond to the first and third quartiles of
the data and the center lines of the boxes represent the median.
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Figure 3: ROC curves for classifying infection in the previous 6
months using threshold antibody levels to a single antigen
Colored curves correspond to the top 5 antibody responses that were most accurate in detecting infection
in the previous 6 months, with AUC 0.81, 0.77, 0.74, 0.73, and 0.72 for GLURP.R2, Etramp5.Ag1, CSP,
Rh2.2030, and HSP40.Ag1, respectively.
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Table 2: Comparing variable importance in combination models

Ag N models with
sens95 >50%

Ag selected as informative marker by

Helb, et al Yman, et al

Total number of
models

220 0 NA

GLURP.R2 105 0 NA

Hyp2 106 1 NA

CSP 93 1 NA

Rh5.1 67 0 0

Etramp5.Ag1 50 1 NA

MSP2.CH150 115 NA 1

Rh2.2030 82 0 NA

PfAMA1 53 1 0

MSP2.Dd2 37 NA 0

gSG6 58 NA NA

HSP40.Ag1 56 NA NA

Etramp4.Ag2 31 1 NA

PfSEA 36 NA 1

EBA140.RIII.V 44 0 0

Gexp18 14 1 NA

PfMSP119 33 1 1

Rh4.2 39 NA NA

SBP1 9 NA NA

EBA175.RIII.V 11 0 0

Tetanus Toxoid 16 NA NA
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Figure 4: Combinations of informative markers show robust
performance
ROC curves for random forest classifier models of all possible 5-way combinations of the top 6 most
informative antigens, MSP2.CH150, Hyp2, GLURP.R2, CSP, Rh5.1 and Rh2.2030
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Figure 5: cvAUC and variable importance from random forest model
fitted to data from all 20 antigens

Figure 5a
Gray curves represent individual cross-validated ROC curves from each fold of the 5-fold cross-validation
of the random forest model. The purple curve represents the overall ROC curve from all folds together.
The cross-validated AUC (cvAUC) is 0.86 with a 95% confidence interval of (0.79,0.93).
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Figure 5b
Dots represent the MeanDecreaseAccuracy value for a given antigen for each of the 5 folds of the cross
validated random forest model.
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Supplemental Table 1: Countries of travel for all participants

Country Number of participants

Angola 18

Nigeria 18

Equatorial Guinea 9

Republic of Congo 8

Guinea 7

Cameroon 5

Mozambique 5

Cote d'Ivoire 3

Democratic Republic of Congo 3

Sierra Leone 3

Togo 3

Zambia 3

Benin 2

Gabon 2

Ghana 2

Liberia 2

Uganda 2

Central African Republic 1

Malawi 1

Namibia 1

South Sudan 1
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Supplemental Figure 1: Longitudinally sampled participants mirror
the trends seen in the cohort as a whole
Colored lines represent individuals from whom multiple samples were collected. Light gray points
represent all other samples.
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Supplemental Figure 2: Participants who spent more than 1000 days
abroad do not show systematically increased antibody titers
Red dots represent samples from individuals who spent more than 1000 days in sub-Saharan Africa. Blue
dots represent all other samples.
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Chapter 2

Lack of accurate seromarkers of recent P. falciparum
infection that are generalizable across 8 cohort
studies

Introduction
Surveillance plays a key role in malaria control and elimination efforts by informing
effective allocation of limited resources and providing data to evaluate effectiveness of
interventions. Ideally, surveillance programs would rely on accurate estimates of the risk
of infection that can provide the spatial resolution necessary to identify hotspots of
transmission as well as the temporal resolution required to detect changes in
transmission over time.16,59–64 Unfortunately, existing methods force a trade-off between
cost and accuracy.18 The most accurate methods to measure exposure, using cohort
studies or entomological methods, are time-consuming and far too costly for routine
surveillance. More affordable metrics such as clinical case counts and parasite rate
(PR) are the most commonly used by surveillance programs. Clinical case counts can
help identify populations experiencing malaria at low cost, but fail to capture
asymptomatic cases and can only provide geographic data on where treatment is
occurring and not where transmission is. PR, defined as the proportion of individuals in
a population with parasitemia, only captures active infections at a single point in time
and can therefore be biased by seasonality. In high transmission settings, the PR
becomes saturated—where a large change in transmission yields a small change in
PR.19,20 In low transmission settings, a prohibitively large sample size is needed to
maintain statistical power.18

Using serology to detect recent exposure could improve the accuracy and power of
surveillance metrics at low cost. As antibody responses remain detectable for months to
years after infection has passed, samples from a cross-sectional survey could be used
to detect exposure over a period of time. Such surveys would be more statistically
powerful than detection of active infections at a single time-point and therefore require
smaller sample size than prevalence surveys or provide greater spatial resolution at a
fixed sample size.

Serological data have been used previously to accurately estimate levels of cumulative
exposure at the population level.30–32,65–68 However, population level estimates rely on
long-lived antibody responses, mainly against AMA1 and MSP1, and are not sensitive
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to small (less than log-fold) or recent changes in exposure.18 In order to leverage the full
potential of serosurveillance, we need to determine the relationship between antibody
responses and exposure and identify a set of antibody responses that can be used to
accurately predict recent infection (e.g. at least one infection in the previous 6 months)
at the individual level such that incidence can be estimated from cross sectional
surveys.
One way we and others have attempted to identify candidate seromarkers is to quantify
antibody response profiles against a large number of malarial antigens in individuals
with known Time Since Infection (TSI). Studies in returned travelers offer a way of
observing antibody responses to natural infection in individuals with limited pre-existing
immunity and in complete absence of reinfection. While useful, results from these
studies may not be generalizable to endemic settings. Assessing markers of recent
infection in endemic settings requires longitudinal cohort studies with frequent active
surveillance to detect asymptomatic infections.

Previous studies have identified candidate serological markers of recent exposure in
either return travelers or endemic settings, however to date there is no consensus
between studies on the optimal markers to use across settings. Two studies in
particular, by Helb et al and Yman et al have used machine learning methods to identify
seromarkers predictive of recent infection. Yman et al used samples from a cohort of 65
adult returned travelers followed longitudinally after a natural malaria infection to identify
combinations of five serological markers that were able to detect exposure within the
previous three months with >80% sensitivity and specificity.
Helb et al used samples from cohort of children in two malaria endemic regions of
Uganda to identify panels of three antigens that accurately classified whether an
individual had been infected in the previous six months with an AUC of 0.86. These
studies demonstrate that accurate estimates of recent exposure can be obtained from a
small set of antibody responses. However, the markers identified in each study do not
overlap, illustrating the need to determine whether serological markers of recent
exposure can remain accurate across populations.

Identifying markers of recent exposure of malaria in endemic settings is complicated by
the inherent relationship between recency and frequency of exposure. Antibody titers
are dependent on both TSI and cumulative number of infections experienced throughout
life. Individuals who are at higher exposure risk (i.e. living in high transmission settings)
will be infected more frequently, leading to higher cumulative exposure and
consequently higher antibody responses. At the same time, individuals infected more
frequently will have shorter TSIs on average. This confounding relationship may lead to
erroneously attributing relationships to TSI that are actually the result of higher
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cumulative exposure. To date, no existing studies have accounted for cumulative
exposure as a confounding variable.

In this study, we aimed to identify a parsimonious set of antibody responses that
accurately predict recent exposure (defined as at least one infection in the previous 6
months) across different populations. We used samples from 8 existing cohort studies
that span a range of age groups, transmission intensities, and geographic settings. We
used a novel method of sample selection designed to account for the confounding
effects of cumulative exposure.

Results

Studies and sample selection
Participants consisted of 1196 individuals from 8 parent cohort studies representing
varied geographic regions, transmission intensity settings, and demographics (Table 1).
The Ilaita, Mugil, Kampala, Jinja, Kanungu, Tororo and Kilifi cohorts were longitudinal
studies that took place in malaria endemic settings, where participants were followed by
active and passive surveillance for at least 1 year before the collection of the plasma
samples analyzed in this study. The Jiangsu study consists of returned travelers living in
China, where there is no risk of malaria exposure, most of whom were surveyed only
once post infection. Detection of parasitemia was done using molecular amplification
methods (LAMP or qPCR) for all study sites except Kampala, where only microscopy
was used, meaning subpatent infections could not be detected in this population.

Samples were selected for antibody profiling from the parent studies using a stratified
selection procedure to minimize confounding due to the inherent relationship between
time since infection (TSI) and cumulative exposure. Although most parent studies were
longitudinal, only one sample per individual was selected for this study.

The proportion of samples selected from individuals with recent infection (defined as at
least one infection in the previous 6 months) was highest for Mugil (90%) and lowest for
Kilifi (37%) (Table 2). The proportion of samples where the most recent infection was
symptomatic was highest in Jiangsu (100%) -- where all participants in the parent study
were identified by presenting with symptomatic malaria upon returning to China from
sub-Saharan Africa – and Kampala (84%), where subpatent infections were not
assessed (Table 2).

Antibody responses against 888 P. falciparum antigens show
Antibody profiles for all 1196 samples were measured using protein microarrays
containing 888 P. falciparum antigens (Figure 1). A subset of samples from the Jiangsu
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cohort were run in parallel on a Luminex panel containing 16 of the same proteins,
albeit not covering identical protein regions (Figure 2). Signals generated from the 2
assays were comparable for most antigens, with a mean correlation coefficient of 0.52
(IQR 0.42-0.68).

Overall, normalized signal from each of the 888 antigens decreased with increasing TSI
(Figure 3, Figure 4). Recent infection was associated with higher breadth, defined as
the number of antigen-specific antibody responses per sample with normalized signal
greater than 2 standard deviations above the mean of the naive controls (Spearman’s
correlation r = -0.25, P<0.001), as well as the mean signal intensity per sample (r =
-0.21, P<0.001) (Figure 4b).

Classifier models using combinations of antibody responses show limited
ability to predict TSI
To assess the ability to predict recent exposure status based on antibody responses, we
built classifiers to predict the binary outcome of whether an individual had been exposed
within 6 months prior to sample collection (Figure 5). We calculated area under the
receiver operating curve (AUC) as a measure of classifier performance. The average
AUC of single antigen threshold modelsl was (mean, range). PTP5 was the best
performing single antigen predictor, with an AUC of 0.66 (95% CI 0.62 to 0.69) .

We assessed the predictive accuracy of combinations of antibody responses using a
random forest classifier that incorporated all 888 antigens (Figure 6a). Combining
antigens did not provide substantial improvement over single antigen predictors (AUC
0.68, 95% CI: 0.64 to 0.72). PTP5 demonstrated the highest variable importance in this
model (Figure 6b). Downselecting the antigens included in the model to only the top 20
antigens by mean variable importance values did not improve performance.

Though performance of classifiers predicting recent exposure across all ages and
transmission intensity settings was low, we hypothesized performance might be better
within subgroups of the data defined by age or transmission intensity. We stratified the
samples into transmission intensity categories based on estimates of incident infections
per year generated from the parent studies (Table 1). Samples from the Jiangsu cohort
were placed in their own category because of the inherent differences in exposure
histories between travelers and residents of malaria endemic regions. We generated
random forest classifiers for each stratum using data from all 888 antigens (Figure 7a).
Performance of each category of the transmission-specific classifiers was at or below
that for all samples, except for the return traveler category, which had an AUC of 0.8
(95% CI 0.70 to 0.90) (Figure 7a). As the return traveler category was comprised only of
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samples only from the Jiangsu cohort, the higher performance of this category may be
due to other factors specific to the cohort, such as age of the study population.

Since immunity develops gradually with age and repeated infection, children are more
likely to have high density infections which may stimulate responses that are distinct
from those against low-density asymptomatic infections experienced by immune adults.
We hypothesized that there may be different sets of antibody responses most predictive
for different age groups. Again, most age-specific classifiers performed at or below that
for all samples (Figure 7b).

As no models were able to accurately predict recent exposure across different sites, we
hypothesized that there may have been site-specific relationships, due to either
biological or technical differences between sites. Site-specific prediction accuracy was
modestly higher than the combined data for two sites, Jiangsu and Kampala (Figure 7c).

Although they had similar performance, none of the antigens selected as most important
for each site’s classifier model overlapped. The Jiangsu and Kampala cohorts were
comprised very different participants – Jiangsu is a cohort of adults with limited
exposure history, and Kampala is a cohort of children living in a low to medium
transmission setting. However, an important similarity between the samples obtained
from these sites is that the majority of most recent infections were symptomatic.

To assess whether improved performance of Jiangsu- and Kampala-specific classifiers
was driven by the fact that these participants’ most recent documented infections (used
to calculate TSI) were primarily symptomatic, we stratified the samples by the type of
their most recent infection (symptomatic, patent, subpatent) (Figure 7d). Classifiers
built from samples whose most recent infection was symptomatic (whether that infection
occurred in the previous 6 months or earlier) outperformed other infection types, as well
the as all-sample classifier (AUC 0.75, 95% CI: 0.71 to 0.78).

Whereas symptomatic infections were treated upon detection in each of the parent
studies, asymptomatic infections were not. Clearance of untreated, asymptomatic P.
falciparum infections can last weeks or months,69 meaning endpoints of asymptomatic
infections are further from the onset of infection compared to symptomatic infections.
Because TSI was defined as the time since the end of infection, we hypothesized that
improved performance of classifiers for samples whose most recent infection was
symptomatic was driven by the shift in infection endpoint closer to the onset of infection.
To assess this effect, we calculated 3 TSI subtypes for each sample: time since the end
of the most recent infection (as before), time since the onset of the most recent
infection, and time since the most recent symptomatic infection (even if not the most
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recent infection). Classifiers built using each TSI subtype revealed no significant
improvement in AUC (Figure 7e).

Discussion
Whereas previous studies have been able to identify sets of antibody responses that
can accurately predict recent exposure within specific populations, it is yet to be seen
whether seromarkers can be identified that accurately predict exposure across diverse
populations. In this study, we generated a database of antibody responses against 888
P. falciparum antigens from 1196 plasma samples selected from 8 different cohort
studies representing different age groups, transmission intensities, and geographic
settings. Unlike previous studies, we used a novel, stratified sample selection algorithm
to account for the confounding relationship between cumulative exposure and Time
Since Infection (TSI). Combined antibody responses were only marginally informative
in predicting exposure in the previous 6 months across all studies (AUC of 0.69, 95%
CI: 0.63 to 0.73), and performance was not higher in any particular transmission
intensity or age group. Responses were modestly more informative in predicting recent
exposure among individuals whose most recent infection was symptomatic.

Of particular surprise was the lack of accuracy of classifiers even within a given site. A
previous study evaluated seromarkers of exposure in Ugandan children from the same
cohort in Kanungu as used here using a similar protein microarray. Although no
participants from the prior study were included here, the lower performance seen in this
study is notable (0.93 vs. 0.62, respectively). One key difference of our study compared
to the previous study is the use of stratified sample selection to account for the inherent
relationship between TSI and frequency of exposure, which will exist where exposure
risk is heterogeneous (i.e. nearly everywhere).6,70–75 Individuals who are at higher
exposure risk will be infected more frequently, which leads to shorter average TSIs and
higher levels of cumulative exposure. Without appropriately accounting for this
confounding in study design and analysis, associations seen between higher antibody
titers and short TSI may, at least in part, be reflective of higher cumulative exposure in
these individuals. While such results may be informative within a specific population,
they are less likely to be generalizable to populations with different or changing
transmission intensity.

The accuracy of our results for participants living in malaria endemic settings (7 out of
the 8 cohorts) is contingent upon accurate detection of each participant’s infections. In
individuals with partial immunity to malaria, this requires active surveillance for infection
in addition to passive surveillance for symptomatic malaria. Frequency of active follow
up in the 7 cohort studies in endemic areas ranged from every 4 weeks to every 12
months (Table 1). Any asymptomatic infections that occurred and were cleared between

30



active follow up visits were missed, which may lower the performance of classifiers by
generating false positives. The Jiangsu study, for which a site-specific classifier had
relatively higher performance, consisted of samples from return travelers living in China,
where there is no risk of reinfection. Lack of undetected infections may contribute in part
to the improved performance of classifiers for this site.

The ability of antibody responses to accurately predict recent exposure may also be
affected by antigen quality. One limitation of the high throughput protein microarray
approach is the potential for antigens to lack characteristics of natively expressed
protein. Specifically, the E. coli-based cell free IVTT system used to create the proteins
on the microarray used in this study lacks the proper redox environment for formation of
disulfide bonds,76,77 meaning that proteins may not be folded correctly. Although
polyclonal responses may include antibodies against linear epitopes that are not
affected by 3D protein structure, it is likely that conformational epitopes were missed.

In summary, these results suggest that antibody responses may not be able to
consistently estimate the timing of recent P falciparum exposure across populations in
different settings, at least in those with similar characteristics to those evaluated here.
Serosurveillance may be more accurate in very low transmission settings due to several
factors. Limited pre-existing immunity in very low transmission settings will cause less
background due to cumulative exposure. Further, with less immunity, infections are
more likely to be symptomatic, which may result in greater boosting and will also make
infections easier to detect. Efforts to identify the potential utility of precision
serosurveillance for P. falciparum may be most fruitful in these settings.

Methods

Study populations

Kanungu, Jinja, and Tororo, Uganda
The Kanungu, Jinja, and Tororo cohorts have been described in detail previously.78,79

Briefly, Between 2011 and 2016, comprehensive surveillance studies were conducted in
three sub-counties in Uganda: Jinja, Kanungu, and Tororo, under the Program for
Resistance, Immunology, and Surveillance of Malaria Cohort Study (PRISM).80 Jinja is a
relatively low transmission, peri-urban area near Lake Victoria in the south-central part
of the country. Kanungu is a rural area with moderate transmission intensity bordering a
national park in the southwestern part of the country. Tororo is a rural area in the
southeastern part of the country near to the border with Kenya which had high intensity
transmission at the beginning of the study, followed by low transmission due to the
success of an Indoor Residual Spraying (IRS) program – spraying households with long
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lasting insecticides as a means of malaria control.81,82 Transmission in all three areas is
perennial, with two annual peaks following the rainy seasons. Estimates of the annual
entomological inoculation rate at the beginning of the study were 2.71, 20.90, and
175.54 infectious bites per person-year in Jinja, Kanungu, and Tororo, respectively.83

Participants were recruited from randomly selected households within the catchment
area of the participating health facility at each of the three sites. All children aged 6
months to 10 years and a primary adult caretaker in each household were enrolled.
Participants agreed to come to the study clinic for any febrile illness and to avoid
anti-malarial medications administered outside the study. Study participants attended
the clinic at enrollment and then every 4 weeks for routine visits. Every 12 weeks,
plasma samples were obtained and subjects were tested for asymptomatic parasitemia
via microscopy and Loop-mediated isothermal amplification (LAMP), which is similarly
sensitive to PCR.84–86  

Kampala, Uganda
The Kampala cohort has been described in detail previously.87–89 Briefly, between
November 2004 and April 2009, children aged 1–10 years were surveyed in a
randomized trial of combination antimalarial therapies.90 Subjects were recruited from
the Mulago parish of Kampala, Uganda, a densely populated urban slum with an area of
approximately one square kilometer. The parish has a large swamp area which serves
as a breeding ground for mosquitoes. Malaria exposure in this area is mesoendemic
and inversely related to distance of residence from the swamp.91 Caretakers of study
participants were asked to bring their children to a designated study clinic for all medical
care. Children underwent routine assessment monthly for febrile illness, and every 12
weeks blood samples were examined via microscopy to identify asymptomatic
parasitemia.

Kilifi, Kenya
The Kilifi cohort has been described in detail previously.92 Between 1998 and 2016, the
Kilifi Malaria Longitudinal Cohort study surveilled subjects from Kilifi County at the
Kenyan coast.93–95 Specifically for this project, subjects were from an area within Kilifi
called Ngenyera, where malaria transmission was initially moderate but fell to low
transmission after 2002.96,97 Transmission was higher during the rainy seasons, with the
long rainy season occurring between May-July and short rainy season between
October-December. Children and adult caretakers from randomly selected households
were recruited into the study. Children born into the households were then subsequently
recruited into the cohort over time. Weekly follow-up visits were performed, where
axillary temperature was recorded, and a blood sample was taken for a malaria test by
microscopy (before 2006) or PCR (after 2006) only if fever was detected. Additionally,
cross-sectional blood samples were collected (whether febrile or not) to detect
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asymptomatic parasitemia at various timepoints over the years of the study. Between
1998 and 2005, blood samples were collected at the beginning of the rainy seasons in
May and October; in 2006, no samples were collected; in 2007, samples were collected
every three months; and from 2008 to 2016, blood samples were collected yearly.98

Mugil and Ilaita, Papua New Guinea
The cohorts in Mugil and Ilaita have been described previously.99–101 The study in Mugil
was conducted between January and September 2000 at elementary schools in the
Madang region, situated on the northern coast of Papua New Guinea where both Pf and
Pv are endemic.99 The study in Ilaita was conducted in children aged 1 to 4 in the Ilaita
area of Maprik District of Papua New Guinea.100 In both cohorts, children were
followed-up for symptomatic infection every two weeks, where blood samples were
collected and tested by PCR if fever was present. Every 4 weeks, children were
surveyed for asymptomatic infection, where blood samples were collected and tested by
PCR regardless of fever status.

Jiangsu, China
Samples from Jiangsu are from a unique cohort of overseas laborers returning to China
from 20 countries in West, Central and Southern Africa.39 Subjects were identified from
routine surveillance by China Centres for Disease Control and Prevention. All subjects
were diagnosed with falciparum malaria between January 2013 and June 2019, shortly
after returning from a malaria endemic country for the purpose of overseas labor. Blood
samples were collected between May 2018 and June 2019. Subjects were aged 22-65
at the time of sample collection and had spent between one month and four years
working abroad. Since malaria is not endemic to Jiangsu, this cohort represents a
unique opportunity to study serological markers that remain detectable several years
after exposure.

Microarray generation and probing
Antibodies from serum of all selected samples were quantified using protein
microarrays. Arrays contained 1024 printed protein spots, of which 888 were
Plasmodium falciparum antigens (TableAllProts) (Figure 1). Antigens were expressed
using methods developed by the Felgner lab.102–104 Details of the procedure have been
previously described.104 Briefly, proteins were expressed in cell-free E. coli-based IVTT
reactions from T7 plasmids with N-terminal poly-His and C-terminal hemagglutinin tags
for quality control. Whole (unpurified) IVTT reaction printed directly onto microarray
slides. In addition to the 888 antigens, each array also contained 28 IVTT control
reactions, termed NoDNA spots, that lacked expression plasmids.
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Probing the microarrays was done as previously described.102,105–108 Plasma samples
were diluted to 1/100 in protein array blocking buffer (GVS, Sanford, ME, USA)
supplemented with E. coli lysate (GenScript, Piscataway, NJ, USA) and incubated at
room temperature for 30 minutes. Arrays were rehydrated in blocking buffer for 30
minutes. After removing blocking buffer, diluted plasma was added to the arrays and
incubated overnight at 4°C on a rocker. Arrays were then washed with Tris-buffered
saline with 0.05% Tween-20 and incubated for 2 hours at room temperature with a
solution of 1/2000 anti-human IgG () in blocking buffer. Arrays were then washed with
TBST, rinsed with water, and air dried via centrifugation at 500g for 10 minutes.

Prepared slides were scanned at 532 nm using a GenePix® 4000B scanner (Molecular
Devices) and results obtained using the GenePix® Pro 7 software (Molecular Devices).
In addition to the selected samples, positive and negative control samples were run
each day an experiment was done. Positive control samples consisted of pooled serum
from highly immune Ugandan adults, and negative control samples consisted of serum
from malaria naive American adults.

Data normalization
The median fluorescent intensities (MFI) of the local spot background surrounding each
spot was subtracted from the MFI of each antigen spot. To account for variation
between arrays, MFIs were log transformed, and the average log-transformed signal
from the 28 NoDNA spots (for which IVTT reactions lacked an expression plasmid) on
each array was subtracted.

Prediction of recent exposure and evaluation of classifier models
R (R: A language and environment for statistical computing, v4.1.1) was used for data
processing and analyses.

Recent exposure was defined as the infection having occurred within 6 months of
sample collection. All samples were categorized as obtained from either a “recently
infected” or “not recently infected” individual depending on whether or not they were
collected within this specified time frame.

To evaluate if the antibody response to any single P. falciparum antigen was informative
of recent exposure, binary classification using a threshold antibody level was applied to
the data for each of the 20 antigens individually using ROC analysis. Performance of
the threshold models was assessed by estimating the 5-fold cross-validated AUC, and
95% confidence intervals were estimated using the method described by LeDell et al.57
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Table 1: Overview of cohort studies from which samples were
selected.

Site Country

Estimated
incidence rate
(infections
per person

year)

Date range
Frequency of
active follow

up

Infection
detection
method

Ilaita Papua New
Guinea 1.32 2000 4 weeks qPCR

Mugil Papua New
Guinea 0.59 2000 4 weeks qPCR

Kampala Uganda

1.23 near
swamp

0.59 far from
swamp

2004-2009 12 weeks Microscopy

Jinja Uganda 0.74 2011-2016 12 weeks LAMP

Kanungu Uganda 2.28 2011-2016 12 weeks LAMP

Tororo Uganda
3.58 before IRS

0.6 after IRS
2011-2016 12 weeks LAMP

Kilifi Kenya

2.74 before
2002

0.20 after 2002

1998-2016

Seasonal before
2007

Annual after
2007

qPCR

Jiangsu China 0 2018-2019 NA qPCR
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Table 2: Overview of selected samples

Site Country N samples
included

Age, mean
(range)

Proportion of
samples from
individuals
infected in
previous 6
months

Proportion of
samples

where most
recent

infection is
symptomatic

Ilaita PNG 153 3.7
(1.1-6.4) 0.82 0.27

Mugil PNG 81 9.9
(5.6-12.9) 0.90 0.43

Jinja Uganda 189 7.4
(2.2-12.7) 0.51 0.84

Kampala Uganda 206 12.8
(2.0-59.1) 0.51 0.41

Kanungu Uganda 197 13.3
(2.0-71.7) 0.60 0.59

Tororo Uganda 195 14.1
(2.1-66.6) 0.49 0.49

Kilifi Kenya 89 9.1
(2.1-15.6) 0.37 0.55

Jiangsu China 86 44.6
(22.0-44.5) 0.44 1.00
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Figure 1: Microarray layout

Figure 1a
Antigens and control spots were printed in 4 16x16 blocks. Control spots were repeated at different
locations throughout the array to account for spatial variation. Teal spots represent P. falciparum antigens
and colored spots represent control spots.
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Figure 1B: Example image of scanned slide
Arrays were scanned using a Genepix 4000b microarray scanner at 532nm before probing with plasma to
evaluate array printing quality.
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Figure 2: Results from Luminex panel run in parallel show
comparable signal to microarray
Results from 89 samples run in parallel on both Luminex and microarray assay. Suffixes for protein
names indicate location on the array, as some proteins were printed in duplicate.
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Figure 3: A heatmap of the antibody response to each of the 888 P.
falciparum antigens included in the protein microarray
Rows correspond to individual antigens while columns correspond to individual samples. Samples are
sorted from left to right by site, age category, and increasing TSI. Antigens are sorted from top to bottom
by increasing average MFI across all samples.
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Figure 4: Antibody responses to show distinct relationships with TSI

Figure 4a
Time since infection versus normalized signal for the antigens with the highest (PTP5, REX1, PHISTc),
middle (PF3D7_1030800, PF3D7_1466300, PF3D7_1244100) and lowest (RPS18, PF3D7_1355500,
PF3D7_1343100) correlation coefficients. Correlation coefficients from left to right: -0.27, -0.24, -0.24 (top
row), -0.10. -0.10. -0.10 (middle row), -0.03. -0.01. 0.00 (bottom row).
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Figure 4b
Boxplot of the breadth of individuals’ antibody responses over time. Breadth is expressed as the total
number of antigens to which the individual has a normalized signal above that of the mean plus two
standard deviations of the naive control samples. The lower and upper hinges of the boxes correspond to
the first and third quartiles of the data and the center lines of the boxes represent the median.
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Figure 5: ROC from single antigen threshold models across all sites
Threshold classifiers were built for each of the 888 P. falciparum antigens on the protein microarray.
Antigens with the 10 highest AUCs are represented in color. Suffixes on protein names indicate location
on the array to distinguish duplicate proteins. Tpr stands for true positive rate, fpr stands for false positive
rate.
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Figure 6: A random forest classifier incorporating all 888 P. falciparum
antigens shows limited prediction accuracy of recent infection across
all samples

Figure 6a
Gray curves represent individual cross-validated ROC curves from each fold of the 5-fold cross-validation
of the random forest model. The purple curve represents the overall ROC curve from all folds together.
The cross-validated AUC (cvAUC) is 0.68 with a 95% confidence interval of 0.66 to 0.71. Tpr stands for
true positive rate, fpr stands for false positive rate.

44



Figure 6b
Distribution of variable importance, as measured by MeanDecreaseAccuracy for the cross-validated ROC
in the above plot.
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Figure 7: ROC curves for stratified random forest classifier models

Figure 7a
Random forest classifiers were constructed for data stratified by transmission intensity of the parent study
site. AUCs are 0.68 (0.65-0.71) across all transmission categories and 0.68 (0.64-0.72), 0.68 (0.64-0.72),
0.62 (0.54-0.0.70), and 0.80 (0.70-0.90) for the [0 - 0.75), [0.75 - 1.5), [1.5-3.6], and traveler transmission
categories, respectively. Transmission intensity categories reflect bounds of the estimated incidence rate,
calculated as the number of incident infections per person-year follow up.
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Figure 7b
Random forest classifiers were constructed for data stratified by age category of the participant. AUCs
(95% CI) are 0.68 (0.65-0.71) across all age groups and 0.55 (0.48-0.61), 0.74 (0.70-0.78), 0.61
(0.46-0.75), and 0.75 (0.68-0.82) for the (2-5]), (5-15], (15-30], and (30-72) age categories, respectively.
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Figure 7c
Random forest classifiers were constructed for data stratified by site of the participant. AUCs (95% CI) are
0.68 (0.65-0.71) across all sites and 0.60 (0.48-0.72), 0.75 (0.58-0.91), 0.74 (0.67-0.81), 0.58 (0.50-0.66),
0.61 (0.54, 0.70), 0.69 (0.61-0.76), 0.55 (0.42, 0.67) and 0.80 (0.70-0.90) for Ilaita, Mugil, Kampala, Jinja,
Kanunga, Tororo, Kilifi, and Jiangsu, respectively.
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Figure 7d
Random forest classifiers were constructed for data stratified by infection type of the most recent infection
experienced by the participant. AUCs (95% CI) are 0.68 (0.65-0.71) across all sites and 0.75 (0.72-0.78),
0.60 (0.50-0.71), and 0.56 (0.50-0.62) for symptomatic (malaria), patent, and subpatent infection types,
respectively.
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Figure 7e
Random forest classifiers were constructed for data where time since infection was recalculated in 3
types: time since end of infection, time since beginning of infection, and time since most recent
symptomatic malaria infection. AUCs (95% CI) are 0.68 (0.65-0.71), 0.67 (0.61-0.72), 0.70 (0.63-0.73) for
TSIs calculated from end, beginning and most recent symptomatic infection, respectively.
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