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Sensors in daily life span applications from healthcare and climate modeling to home

automation and robotics. These sensors generate abundant time series data, aiding our un-

derstanding of various real-life processes. However, much of this data is “unlabeled”, that

is, without any annotations as to what the data itself refers to in an application. Also, unlike

images or text, time series data is challenging for humans to easily interpret and label. Unlike
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identifying, say objects in a picture, time-series data often requires human experts to analyze

using tools and interpret such data before any useful labels can be attached to the data. This is

expensive, especially in real-time settings. It is also not scalable due to costs and scarcity of

human annotators. Further, labeling data involving human subjects can compromise privacy and

security, resulting in a further shortage of labeled data.

Self-supervised learning, that is algorithms that learn from unlabeled data, has been used

to address the label scarcity problem by automatically generating pseudo-labels from data itself.

However, when applied to sensor data, these algorithms are suboptimal because they have not

been specifically adapted or customized for the sensory domain.

In this dissertation, we will develop methods to adapt traditional self-supervised learning

algorithms for sensory domain-specific information to mitigate label scarcity issue. Our approach

consists of three steps that can be applied progressively with increased effectiveness. First, we

integrate time-interval information of unlabeled data into self-supervised algorithms to build a

pre-trained model. Next, we fine-tune the pre-trained model by incorporating application-specific

knowledge into a self-supervised algorithm that improves the fine-tuning process. Finally, we

propose a sensor context-aware self-supervised algorithm to enhance classical fine-tuning that

generalizes to novel classes during testing.

We conduct extensive experiments across various sensory data domains, including Motion,

Audio, Electroencephalogram (EEG), and Human Activity Recognition (HAR), comparing our

methods to leading statistical and deep learning models. By adapting self-supervised algorithms

to sensory data with time-awareness, task-specificity, and sensor context-awareness, our methods

improve few-shot learning by 10%, fully-supervised learning by 3.6%, and zero-shot learning by

20% compared to the best baselines. Our framework demonstrates state-of-the-art performance

across sensing systems of various scales, from small-scale personal healthcare monitoring, human

action recognition, and smart home automation to large-scale smart building control, smart city

planning, climate modeling, and beyond.
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Chapter 1

Introduction

1.1 Growth of Sensing Technologies

Over the past decade, the integration of sensors into our daily lives has significantly

increased, driven by the rising demand for applications like healthcare monitoring, smart home

automation, high-accuracy motion capture in video games, and the growing adoption of green

energy technologies. IoT Analytics predicts that by 2027, there will be over 29 billion IoT

connections 1. According to Statista, revenue in the IoT market in the United States is at 343

billion in 2024 and is projected to increase by approximately +60% to reach 545 billion in 2028

2. Figure 1.1 illustrates the trend of global active IoT connections and the revenue across various

sub-sectors under IoT, including Automotive, Heathcare, Consumer, Industrial, Smart city, Smart

Finance, and others.

With the rapid expansion of sensor technology, its integration into our daily lives has

become crucial. These sensors are fundamental in automating and improving decision-making

processes, spanning from personal applications to large-scale industries like agriculture and

advanced manufacturing. The vast amounts of data generated by these billions of sensors, often

in the form of time series, hold immense potential. Applying machine learning is essential for

extracting meaningful insights from this data, allowing us to uncover the underlying dynamics

1https://iot-analytics.com/number-connected-iot-devices/
2https://www.statista.com/outlook/tmo/internet-of-things/united-statesrevenue

1
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Figure 1.1. The number of sensors covering diverse application domains, as well as their revenue
has significantly increased over the years.

Figure 1.2. Subject follows predefined protocol.

Figure 1.3. Subject conducts activities in-the-wild and a human annotator watches the subject
and labels the activities.

and patterns of the physical world and transform raw information into actionable knowledge.
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1.2 The Label Scarcity Problem

Despite the wealth of information captured by these sensors, a significant challenge

arises: most standard machine learning algorithms rely on labeled data to learn effectively.

Unfortunately, the majority of this sensory data is “unlabeled”, making it difficult for traditional

models to extract value. To address this issue, we have two main approaches: a) either label the

vast amounts of unlabeled data or b) design algorithms that can learn directly from unlabeled

data.

The first approach is hard for several reasons. Unlike, images, videos or text, it is chal-

lenging for humans to easily interpret and understand sensory time-series data by looking at it.

Hence, real-world sensory data is difficult to label. Consider training a Human Activity Recogni-

tion (HAR) system from wearable sensor data. Billions around the world carry smartphones and

smartwatches which are recording their motion data. However, it is difficult to recognize the

activity being conducted just by looking at the wearable data, for example, like the curves shown

in Figure 1.2. Without the label, this sea of wearable sensing data cannot be harnessed to train a

HAR system.

Most of the available labeled data in IoT is collected through experiments under two

different settings: 1) controlled experimental settings where subjects operate within a set of

predefined rules, as shown in Figure 1.2. For example, to collect labeled wearable sensing data

to train a HAR system, we define a set of protocols that a human subject follows, like 3 minutes

of running, followed by sitting for 10 minutes, followed by 5 minute of sleeping. 2) Subjects

conduct activities in-the-wild and a human annotator monitors the subject in real-time to label the

data, as shown in Figure 1.3. For example, we allow the subject to go about his daily activities as

usual and make the subject or a different person watch the subject in real-time to annotate the

motion data.

Undertaking experiments to collect large-scale sensing data involves high costs from

purchasing and deploying high quality, precise sensors, paying human subjects to participate
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in studies, paying human annotators to watch subjects and label data in real-time. Additionally,

experimental data is often less effective than real-world data because it may not capture the full

complexity and variability of real-world scenarios. External intervention during experiments can

distort the data because subjects, aware of being observed and recorded, may not act naturally,

resulting in less robust and generalizable data. Moreover, experiments involving recording and

watching human subjects raise security and privacy concerns. These challenges underscore the

difficulty of labeling the vast amounts of existing real-world sensory data and the complexities

involved in conducting real-time data labeling experiments.

The second approach to counter the label scarcity problem involves designing learning

algorithms that can learn directly from unlabeled data. This allows us to leverage the vast

amounts of existing real-world sensory data that are naturally collected. Using real-world data is

not only cheaper but more effective for training models because it captures authentic, diverse

scenarios, leading to more accurate and generalizable models.

1.3 Self-Supervised Learning (SSL)

Self-Supervised Learning (SSL) [29, 15] is a standard technique to learn from data

without requiring labeled training examples. Instead, the data provides the supervision. The key

idea is to generate supervisory signals from the data, creating pseudo-labels, which the model

can use to learn useful representations or features.

SSL involves designing pretext tasks where the model is trained to predict part of the

data from other parts. These tasks are designed to encourage the model to learn meaningful

features that can be useful for downstream tasks. Standard pretext tasks include masked data

reconstruction [46, 16] (predicting missing parts of an image), next token prediction [11, 21]

(predicting the next word in a sentence), or contrastive learning [47, 117] (bringing similar data

close while pushing away distinct data).

SSL has been widely explored in different domains, including natural language processing
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[138, 76], computer vision [44, 46], speech and audio processing [102, 53], time series [131, 35],

bioinformatics [96, 93], graph learning [123, 132], autonomous driving [110, 43], reinforcement

learning [136, 41], robotics [67, 1] and others.

Most SSL methods for time-series [144, 38] use standard techniques, like masked data

reconstruction or contrastive learning, from natural language processing and directly apply them

for time-series data. Some works, like [143, 118], use properties like similarity within temporal

neighborhood, to modify the existing SSL techniques for time-series.

However, images, text, audio, and standard time-series data differ significantly from

sensory time-series data in their structure and characteristics. Images rely heavily on spatial

coherence and visual patterns, where each pixel’s position and color contribute to the overall

visual representation [62, 3], which do not translate well to the irregularities and context-

dependencies of sensor data. Text data is sequential but based on discrete symbols (words or

characters) with semantic meaning [91, 4], making it inherently different from the raw, continuous

signals of sensor data. Audio data is also sequential and continuous, often representing variations

in sound over time, but it typically has a more uniform sampling rate and less complex temporal

dependencies than sensory data [82, 8]. Standard time-series data, like financial or weather data,

usually has a clear and consistent temporal structure [39, 33]. Self-supervision techniques for

standard time-series data might not account for the multi-modal, context-rich nature of sensory

data [99, 129]. Therefore, self-supervised algorithms developed for images, text, audio, and

standard time-series data often fall short when applied to sensory time-series data due to their

inability to capture the unique challenges of this domain.

In contrast, sensory time-series data, such as data from accelerometers, gyroscopes, or

other sensors, are often characterized by irregular time interval between successive data points,

asynchronicity across multiple features, contextual knowledge about sensors and the environment

in which they operate [24, 23]. It includes not only the raw measurements but also requires

understanding the context, such as the sensor’s position and the specific physical activity being

monitored, making it more complex and less predictable.
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Existing self-supervision methods do not adequately address the need for context-

awareness, time-awareness, and task-specific adjustments that are crucial for accurately in-

terpreting and generalizing from sensor data. Leveraging the unique properties of sensory data

can significantly enhance the effectiveness of standard self-supervision algorithms for sensory

applications.

1.4 Learning Pipeline

In this dissertation, we develop methods to adapt traditional self-supervised learning

algorithms to sensory data using domain-specific information to mitigate label scarcity issues.

We identify common sensory label constraint scenarios that arise at each of the three stages

of model development in a typical machine learning workflow: pre-training, fine-tuning and

zero-shot learning.

• Pretraining [66, 120]: This stage involves training the model on a large, diverse dataset,

often unrelated to the specific task we ultimately want to solve. The goal is for the model

to learn general patterns, features, and representations that can be broadly applied. During

pretraining, the model develops a strong foundation by understanding the underlying struc-

ture of the data, such as identifying edges and textures in images or semantic relationships

in text. This process often involves unsupervised or self-supervised learning techniques,

especially when labeled data is scarce.

• Finetuning [95, 113]: After pretraining, the model is adapted to a specific task or domain

by continuing training on a smaller, more focused dataset that is directly related to the

desired application. Finetuning allows the model to refine and adjust its learned features

to better suit the particularities of the task at hand, such as detecting specific objects in

images, recognizing certain activities from sensor data, or understanding domain-specific

language. This stage typically uses supervised learning, with labeled data guiding the

model to improve its performance on the specific task.
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• Zero-Shot Learning [135, 75]: In this stage, the model is tasked with recognizing or

making predictions about new, unseen classes or categories that were not included in the

training data. Zero-shot learning relies on the model’s ability to generalize from its prior

knowledge, often by leveraging relationships or similarities between the seen and unseen

classes. For example, the model might use semantic information, such as descriptions or

attributes, to infer the characteristics of the new classes and make accurate predictions

without needing additional training data for those classes. This stage is particularly useful

when it’s impractical or impossible to gather labeled data for every possible class or

scenario.

1.5 Human Activity Recognition (HAR)

We present our label-efficient sensor time-series analysis framework in light of one of the

more popular sensory application, Human Activity Recognition (HAR). HAR is the process of

identifying and classifying physical activities performed by individuals based on data collected

from various sensors [57, 54]. HAR is widely used in healthcare, fitness, smart homes, security,

workplace safety, transportation, gaming, retail, education, and personal assistance to monitor,

analyze, and enhance daily activities and behaviors through sensor data [68, 125].

HAR can be achieved using different types of data sources, including inertial mea-

surement units (IMUs) or wearable sensors, which capture motion data such as acceleration

and rotation [5, 56]. Alternatively, HAR can be performed using images [108, 124] or videos

[121, 84] from cameras, which provide visual information about the activities. Audio signals can

also be used to recognize activities by analyzing sound patterns associated with different actions

[85, 111]. Additionally, HAR can leverage Wi-Fi signals to detect movement and infer activities

based on signal disruptions and patterns [127, 17]. Another modality for HAR is Electromyo-

graphy (EMG) data, which captures muscle activity patterns, enabling precise recognition of

physical activities, particularly in rehabilitation and prosthetics control [107, 83].
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Table 1.1. Metric and directionality of IMU sensors.

IMU Accelerometer Gyroscope Magnetometer
Metric Linear Acceleration Angular Velocity Magnetic Field Strength
X-axis Left-Right Forward-Backward East-West
Y-axis Up-Down Left-Right North-South
Z-axis Forward-Backward Clockwise-Counterclockwise Upward-Downward

Wearable HAR is often considered the most effective compared to other modalities

because it directly captures movement data from the body, providing precise and continuous

monitoring without the need for external infrastructure. Unlike cameras, wearables do not raise

privacy concerns and can function in any environment, regardless of lighting or line of sight

issues [30, 63]. Unlike audio-based recognition, wearables are not affected by background noise

or the need for clear sound [25, 88]. Wi-Fi-based HAR, while convenient, can suffer from

signal interference and requires a controlled environment, whereas wearables offer consistent

performance regardless of external conditions [140, 40]. Moreover, wearables can be worn

comfortably throughout the day, providing rich, high-resolution data from sensors like accelerom-

eters, gyroscopes, and heart rate monitors, making them highly reliable for a wide range of

applications, from health monitoring to fitness tracking. This combination of accuracy, privacy,

and environmental independence makes wearable HAR the best choice among the available

modalities.

HAR utilizes the motion sensors embedded in everyday smart devices like smartphones

and smartwatches, which people typically carry on their bodies. These devices, equipped with

inertial measurement units (IMUs) sensors. IMU sensors like accelerometers, gyroscopes,

and magnetometers, measure linear acceleration, angular velocity, and magnetic field strength,

respectively, along the x-, y-, and z-axes. By analyzing this sensory data, collected from various

body positions, machine learning models can be trained to accurately predict physical activities

such as walking, running, or sitting. The effectiveness of HAR lies in its ability to interpret the

diverse signals generated by these Inertial Measurement Unit (IMU) sensors, making it a valuable
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Figure 1.4. Pipeline of our proposed label-efficient sensor time series analysis framework.

tool for applications in health monitoring, fitness tracking, and beyond. Table 1.1 outlines the

different types of IMU sensors, the metric they record and the directionality of those metrics

captured by different axes.

1.6 Proposed Framework

Figure 1.4 illustrates our label-efficient learning workflow in the context of HAR for the

three stages of learning pipeline. In Stage I, we use the time-interval property of sensory data to

adapt standard self-supervised algorithms to pre-train a model [23] (Chapter 2). In the next stage,

we use a small proportion of labeled data to train a task-specific self-supervised algorithm that

fine-tunes the model from Stage I [24] (Chapter 3). Finally, we consider the scenario where some

of the activity labels encountered in real-world may not be present in the training set. So we

design a sensor context guided self-supervised algorithm that can identify novel, unseen classes

without being trained on them (Chapter 4).

Our methods build on established self-supervised learning techniques, such as masked
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Table 1.2. Summary of contributions of our proposed data-efficient learning scheme for label
scarce sensory applications.

Stage I II III
Type of

Learning Pre-training Fine-tuning
Zero-shot
Learning

Label
Constraints No labeled data Few labeled data

No labeled data
for some classes

Self-supervision Data Reconstruction,
Contrastive Learning

Data Reconstruction
Contrastive
Learning

Domain
Property Time-interval Task-specificity Sensor Context

Model PrimeNet TARNet ZeroHAR

Time-series
Application

Classification,
Regression, Anomaly

Detection, Interpolation

Classification,
Regression, Anomaly

Detection, Interpolation
Classification

Chapter 2 3 4

data reconstruction and contrastive learning, and tailor them specifically for sensory domains

by incorporating unique sensory properties. Our label-efficient sensory learning workflow is

versatile and can enhance a wide range of applications, from smart buildings and smart cities to

healthcare, climate modeling, robotics, and beyond.

1.7 Contribution and Outline

We summarize our contributions and applications of the proposed framework for label-

efficient sensory learning in Table 1.2. The technical contributions in this dissertation are

supported by specific implementation tools that are available on the open-source Github reposi-

tory as described in the Abstract for each chapter. More specifically,

• Time-interval Aware Self-supervision [23] (Chapter 2) is the first representation learning

pre-trained model for irregular multivariate time-series. Many practical sensory applica-

tions involve irregular and asynchronous time series, for which the time intervals between

successive observations are non-uniform and different features are sampled at different

times. We use these time intervals as signals to design a time-sensitive contrastive learning
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and data reconstruction task to pre-train a model from unlabeled data. Experiment results

show that our method significantly outperforms state-of-the-art methods on naturally oc-

curring irregular and asynchronous data from Healthcare and IoT applications for several

downstream tasks, including classification, interpolation, and regression.

• Task-specific Self-supervision [24] (Chapter 3) fine-tunes the pre-trained model from

Chapter 2. During fine-tuning, it augments existing fully-supervised approaches for limited

labels by incorporating task-aware data reconstruction as an auxiliary task to the end task.

Recent studies suggest that learning a self-supervised representation from labeled data

before tackling the end task improves performance. However, because these tasks are

done sequentially, the self-supervised learning remains task-agnostic. Our approach runs

these tasks in parallel, allowing labels from the end task to inform and enhance the self-

supervised learning, making it more task-aware. We use self-attention score distribution

from end-task training to identify timesteps deemed important by the end task. We then

uses those timesteps to design a data-driven masking strategy for a data reconstruction

task. Extensive experiments on tens of classification and regression datasets show that

our method results in marked improvement compared to state-of-the-art baseline models

across all evaluation metrics under limited labeled data.

• Sensor Context Aware Self-supervision (Chapter 4) further refines the model from

Chapter 3 for zero-shot learning. Standard fully-supervised models assume that the

training data contains all types of labels that a model may encounter after deployment.

Our method breaks away from this assumption and designs a model that can identify

novel classes despite not being trained on them. We exploit sensor name and placement

information, which provide rich contextual information about sensors in complement

with motion data to contrastively align them. Finally, this model is trained further with

activity descriptions for classification. Experiments on datasets, containing a wide range of

sensors, placements and activities show that our method achieves remarkable performance
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improvement in zero-shot accuracy and macro-f1.

Overall, this dissertation effectively addresses the challenges of learning under different

scenarios of label scarcity in sensor time series, significantly improving the performance of

sensor time series analysis systems under label deficiency. We show that sensory applications

can be improved by a) better utilizing the large corpus of unlabeled data (Time-interval Aware

Self-supervision: Chapter 2), b) maximizing performance out of the limited labeled data (Task-

specific Self-supervision: Chapter 3), and c) transferring knowledge from the data for available

classes to improve performance on novel, unseen classes (Sensor Context Aware Self-supervision:

Chapter 4). The resulting framework has wide applications across sensing systems of various

scales, from small-scale personal healthcare monitoring, smart home automation, to large-scale

smart building control, energy management, climate modeling and beyond.
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Chapter 2

Time-interval Aware Self-supervision

Real-world applications often involve irregular time series, for which the time intervals

between successive observations are non-uniform. Irregularity across multiple features in a

multi-variate time series further results in a different subset of features at any given time (i.e.,

asynchronicity). Existing pre-training schemes for time-series, however, often assume regularity

of time series and make no special treatment of irregularity. We argue that such irregularity

offers insight about domain property of the data—for example, frequency of hospital visits may

signal patient health condition—that can guide representation learning.

In this work, we propose PrimeNet 1 to learn a self-supervised representation for irregular

multivariate time-series. Specifically, we design a time-sensitive contrastive learning and data

reconstruction task to pre-train a model. Irregular time-series exhibits considerable variations

in sampling density over time. Hence, our triplet generation strategy follows the density of the

original data points, preserving its native irregularity. Moreover, the sampling density variation

over time makes data reconstruction difficult for different regions. Therefore, we design a data

masking technique that always masks a constant time duration to accommodate reconstruction

for regions of different sampling density. We learn with these tasks using unlabeled data to build

a pre-trained model and fine-tune it on downstream tasks with limited labeled data, in contrast

with existing fully supervised approach for irregular time-series, requiring large amounts of

labeled data. Experiment results show that PrimeNet significantly outperforms state-of-the-art

1Code is publicly available at https://github.com/ranakroychowdhury/PrimeNet
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Figure 2.1. Augmenting time-series through different sampling techniques.

(a) Constant length masking for reg-
ular time-series.

(b) Constant length masking for ir-
regular time-series.

(c) Constant time duration masking
for irregular time-series.

Figure 2.2. Difference between constant time and constant length masking.

methods on naturally irregular and asynchronous data from Healthcare and IoT applications for

several downstream tasks, including classification, interpolation, and regression.

2.1 Problem Statement

Many real-world applications generate data with non-uniform time-interval between

successive observations. For example, sensors are triggered at irregular intervals driven by events

in real-life. Further, not all sensors are triggered at the same time. Thus, irregularity (in time)

and asynchronicity (across sensors) are natural characteristics of many time series that provide

rich insights into real-world events.

Naturally occurring irregularity in many datasets reflect intrinsic domain property about

the underlying system, which can be leveraged to learn the task better. For example, to predict

whether a patient is sick or healthy based on their schedule of doctor visits and medical test

results, the frequency of visits may be a useful signal, in addition to the physiological variables,

i.e. sick patients visit doctors more frequently than healthy ones. However, no regular time series

models, whether fully- [24], semi- [144] or un- [118] supervised, encode time information. They

assume constant time intervals between all consecutive observations in a sequence (regularity)

with all features observed at any given time (synchronicity) [80]. Hence, simply adapting

pre-trained regular time-series methods for irregular time-series is sub-optimal.

Recently, ODE- [100], attention- [105], and set- [50] based models that directly learn time
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Figure 2.3. Subsampling from irregular time-series results in non-representative samples.

information and encode irregularity have outperformed regular time series models on irregular

data. However, most of these irregular methods are fully- [100] or semi- [105] supervised,

requiring large amounts of labeled data. Data labeling in IoT is time-consuming and both

cost and labor-intensive as it involves physical sensor deployment and human annotators with

domain expertise. Moreover, accessing labeled data in healthcare may raise security and privacy

concerns.

To this end, we propose PrimeNet, the first pre-trained model for irregular multivariate

time series. Specifically, we design two time-sensitive tasks based on contrastive learning and

data reconstruction to build a self-supervised representation from completely unlabeled irregular

time series data.

Time-slicing [38], which chunks a time series into slices containing equal number of

readings, is commonly used to augment regular time-series data for contrastive learning. However,

it cannot generate representative sub-sequences for an irregular time series as irregular time series

exhibit significant variations in sampling density over time and the sampling density of a given

time slice may not mirror that of the entire time series. For an irregular time-series, time-slicing

the sequence generates an anchor and a positive, neither of which reflects the sampling density

variation of the original data (Figure 2.3).

Figure 2.1 shows augmented subsamples resulting from different sampling techniques.

The solid black line represents the time axis and an blue circle represents an observation in time.

A common sampling approach would be to randomly sample observations from an irregular time

series to construct a sub-sequence. However, an irregular time series may also exhibit significant

imbalanced occurrences of dense and sparse observations. Hence, random sampling will lead
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to high sampling bias, drawing observations from some regions but not others, resulting in an

unrepresentative sub-sequence. Our time-sensitive stratified sampling draws observations from

both dense and sparse regions, better reflecting the sampling density variation of the original

sample.

Instead, we propose a time-sensitive stratified sampling technique that draws observations

from dense and sparse regions of the time series and combine them to construct a sub-sequence.

The generated sub-sequences better reflect the sampling density variations and are, therefore,

more representative of the original data.

Masking and reconstructing observations learn a good representation for regular time-

series [144]. Figure 2.2 shows how data points within a time-series are typically masked. Grey

box shows the time duration of successive observations we mask under each masking technique.

For a regular time series, masking the same number of successive observations for every segment

(fixed length) will always mask over the same time duration of data because the sampling

density is constant (Figure 2.2(a)). However, for an irregular time series with inconsistent

sampling density, a fixed length mask segment will mask over a different duration for different

segments depending on their respective sampling densities (Figure 2.2(b)). Hence, the difficulty

to reconstruct data varies through an irregular time series, resulting in poor representations.

Therefore, we propose a fixed time masking technique that always masks over the same duration

of data instead (Figure 2.2(c)). This effectively adjusts the number of masked observations for

each segment depending on its sampling density, thereby stabilizing the reconstruction task

across regions of different sampling densities, and improving the learned representation.

We conduct experiments on naturally occurring irregular and asynchronous time-series

datasets from Healthcare [106, 58], Activity [59], and Energy [115]. We conduct analysis on very

few-shot settings and also on full training data settings for several downstream tasks, including

classification, regression, and interpolation. We compare PrimeNet to several 1) self-supervised

methods for regular time series to show how modeling irregularity helps and 2) fully supervised

methods for irregular time series to show the performance boost from using unlabeled data.
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Experiment results show that PrimeNet significantly outperforms all baselines on all datasets for

all downstream tasks, under both few-shot and full training data settings.

To summarize, our main contributions include:

• We present PrimeNet to learn a self-supervised representation from irregular and asyn-

chronous time series.

• We propose time-sensitive contrastive learning and data reconstruction to learn from data

irregularity patterns.

• We evaluate PrimeNet on numerous real-world datasets across several downstream tasks

to validate and quantify its efficacy compared with benchmark methods.

2.2 Related Work

2.2.1 Self-Supervised Regular Time Series Methods

Recent research on learning unsupervised representations from regular and synchronous

time-series performs well under limited labeled data settings, using triplet loss [38], hierarchical

contrastive loss [142, 22], Fourier transform [73, 146], task-aware reconstruction [24]. They

can be adapted to irregular time-series by discretizing continuous-time samples into uniformly-

spaced fixed-size bins [104, 147]. However, irregular time series are marked by regions of high

and low sampling densities. A wide bin would aggregate data in dense regions, resulting in a

loss of fine-grained details. A short bin would generate a high fraction of missing data in sparse

regions exploding the sequence length, making imputation increasingly difficult. Consequently,

imputation-based methods are hardly used to learn from such irregular time series. Moreover,

by treating irregular time series data like a regular one, they abstract the vital irregular time

information away from the model, inhibiting performance.

We exploit the irregular time-interval property to design our self-supervsion tasks to

pre-train PrimeNet, thereby learning suitable representations from unlabeled irregular and

asynchronous multivariate time-series data.
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2.2.2 Irregular Time Series Methods

Gated Recurrent Unit (GRU)-based methods [12] involve modifying the LSTM forget

gate [92] or introducing new time gate [87]. [13] combined a neural network with a latent

ordinary differential equation (ODE) model. [100, 69] used neural ODEs to model hidden state

dynamics. Others use attention mechanism [149, 116] similar to [122] by replacing positional

encoding with a fixed time encoding. [105, 61] learns time representation.

These models work under fully- or semi-supervised setting and require large amounts

of labeled data to learn a task. PrimeNet leverages unlabeled data to operate completely under

self-supervised setting. Once pre-trained, PrimeNet can learn any downstream task with limited

labeled data.

2.3 Notation

An individual data case is a N-dimensional, irregularly and asynchronously sampled

multivariate time series, D = (T,X,M), where T ∈ RS, X ∈ RS×N , and M ∈ RS×N . T denotes

the union of timestamps at which all the N features have been sampled and S is the number

of such timestamps. Let t and n represent a particular time and feature, respectively, in D. X

constitutes a sequence of S feature vectors. Xt ∈ RN represents the feature values sampled

at time t. This formulation also covers the uni-variate case when N = 1. However, since the

time-series is asynchronously sampled, not all the N features may be sampled at t. Hence, we

use masking variable M to denote the set of observed features. Specifically, Mt ∈ RN denote the

set of observed and unobserved features at t. If feature n is sampled at t, then Mtn = 1, otherwise

Mtn = Xtn = 0. Using M to deal with unobserved dimensions allows us to transform the irregular

length time-series into uniform length and parallelize computations, thereby enabling efficient

GPU implementation.

Our time-sensitive self-supervision tasks are model agnostic and can be plugged into

any irregular time series architectures, like ODE-, attention-, or set-based models, that explicitly
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encode time information. We follow a similar architecture to mTAND [105] because it is the

current state-of-the-art for irregular time series. Our model is pre-trained on unlabeled data using

time-sensitive contrastive and data reconstruction loss and then fine-tuned on available labeled

data for a given downstream task.

2.4 Model Architecture

We present PrimeNet’s core architecture - Time Embedding, Time-Feature Attention

(TFA) and Feature-Feature Attention (FFA), as shown in Figure 2.4.

Time Embedding [105] embeds continuous time points into a vector space by leveraging

H embedding functions φh(T), each outputting a representation of size dr. Dimension i of

embedding h is defined as:

φh(T)[i] =


ω0h.T+α0h, if i = 0

sin(ωih.T+αih), if 0 < i < dr

(2.1)

where ωih’s and αih’s are learnable parameters. Linear term encodes the non-periodic patterns.

Periodic terms captures periodicity with ωih and αih as frequency and phase.

Time-Feature Attention, TFA [105]

Time-Feature Attention captures the interaction between feature values with their corre-

sponding sampling times. The output from the Time Embedding layer forms the query QT and

key KT vectors.

TFA(QT ,KT ,M,X) = (M⊙AT )X,

AT = softmax(QT KT/dr)

(2.2)

We do an element-wise multiplication of M with AT to nullify the effect of unobserved
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Figure 2.4. PrimeNet Model Architecture Overview.

features in X at a given sampling time in T. We compute a weighted summation of features,

where weights are self-attention scores of features’ corresponding sampling time embeddings,

QT and KT .

Feature-Feature Attention, FFA [122]

Feature-Feature Attention models the self-attention within features. The output from

TFA becomes the query, key and value vectors for FFA.

QX = KX = VX = TFA(QT ,KT ,M,X) (2.3)

Then, FFA will encode the outputs from TFA as follows:

FFA(QX ,KX ,VX ,M) = (M⊙A)VX ,

A = softmax(QX KX/dr)

(2.4)

The output of FFA is fed through residual and feed forward layers like in a typical

Transformer Encoder. The data is fed through N such Encoders to generate the output X̃.
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2.5 PrimeNet Framework

We present two time-sensitive self-supervised pre-training objectives, namely, Time

Contrastive Learning (TimeCL) and Time Reconstruction (TimeReco). We discuss how we

augment the data, followed by loss computation details.

2.5.1 Time Contrastive Learning (TimeCL)

Augmenting data for contrastive learning through time-slicing or random sampling fails

to capture the irregularity in data, motivating our stratified-sampling based approach.

Data Augmentation

Contrastive learning [15, 48] augments observations from the same input to form an

anchor and positive (similar to anchor), while a sample from other in-batch inputs form the

negative (different from anchor). This pulls the latent space of the anchor and positive closer

while pushing away the negatives, learning good data representation [55, 72].

To better replicate the irregularity pattern of data, we maintain an approximate sampling

density distribution of the data in its augmented sub-sequences, as outlined in Algorithm 1. For

every sampling time Ti, we compute its mean time interval, Zi, by averaging the time lapse

between its immediate predecessor, Ti−1, and successor, Ti+1, to estimate the local density of

the sampled features at Ti (Line 1). We reorder Z and T in ascending order of Z and group T

into two bins, Tdense (lowest 50% Z-values) and Tsparse (highest 50% Z-values) (Lines 2 - 4).

We sample a proportion of the timestamps from Tdense and the remaining from Tsparse to form

the sampled timestamps of one augmented sub-sequence, TA (Line 6). The remaining T−TA

timestamps form the sampled timestamps of the other sub-sequence, TP (Line 8). This stratified

sampling technique ensures that we draw observations from regions of different sampling density

of D, regardless of how scarce the observations from certain regions are. Hence, the augmented

sub-sequence can better approximate the irregularity in D. To preserve asynchronicity of D,

we extract only the subset of features that was sampled together at a given time in D to form
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Algorithm 1. TimeCL Data Augmentation

Input: D
Hyper-parameters: (µl,µu), (λl,λu)
Output: DA, DP

1: Z←{ (Ti−Ti−1)+(Ti+1−Ti)
2 |∀i ∈ Z+,1 < i < S},Z ∈ RS

2: Sort (Z,T) in ascending order of Z
3: Tdense← T[1 : S/2],Tdense ∈ RS/2

4: Tsparse← T[S/2 : S],Tsparse ∈ RS/2

5: µ ∼ U(µl,µu),0 < µl < µu < 1
6: λ ∼ U(λl,λu),0 < λl < λu < 1
7: TA∼ Sample λ µS and (1−λ )µS timestamps from Tdense and Tsparse, respectively, TA ∈RµS

8: TP← T−TA, TP ∈ R(1−µ)S

9: DA,DP← (TA,XTA ,MTA),(TP,XTP,MTP)
10: return DA, DP

the feature set for that time in the augmented sub-sequence. Thus, DA = (TA,XTA,MTA) and

DP = (TP,XTP,MTP) form good quality anchor and positive sub-sequences, respectively, that

are representative of D, thereby improving contrastive learning.

Example 1 Consider the following sampling times for a given sample in seconds:
T = [2,5,12,16,17,19,21,22,24,26,27,34,38,47,53,60]
In this sample, we find that the data was sampled at a high frequency from timestamp 16 to 27,
but was sampled sparsely before and after these timestamps. To facilitate good representation
learning through contrastive learning, the augmented anchor and positive are supposed to be
similar to each other and to the original data point.
If we sampled a random continuous sub-sequence from the above data to construct the anchor
and positive, then their respective sampling times for the anchor, TA, and positive, TP, could
be as follows:
TA = [17,19,21,22,24], TP = [27,34,38,47,53]
In the above sampling procedure, the anchor was constructed from the dense part of the
original data, while the positive was constructed from the sparse part of the original data.
Hence, the resulting anchor and positive are neither similar to one another, nor to the original
data point.
The following shows how the anchor and positive will be augmented from the original data
point if we follow Algorithm 1.
We first compute the average density metric for each sampled point in the data,
Z = [3,5,5.5,2.5,1.5,2,1.5,1.5,2,1.5,4,5.5,6.5,7.5,6.5,7]
Sorting (Z,T ) in ascending order of Z, i.e, in order of increasing density,
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Zsorted = [1.5,1.5,1.5,1.5,2,2,2.5,3,4,5,5.5,5.5,6.5,6.5,7,7.5]
Tsorted = [17,21,22,26,19,24,16,2,27,5,12,34,38,53,60,47]
Constructing the bins Tdense and Tsparse,
Tdense = [17,21,22,26,19,24,16,2]
Tsparse = [27,5,12,34,38,53,60,47]
Considering λ = 0.4 and sampling a sequence of 5 timestamps for anchor and positive, then
the respective sampling times for anchor and positive could be as follows:
TA = [12,21,22,53,60], TP = [5,19,24,38,47]
TA was constructed from timestamps 21 and 22 of Tdense and timestamps 12, 53, and 60 of
Tsparse. Similarly, TP was constructed from timestamps 19 and 24 of Tdense and timestamps 5,
38, and 47 of Tsparse. The resulting anchor and positive are now more similar to each other
and to the original data point because they have representations from both the dense and
sparse parts of the series.

Contrastive Loss, LCL

For a given XA and XP, the XN is formed from all other instances in the same mini-batch.

We add a special [CLS] symbol in front of every input and pass it through an embedding layer.

The final hidden state corresponding to [CLS] is used as the aggregate sequence representation

for contrastive learning.

We use Normalized Temperature-scaled Cross Entropy (NT-Xent) Loss [15] as our

Contrastive Loss function. This has shown improvement over other contrastive losses, like CPC

[89] and MoCo [47], in several other domains [15]. It is a modification of the multi-class B-pair

loss, where B is the batch size, with addition of the temperature parameter, τ , to scale the cosine

similarities as follows:

LCL =− log
exp(X̃iX̃ j/τ)

∑
2B
k=1 exp(X̃iX̃k/τ)

(2.5)

2.5.2 Time Reconstruction (TimeReco)

Masking constant length of data across time is not suitable to learn reconstruction from

non-uniform time-interval data, prompting a constant time masking technique.
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Algorithm 2. TimeReco Data Augmentation

Input: D
Hyper-parameters: J, α

Output: DU , DV

1: XU ,MU ← X,M
2: XV ,MV ← initialized with 0′s
3: for n in N do
4: Tn = T[Mn], tn ∈ RLn

5: qn← α(Tn[−1]−Tn[0])
6: for j in J do
7: t ∼ Randomly sample a timestamp from Tn
8: XVn [t : t +qn],MVn [t : t +qn] = XUn[t : t +qn],MUn [t : t +qn]
9: XUn[t : t +qn],MUn[t : t +qn] = 0,0

10: end for
11: end for
12: DU ,DV ← (T,XU ,MU),(T,XV ,MV )
13: return DU , DV

Data Augmentation

Reconstruction for irregular time-series presents two key challenges. First, some regions

are more densely sampled than others. Therefore, masking a constant length of data will mask

over a shorter time-interval for a denser region compared to a sparser region, as shown in

Figure 2.2(b). Hence, reconstructing data at the masked segment may be trivial for the dense

region with abundant unmasked data in close temporal vicinity to use as contextual information

but difficult for a sparse region. Second, for multivariate time-series, each feature may have

different sampling frequency and may be sampled over different duration. Hence, each feature

has different time gaps between successive observations, i.e. asynchronicity, rendering a constant

length masking strategy ineffective.

To learn a better reconstruction for irregular time-series, we propose Algorithm 2. We

specify the number of masking segments J, and the fraction of time interval α , to mask for

each segment. To address the asynchronicity problem, we compute the timespan qn to mask

separately for each feature n (Line 5) because the total duration for which each feature lasts
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may vary. Features lasting shorter should have shorter masking segments as compared to those

lasting longer. To deal with irregularity within a time-series, we fix the timespan qn to mask

for feature n, instead of fixing the number of observations to mask. This adapts the length of

masking segment based on the sampling density of the time-series in the masking region, as

shown in Figure 2.2(c). For a given qn, a dense region will mask more observations than a

sparse region. Hence for denser regions, there will not be sufficient unmasked observations in

close temporal proximity of the masked segment to make the reconstruction trivial. Similarly

for sparser regions, the number of masked observations will be low, so there will be sufficient

observations in the temporal vicinity of the masked region to keep the task tractable. Lines 6 -

10 outlines this procedure.

Example 2 Consider the following sampling times for a given sample in seconds:
T = [2,5,12,19,28,37,45,47,49,50,51,53]
During masked data reconstruction for a regularly sampled time-series, we mask out multiple
contiguous non-overlapping segment of fixed length from different sections of the data and
predict the masked out values. Let’s consider that for the above timestamps, we mask out 2
segments, each of length 3. Then we could mask out the data corresponding to the following
timestamps,
First masked segment = [5,12,19]
Second masked segment = [47,49,50]
And the set of unmasked timestamps, TU , that can be used as context to infer the feature
values at the masked out timestamps are,
TU = [2,28,37,45,51,53]
As we can see, the first masked segment is derived from a sparse part of the data, while the
second masked segment comes from a denser part. It is more difficult to infer the features
values for the sparser part because there are too few data points in their temporal vicinity to
use as context, i.e. data points sampled at timestamps 2, 29 and 38 are too sparse to be used
as context, effectively. By the same logic, it is also much easier to infer the features values
for the denser part because there are many data points in their temporal vicinity to use as
context, i.e. data points sampled at timestamps 45, 51 and 53 are quite dense to enable easy
reconstruction of the masked out segment at timestamps 45, 51 and 53.

The difficulty of reconstructing a particular masked segment is dependent on the
number of data points in the masked segment that needs to be reconstructed and the number
of data points that are in the temporal vicinity of the masked out segment, since feature values
sampled closer in time tend to be more similar to each other than distant ones. Hence, if the
number of masked out data points between two segments are equal, then the reconstruction
task is easier for the denser parts than for the sparser parts because there are more data points
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in the temporal vicinity of a masked out segment in the dense region.
Therefore, in order to balance the difficulty of reconstruction between segments of

varying density in an irregularly sampled time-series, we must adjust the number of masked
out data points in each segment. The length of the masked out segment is adjusted based
on the density of the data in the masking region. We want to mask out fewer data points
from the sparser part so that fewer data points need to be inferred and there are more data
points available in the temporal vicinity of the masked out segment to be used as context.
This makes reconstruction easier for the sparser part. Similarly, we want to mask out more
data points from the denser part so that more data points need to be inferred and there are
more fewer points available in the temporal vicinity of the masked out segment to be used as
context. This makes reconstruction difficult for the denser part.

In order to achieve this, instead of masking out fixed length segments from different
parts of the data, we will mask out fixed time segments. Based on Algorithm 2, let’s consider
that we mask out 2 segments, each of a duration of 5 seconds. Then we could mask out the
data corresponding to the following timestamps,
First masked segment between timestamp 10 to 15 = [12]
Second masked segment between timestamp 48 to 53 = [49,50,51,53]
And the set of unmasked timestamps, TU , that can be used as context to infer the feature
values at the masked out timestamps are,
TU = [2,5,19,28,37,45,47,53]
By masking fixed time segments, instead of fixed length segments, we are masking out fewer
data points from the sparser parts and more data points from the denser parts. This also
leaves more data points in the temporal vicinity of the masked out segment in the sparser
part, while leaving fewer data points in the temporal vicinity of the masked out segment
in the denser part. Hence, the reconstruction gets easier for the sparser regions and more
difficult for the denser regions. By adjusting the masking length across different segments of
the data, we are balancing the difficulty of reconstruction based on density of the masked out
segment.

Reconstruction Loss, LReco

We feed the masked out features XU to PrimeNet and extract the generated features X̃U .

The Reconstruction Error between model output X̃U and target XV , is computed using Mean

Squared Error (MSE),

LReco =
∥∥MV ⊙ (X̃U −XV )

∥∥2
2 (2.6)

Hence the total loss L becomes:

L = ηLCL +(1−η)LReco, (2.7)
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Figure 2.5. PrimeNet Pre-training and Fine-tuning Overview.

where η is a hyperparameter, 0 < η < 1. It balances the two losses because different datasets

may benefit differently from these two tasks.

Figure 2.5(a) shows the pre-training workflow of PrimeNet. Green modules represent

the data augmentation algorithms. Blue modules represent the learnable components. For a

given data point D, we feed it through Algorithm 1 to generate the anchor DA, and positive DP.

Additionally, we feed D through Algorithm 2 to mask its features and prepare the masked input

DU and target DV .

For fine-tuning on supervised downstream tasks, like classification, regression and

interpolation, we append task-specific layers on top of pre-trained PrimeNet, as shown in
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Table 2.1. Classification on PhysioNet [106] measured by Area Under the ROC curve (AUC).
Higher AUC is better.

Baselines 1-shot 2-shot 4-shot Full

Self-supervised regular time-series methods

TNC 0.615±0.014 0.641±0.023 0.632±0.011 0.755
TS2Vec 0.554±0.04 0.556±0.046 0.584±0.023 0.737

TST 0.535±0.021 0.564±0.030 0.552±0.042 0.815

Irregular time-series methods

mTAND 0.612±0.016 0.587±0.009 0.598±0.009 0.837
GRU-Mean 0.542±0.054 0.523±0.042 0.575±0.038 0.806

P-LSTM 0.579±0.058 0.551±0.048 0.569±0.049 0.782
RNN-VAE 0.444±0.008 0.530±0.043 0.459±0.042 0.542
ODE-RNN 0.515±0.095 0.573±0.097 0.495±0.119 0.694

L-ODE 0.592±0.048 0.597±0.042 0.598±0.036 0.701

PrimeNet 0.641±0.071 0.663±0.047 0.681±0.026 0.842

Figure 2.5(b). The task-specific layers typically consists of some fully connected layers with

non-linear activation.

2.6 Experiments

We evaluate PrimeNet on real-world irregular and asynchronous time-series data from

Healthcare and IoT domain for classification, regression, and interpolation tasks.

2.6.1 Datasets

We use the following datasets:

• PhysioNet Challenge 2012 [106] and MIMIC-III [58] are multivariate time series datasets

consisting of 37 and 12 physiological variables, respectively, extracted from intensive care

unit (ICU) records. Each record contains 48 hours of measurements after admission to

ICU. We predict in-hospital mortality (binary classification) from this data.

• Activity [59] dataset has 3-D positions of the waist, chest and ankles from 5 individuals
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Table 2.2. Classification on MIMIC-III [58] measured by Area Under the ROC curve (AUC).
Higher AUC is better.

Baselines 1-shot 2-shot 4-shot Full

Self-supervised regular time-series methods

TNC 0.558±0.036 0.568±0.053 0.555±0.031 0.749
TS2Vec 0.559±0.039 0.560±0.028 0.565±0.029 0.824

TST 0.542±0.081 0.596±0.079 0.591±0.053 0.822

Irregular time-series methods

mTAND 0.534±0.003 0.538±0.012 0.528±0.003 0.829
GRU-Mean 0.573±0.010 0.568±0.005 0.576±0.007 0.786

P-LSTM 0.546±0.086 0.573±0.033 0.595±0.083 0.745
RNN-VAE 0.516±0.001 0.516±0.002 0.516±0.003 0.512
ODE-RNN 0.552±0.005 0.562±0.009 0.564±0.009 0.709

L-ODE 0.481±0.005 0.485±0.004 0.484±0.003 0.590

PrimeNet 0.595±0.063 0.601±0.06 0.638±0.038 0.838

performing activities including walking, sitting, lying, standing, etc.

• Appliances Energy [115] dataset contains 138 time series with 24 dimensions, including

temperature, humidity, pressure, wind speed, visibility, and dew point. The data is averaged

for 10 minutes and spans 4.5 months.

PhysioNet, MIMIC-III, and Activity are naturally irregular, i.e., data was sampled at

irregular times during collection. Appliances Energy is a regularly sampled dataset where

we synthetically induce irregularity by dropping out random data. To better understand their

irregularity pattern, we provide some summary statistics: (mean, standard deviation) of the

missing ratio of each feature’s time series across the dataset. If a dataset was sampled for 100

timestamps, then a 0.75 mean missing ratio means that on average, each feature was present

for 25 and was missing for the remaining 75 timestamps across this dataset. Missing ratio

statistics: PhysioNet (0.86,0.24), MIMIC-III (0.65,0.36), Activity (0.75,0.64), Appliances

Energy (0.87,0.47).
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Table 2.3. Interpolation on PhysioNet at 50% [106] (×10−2), measured by RMSE. Lower RMSE
is better.

Baselines 1-shot 2-shot 4-shot Full

Self-supervised regular time-series methods

TNC 63.33±1.91 60.48±3.75 47.73±2.27 20.55
TS2Vec 69.83±6.79 60.34±2.15 45.97±3.32 23.98

TST 62.99±1.57 52.80±3.25 50.11±2.03 24.81

Irregular time-series methods

mTAND 62.17±8.91 51.08±4.79 40.35±3.91 20.46
GRU-Mean 75.44±1.13 74.41±0.86 72.87±0.59 30.49

P-LSTM 186.81±3.45 186.61±3.03 183.61±2.10 31.94
RNN-VAE 194.18±0.25 194.20±0.46 194.05±0.31 61.41
ODE-RNN 112.84±7.85 107.79±4.68 103.55±5.34 26.69

L-ODE 97.67±5.92 92.52±2.53 85.96±2.85 22.51

PrimeNet 60.84±21.62 41.56±16.98 25.45±3.28 14.3

2.6.2 Baselines

We compare PrimeNet with the following set of baselines:

Self-Supervised Regular Time-Series Methods

These are methods that learn from unlabeled data but assume regular time intervals.

1. TS2Vec [142] performs hierarchical contrastive learning over augmented context views.

2. TNC [118] defines temporal neighborhoods from local smoothness of data.

3. TST [144] pre-trains Transformer by masking fixed length segments and reconstructing

them.

Irregular Time-Series Methods

These are methods that consider irregular time interval information but require a lot

of labeled data to learn. They can be divided into 3 categories: (a) Recurrence-based, (b)

ODE-based, and (c) attention-based fully- and semi-supervised methods.
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Table 2.4. Interpolation on Activity at 10% [59] (×10−2), measured by RMSE. Lower RMSE is
better.

Baselines 1-shot 2-shot 4-shot Full

Self-supervised regular time-series methods

TNC 14.28±3.07 13.92±2.98 11.63±2.72 7.18
TS2Vec 15.37±3.71 12.96±3.24 11.53±2.79 7.69

TST 14.03±3.11 13.58±2.91 10.87±2.58 6.92

Irregular time-series methods

mTAND 15.21±3.16 13.73±3.02 10.83±2.74 6.89
GRU-Mean 18.34±3.72 17.24±3.61 14.82±3.21 8.83

P-LSTM 42.18±7.84 40.10±6.81 36.53±6.28 14.27
RNN-VAE 47.91±8.26 41.92±7.72 38.35±6.89 19.37
ODE-RNN 22.71±4.82 19.26±4.13 18.91±3.67 11.91

L-ODE 18.63±3.79 16.32±3.21 15.52±2.62 9.26

PrimeNet 11.28±2.91 9.37±2.72 7.85±1.98 3.59

1. GRU-Mean [12] combines hidden state decay with input decay.

2. P-LSTM [87] adds a learnable oscillator to modulate LSTM to create dependencies on

elapsed-time, and uses vanishing factor in gradients.

3. RNN-VAE VAE model with RNN encoder and decoder.

4. ODE-RNN [100] uses neural ODEs to model hidden state dynamics and RNN to update

hidden states with new observations.

5. L-ODE [100] Latent ODE with ODE-RNN encoder and neural ODE decoder.

6. mTAND [105] Multi-time attention module followed by a VAE-based encoder-decoder.

2.6.3 Experimental Protocols

We infer a continuous missing segment of 10% and 50% values for interpolation, while

conditioning on the remaining 90% and 50% of the observed points for Activity and PhysioNet,

respectively. For interpolation, we use the entire output representation from PrimeNet, while
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Table 2.5. Regression on Appliances Energy [115], measured by RMSE. Lower RMSE is better.

Baselines 1-shot 2-shot 4-shot Full

Self-supervised regular time-series methods

TNC 12.51±0.56 11.68±0.51 9.82±0.73 3.78
TS2Vec 3.95±0.09 3.94±0.10 3.73±0.30 3.40

TST 3.93±0.44 4.11±0.62 3.96±0.56 3.43

Irregular time-series methods

mTAND 4.25±1.10 4.13±0.81 3.52±0.12 3.39
GRU-Mean 3.91±0.46 3.97±0.65 3.56±0.15 3.44

P-LSTM 8.53±0.43 7.74±0.43 7.07±0.30 6.58
RNN-VAE 12.51±0.80 12.31±0.65 11.65±0.57 6.79
ODE-RNN 12.32±0.90 11.29±0.55 9.18±0.74 6.74

L-ODE 6.82±1.05 5.42±1.42 4.33±0.52 3.51

PrimeNet 3.66±0.54 3.64±0.43 3.44±0.03 3.21

Table 2.6. Classification performance of PrimeNet’s ablation study on PhysioNet.

Ablations 1-shot 2-shot 4-shot Full

w/o pre 0.610±0.02 0.596±0.01 0.613±0.01 0.829
(1) 0.624±0.03 0.645±0.05 0.651±0.04 0.811
(2) 0.618±0.06 0.638±0.05 0.647±0.04 0.817

(3) + (2) 0.620±0.06 0.631±0.07 0.658±0.01 0.834
(4) + (1) 0.635±0.08 0.649±0.07 0.655±0.06 0.829

PrimeNet 0.641±0.07 0.663±0.05 0.681±0.03 0.842

for classification and regression we use the final hidden state of [CLS] symbol as the aggregate

sequence representation. We compute Cross-Entropy Loss for classification and Root Mean

Squared Error (RMSE) for regression and interpolation. Due to class imbalance in Physionet and

MIMIC-III, we assess classification using Area Under the ROC curve (AUC score). We assess

interpolation and regression using RMSE.

During pretraining, we measure contrastive learning classification (i.e. how many samples

are predicted correctly among the 2B sub-samples) and use the validation accuracy for early

stopping. During finetuning, we update the parameters of both the task-specific layers and

PrimeNet.
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We conduct grid search on hyper-parameters, η =(0.3,0.4,0.5,0.6,0.7), α =(0.15,0.05,

0.03), J = (1,3,5), µl,λl = (0.3,0.4) and µu,λu = (0.7,0.6) to report test results based on the

best held-out validation performance. Best values for η = 0.5,0.6,0.5, 0.5 for PhysioNet,

MIMIC-III, Activity, Appliances Energy, respectively.

2.6.4 Results

Table 2.1, 2.2, 2.3, 2.4, and 2.5 show the results. k-shot refers to k labeled training

examples. For each few-shot setup, we repeat an experiment five times using a different training

sample set each time, to report the mean and standard deviation of metrics. We mark the best

and second best values.

Classification

Table 2.1 and 2.2 show AUC scores on mortality prediction task (binary classification)

of PhysioNet and MIMIC-III datasets. For the fully supervised irregular time-series methods

that can not leverage unlabeled data, the AUC score hovers around 0.5, suggesting that these

methods do not learn any useful information from such limited labeled data, performing slightly

better than a random classifier. Moreover, their performance do not improve by much when we

increase the amount of labeled data.

For PhysioNet, the self-supervised regular time-series method TNC [118] performs better

than irregular methods under few-shot. This may occur because the irregularity information may

not be much relevant to the predictive task for PhysioNet and learning just the feature space

is adequate to give good performance. Hence, methods like TNC gets significant performance

gain by leveraging additional unlabeled data, despite not utilizing any time interval information.

However, for MIMIC-III, the irregular time-series methods are better. For MIMIC-III, it may

be crucial to learn from the irregular time gap information to do well on the predictive task.

Therefore, despite using only a handful of labeled examples, irregular time-series methods can

outperform the self-supervised regular time-series ones that leveraged a lot of unlabeled data.
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Interpolation & Regression

Table 2.4 and 2.3 show the RMSE values of the interpolation task on Activity [59] and

PhysioNet [106] datasets, while Table 2.5 shows the same for regression on Appliances Energy

[116] dataset. The extremely poor performance of recurrence methods, like P-LSTM, RNN-

VAE, and ODE-RNN on both tasks may be attributed to their recurrent nature that accumulates

error through time, resulting in poor long-horizon imputations for time series that are sparsely

observed. For both tasks, the performance of most methods improves as we increase the number

of shots.

Across classification, interpolation, and regression, PrimeNet outperforms self-supervised

regular time-series methods under all settings, owing to PrimeNet’s ability to explicitly model for

irregularity. Moreover, PrimeNet outperforms the fully and semi-supervised irregular time-series

models under few-shot settings by transferring the knowledge learned from unlabeled data

during pre-training to fine-tuning. Moreover, PrimeNet also outperforms the irregular time-series

models under full-training data setting, when all models are trained with the entire labeled

training set. This shows that the pretrain-finetune setup not only improves performance under

few-shot scenarios but also when there is sufficient labeled data to train the downstream task.

PrimeNet is robust to varying extents of irregularity since it excelled on datasets with widely

different missing ratios.

2.6.5 Ablations

Table 2.6 shows the results of PrimeNet’s ablation on PhysioNet classification. (1) shows

time-sensitive contrastive learning; (2) shows constant time data masking for reconstruction;

(3) shows random-sampling-based contrastive learning; (4) shows constant length data masking

for reconstruction, and PrimeNet = (1) + (2). If we do not pre-train PrimeNet (first row) and

directly fine-tune it on labeled data, its performance is similar to mTAND [105] (0.829 vs 0.837)

as both use similar architecture. All remaining ablations were pre-trained and therefore show
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improved performance. (1) and (2) are pre-trained using TimeCL and TimeReco, respectively,

with minimal improvement. The next two ablations pre-train using both objectives but (3) + (2)

uses random sampling to generate sub-sequences, while (4) + (1) masks a constant length of data

instead of constant time. Results show that neither beats PrimeNet, substantiating time-sensitive

sampling and constant time masking.

2.7 Conclusion

We propose a self-supervised representation learning approach to model irregular and

asynchronous multivariate time-series. We use time-sensitive contrastive learning that preserves

an approximate sampling density distribution of the data to learn from representative sub-

sequences. We use time-sensitive data reconstruction to mask a fixed duration of data, instead of

a fixed number of points, making reconstruction tractable across regions of varying sampling

density. Our pre-trained model is then fine-tuned on downstream end tasks. Experiment results

show that PrimeNet outperforms both fully- and semi-supervised irregular time-series and self-

supervised regular time-series methods on classification, interpolation and regression tasks across

several real-world datasets. In future, we plan to apply this to irregular time-series forecasting

and unsupervised anomaly detection.

Chapter 2 incorporates material from the publication “PrimeNet: Pre-training for Irregular

Multivariate Time-Series”, by Ranak Roy Chowdhury, Jiacheng Li, Xiyuan Zhang, Dezhi Hong,

Jingbo Shang, Rajesh K. Gupta, published in Proceedings of the 37th AAAI Conference on

Artificial Intelligence (AAAI 2023). The dissertation author was the primary investigator and the

lead author of this paper.

35



Chapter 3

Task-specific Self-supervision

Building on the strong latent space for time-series established by the pre-trained model

from Chapter 1, this chapter explores how to leverage this foundation for faster and more effective

fine-tuning on specific tasks with less data and computational resources.

Time-series data contains temporal order information that can guide representation

learning for predictive end tasks (e.g., classification, regression). Recently, there are some

attempts to leverage such order information to first initialize a time-series model by reconstructing

time-series values of randomly masked time segments, followed by an end-task fine-tuning on the

same dataset, demonstrating improved end-task performance. However, this learning paradigm

decouples data reconstruction from the end task. We argue that the representations learnt in

this way are not informed by the end task and may, therefore, be sub-optimal for the end-task

performance. In fact, the importance of different timestamps can vary significantly in different

end tasks. We believe that representations learnt by reconstructing important timestamps would

be a better strategy for improving end-task performance.

In this work, we propose TARNet 1, Task-Aware Reconstruction Network, a fine-

tuned model that piggybacks on the pre-trained PrimeNet backbone to learn task-aware data

reconstruction that augments end-task performance. Specifically, we design a data-driven

masking strategy that uses self-attention score distribution from end-task training to sample

timestamps deemed important by the end task. Then, we mask out data at those timestamps

1Code is publicly available at https://github.com/ranakroychowdhury/TARNet
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Figure 3.1. TARNet Overview.

and reconstruct them, thereby making the reconstruction task-aware. This reconstruction task

is trained alternately with the end task at every epoch, sharing parameters in a single model,

allowing the representation learnt through reconstruction to improve end-task performance.

Extensive experiments on tens of classification and regression datasets show that TARNet

significantly outperforms state-of-the-art baseline models across all evaluation metrics.

3.1 Problem Statement

Time-series data has domain-specific structural properties encoded in the temporal

ordering of events. These intrinsic properties can provide a rich source of supervision besides

target labels, which the state-of-the-art time-series models [7, 148] often neglect. Recently, time-

series Transformer [144] leveraged this unlabeled data to craft a reconstruction task that masks

time-series values of randomly chosen time segments and reconstructs them. The pre-trained

model is then fine-tuned on an end task, by reusing the same data samples along with their labels,

leading to improved performance over exclusively doing supervised learning on the end task.

However, this data reconstruction task precedes fine-tuning as a decoupled step, which

means the representation learnt during reconstruction is not informed about the end task. Hence,

such learnt representation may not be fully leveraged to perform optimally on the end task.

Depending on the end task, different properties of the given data may be useful for

different end tasks. For example, consider the following end tasks using the same data collected
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from sensors in a building: predict the level of energy consumption (high, medium, low) and

the occupancy status (occupied or not) of a room based on outdoor temperature and humidity,

and light intensity and CO2 readings from a room. Energy consumption prediction task may be

highly correlated to times when temperature is high (air conditioning stays on) or light intensity

is high (lights are switched ON) while occupancy status may correlate to timestamps when CO2

level is high. Hence, depending on the end task, certain timestamps in the data may be more

important than others for that task.

Generic learnt representations typically result from decoupled data reconstruction and

end tasks. To optimize the performance for an end task, we customize the learnt representation

for the end task in TARNet. We test and validate the hypothesis that a representation learnt by

reconstructing data from timestamps important to the end task will yield improved performance

over reconstruction on random time segments. Therefore, we design a data reconstruction task

which masks data from those important timestamps and reconstructs them. In the process, the

model learns a task-specific representation, resulting in improved end task performance.

Figure 3.1 shows TARNet’s learning process. Using a transformer encoder [122] as

the backbone model, we train for the end task (Figure 3.1(a)) and the data reconstruction

task (Figure 3.1(c)) alternately on the same model. In order to compute the timestamps to

mask during data reconstruction, we design a data-driven masking strategy (Figure 3.1(b)). It

uses the self-attention score distribution generated by transformer encoder during the end task

training and determines the set of timestamps to mask. Since the two tasks share parameters,

the representation learnt during reconstruction can be effectively leveraged by the end task to

improve performance.

We conducted experiments on 34 classification datasets from UEA ARCHIVE [6], UCI

MACHINE LEARNING REPOSITORY [34, 49] and 6 regression datasets from MONASH UNI-

VERSITY, UEA, UCR TIME SERIES REGRESSION ARCHIVE [114]. Time Series Transformer

(TST) [144], the current state-of-the-art for time-series, achieved the best accuracy on 6 out of

10 datasets, when compared with 5 baselines. We compared TARNet with 14 state-of-the-art
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baselines and it performed the best on 17 out of 34 datasets, being 2.7% higher in average

accuracy than TST, which now performs best on 7 datasets. Similarly, TST achieved the lowest

error on 3 out of 6 datasets for regression when compared with 11 state-of-the-art baselines.

TARNet achieved the lowest error on 3 and 2nd lowest error on 2 datasets when compared with

the same baselines, whereas TST now achieves the lowest error on 2 and 2nd lowest error on 1

dataset. We conducted case studies to show how TARNet’s data-driven masking strategy learns

task-specific representations, consistent with domain characteristics, thereby boosting end-task

performance.

In summary, our main contributions are:

• We propose TARNet to learn task-aware reconstruction from time-series data to augment

end-task performance.

• We design a data-driven masking strategy to determine important timestamps to an end

task and learn to reconstruct them.

• We evaluate TARNet on numerous real-world datasets to validate and quantify its efficacy

compared with state-of-the-art methods.

3.2 Related Work

3.2.1 Non-Deep Learning Methods

ROCKET [27] and MiniROCKET [28] recently produced state-of-the art results for

time-series. They learn features extracted by numerous and various random convolutional

kernels. Other relevant directions include: (1) time series shapelet, (2) bag-of-patterns, and

(3) distance-based models. Baydogan [9] introduced Symbolic Representation to learn local

relationships between different dimensions. Shapelets [139] are short discriminative time series

sub-sequences, e.g. dynamic shapelets [79], efficient shapelets [51]. WEASEL-MUSE [101]

utilizes bag of SFA (Symbolic Fourier Approximation). Distance-based methods [134, 31]
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use distance metric to measure similarity of a pair of time series. Among limitations of these

approaches are that they incorporate expert insights, consist of large, heterogeneous ensembles

of classifiers, scale poorly to long time-series, and many apply to only uni-variate time-series.

TARNet can be applied to both uni- and multi-variate time-series, automatically extracts

features, and handles long time-series.

3.2.2 Deep Learning Methods

Using labeled data

Fawaz [36] summarize many neural networks-based methods for time-series. Most

neural networks-based methods use some arrangement of LSTM, CNN or both [150, 60]. Others

use different components of neural models, e.g., learnable temporal pooling [70], correlative

channel-aware learnable fusion [7], label-learning [78], attentional prototype network [148],

and shapelet embedding [71]. TARNet proposes a subsidiary data reconstruction technique

that utilizes knowledge from the end task to learn a task-specific data representation. Sharing

parameters of this reconstruction task with the end task in a single architecture allows the learnt

representation to improve end task performance.

Using both unlabeled and labeled data

Unsupervised representation learning for time-series uses triplet loss with negative

sampling [38], hierarchical contrastive loss [143], temporal and contextual contrasting [35],

local smoothness to define neighborhoods in time [118], and reprogramming acoustic models

[137]. TST [144] first pre-trains a transformer model by an unsupervised objective; masks out

time-series values at random time segments from data and reconstructs them. It then reuses the

same training samples to fine-tune the model on an end task. This gave improved performance

than using the data once to train a fully supervised model.

However, decoupling the data reconstruction from the end task makes the representation

learnt during reconstruction uninformed about the end task. Depending on the end task, certain
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timestamps in time-series data may be more important than others [74], which the learnt repre-

sentation ignores. TARNet aims to learn a task-aware data reconstruction by masking important

timestamps with respect to the end task. Hence, the learnt representation is better suited for

improving end task performance than the representation learnt from reconstructing randomly

masked time segments.

3.3 TARNet Framework

In Figure 3.1, we show a schematic diagram of TARNet common across all considered

tasks. In this section, we first present the problem setting and base model architecture shared

by the two tasks. Then, we explain the end-task TEND (i.e., Figure 3.1(a)) and task-aware

reconstruction TTAR (i.e, Figure 3.1(c)). Finally, we present our data-driven masking strategy

(i.e., Figure 3.1(b)) that uses information from TEND to decide which timestamps to mask for

TTAR.

3.3.1 Problem Description and Notations

Each training sample X ∈ RS×N denotes a multivariate time-series of length S and N

variables. Specifically, it comprises a sequence of S N-dimensional feature vectors, xt ∈RN : X∈

RS×N . This formulation also covers the uni-variate case when N = 1. All the training samples

come together with a target label y, which is an integer class id for a classification task or a

real-valued number for a regression task. The full training dataset is labeled, i.e. we do not

leverage any additional unlabeled data. Based on these training samples, we build a model to

predict the label ỹ of unseen data X.

3.3.2 Base Model

We opt to use Transformer Encoders [122] as the backbone model, as we aim to develop

a general framework to learn task-specific reconstruction that can be applied for a multitude of

tasks. An architecture consisting of an encoder provides flexibility as it can not only handle tasks
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like classification, regression, imputation, but also handle generative tasks such as forecasting.

One can plug in a task of interest by replacing the Fully Connected (FC) Layer in Figure 3.1(a)

by task-specific layers (e.g., decoder for forecasting).

The feature vectors xt are first mean-standardized per variable dimension. Then xt

is linearly projected onto a D-dimensional vector space, where D is the dimension of the

Transformer model sequence element representations (typically called embedding dimension):

ut = Wpxt +bp, (3.1)

where Wp ∈ RD×N , bp ∈ RD are learnable parameters and ut ∈ RD, t = 1,2, ...,S are the model

input vectors. The Transformer is a feed-forward architecture insensitive to the ordering of input.

Therefore, we add positional encoding to these input vectors in order to make it aware of the

sequential nature of the time series. The resultant vectors become the queries, keys and values

of the self-attention layer in the encoder block. We pass data through several layers of such

Transformer encoder blocks. Then, we pass the output values weighted by self-attention scores

through a fully connected feed-forward network. We refer the reader to the original work [122]

for a detailed description of the Transformer model.

3.3.3 End Task (TEND)

For clarity, we use classification and regression as example end tasks here. Please note

that TARNet can be easily extended to other tasks such as anomaly detection and time-series

forecasting, by tweaking the FC Layer in Figure 3.1(a).

We modify the base model architecture presented in Section 3.3.2 for regression and

classification in the following way:

The data fed to TEND is not masked, as illustrated by the frozen Masking Layer in

Figure 3.1(a). The vector corresponding to the last timestamp from Transformer Encoders

zt ∈ RD is fed through 2 FC layers and RELU activation (represented as f ), with parameters

WL1 ∈ RKE×D,bL1 ∈ RKE ,WL2 ∈ RKE×KE ,bL2 ∈ RKE ,
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followed by the output layer with parameters

WO
E ∈ RC×KE ,bO

E ∈ RC,

where KE is the feed-forward dimension of FC Layer for TEND and C is the number of classes

for classification or number of scalars to be estimated for regression (typically C = 1):

ỹ = WO
E f (WL2 f (WL1zt +bL1)+bL2)+bO

E . (3.2)

For classification, predictions ỹ are passed through a softmax to give probability dis-

tribution, p, over C classes. We use cross-entropy loss with categorical ground truth labels,

LEND = ∑
C
i=1 yilog(pi). For regression, we use squared error, LEND = ∥ỹ− y∥2

2.

3.3.4 Task-aware Reconstruction (TTAR)

Learning data representation through reconstruction has been explored in natural language

processing [29] and time-series [144]. The goal of TTAR, illustrated in Figure 3.1(c), is to learn a

data representation by reconstructing the input data X after it has been appropriately masked by

the Data-driven Masking Strategy, M.

The role of TARNet’s masking strategy M, elaborated in Section 3.3.5, is to generate a

new binary training data mask m ∈ RS for each training sample at every epoch. It is a boolean

array with ⌊µS⌋ number of 1’s, where µ is a hyper-parameter 0 < µ < 1, to select the timestamps

to be masked from X for the reconstruction task. Let mt represent the value of m at timestamp t.

If mt = 1 we mask xt , otherwise we do not. Masking a particular timestamp, t, involves replacing

the N-dimensional feature vector xt with zeros. X passes through Transformer Encoder layers

after being masked by m. The final representation vectors Z ∈ RS×D is fed through 2 FC layers

and RELU activation, with parameters

WL3 ∈ RKR×D,bL3 ∈ RKR,WL4 ∈ RKR×KR,bL4 ∈ RKR,

followed by the output layer with parameters

WO
R ∈ RN×KR ,bO

R ∈ RN ,
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where KR is the feed-forward dimension of FC Layer for TTAR and N is the number of variables:

X̃ = WO
R f (WL4 f (WL3Z +bL3)+bL4)+bO

R . (3.3)

The label for this task is the raw input data X. To ensure accurate reconstruction, we

calculate Mean Square Error (MSE) between the ground truth X and prediction X̃. We calculate

the average MSE loss for masked and unmasked part of the data as follows:

Lmasked =
1

N ∑
S
t=1 mt

S

∑
t=1

mt∥x̃t −xt∥2
2, (3.4)

Lunmasked =
1

N(S−∑
S
t=1 mt)

S

∑
t=1

(1−mt)∥x̃t −xt∥2
2. (3.5)

Unlike TST, which only considers MSE loss for reconstructing the masked portion of

the data, Lmasked , we include loss incurred for replicating the unmasked, observed portion of the

input data, Lunmasked , as well. Time-series data is auto-regressive with strong correlation across

time. Therefore, the ability to reconstruct the masked data at a given timestamp depends on how

effectively the model learns to reconstruct the unmasked data and use that as context to infer the

masked data. Including the loss for the unmasked data ensures its accurate reconstruction.

The combined reconstruction loss LTAR is a weighted sum of Lmasked and Lunmasked , given

by

LTAR = λLmasked +(1−λ )Lunmasked , (3.6)

where λ is a hyper-parameter 0 < λ < 1 that controls the relative weights between the two losses.

It is advisable to keep λ > 0.5 because the masked timestamps are more important for the end

task than the unmasked ones.

With LEND as the end task loss, the total loss becomes

LTotal = ηLTAR +(1−η)LEND, (3.7)

where η is a hyper-parameter (0 < η < 1) that controls the relative weights between the two task

losses. We train TEND and TTAR end-to-end alternately at every epoch, until convergence.
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Algorithm 3. Training of TARNet

Input: X, y
Hyper-parameters: µ , β , λ , η

Output: Model

1: σ initialized randomly
2: Model = TransformerEncoder()
3: while training do
4: σ ′ = top ⌊βS⌋ values from σ

5: m∼ Randomly sample ⌊µS⌋ timestamps without replacement from σ ′

6: X̃, ỹ,A = Model.train(X, m) # A← Self-Attention Scores
7: Compute LTAR(X̃,X,λ ) and LEND(ỹ,y)
8: LTotal = ηLTAR +(1−η)LEND
9: σ = add and normalize(A)

10: end while
11: return Model

3.3.5 Data-driven Masking Strategy (M)

Data reconstruction in Time-series Transformer [144] involves masking segment of

time-series data at randomly chosen timestamps and reconstructing them. However, different

timestamps in the data may have different levels of importance to the end task. Therefore, we

eschew random reconstruction of data in favor of a strategy that uses end task characteristics.

Specifically, we identify timestamps that the end task deemed important during learning. We

will then mask xt from X corresponding to those timestamps and reconstruct them during TTAR.

We hypothesize that reconstructing data at timestamps identified to be important by the end task

will generate a data representation that benefits the end task. This is in contrast to a random

masking based data reconstruction, which does not consider any such information.

To define the notion of an “important” timestamp, we use self-attention weights generated

by Transformer Encoder in the forward pass of TEND. Attention weights indicate how much

weight should be assigned to each xt to compute representation for a given xt . We compute

aggregate attention map A ∈ RS×S by summing the attention maps generated by each layer of

Transformer Encoder. Let Aik be the attention weight assigned to xk during update of xi, where
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i = k = 1,2, ...,S, and ∑
S
k=1 Aik = 1 for all i. Therefore, the update to xi is a weighted sum of

x1,2,...,S, where the weights are Ai,k=1,2,...S. We compute σ ∈ RS, where σk =
∑

S
i=1 Aik

∑
S
k=1 ∑

S
i=1 Aik

for

k = 1,2, ...,S. σk represents the normalized aggregate attention weight of timestamp k to the

computation of x1, x2, ..., xS. We define the importance of each timestamp by its magnitude in σ ,

i.e. the higher σk is, the more important timestamp k is for TEND.

We then select the timestamps corresponding to the top ⌊µS⌋ values in σ and mask

them from X for reconstruction. Since the same training data is fed at every epoch, the set of

important timestamps computed from a given sample will not vary across epochs. Hence, the

model may memorize reconstructing a few selected timestamps from the sample, leading to

overfitting. Considering the heterogeneity in time-series data due to irregular sampling frequency

or uncertainty about feature availability, it is probable that real-world data may have a different

set of important timestamps compared to those seen in training data. Therefore, not exploring

enough timestamps to approximate the training data distribution may lead to poor generalization

on the real-world data.

Hence, we ensure that for every sample, at each epoch the model explores a random set of

timestamps among those that are important. Therefore, we introduce an attention regularization

parameter, β , where β > µ and 0 < β < 1. We, therefore, compute set σ ′ to choose the top

⌊βS⌋ values in σ . Then we randomly sample ⌊µS⌋ timestamps without replacement from σ ′ to

generate the training data mask m. mt = 1 if t is sampled from σ ′, otherwise 0.

Although we still choose an important set of timestamps to mask, the use of randomization

through sampling ensures that the model does not always mask the same set of timestamps for a

sample throughout its entire training regime. This gives the model a more versatile representation

of the underlying data distribution, yet, one that is important for the end task. This data-driven

masking strategy makes the model learn task-specific data representation by reconstructing

data at those timestamps deemed important by the end task. Algorithm 3 outlines the training

procedure of TARNet.
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Example 3 Suppose the data has a sequence of length 6 and the attention scores look like
following, 

0.0443 0.0570 0.3744 0.2279 0.0753 0.2211
0.2008 0.2622 0.1786 0.0145 0.1545 0.1894
0.0748 0.1122 0.0861 0.1611 0.2570 0.3087
0.2221 0.0098 0.2580 0.2412 0.1580 0.1109
0.1917 0.0353 0.2559 0.0305 0.2657 0.2210
0.1912 0.1578 0.2118 0.1020 0.2582 0.0789


Each row represents how much weight was put into the representation of each timestamp
while computing the representation of a given timestamp. For example, the first row shows
that while computing the resulting representation of the first timestamp, the self-attention
method put 4.43% weight to the representation of the first timestamp, 5.7% to the represen-
tation of the second timestamp, 37.44% weight to the representation of the third timestamp,
and so on.
If we aggregate the sum across the columns of the attention score matrix, it gives,
σ = [0.9249,0.6344,1.3649,0.7773,1.1687,1.1298]
σ shows how much total weight was assigned to a particular timestamp for the computation
of representation of all timestamps. If β = 0.33, then we will mask out the 0.33× 6 = 2
most important timestamps from the data and reconstruct them. Hence, we should mask
out the features from timestamp 3 and 5 because they had the highest aggregate values in σ .
However, as we stated earlier, this may lead to over-fitting as the same set of 2 timestamps
may be masked out at every epoch of training.
Instead, as outlined in Algorithm 3, let’s consider β = 0.5 and µ = 0.67, then, σ ′ will have
a length of 0.5×6 = 3,
σ ′ = [1.3649,1.1687,1.1298]
Then, we randomly sample 0.67× 3 timestamps from σ ′ and mask out the features cor-
responding to those timestamps for reconstruction. Suppose at Epoch 1, we mask out
timestamps 2 and 4, while at Epoch 2 we mask out timestamps 4 and 5. Due to this random-
ization, we are not choosing the same set of timestamps at every epoch of training. This
enables the model to generalize to new set of important timestamps that may arise in the test
set. Although we are selecting these timestamps randomly, they are being sampled from σ ′,
which is already a curated set of important timestamps from σ .

3.4 Experiments

We present the datasets, baselines, training settings, followed by the evaluation metrics.

We then show and analyze classification and regression results of TARNet. We also conduct an

ablation study, few-shot training experiments and case studies to justify TARNet.
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3.4.1 Experimental Setup

We use benchmark time-series datasets with detailed information available in UEA

ARCHIVE [6], UCI MACHINE LEARNING REPOSITORY [34, 49], and MONASH UNIVERSITY,

UEA, UCR TIME SERIES REGRESSION ARCHIVE [114]. These datasets represent an assort-

ment of domains (Motion, Audio, EEG, HAR), sensor type, and sampling frequency. The number

of training data points varies from 15 to over one million, the length of the time series, S, varies

between 8 to 17,984, the number of features, N, varies between 1 to 1,345, and the number of

target classes, C, varies between 2 to 39. N = 1 covers the uni-variate case. N > 1 refers to the

multi-variate case.

We compare TARNet with statistical [6, 103, 32, 112, 14, 101, 27, 28] and deep learning

[60, 148, 71, 128, 36, 37, 38, 144, 142, 118, 35] baselines.

Statistical Baselines

Statistical methods for time-series analysis typically rely on assumptions about the data’s

underlying structure and are effective for simpler, linear patterns, such as trends and seasonality.

1. Distance-based method [6]. Euclidean Distance (ED), dimension independent dynamic

time warping (DTWI), and dimension-dependent dynamic time warping (DTWD) [103].

2. SVR: [32] Support Vector Regression.

3. Tree-based methods: Random Forest [112] and XGBoost [14].

4. WEASEL-MUSE [101] is a bag-of-pattern based sliding-window approach with statistical

feature extraction and filtration.

5. Rocket [27] convolves time series with random convolutional kernels and applies global

max pooling to extract features.

6. MiniRocket [28] upgrades Rocket by speeding it up, using a small, fixed set of kernels,

and is almost entirely deterministic.
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Deep Learning Baselines

Deep learning methods can automatically learn complex, non-linear patterns from large

datasets, making them more powerful for handling intricate time-series data with high variability

and multiple influencing factors.

1. FCN [128] Fully Convolutional Networks. Replaces traditional final FC layer with a

Global Average Pooling (GAP) layer.

2. MLSTM-FCNs [60] expands LSTM-FCN and Attention LSTM-FCN by adding squeeze-

and-excitation blocks.

3. Negative samples (NS) [38] generates negative samples and trains a dilated causal convo-

lution encoder with triplet loss.

4. TapNet [148] designs random group permutation method with multi-layer convolutional

and attentional prototype network.

5. ShapeNet [71] extends shapelet [139] for multivariate time-series. Learns shared embed-

ding space across different shapelet candidates, trains a dilated causal CNN, followed by

an SVM.

6. Time Series Transformer (TST) [144] pre-trains Transformer Encoder by masking

random time segments and reconstructing them. Reuses the same data to fine-tune the

model.

7. TS2Vec [142] performs hierarchical contrastive learning over augmented context views.

Builds representation of an arbitrary sub-sequence by aggregating representations of

timestamps.

8. TNC [118] leverages local smoothness of a signal to define temporal neighborhoods and

learns generalizable representations.

49



9. TS-TCC [35] encourages consistency of different data augmentations to learn transforma-

tion invariant representations.

10. ResNet [36] uses convolutional followed by a GAP layer. Adds shortcut residual connec-

tion between convolutional layers.

11. Inception [37] is an ensemble of deep CNN models, inspired by the Inception-v4 architec-

ture.

We normalize the datasets for each of our experiments. For datasets on which the

accuracies of the baselines have been reported, we present the same results according to their

papers. For the remaining datasets, we train all the baseline models with sufficient hyper-

parameter tuning to produce results. Since our benchmark datasets are widely heterogeneous

in terms of number of data points, features, sequence length, and sampling frequency, as well

as the physical nature of the data itself, we obtain better performance via cursory tuning of

architecture-specific hyper-parameters. To select hyper-parameters, we do a random 80%-20%

split of the training set and used the 20% as a validation set for hyper-parameter tuning. After

fixing the hyper-parameters, we train the model again using the entire training set and save the

model with the lowest training loss. We use the saved model to evaluate on the official test set

and report our evaluation metrics.

Appendix B.0.2 explains the hardware and framework details of our experiments. Tables

B.2 and B.3 in Appendix B.0.3 shows the best hyper-parameter combination for each dataset.

3.4.2 Evaluation Metrics

We use accuracy and Root Mean Squared Error (RMSE) error as our performance metric

for classification and regression, respectively. Considering the large number of datasets and

baselines used, it is highly unlikely for a single model to outperform all other methods on every

datasets. Therefore, we also present some summary statistics to present a holistic and a fairer

comparison of the methods. The evaluation metrics are as follows:
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• Ours 1-to-1 Wins/Draws/Losses: Number of datasets for which TARNet’s accuracy or

RMSE is better/same/worse than the corresponding baselines, respectively. Higher wins,

lower draws and lower losses are better. This is useful to draw a one-on-one comparison

between TARNet and a given model.

• Mean Rank: Average rank of a model across all datasets. Lowest rank is assigned to

model with highest accuracy for classification and lowest RMSE for regression. Lower

mean rank is better.

• Avg.Rel.Diff.Mean [144]: We report the “average relative difference from mean” metric

r j for each model j, over N datasets:

r j =
1
N

N

∑
i=1

R(i, j)− R̄i

R̄i
, R̄i =

1
M

M

∑
j=1

R(i, j), (3.8)

where R(i, j) is the RMSE of model j on dataset i and M is the number of models.

r j =−0.3 means that the model on average attains 30% lower RMSE on a dataset than the

average model performance on the same dataset. Lower value is better.

3.4.3 Classification

Table 3.1, 3.2, and 3.3 shows the accuracy of TARNet and baselines on classification

datasets from UEA ARCHIVE and UCI MACHINE LEARNING REPOSITORY. We mark the best

and second best values. Baselines are presented in ascending order (left to right) by average

accuracy. A dash indicates that the corresponding method failed to run on this dataset. Higher

Total best accuracy, average accuracy, and Ours 1-to-1 Wins is better. Lower Ours 1-to-1 Draws,

Ours 1-to-1 Losses, and Mean Rank is better.

According to the results, the overall accuracy of TARNet is the best among all compared

methods. TARNet performs the best on 17 datasets, as compared to 7 and 6 by the next best

baselines TST [144] and Rocket [27], respectively. TARNet achieves a 2.7-point higher average

accuracy across all datasets over TST. The closest competitors of TARNet are TST and Rocket,
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but TARNet still outperforms them on 20 datasets while losing on 14 and 12, respectively.

TARNet ranks 1st (lowest “Mean Rank”) on average, having a 0.71-point lower average than the

2nd best MiniRocket. Rocket and ShapeNet ranks 3rd and 4th with a 1.18 and 1.47-point higher

average, respectively, than TARNet.

The large number of datasets and baselines used makes it highly unlikely for a single

model to outperform all other methods on every dataset. For example, TST had the 2nd best

“Total best Accuracy” (7) and “Average Accuracy” (0.745), but it ranks 5th across all models,

with a 1.74-point higher average than TARNet. This means that for the datasets where TST

under-performs, its performance metrics are significantly below those of other baselines, pushing

down its “Mean Rank.” However, TARNet performs well across all evaluation metrics. Not only

does it have the highest “Total best Accuracy” (17) and “Average Accuracy” (0.772), but it also

ranks 1st, meaning that for the datasets where TARNet under-performs, it still generates better

performance than most of its baselines, pushing up its “Mean Rank”. Moreover, we find that on

datasets where TARNet under-performs, the winning methods are in fact different. Considering

that no single baseline is consistently better than TARNet, as illustrated by the baselines’ low

number of best accuracies, low average accuracies and high mean rank, we argue that TARNet is

the new benchmark for time-series classification.

Moreover, TARNet achieves the best accuracy across a diverse set of data characteristics.

For example, TARNet has the best accuracy for Atrial Fibrillation and Occupancy with 15 and

1.2m+ training data points, respectively, for RacketSports and Cricket with sequence length of

30 and 1197, respectively, for Epilepsy and FaceDetection with 3 and 44 features, respectively

and for MotorImagery and OpportunityGestures with 2 and 17 classes, respectively.

3.4.4 Regression

We compare regression results against all the baselines reported by TST [144]. Table 3.4,

3.5, and 3.6 show the Root Mean Squared Error of TARNet and baselines on regression datasets

from MONASH UNIVERSITY, UEA, UCR TIME SERIES REGRESSION ARCHIVE [114]. We

52



mark the best and second best values. Baselines are presented in descending order (left to right)

by mean rank. Avg.Rel.Diff.Mean: Average Relative Difference from Mean over all models,

e.g. -0.3 means that the model on average attains 30% lower RMSE than the average model

performance. Higher Total best loss and Ours 1-to-1 Wins is better. Lower Ours 1-to-1 Draws,

Ours 1-to-1 Losses, Mean Rank, and Avg.Rel.Diff.Mean is better.

TARNet ranks 1st on three and 2nd on two datasets, which is better than what any of

the baseline models achieve. For the overall rank, TARNet achieves an average rank of 1.833,

setting it clearly apart from all other models; the overall second best model, TST [144] has an

average rank of 2.5; XGB, Inception, and FCN (which outperformed TARNet on one dataset)

on average ranks 4.333, 6.5, and 7, respectively. Both TST [144] and TARNet use a similar

transformer backbone model which explains the small difference in Avg.Rel.Diff.Mean scores.

However, TARNet still outperforms TST and all other baseline models by attaining 31.3% lower

RMSE on average than the mean RMSE among all models. Considering that TARNet achieves

the highest number of best losses, lowest mean rank, and lowest Avg.Rel.Diff.Mean, we argue

that TARNet is the new benchmark for time-series regression.

Although TST [144] pretrains and finetunes on the same dataset, the data reconstruction

and the supervised end-task runs sequentially, slowing down training time. However, TARNet

trains both tasks, TTAR and TEND parallely. Hence, not only TARNet outperforms TST on the

end-task but it also trains faster than TST.

3.4.5 Ablation Study

We justify our design choices of M through ablation study results on classification and

regression tasks in Table 3.7. TARNet-Random uses the same architecture as TARNet but instead

masks timestamps randomly and reconstructs them, giving substandard performance. TARNet-

Top µ selects timestamps corresponding to the top ⌊µS⌋ values in σ and masks them from X for

reconstruction. This does not lead to a clear improvement which may be attributed to overfitting,

as explained in Section 3.3.5. This prompts sampling to TARNet-Top µ while selecting the
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timestamps to mask from the set of important timestamps, resulting in TARNet. To ensure a fair

comparison, we maintain the same set of hyper-parameters across all ablation models for each

dataset. Table 3.7 shows that TARNet has the highest average accuracy, most number of datasets

with highest accuracy and lowest loss, and lowest mean rank. TARNet combines ideas from both

TARNet-Random and TARNet-Top µ to counter their individual drawbacks and yields better

performance.

3.4.6 Can TTAR compensate for limited labeled training data?

We study whether under data-deficient environments TARNet can make better use

of limited data compared to baselines. This will illustrate if the knowledge gained during

reconstruction, TTAR, can compensate for a lack of labeled data to train the end task, TEND.

We choose occupancy and human gestures datasets for classification. As Figure 3.2 (a)

and (b) show, the accuracy of all models increases as the amount of training data increases.

Particularly, TARNet has a steep rise for both datasets, signifying that the greatest improvement

occurs with low quantity of training data. Similarly, we choose LiveFuelMoisture and IEEEPPG

datasets for regression. As Figure 3.2 (c) and (d) show, the RMSE Loss of all models decreases

as the amount of training data increases. Even with just 25% training data, TARNet achieves

significantly lower loss than any baselines. It achieves superior performance over all baselines at

all quantities of training data, for both classification and regression.

Both TST and TARNet can leverage additional information learnt though reconstruction

to compensate for the lack of labeled data, resulting in better performance over other baselines.

However, making the reconstruction task-aware improves the performance of TARNet over TST.

For example, in Occupancy, TARNet achieves the same performance with 50% training data,

which TST and ShapeNet require 75% training data to achieve. Similarly, for LiveFuelMoisture

and IEEEPPG, TARNet achieves lower RMSE with just 25% and 50% training data, respectively,

than TST does with 100% training data.
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(a) Occupancy (b) Opportunity Gestures

(c) LiveFuelMoisture (d) IEEEPPG

Figure 3.2. (a) and (b) show classification accuracy, and (c) and (d) show regression RMSE Loss
against % of training data.

3.4.7 Explaining Masking Strategy, M

We provide two real-world case studies to show why a task-aware reconstruction learnt

through a data-driven masking strategy, M, is superior to a reconstruction learnt through random

masking. For qualitative analysis, we show normalized aggregate attention, σ , computed from

attention maps of Transformer during TEND.
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Figure 3.3. σ plotted as heatmap for Epilepsy.

Case Study I: Epilepsy Figure 3.3 shows a time-series plot of an accelerometer data from

a person conducting the activity of “Sawing” (classification label). Following the time-series

plot are the σ scores, as discovered by TARNet and TARNet-Random. Sawing involves strong

periodic motion of the hand as illustrated by the time-series plot. Figure 3.3 shows that a

random-masking based auto-regressive task (TARNet-Random) could not capture this inherent

periodicity in the data, which TARNet could successfully decipher. Therefore, the accuracy

achieved by TARNet and TARNet-Random is 1 and 0.75, respectively. Being able to selectively

mask “important” timestamps during reconstruction in a data-driven manner enables TARNet to

effectively capture the domain-specific properties from the data, leading to better classification

performance.

Case Study II: Face Detection A person is shown a face image or a scrambled image and

her MEG readings are recorded. The task is to determine what the person saw (classification)

based on the collected MEG data. The MEG recording (response) is collected over 1.5-second but

the image (stimulus) is only shown 0.5-seconds after the MEG has started recording. Figure 3.4

shows the time-series plot of a sample MEG data. Since the entire 1.5-second corresponds to 62
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Figure 3.4. σ plotted as heatmap for Face Detection.

timestamps, this means that no stimulus was provided to the subject for the first 20 timestamps

(0.5-seconds). So the discriminatory MEG response, important for classification, is received

from 20-th timestamp onward, as illustrated by the onset of sudden fluctuation in signal strength.

Figure 3.4 shows that TARNet assigns high σ values around the 20-th timestamp and can

clearly infer the signal arrival time from the MEG response. TARNet discriminates between the

“unimportant” and “important” timestamps for classification by assigning higher average attention

per timestamp for times greater than 20 than to those before 20. However, TARNet-Random

fails to infer such task-specific domain properties from the data and assigns attention weights

randomly across time. Hence, TARNet-Random achieves an accuracy of 0.607, whereas TARNet

achieves 0.641.

The two case studies substantiate why using M to decide which timestamps to mask

during reconstruction is important. Representations learnt through reconstructing “important”

timestamps reflect some domain-specific inherent properties in the data, as illustrated by how

the attention scores have been assigned. Such domain properties are relevant to the end task

and can clearly lead to performance improvement on the end task, as illustrated in Tables 3.1,
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3.2, 3.3, 3.4, 3.5, and 3.6, . We also highlight that the utility of self-attention goes beyond

computing internal data representation of a model to improve performance [122] or providing

meaningful explanations [52, 141]. In addition, self-attention can also be used to integrate simple

and intuitive data-driven techniques into deep learning frameworks.

3.5 Conclusion

We have proposed a task-aware reconstruction technique to improve end-task perfor-

mance for a time series. In particular, we use attention score distribution to identify timestamps

important to an end task. We then sample from those important timestamps and mask them

from the data for reconstruction, making the reconstruction end task-aware. These tasks are

trained alternately, sharing parameters in the same model, thereby enabling the representation

learnt through reconstruction to improve end-task performance. Experimental results show that

TARNet outperforms the state-of-the-art baselines for both classification and regression tasks.

The ablation study highlights the essence of our design choices for the data masking technique,

and the case study observations show how TARNet captures the intrinsic task-specific properties

of data.

Additional unlabeled data can help to improve TARNet. Although the data reconstruction

task is fully unsupervised, it is driven by the end task that requires labeled data. In the future, we

wish to explore such task-aware representations under data shift problem and in the presence of

outliers.

Chapter 3 incorporates material from the publication “Task-Aware Reconstruction for

Time-Series Transformer”, by Ranak Roy Chowdhury, Xiyuan Zhang, Dezhi Hong, Rajesh

Gupta, Jingbo Shang, published in Proceedings of the 28th ACM SIGKDD Conference on

Knowledge Discovery and Data Mining (KDD 2022). The dissertation author was the primary

investigator and the lead author of this paper.
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Table 3.1. Accuracy of ED, MLSTM-FCNs, DTWD, TapNet, and DTWI.

Dataset ED MLSTM-FCNs DTWD TapNet DTWI
ArticularyWordRecognition 0.970 0.973 0.987 0.987 0.980

AtrialFibrillation 0.267 0.267 0.220 0.333 0.267
BasicMotions 0.676 0.950 0.975 1.000 1.000

CharacterTrajectories 0.964 0.985 0.989 0.997 0.969
Cricket 0.944 0.917 1.000 0.958 0.986

DuckDuckGeese 0.275 0.675 0.600 0.575 0.550
EigenWorms 0.549 0.504 0.618 0.489 -

Epilepsy 0.666 0.761 0.964 0.971 0.978
ERing 0.133 0.133 0.133 0.133 0.133

EthanolConcentration 0.293 0.373 0.323 0.323 0.304
FaceDetection 0.519 0.545 0.529 0.556 -

FingerMovements 0.550 0.580 0.530 0.530 0.520
HandMovementDirection 0.278 0.365 0.231 0.378 0.306

Handwriting 0.200 0.286 0.286 0.357 0.316
Heartbeat 0.619 0.663 0.717 0.751 0.658

InsectWingbeat 0.128 0.167 - 0.208 -
JapaneseVowels 0.924 0.976 0.949 0.965 0.959

Libras 0.833 0.856 0.870 0.850 0.894
LSST 0.456 0.373 0.551 0.568 0.575

MotorImagery 0.510 0.510 0.500 0.590 -
NATOPS 0.850 0.889 0.883 0.939 0.850

PEMS-SF 0.705 0.699 0.711 0.751 0.734
PenDigits 0.973 0.978 0.977 0.980 0.939
Phoneme 0.104 0.110 0.151 0.175 0.151

RacketSports 0.868 0.803 0.803 0.868 0.842
SelfRegulationSCP1 0.771 0.874 0.775 0.652 0.765
SelfRegulationSCP2 0.483 0.472 0.539 0.550 0.533
SpokenArabicDigits 0.967 0.990 0.963 0.983 0.959

StandWalkJump 0.200 0.067 0.200 0.400 0.333
UWaveGestureLibrary 0.881 0.891 0.903 0.894 0.868

PAMAP2 0.718 0.949 0.683 0.865 0.769
OpportunityGestures 0.655 0.768 0.762 0.574 0.715

OpportunityLocomotion 0.845 0.900 0.859 0.850 0.868
Occupancy 0.496 0.873 0.517 0.844 0.526

Total best accuracy 0 0 1 2 1
Average accuracy 0.596 0.651 0.658 0.672 0.675
Ours 1-to-1 Wins 32 26 27 23 31

Ours 1-to-1 Draws 0 0 2 2 1
Ours 1-to-1 Losses 2 8 5 9 2

Mean Rank 12.15 8.79 9.65 7.44 10.44
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Table 3.2. Accuracy of NS, WEASEL-MUSE, TS-TCC, TNC, and ShapeNet.

Dataset NS WEASEL-MUSE TS-TCC TNC ShapeNet
ArticularyWordRecognition 0.987 0.990 0.953 0.973 0.987

AtrialFibrillation 0.133 0.333 0.267 0.133 0.400
BasicMotions 1.000 1.000 1.000 0.975 1.000

CharacterTrajectories 0.994 0.990 0.985 0.967 0.980
Cricket 0.986 1.000 0.917 0.958 0.986

DuckDuckGeese 0.675 0.575 0.380 0.460 0.725
EigenWorms 0.878 0.890 0.779 0.840 0.878

Epilepsy 0.957 1.000 0.957 0.957 0.987
ERing 0.133 0.133 0.904 0.852 0.133

EthanolConcentration 0.236 0.430 0.285 0.297 0.312
FaceDetection 0.528 0.545 0.544 0.536 0.602

FingerMovements 0.540 0.490 0.460 0.470 0.580
HandMovementDirection 0.270 0.365 0.243 0.324 0.338

Handwriting 0.533 0.605 0.498 0.249 0.451
Heartbeat 0.737 0.727 0.751 0.746 0.756

InsectWingbeat 0.160 - 0.264 0.469 0.250
JapaneseVowels 0.989 0.973 0.930 0.978 0.984

Libras 0.867 0.878 0.822 0.817 0.856
LSST 0.558 0.590 0.474 0.595 0.590

MotorImagery 0.540 0.500 0.610 0.500 0.610
NATOPS 0.944 0.870 0.822 0.911 0.883

PEMS-SF 0.688 - 0.734 0.699 0.751
PenDigits 0.983 0.948 0.974 0.979 0.977
Phoneme 0.246 0.190 0.252 0.207 0.298

RacketSports 0.862 0.934 0.816 0.776 0.882
SelfRegulationSCP1 0.846 0.710 0.823 0.799 0.782
SelfRegulationSCP2 0.556 0.460 0.533 0.550 0.578
SpokenArabicDigits 0.956 0.982 0.970 0.934 0.975

StandWalkJump 0.400 0.333 0.333 0.400 0.533
UWaveGestureLibrary 0.884 0.916 0.753 0.759 0.906

PAMAP2 0.885 0.928 0.942 0.938 0.948
OpportunityGestures 0.689 0.553 0.791 0.821 0.730

OpportunityLocomotion 0.859 0.634 0.881 0.874 0.874
Occupancy 0.817 0.556 0.865 0.828 0.852

Total best accuracy 2 5 1 0 2
Average accuracy 0.686 0.688 0.692 0.693 0.717
Ours 1-to-1 Wins 23 25 28 29 25

Ours 1-to-1 Draws 2 3 1 1 2
Ours 1-to-1 Losses 9 6 5 4 7

Mean Rank 7.59 7.79 9.03 9.41 5.47
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Table 3.3. Accuracy of TS2Vec, Rocket, MiniRocket, TST, and TARNet.

Dataset TS2Vec Rocket MiniRocket TST TARNet
ArticularyWordRecognition 0.987 0.993 0.993 0.947 0.977

AtrialFibrillation 0.200 0.067 0.133 0.533 1.000
BasicMotions 0.975 1.000 1.000 0.925 1.000

CharacterTrajectories 0.995 0.991 0.990 0.971 0.994
Cricket 0.972 1.000 0.986 0.847 1.000

DuckDuckGeese 0.680 0.500 0.750 0.300 0.750
EigenWorms 0.847 0.650 0.790 0.720 0.420

Epilepsy 0.964 0.986 1.000 0.775 1.000
ERing 0.874 0.989 0.974 0.930 0.919

EthanolConcentration 0.308 0.450 0.430 0.337 0.323
FaceDetection 0.501 0.638 0.612 0.625 0.641

FingerMovements 0.480 0.520 0.550 0.590 0.620
HandMovementDirection 0.338 0.486 0.392 0.675 0.392

Handwriting 0.515 0.596 0.520 0.359 0.281
Heartbeat 0.683 0.741 0.771 0.782 0.780

InsectWingbeat 0.466 0.179 0.229 0.687 0.137
JapaneseVowels 0.984 0.978 0.986 0.995 0.992

Libras 0.867 0.906 0.922 0.861 1.000
LSST 0.537 0.635 0.653 0.576 0.976

MotorImagery 0.510 0.460 0.610 0.610 0.630
NATOPS 0.928 0.872 0.933 0.939 0.911

PEMS-SF 0.682 0.832 0.809 0.930 0.936
PenDigits 0.989 0.981 0.967 0.981 0.976
Phoneme 0.233 0.273 0.291 0.111 0.165

RacketSports 0.855 0.901 0.868 0.796 0.987
SelfRegulationSCP1 0.812 0.867 0.915 0.961 0.816
SelfRegulationSCP2 0.578 0.555 0.506 0.604 0.622
SpokenArabicDigits 0.988 0.997 0.963 0.998 0.985

StandWalkJump 0.467 0.467 0.333 0.600 0.533
UWaveGestureLibrary 0.906 0.931 0.785 0.913 0.878

PAMAP2 0.941 0.931 0.962 0.948 0.974
OpportunityGestures 0.771 0.813 0.809 0.732 0.830

OpportunityLocomotion 0.842 0.875 0.886 0.907 0.908
Occupancy [49] 0.876 0.832 0.878 0.881 0.883

Total best accuracy 1 6 4 7 17
Average accuracy 0.722 0.732 0.741 0.745 0.772
Ours 1-to-1 Wins 24 20 21 20 -

Ours 1-to-1 Draws 0 2 4 0 -
Ours 1-to-1 Losses 10 12 9 14 -

Mean Rank 7.18 5.18 4.71 5.74 4.00
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Table 3.4. Root Mean Squared Error (RMSE) of 1-NN-DTWD, 1-NN-ED, 5-NN-ED, and
5-NN-DTWD.

Dataset 1-NN-DTWD 1-NN-ED 5-NN-ED 5-NN-DTWD
AppliancesEnergy 6.036 5.231 4.227 4.019

BenzeneConcentration 4.983 6.535 5.844 4.868
BeijingPM10 139.134 139.229 115.502 115.502
BeijingPM25 88.256 88.193 74.156 72.717

LiveFuelMoisture 57.111 58.238 46.331 46.290
IEEEPPG 37.140 33.208 27.111 33.572

Total best loss 0 0 0 0
Ours 1-to-1 Wins 6 6 6 6

Ours 1-to-1 Draws 0 0 0 0
Ours 1-to-1 Losses 0 0 0 0

Mean Rank 12.167 11.833 8.833 8.833
Avg.Rel.Diff.Mean 0.355 0.379 0.153 0.125

Table 3.5. Root Mean Squared Error (RMSE) of SVR, ResNet, FCN, and Rocket.

Dataset SVR ResNet FCN Rocket
AppliancesEnergy 3.457 3.065 2.865 2.299

BenzeneConcentration 4.790 4.061 4.988 3.360
BeijingPM10 110.574 95.489 94.438 120.057
BeijingPM25 75.734 64.462 59.726 62.769

LiveFuelMoisture 43.021 51.632 47.877 41.829
IEEEPPG 36.301 33.150 34.325 36.515

Total best loss 0 0 0 0
Ours 1-to-1 Wins 6 6 5 6

Ours 1-to-1 Draws 0 0 0 0
Ours 1-to-1 Losses 0 0 1 0

Mean Rank 8.000 7.333 7.000 6.500
Avg.Rel.Diff.Mean 0.097 0.006 0.022 -0.047
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Table 3.6. Root Mean Squared Error (RMSE) of Inception, RF, XGB, TST, and TARNet.

Dataset Inception RF XGB TST TARNet
AppliancesEnergy 4.435 3.455 3.489 2.375 2.173

BenzeneConcentration 1.584 0.855 0.637 0.494 0.481
BeijingPM10 96.749 94.072 93.138 86.866 90.482
BeijingPM25 62.227 63.301 59.495 53.492 60.271

LiveFuelMoisture 51.539 44.657 44.295 43.138 41.091
IEEEPPG 23.903 32.109 31.487 27.806 26.372

Total best loss 1 0 0 2 3
Ours 1-to-1 Wins 5 6 5 4 -

Ours 1-to-1 Draws 0 0 0 0 -
Ours 1-to-1 Losses 1 0 1 2 -

Mean Rank 6.500 5.500 4.333 2.500 1.833
Avg.Rel.Diff.Mean -0.107 -0.171 -0.196 -0.302 -0.313

Table 3.7. Ablation study of TARNet

TARNet-Random TARNet-Top µ TARNet
Results on 34 classification datasets

Total best accuracy 6 9 31
Average accuracy 0.752 0.741 0.772
Ours 1-to-1 Wins 28 25 -

Ours 1-to-1 Draws 5 7 -
Ours 1-to-1 Losses 1 2 -

Mean Rank 2.206 2.176 1.088
Results on 6 regression datasets

Total best loss 0 1 5
Ours 1-to-1 Wins 6 5 -

Ours 1-to-1 Draws 0 0 -
Ours 1-to-1 Losses 0 1 -

Mean Rank 2.667 2.167 1.167
Avg.Rel.Diff.Mean 0.046 0.014 -0.060
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Chapter 4

Sensor Context Aware Self-supervision

In the previous chapter, we focused on task-aware representation learning to enhance

end-task performance. Now, we explore Zero-Shot Learning (ZSL), a specific and challenging

learning scenario within the fine-tuning paradigm. Unlike traditional fine-tuning, ZSL addresses

the limitation of models that struggle to generalize across diverse classes. This chapter intro-

duces ZSL techniques specifically for Human Activity Recognition (HAR) to overcome these

challenges and improve model generalization.

HAR identifies human movements from motion sensor data, crucial for mobile and

wearable sensing. However, existing HAR systems are trained on a highly restrictive set of

motions. Hence, they fail to generalize to diverse human motions, prompting Zero-Shot Learning

(ZSL). ZSL for HAR requires auxiliary information about activities, often available only in

text form, which presents two key challenges: 1) text and motion sensor data are in different

modalities that must be jointly learned, and 2) text-based auxiliary information, like activity

names, are static description of an activity that do not provide sufficient fine-grained knowledge

about the sequence of bio-mechanical episodes that constitute an activity.

We propose ZeroHAR, a novel two-stage framework for Motion Sensor-based Zero-

Shot HAR 1. In Stage I, we exploit rich contextual sensor name and placement information in

complement with sensor readings to contrastively align them with text. In Stage II, we first

design prompts to generate precise, fine-grained, textual knowledge about human motions from

1Code is publicly available at https://github.com/ranakroychowdhury/ZeroHAR

64

https://github.com/ranakroychowdhury/ZeroHAR


a Large Language Model (LLM). Finally, we tune the pre-initialized model from Stage I with

the target activity descriptions. We compared ZeroHAR with 8 baselines on 5 benchmark HAR

datasets, containing a wide range of sensors, placements and activities. ZeroHAR resulted in

an 19.1% and 20.4% average improvement in Zero-Shot Accuracy and Macro-F1, respectively,

over the next best baseline results, owing to its strongly aligned latent space learnt during Stage I

and the fine-grained activity knowledge infused in Stage II.

4.1 Problem Statement

Inertial HAR predicts human activities using data from Inertial Measurement Unit (IMU).

Existing inertial HAR systems are trained on data from a limited set of motions, collected and

annotated within a controlled laboratory setting. However, these models fail to recognize the

richer and more diverse set of motions that humans exhibit in the real world. Annotating vast

amounts of IMU data for all possible human movements to train a HAR model is not plausible.

Hence, in HAR, although a model may be trained on a limited set of activities, we expect them

to recognize unseen activities after deployment, a process known as Zero-Shot Learning (ZSL).

ZSL involves training a model on the data from seen classes and evaluating it on the

test data from unseen classes. To achieve this objective, ZSL is trained to learn fine-grained

attributes shared among classes that can be generalized to recognize unseen classes. For example,

a model may be trained on IMU data for “walking” but is expected to recognize “running” during

test time. Both these activities share several similarities in terms of body posture and limb

movements. For example, both involve an upright posture with a straight spine and head facing

forward, the arms swing alternately with the legs, and they both require a cyclic movement

pattern of the legs. Such basic body movements constitute activities at large. Hence, a model

that learns these low-level fine-grained knowledge from the activities that it were trained on, can

recognize unseen activities at test time.

Existing work in ZSL for Inertial HAR can be categorized into three types, shown in
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Figure 4.1. Different Approaches to Zero-shot Wearable HAR.

Figure 4.1: (a) Manually crafting activity-attribute matrices that encode basic limb movements

and body posture information in a binary matrix [126, 19, 18]: This method demands extensive

domain knowledge and is time-consuming to design. It is also difficult to come up with a

comprehensive set of attributes that can capture the wide variety of human motions, making

them impractical for large-scale activity recognition. (b) Extracting embeddings of HAR

class names from language models and computing their cosine similarity with that of IMU

embeddings [81, 133]: This approach mitigates the need for domain expertise but the activity

name embeddings lack sufficient fine-grained knowledge necessary for generalization to unseen
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Figure 4.2. ZeroHAR Training Overview.

activities. For example, the embedding of “walking” will not include details about how the

body posture and limb movements evolve during the activity. Moreover, activity names can

have multiple meanings, like “walk in the park” introducing ambiguity in the embeddings.

Besides, IMU and text are in different modalities and reconciling them poses a significant

challenge. (c) Developing pre-trained IMU-text models, like ImageBind [42] and IMU2CLIP

[86], addresses the alignment problem. However, these models are pre-trained on datasets with

specific IMU sensors positioned at specific body locations, limiting their adaptability. Hence,

they under-perform when applied to datasets with alternative IMU sensors and varied body

placements.

To generalize to all IMU sensors located at any body position and to better align IMU

with text for Zero-Shot Inertial HAR, we propose ZeroHAR.

Figure 4.2 shows ZeroHAR’s two-stage training setup. In Stage I (IMU-Text Alignment),

we compliment each IMU measurement with its corresponding sensor metadata provided as text.

The metadata includes information about the measurement axis, the type of sensor measurement,

and the body position where this sensor is located. Ixac and Txac are embeddings for IMU and text-
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based sensor knowledge, respectively, from the x−axis of accelerometer, a, at chest, c. IxacTxac is

the dot product between Ixac and Txac for Multimodal Contrastive Learning. ZeroHAR is trained

on this IMU and text-based sensor metadata through multimodal contrastive loss that brings the

latent space of IMU representation closer to its corresponding sensor information. Encoding

such specific knowledge about sensor type and its placement enables ZeroHAR to generalize to

different IMU datasets given specific sensor metadata information. Moreover, since the metadata

is in text, the joint IMU-text training also helps to align IMU with text. This alignment is

important because in the next stage the model needs to learn to map IMU to text-based activity

descriptions. In Stage II, we prompt an LLM to generate precise, fine-grained bio-mechanical

information about human activity. This provides fine details about human activities, obviating

the need to custom design activity-attribute matrices. The pre-initialized model from Stage I is

then trained to recognize actions from an IMU with its corresponding activity description as the

label in Stage II (Action Recognition). I and A1 are embedding vectors for a given IMU and an

Activity, respectively. IA1 is the dot product between I and A1 for Cross-Entropy Loss. This

stage aligns various time series measurements of the core body movements (such as arm up or

leg kicking) to its text counterparts that constitute activities at large, even for the unseen ones. K,

P, Q, and R are learnable blocks.

We extensively evaluate ZeroHAR with 8 baselines on 5 benchmark HAR datasets,

encompassing a wide variety in the number and type of IMU sensors and the range of human

motions. ZeroHAR resulted in a 19.1% and 20.4% average improvement in Zero-Shot Accuracy

and Macro-F1, respectively, over the 2nd best results. We also conduct ablations and case study

to show how the warm initialization of the IMU-text latent space during the alignment stage

helps ZeroHAR to generalize to unseen classes. Our main contributions are as follows:

• We use sensor metadata to align IMU with text and to generalize our approach to new IMU

sensors at different body positions.

• We propose a two-stage training framework for ZSL on Inertial HAR: warm initialization
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of IMU-text latent space, followed by activity recognition.

• We automate the generation of precise fine-grained activity description from LLM through

carefully designed prompts.

• We present new state-of-the-art performance for ZSL on 5 benchmark Inertial HAR

datasets.

4.2 Related Works

Zero-Shot Learning (ZSL) extends learned knowledge from a known set of training

classes to an unknown set of classes in testing. To do so, it captures shared low-level semantics

among classes [109, 45]. One-hot encoding of classes is inadequate to represent such semantics.

Some ZSL studies for Inertial HAR manually designs class-attribute matrix, including body

posture and limb motion details. [126, 19, 18] (Figure 4.1(a)). While insightful, manual design

is impractical for large-scale HAR due to the diverse range of human movements.

Others represented class names as embeddings to learn their auxiliary semantic space

[81, 133] (Figure 4.1(b)), mitigating the need for domain expertise. However, this approach faces

two challenges: 1) Activity names lack fine-grained motion details, hindering generalization

to unseen activities. For instance, a class-attribute matrix may capture “body remains upright”

while “standing,” but the embedding of “standing” may lack this specificity. Without learning

such fundamental bio-mechanics, a model may struggle to generalize to similar unseen activities

like “walking”, where the body also stays upright. Moreover, activity names can have multiple

meanings, like “walk in the park” or “software is running smooth”, leading to ambiguity in

embeddings. 2) IMU and textual activity names belong to different modalities, complicating the

learning of a shared multimodal space.

To address the limited detail activity names provide about human motion, most Zero-Shot

Inertial HAR works utilize a third modality of data, along with IMU and textual activity names,

for both training and testing. Some use images or videos [119, 26], LiDAR and radar [152],
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skeleton [20, 65], or audio [151] as the third modality. However, most IMU datasets lack paired

data in another modality, preventing training and testing on IMU-only datasets.

Recently, pre-trained IMU-text models like ImageBind [42] and IMU2CLIP [86] used

IMU data and text-based activity names to learn a shared multimodal space. However, these

models are pre-trained on datasets with specific IMU sensors located at fixed body positions. They

generalize poorly when tested with other IMU sensors at different body positions (Figure 4.1(c)).

ZeroHAR leverages fine-grained information from an LLM to enrich HAR without

relying on paired data from a third modality. This includes specific details about body posture

and limb motion evolution during activities. This circumvents domain expertise and enables

scalable deployment for large-scale HAR, as textual information is more easily accessible than

other modalities like videos or skeleton data. Moreover, to enhance IMU-text based HAR, we

pre-initialize the IMU-text latent space through contrastive training of IMU data with textual

sensor metadata, driving the development of our two-stage framework. Additionally, ZeroHAR

seamlessly adapts to new IMU datasets with different sensor types and body positions, provided

relevant sensor metadata is available.
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4.3 ZeroHAR Framework

In Figure 4.2, we show a schematic diagram of ZeroHAR. In this section, we first present

the problem setting, followed by our two-stage training recipe, namely Stage I: IMU-Text

Alignment (i.e., Figure 4.2(a)) and Stage II: Action Recognition (i.e, Figure 4.2(b)).

Figure 4.3 dissects the different model components and loss computation of ZeroHAR.

(a) Stage I is trained through Multimodal Contrastive Learning between IMU, Iwsb, and textual

sensor metadata, Twsb, embeddings. (b) Stage II is trained using Cross Entropy Loss between

IMU, I, and textual activity description, A, embeddings.

4.3.1 Problem Statement

Let O and U be the set of observed and unobserved activities, respectively. The two sets

are disjoint, i.e. O∩U = /0. Let G = O∪U be the set of all activities, and g denote a given

activity, g ∈ G. All the labeled instances for training are from the observed activities in O. More

formally, the training set is Dtr = {(X i,Y i)|i = 1,2,3, ...,N} where N is the number of training

data points, X i is a multi-variate time series, and Y i ∈ O is the activity label corresponding

to X i. In ZSL, the data and labels for the test set come only from the unobserved classes:

Dte = {(X i,Y i)|i = 1,2,3, ...,Z}, where Z is the number of test data points and Y i ∈U .

Let B be the set of body positions with wearable devices, and b denote a given body

position, b ∈ B. Let Mb denote the set of IMU sensors at body position b. Then M denotes the

set of IMU sensors at all body positions, hence M = {M1,M2, ...,Mb, . . . ,M|B|}. Hence, the total

number of IMU sensors attached to the body is ∑
|B|
b=1 |Mb|. If s denotes a given IMU sensor, then

Msb denotes IMU sensor s at body position b. Let W denote the set of axes along which an IMU

records measurements and w denote a given axis, w ∈W . All IMUs record data along x−, y−,

and z− axes, so W is constant for every IMU sensor, W = {x,y,z}, |W |= 3. So the total number

of channels in a given data point is |W |∑|B|b=1 |Mb|. If l is the number of timestamps in the data,

then X i ∈ R|W |∑
|B|
b=1 |Mb|×l . And X i

wsb ∈ Rl denote a uni-variate time series from axis, w, of IMU

71



sensor, s, located at body position, b, for data X i. All notations are summarized in Table ?? under

Section C.0.1.

4.3.2 Stage I: IMU-Text Alignment

Sensor Metadata Construction Textual descriptions of human motion biomechanics,

instead of activity names, offers finer details crucial for generalization to unseen classes in

ZSL. However, integrating text and IMU data, which belong to different modalities, requires

reconciling them for effective cross-modal understanding.

To address this challenge, we propose complementing IMU data with corresponding

contextual text-based sensor metadata. By training a model with this combined data, we aim to

enhance cross-modal alignment, leading to improved downstream classification. Smart devices

worn on various body positions, b (e.g., chest or waist pocket for a phone, right or left wrist for a

watch) may house multiple IMU sensors, s (e.g., accelerometers, gyroscopes, magnetometers)

capturing time-series measurements across multiple axes, w (x, y, and z). Despite the availability

of such contextual information in most IMU datasets, it remains underutilized in HAR systems.

Algorithm 4 outlines the IMU-text alignment procedure. For each IMU time series, we

construct its text metadata, twsb, that corresponds to: “w−axis of s attached to b” (Line 10).

Complimenting an IMU time series with corresponding sensor metadata provides rich contextual

information that helps to better align IMU with text.

Alignment Training We embed twsb using the text encoder of ImageBind [42], a Pre-

trained IMU-text Model (ILM). Unlike BERT [64], GPT [94], or other language models (LM),

an ILM is pre-trained with both IMU and text. Hence, ILM’s text embedding better aligns with

IMU than that of LM’s. To preserve the IMU-text alignment that ILM exhibits, we freeze its

parameters. The output of ILM is then passed through a text projection block, R, to extract sensor

metadata embedding output, Twsb, where Twsb ∈ Rh and h is the hidden dimension of the model

(Line 11).

ILM’s IMU encoder cannot be used on all IMU datasets because their encoder is trained
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on specific IMU sensors located at specific body positions. It does not generalize well to other

IMU sensors located at different body positions. Hence, we use a separate IMU encoder, K,

with a transformer backbone [144] (Figure 4.3(a)). The uni-variate IMU data, X i
wsb, is passed

through K, followed by an IMU projection block, P, to extract IMU embeddings Ii
wsb, Ii

wsb ∈ Rh

(Line 12). Projection blocks R and P are learnable non-linear layers that project text and IMU,

respectively, into a shared, latent space.

Cross-Modal Contrastive Learning After obtaining Twsb and Ii
wsb, we propose modality-

mutual learning for IMU-text alignment. This involves a joint optimization process using a

contrastive strategy to refine parameters in both language extraction and sensor encoders. The

goal is to align the latent space of IMU embeddings with their corresponding textual sensor

metadata embeddings while maintaining separation from unrelated sensor metadata. Contrastive

learning [15, 55] pulls similar points closer (anchor and positive) while pushing dissimilar

points away (anchor and negative), facilitating good representation learning. We utilize Cross-

Modal Contrastive Multiview Coding (CMC) [117] to achieve similar representation learning

capability across different modalities, maximizing the similarity between IMU embedding and

its corresponding sensor metadata embedding while minimizing the similarity between all other

pairs of embeddings via Information Noise Contrastive Estimation (InfoNCE) [89].

For data point X i, the IMU embedding from w axis of s sensor at body position b, Ii
wsb,

and its corresponding text embedding, Twsb, are considered a positive pair. To compute the IMU-

to-Text Loss, LIi
wsb→Twsb

, Ii
wsb and Twsb are the anchor and positive, respectively. (Ii

wsb,Twsb) forms

a positive pair. All other combinations of projections from different sensor channels (Ii
wsb,Tjne)

are treated as negative pairs, where j = {1,2, ..., |W |},n = {1,2, ..., |Me|},e = {1,2, ..., |B|} and

( j ̸= w∧n ̸= s∧e ̸= b). For example, as shown in Figure 4.3(a), if Ii
wsb is the anchor, then Twsb is

its positive and Tjne is one of the |W |∑|B|b=1 |Mb|−1 negatives. LIi
wsb→Twsb

for X i is calculated as,

LIi
wsb→Twsb

=− log
exp(sim(Ii

wsb,Twsb))/τ

∑
|B|
e=1 ∑

|Me|
n=1 ∑

|W |
j=1 exp(sim(Ii

wsb,Tjne))/τ

, (4.1)
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where we use cosine similarity as our similarity function for sim(Ii
wsb,Twsb). The numerator

computes the similarity score between IMU and and its corresponding sensor metadata embed-

ding while the denominator considers similarities with all available sensor metadata. τ is a

temperature parameter to scale the similarities.

Similarly, to compute the Text-to-IMU Loss, LTwsb→Ii
wsb

, for data point X i, (Ii
wsb,Twsb)

forms a positive pair. All other combinations of projections from different input instances

(Ii
jne,Twsb) are treated as negative pairs, where j = {1,2, ..., |W |},n = {1,2, ..., |Me|},e = {1,2,

..., |B|} and ( j ̸= w∧n ̸= s∧e ̸= b). In Figure 4.3(a), if Twsb is the anchor, then Ii
wsb is its positive

and Ii
jne is one of the |W |∑|B|b=1 |Mb|−1 negatives. So LTwsb→Ii

wsb
is calculated as,

LTwsb→Ii
wsb

=− log
exp(sim(Ii

wsb,Twsb))/τ

∑
|B|
e=1 ∑

|Me|
n=1 ∑

|W |
j=1 exp(sim(Ii

jne,Twsb))/τ

(4.2)

LIi
wsb→Twsb

and LTwsb→Ii
wsb

are computed in Line 13. Lines 6 - 13 is parallelized by matrix

vectorization for efficient computation.

The total IMU-to-Text Contrastive Loss, LIi→T , and Text-to-IMU Contrastive Loss,

LT→Ii , over training instance i are computed as,

LIi→T =
1

|W |∑|B|b=1 |Mb|

|B|

∑
b=1

|Mb|

∑
s=1

|W |

∑
w=1

LIi
wsb→Twsb

(4.3)

LT→Ii =
1

|W |∑|B|b=1 |Mb|

|B|

∑
b=1

|Mb|

∑
s=1

|W |

∑
w=1

LTwsb→Ii
wsb

(4.4)

The total Cross-Modal Contrastive Loss for X i, LIi←→T , is computed as the average of the two as

follows,

LIi←→T =
1
2
(LIi→T +LT i→I) (4.5)

LIi→T and LT→Ii are computed in Lines 14 and 15, respectively. LIi←→T updates model compo-

nents, K, R, and P, in Line 16. The loss minimization ensures high similarity scores for correct
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IMU and textual sensor metadata pairs. This bridges the gap between IMU and text, facilitating

cross-modal understanding by joint training.

Example 4 Consider a person with a smartphone on his chest, c, equipped with an
accelerometer, a, and a gyroscope sensor, g, and a smartwatch on his wrist, w, equipped with
a magnetometer sensor, m. Each sensor records motion data along x−, y−, and z− axes.
The sensor context information corresponding to x−axis of an accelerometer attached to the
chest would be txac = x-axis of an accelerometer attached to the chest. Suppose the text
embedding corresponding to this sensor context is,
Txac = [0.4273,0.0324,0.1358]
And the IMU embedding corresponding to the particular channel is,
Ixac = [0.8238,0.09120,0.0525]
Let the text embedding corresponding to all sensor context be as follows:
Txac = [0.4273,0.0324,0.1358], Tyac = [0.0444,0.1482,0.5043], Tzac =
[0.5350,0.2158,0.5222],
Txgc = [0.9174,0.0888,0.5477], Tygc = [0.1913,0.5139,0.3179], Tzgc =
[0.7662,0.6641,0.4890],
Txmw = [0.1650,0.8856,0.1585], Tymw = [0.3684,0.3520,0.7317], Tzmw =
[0.2900,0.9304,0.2549]
The cosine similarity scores of Ixac with all the sensor context embeddings are:
[0.9699,0.1748,0.7549,0.8902,0.4201,0.7674,0.2961,0.5051,0.4030]
Assuming τ = 0.1, putting these cosine similarities in Eq 4.1 gives,
LIxac→Txac = 1.8374
We can compute the above loss for all the other remaining sensor contexts and repeat this
procedure for the IMU data across all channels to compute LI→T , as shown in Eq 4.3.

Similarly, let the IMU embeddings corresponding to all the channels be as follows:
Ixac = [0.9293,0.1199,0.1764], Iyac = [0.8389,0.0996,0.4293], Izac =
[0.9360,0.8584,0.6904]
Ixgc = [0.6128,0.8327,0.9093], Iygc = [0.6189,0.1975,0.3877], Izgc =
[0.7419,0.0707,0.7184]
Ixmw = [0.2797,0.2692,0.6420], Iymw = [0.9928,0.9789,0.1807], Izmw =
[0.4012,0.7538,0.7084]
The cosine similarity scores of Txac with all the IMU embeddings are:
[0.9914,0.9859,0.8026,0.6662,0.9512,0.8959,0.6387,0.7602,0.5856] Putting these
cosine similarities in Eq 4.2 gives,
LTxac→Ixac = 2.0251
Similarly, we can compute the above loss for the IMU data across all channels and repeat
this procedure for the remaining sensor contexts to compute LT→I , as shown in Eq 4.4.
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Algorithm 4. Stage I: IMU-Text Alignment

Input: Dtr, B, M, W , ILM
Hyper-parameters: τ

Output: Trained (K and R)

1: K, P, and R initialized randomly
2: for X i in Dtr do
3: for b in B do
4: for s in Mb do
5: for w in W do
6: twsb← “w−axis of s attached to b”
7: Twsb← R(ILM(twsb)), Twsb ∈ Rh

8: Ii
wsb← P(K(X i

wsb)), Ii
wsb ∈ Rh

9: Compute LIi
wsb→Twsb

& LTwsb→Ii
wsb

(Eq. (4.1) & (4.2), respectively)
10: end for
11: end for
12: end for
13: Compute LIi→T & LT→Ii (Eq. (4.3) & (4.4), respectively)
14: Compute LIi←→T from LIi→T and LT→Ii (Eq. (4.5))
15: Update K, P, and R based on LIi←→T
16: end for
17: return Trained (K and R)

4.3.3 Stage II: Action Recognition

With K and R pre-initialized via joint IMU and sensor metadata training, the model has

acquired a robust, aligned latent space shared between IMU and text modalities. This will help

ZeroHAR to learn to recognize activities from IMU. However, relying solely on activity name

embeddings lacks sufficient detail about human movements, potentially hindering generalization

to unseen classes and resulting in subpar zero-shot HAR performance.

Activity Description Generation Algorithm 5 outlines our action recognition pipeline.

We prompt GPT-4 [90], a Large Language Model (LLM), to generate fine-grained description for

each activity in G which consists of all observed and unobserved activities. Prompt φ is detailed

in Figure 4.2(b). Since an activity can be explained in numerous ways, we generate c descriptions

per activity to obtain a more stable and less noisy estimate of activity representation. Given the
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potential for environmental details in LLM-generated descriptions, such as ”walk in the park”

or ”sleeping soundly,” we design φ to focus strictly on bio-mechanics, body posture, and limb

motion, explicitly instructing it to avoid environmental or metaphorical language. The prompt

is outlined in Figure 4.2(b). If βg = {βg1 ,βg2, ...,βgc} denotes a set of c generated descriptions

for activity g, then β = {β1,β2, ...,βg, ...,β|G|} (Line 7). We manually check all the generated

descriptions to verify their accuracy.

Action Recognition Training β is fed through the text encoder of the frozen ILM to

extract IMU-aligned text embeddings, followed by the pre-initialized text projector, R, from

Stage I. The extracted embeddings, α , represent c embeddings corresponding to c descriptions

for each activity in G, α ∈ Rc|G|×h, where h is the hidden dimension of the model (Line 9). We

average c embeddings per activity from α to extract A, a single embedding for each activity,

A ∈ R|G|×h (Line 10). Representing an activity by the average of c embeddings instead of one,

helps in reducing the variance. Similarly, the IMU measurements for data point X i are also

passed through the pre-initialized IMU encoder, K, from Stage I, followed by an IMU projector,

Q, which consists of some learnable non-linear layers (Figure 4.3(b)), to extract Ii, Ii ∈ Rh (Line

12).

If a is the true activity corresponding to X i, then (Ii,Aa) represents the corresponding

IMU and activity embedding. We compute cross entropy loss, Li
CE , by comparing the cosine

similarity of (Ii,Ag), with all the activities in G (Line 13). K, R, and Q, are then trained by

backpropagating Li
CE in Line 14.

Li
CE =− log

exp(sim(Ii,Aa))

∑
|G|
g=1 exp(sim(Ii,Ag))

(4.6)

We use different optimizers to train the IMU-related layers (K, P from Stage I, Q from

Stage II) and text-related layers (R in Stage I and II) of ZeroHAR.
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Example 5 Consider the IMU embedding for a given instance of walking is,
Iwalking = [0.9959,0.7521,0.0194]
Let the global set of activities be G = walking,sitting,standing,cycling, jumping but the
training set contain data for only the following activities O = walking,sitting,standing.
We use prompt, φ = “You are an expert in human activity recognition. You can explain
human activities in various ways. Explain the human activities in a concise manner,
describing only the human body motion, including limb movements and body posture
information. You cannot use any environment or metaphorical descriptions. Capture the
entire activity in a single description. Produce 10 different descriptions for each of the
following activities: walking, cycling, standing, sitting, jumping” to generate 10 descriptions
for each activity.
A sample description for walking could be Progressive forward motion with alternating
steps, arms swinging in rhythm, and head upright.
We extract embeddings for all 10 descriptions corresponding to an activity and average them.
Suppose, the averaged embedding are as follows:
Awalking = [0.7059,0.2072,0.1001], Asitting = [0.6968,0.9024,0.5484], Astanding =
[0.2623,0.4603,0.8496]
The cosine similarity scores of Iwalking with all the activity embeddings are:
[0.9289,0.8760,0.4992]
Putting these cosine similarities in Eq 4.6 gives,
LCE = 0.9552

Zero-Shot Action Recognition During testing, we predict the activity associated with

the largest cosine similarity score,

Ŷ i = argmax
g∈U

F(X i,Ag) (4.7)

, where g is a given activity from the set of unobserved activities U , X i ∈Dte, Ag is the embedding

corresponding to activity g, F is ZeroHAR, and Ŷ i is the prediction corresponding to X i.

Example 6 During testing, we may get an instance of a person cycling whose corresponding
IMU embedding is,
Icycling = [0.9809,0.2470,0.3002]
Along with the averaged embeddings for walking, sitting, and standing from the last example,
we also have the averaged embeddings for cycling and jumping from the LLM generated
descriptions,
Acycling = [0.6035,0.6676,0.9218], A jumping = [0.7384,0.2264,0.4257]
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Algorithm 5. Stage II: Action Recognition

Input: Dtr, G, LLM, ILM, Trained (K and R) from Stage I
Hyper-parameters: c
Output: Trained (K, Q, and R)

1: Q initialized randomly
2: φ constructed from G
3: β ← LLM(φ)
4: for (X i,Y i) in Dtr do
5: α ← R(ILM(β )), α ∈ Rc|G|×h

6: A←Mean c embeddings per class from α , A ∈ R|G|×h

7: Aa← Embedding for activity, a, where a = Y i, Aa ∈ Rh

8: Ii← Q(K(X i)), Ii ∈ Rh

9: Compute Li
CE (Eq. (4.6))

10: Update K, Q, and R, based on Li
CE

11: end for
12: return Trained (K, Q, and R)

The cosine similarity scores of Icycling with Awalking,Asitting,Astanding,Acycling,A jumping are as
follows:
[0.9876,0.8023,0.5925,0.7604,0.9758]
Since the highest cosine similarity score corresponds to the text embedding for walking,
ZeroHAR will mistakenly classify the IMU data as walking, even though it actually represents
cycling.

4.4 Experimental Results

4.4.1 Dataset, Baselines and Metrics

We present the datasets, baselines, metrics, followed by the experimental setup. We

show and compare ZeroHAR’s Zero-Shot Classification (ZSC) performance with baselines. We

perform ablations and a case study to justify our motivation and training approach.

We use 5 Inertial HAR benchmark datasets for evaluation, summarized in Table 4.1. Each

dataset has one device at each location specified under “Body Positions” column. Each device

is equipped with all the sensors under the “Sensors” column. Each sensor generate time-series

data along x−, y−, and z− axes. The datasets represent a wide variety in the number and type of
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Table 4.1. Datasets used. Each body position is equipped with all the sensors specified under
sensors column.

Dataset Body Positions IMU sensors

Opportunity [98]
back, right upper arm, right lower arm,
left upper arm, left lower arm

accelerometer, gyroscope,
magnetometer

PAMAP2 [97] wrist, ankle, chest
accelerometer, gyroscope,
magnetometer

Harth [77] lower back, thigh accelerometer
USCHAD [145] front right hip accelerometer, gyroscope
WISDM [130] wrist accelerometer, gyroscope

devices (some have 1 IMU sensor, while others have 3) and their associated body positions. The

datasets are as follows:

• Opportunity2 [98] collects readings from 4 users with 6 runs per user. The full dataset

includes annotations on multiple levels, and we use mid-level gesture annotations. Sensors

include body-worn, object, and ambient sensors. Corresponding activities include opening

door, closing fridge, drinking from cup, etc.

• PAMAP23 [97] collects data from 9 subjects with IMUs sampled at 100 Hz and a heart

rate monitor sampled at 9Hz. Three IMUs are positioned over the wrist on the dominant

arm, on the chest, and on the dominant side’s ankle, respectively.

• Harth4 [77] involves 22 subjects using 2 3-axial accelerometers.

• USCHAD5 [145] involves 14 subjects using MotionNode (6-DOF IMU designed for

human motion sensing applications). To complete the study, each subject was asked to

engage in each activity 5 times at different locations, both indoors and outdoors, over the

course of multiple days.

2https://archive.ics.uci.edu/ml/datasets/opportunity+activity+recognition
3http://archive.ics.uci.edu/ml/datasets/pamap2+physical+activity+monitoring
4https://github.com/ntnu-ai-lab/harth-ml-experiments
5https://sipi.usc.edu/had/
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Table 4.2. Zero-shot classification on Opportunity, PAMAP2, and Harth.

Baselines Opportunity [98] PAMAP2 [97] Harth [77]
Acc F1 Acc F1 Acc F1

Activity-Attribute based methods
NuActiv [19] 39.2(8.4) 26.8(12.6) 42.7(9.3) 36.4(11.5) 18.1(7.5) 14.6(2.1)
SemAtt [18] 53.0(9.2) 42.9(8.1) 47.2(12.1) 37.9(10.6) 21.5(6.4) 28.1(3.1)
NCBM [126] 45.5(7.8) 40.6(13.3) 58.8(9.4) 45.2(12.9) 11.6(9.1) 13.7(4.8)
LETS-GZSL [10] 31.7(12.4) 21.9(8.6) 25.9(14.5) 18.8(11.2) 28.0(32.3) 14.0(15.5)

Activity Name Embedding based methods
SemHAR [81] 56.3(11.0) 44.9(14.2) 46.7(6.7) 31.7(8.4) 13.8(17.1) 5.7(3.6)
SHARE [146] 61.4(8.0) 50.8(12.7) 53.3(8.7) 35.8(10.0) 18.4(12.5) 18.1(7.8)
NonVisual [2] 52.1(15.6) 36.4(10.9) 29.9(4.4) 15.7(3.1) 47.9(36.5) 17.2(12.9)

Pre-trained IMU-text Model based methods
ImageB-pre [42] 34.3(4.8) 23.5(11.0) 31.9(2.7) 29.4(4.9) 11.3(15.5) 14.1(19.2)
ImageB-fine [42] 28.8(8.7) 27.6(9.1) 37.1(7.7) 25.2(2.9) 58.4(31.5) 31.0(14.5)

ZeroHAR 72.6(6.0) 59.0(11.3) 70.0(2.1) 59.4(3.1) 69.0(12.6) 33.1(6.1)

• WISDM6 [130] is collected from IMUs sampled at 20Hz. 51 subjects perform 18 activities

for 3 minutes respectively.

We compare ZeroHAR with 3 types of baselines shown in Figure 4.1:

• NuActiv [19] develops an developed an active learning algorithm based on class-attribute

matrix.

• SemAtt [18] proposes a semantic attribute layer that takes into account both the hierarchi-

cal and sequential nature of activity data.

• NCBM [126] proposes nonlinear compatibility function between feature space instance

and custom-designed semantic space prototypes based on class-attribute matrix.

• LETS-GZSL [10] combines time-series embedding module with statistical features to

project the concatenated features into a latent space to perform Generalized ZSL. We adapt

it for ZSL in this work.
6https://archive.ics.uci.edu/ml/datasets/WISDM+Smartphone+and+Smartwatch+Activity+and+Biometrics+

Dataset+

81

https://archive.ics.uci.edu/ml/datasets/WISDM+Smartphone+and+Smartwatch+Activity+and+Biometrics+Dataset+
https://archive.ics.uci.edu/ml/datasets/WISDM+Smartphone+and+Smartwatch+Activity+and+Biometrics+Dataset+


Table 4.3. Zero-shot classification on USCHAD and WISDM.

Baselines USCHAD [145] WISDM [130]
Acc F1 Acc F1

Activity-Attribute based methods
NuActiv [19] 13.9(5.3) 16.9(3.5) 18.5(7.1) 16.6(5.7)
SemAtt [18] 17.2(4.9) 20.6(9.5) 15.7(10.5) 11.6(3.6)
NCBM [126] 21.9(8.2) 27.4(11.4) 21.3(2.7) 21.5(9.3)
LETS-GZSL [10] 22.4(6.4) 13.2(5.3) 15.8(4.1) 11.1(2.5)

Activity Name Embedding based methods
SemHAR [81] 26.4(10.2) 19.9(8.7) 18.5(11.7) 15.8(9.3)
SHARE [146] 31.1(6.7) 24.5(6.4) 22.6(8.2) 17.9(10.5)
NonVisualSensors [2] 29.2(12.9) 17.0(5.8) 16.2(0.5) 4.65(0.1)

Pre-trained IMU-text Model based methods
ImageBind-pre [42] 25.0(7.5) 16.5(3.7) 27.5(3.2) 21.9(2.8)
ImageBind-fine [42] 45.3(3.1) 37.3(4.7) 29.2(1.0) 20.8(1.5)
ZeroHAR 61.8(9.6) 50.2(12.1) 26.0(10.0) 22.4(9.5)

Table 4.4. Regular HAR Classification Performance.

Baselines Opportunity [98] Harth [77] USCHAD [145]
Acc F1 Acc F1 Acc F1

TST [144] 78.4 66.8 97.4 50.1 64.1 59.4
TARNet [24] 78.9 66.9 96.2 48.1 56.4 53.3
Mini-Rocket [28] 78.9 67.0 89.7 47.2 58.0 60.1
ZeroHAR 79.6 75.5 98.2 50.8 57.3 54.9

• SemHAR [81] proposes word embedding vectors to represent class names, that is used as

auxiliary information to do Zero-Shot HAR.

• SHARE [146] accounts for shared structures of activity label names by using an encoder

for extracting features from input sensory time series and a decoder for generating label

names.

• ImageB-pre [42] pre-trained model across six different modalities, including IMU and

text. We directly use their IMU encoder.

• ImageB-fine [42] We fine-tune the IMU encoder by adding a linear classifier on top of the
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Table 4.5. Ablation Study of ZeroHAR on Opportunity, PAMAP2, and Harth.

Ablations Opportunity [98] PAMAP2 [97] Harth [77]
Acc F1 Acc F1 Acc F1

ZeroHAR trained only on Stage II, without Stage I
(1) - w label name 53.0(5.8) 43.6(9.5) 48.5(8.3) 36.9(11.7) 17.5(8.1) 14.7(6.5)
(2) - w act descrip 55.6(13.6) 45.1(8.0) 53.1(7.3) 41.0(4.8) 25.9(5.2) 16.2(4.1)
(3) - (2) & Metadata 61.3(11.7) 46.8(7.1) 59.8(10.4) 54.4(8.7) 23.6(9.1) 16.0(2.4)

ZeroHAR trained on both Stage I and II
(4) - w label name 68.4(7.2) 54.2(11.0) 65.5(5.9) 57.0(8.2) 49.1(9.7) 21.8(7.8)
(5) - w BERT 71.1(11.8) 57.5(6.8) 64.3(7.4) 53.7(9.3) 56.2(5.8) 22.7(4.4)
ZeroHAR 72.6(6.0) 59.0(11.3) 70.0(2.1) 59.4(3.1) 69.0(12.6) 33.1(6.1)

Table 4.6. Ablation Study of ZeroHAR on USCHAD and WISDM.

Ablations USCHAD [145] WISDM [130]
Acc F1 Acc F1

ZeroHAR trained only on Stage II, without Stage I
(1) - w label name 23.6(9.4) 18.2(7.7) 20.7(12.6) 15.4(5.0)
(2) - w act descrip 30.4(11.6) 24.9(6.3) 25.0(7.6) 18.9(8.9)
(3) - (2) & Metadata 27.4(8.5) 21.6(5.8) 25.4(7.3) 16.3(12.8)

ZeroHAR trained on both Stage I and II
(4) - w label name 48.4(13.8) 43.9(9.3) 21.5(3.8) 21.6(4.6)
(5) - w BERT 58.3(1.4) 46.1(6.5) 24.2(8.1) 21.3(11.7)

ZeroHAR 61.8(9.6) 50.2(12.1) 26.0(10.0) 22.4(9.5)

pre-trained model. We then train it on the seen and evaluate on the unseen classes for our

datasets.

The activity-attribute based methods define matrices for Opportunity and PAMAP2

datasets, but not for others. We then adapt these attributes to design matrices for the remaining

datasets.

Other Zero-Shot HAR works require a third modality paired with IMU and text for both

train and test, like videos [26], skeleton [20], audio [151]. However, our datasets lack additional

paired modalities, thus replicating those baselines was not feasible.

We evaluate the ZSC performance of ZeroHAR and baselines using average per-class
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Figure 4.4. Training, validation, and test data splits.

accuracy and macro-F1 score. Macro-F1 is defined as macro-F1 = 1
|U |∑

|U |
g=1 2× Precg×Recg

Precg+Recg
, where

Precg and Recg, represent the precision and recall for activity g, respectively, and |U | is the total

number of unseen activities in the test set, Dte.

4.4.2 Experimental Setup

Figure 4.4 shows the train and validation set for Stage I and II of ZeroHAR and the test

set. Each row represents #samples and column represent #classes. Note that #samples in each set

may be different. The test set comprises novel classes, U , unseen during training. To facilitate

early stopping, hyper-parameter selection, and gauge ZeroHAR’s performance during testing,

evaluation on a validation set is necessary during training. Therefore, we reserve data from

certain novel classes within O to form a validation set, Ova, at the start of training. Hence, during

Stage II training, ZeroHAR only observes data from Otr, where Otr = O−Ova. We also reserve

some data from Otr to use as Stage I validation.

We randomly partition the G classes into O and U for each dataset. To ensure result

reliability and assess confidence, we perform this split three times per dataset, (Table C.3

under Section C.0.2). All available classes appear once across the three splits to reflect ZSC

performance comprehensively. We conduct three experiments on each dataset, using a different

split each time. Specifically, for Experiments 1, 2, and 3, the test classes (U) correspond to fold

1, fold 2, and fold 3, respectively, while their respective training classes (O) are: fold 2 ∪ fold 3,
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fold 1 ∪ fold 3, and fold 1 ∪ fold 2.

We normalize the datasets for each of our experiments. We train all our baseline models

with sufficient hyper-parameter tuning to produce results. Since our datasets are widely heteroge-

neous in terms of number of data points, sensors, body positions, and sampling frequency, we

obtain better performance via cursory tuning of dataset-specific hyper-parameters. We set the

temperature parameter τ , in Algorithm 4, to 0.05 and the number of descriptions per activity,

c, in Algorithm 5 to 10. We use two Adam optimizers, one to update the IMU modality (IMU

Encoder and IMU projectors P and Q for Stage I and II, respectively), and one to update the text

modality (text projector R). We use a batch size of 128, learning rate of 0.001, 8 self-attention

layers with 8 heads for the IMU Encoder, a dropout of 0.01 and a hidden dimension, h, of 128,

for both Stage I and II. We save the model with the lowest validation loss and evaluate it on the

test set.

4.4.3 Results

Table 4.2 and 4.3 shows the results. We report the Meanstandard deviation of Average

Per-Class Accuracy and Macro-F1 scores across 3 seen-unseen class splits. Higher Accuracy

and Macro-F1 are better. We bold the best score and underline the second best.

Overall, Activity-Attribute methods perform poorly, followed by Activity Name Embed-

ding and Pre-trained IMU-text Model. Due to the unavailability of Activity-Attribute matrices

for Harth, USCHAD, and WISDM, we used attributes from PAMAP2 and Opportunity [126]

to define these matrices. However, the results for these datasets were subpar, indicating that

these attributes are too restrictive for generalization to new activities. While Activity Name

Embeddings exhibit better discriminative ability, they lack fine-grained information about each

activity. Pre-trained models like ImageBind, trained on the Ego4D dataset with sensors attached

to the head, perform poorly when directly evaluated for ZSC on our datasets, which feature IMU

sensors at various body positions. However, ImageBind fine-tuned on our datasets performs

relatively better and serves as the best overall baseline. We compute ZeroHAR’s improve-
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(a) Test Accuracy vs #unseen classes, |U | (b) Stage II’s Loss Convergence

Figure 4.5. Scaling Laws and Loss Convergence of ZeroHAR.

ment over the 2nd best results (underlined values in Table 4.2 and 4.3) shown in Table C.2

(Section C.0.2). ZeroHAR achieves +19.1% and +20.4% relative improvement in Average

Accuracy and Macro-F1, respectively, over the 2nd best results.

Performance on General HAR General HAR assumes all activities are observed during

training and is a relatively simpler task than ZSC, solvable by simple models. To demonstrate

that incorporating relevant contextual information about HAR systems can still yield competitive

performance, we compare ZeroHAR with state-of-the-art baselines, like TST [144], TARNet

[24], and Mini-Rocket [28]. Table 4.4 shows the accuracy and macro-F1 on Regular HAR

Classification. Higher Accuracy and Macro-F1 are better. We bold the best score and underline

the second best. The results indicate that ZeroHAR outperforms other methods on Opportunity

and Harth and is competitive on USCHAD. This underscores the potential of natural language-

inspired sensory applications to remain competitive in their core tasks.

Test Accuracy vs no. of unseen classes, |U | To compare how test accuracy on unseen

classes vary with the number of unseen classes, |U |, we compare ZeroHAR with ImageBind-fine

(best baseline as per Table 4.2, 4.3) on fold 1 of Opportunity dataset. Result in Figure 4.5(a)
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shows that accuracy goes down with increase in |U | for both models, but ZeroHAR surpasses

ImageBind-fine for all |U |.

Loss Convergence To assess the effect of Stage I (IMU-Text Alignment) on ZeroHAR,

we compare its loss convergence when trained on both Stage I and II versus Stage II alone.

Figure 4.5(b) shows the results on fold 1 of the Opportunity dataset. ZeroHAR trained with

Stage I converges faster and achieves a lower loss during Stage II compared to the model trained

solely on Stage II. Stage I involved contrastive training of IMU with textual sensor metadata,

providing a warm initialization of the shared space, that simplified subsequent learning in Stage

II.

4.4.4 Ablations

We analyze ZeroHAR’s performance through various ablations to justify our training

decisions. Table 4.5 and 4.6 presents the results. Meanstandard deviation of Average Per-Class

Accuracy and Macro-F1 scores across 3 seen-unseen class splits. Higher Accuracy and Macro-F1

are better. We bold the best score and underline the second best.

Leveraging activity descriptions (2) improves performance compared to using label names

alone (1). Adding sensor metadata to activity descriptions (3) further enhances performance.

Training on Stage I: IMU-Text Alignment before Stage II: Action Recognition notably improves

performance, validating our hypothesis. Stage I provides a warm initialization to the IMU-text

shared latent space, thereby improving the mapping of IMU to their corresponding textual activity

descriptions in the subsequent stage. Using activity descriptions (ZeroHAR) yields better results

than using label names alone (4). Employing ImageBind for text embedding (ZeroHAR) instead

of BERT (5) also improves results due to its alignment with IMU data.

4.4.5 Case Study on IMU-Text Alignment

Figure 4.6 depicts the IMU-text latent space learned by ZeroHAR on PAMAP2, showing

‘o’ - IMU embeddings with (a) ‘x’ - embedding of body positions for Stage I and (b) ‘x’ -
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(a) IMU with Body Position - Stage I (b) IMU with Class Description - Stage II

Figure 4.6. t-SNE vizualization of ZeroHAR on PAMAP2.

embedding of unseen test classes’ description in fold 3 for Stage II. Figure 4.6(a) demonstrates

ZeroHAR’s ability to align IMU data from different body parts with their corresponding word

embeddings, highlighting that joint training of IMU with its corresponding sensor metadata can

bring the latent space of IMU closer to text. Figure 4.6(b) shows that despite not being trained

on any data from these unseen classes, ZeroHAR can align their IMU data with their respective

textual activity description embeddings.

4.5 Conclusion

We present ZeroHAR, a two stage framework to address the Zero-Shot Learning problem

in Inertial HAR. In Stage I: IMU-Text Alignment, we compliment IMU with text-based contextual

information about sensors to learn a well-aligned latent space between IMU and text. This

facilitates mapping IMUs to textual activity representations in the subsequent stage. We compared

ZeroHAR with 8 baselines on 5 benchmark HAR datasets to justify its efficacy on Zero-Shot

HAR. Our ablations and case study highlight the superior alignment of IMU with text-based

sensor metadata and activity representations. Aligning sensory data with relevant text metadata

provides a platform to further investigate how such contextual knowledge can be leveraged for
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similar IoT-based applications. This will enable us to engage in more advanced natural language

queries, reasoning, and responses related to sensory data.

Chapter 4, in part is currently being prepared for submission for publication of the

material. Chowdhury, Ranak Roy; Kapila, Ritvik; Panse, Ameya; Zhang, Xiyuan; Teng, Diyan;

Kulkarni, Rashmi; Hong, Dezhi; Gupta, Rajesh K.; Shang, Jingbo. The dissertation author was

the primary investigator and the lead author of this paper.
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Chapter 5

Conclusion and Future Works

This dissertation starts with a thesis that real-world sensory data are significantly short

of labels. Hence, numerous sensor-based learning applications that rely on labeled data for

supervised training can be improved by a) better utilizing the large corpus of unlabeled data, b)

maximizing performance out of the limited labeled data, and c) transferring knowledge from the

data for available classes to improve performance on novel, unseen classes.

We present a framework that addresses these challenges in order. Our framework first

develops a pre-trained time-series model from unlabeled data by leveraging time interval infor-

mation between consecutive samples to design time-sensitive contrastive learning and masked

data reconstruction. This provides a warm initialization to the model parameters that excel

even with limited labeled data. In the second stage, we design a fully-supervised multi-task

finetuning for the supervised end task and an unsupervised task-aware data reconstruction that

focuses on important timestamps, thereby improving end-task performance. Finally, in order

to tackle classes that have no training data, we design a multi-modal framework that fuses text

into sensor-based models to transfer knowledge from seen to unseen classes. Demonstrating

broad applicability, our sensor time series analysis framework is effective in diverse sensing

systems, ranging from small-scale individual healthcare monitoring, smart home automation, to

large-scale smart building control, energy management, climate modeling and beyond.
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5.1 Limitations and Open Challenges

The long-term objective of my research lies in designing data-efficient workflows for

sensor-based learning systems. Below are a few potential directions that I am interested to

explore in the near future.

Multi-modal Framework. Our current robust framework mostly targets only a single

type of time series at a time. However, data collected from real-world sensing applications

usually contain heterogeneous modalities. For example, a human activity recognition system

might include multiple modalities such as IMU, EEG, microphone, and WiFi. If some domains

collect data in different modalities, then the shortage of data in one modality may be compensated

by the abundance of data in another modality.

Leveraging Large Language Models (LLMs). LLMs provide an automate way to

generate rich source of information about different sensory domains. Leveraging external

information banks, like LLMs, may compensate for the shortage of labels in many sensory

applications. It will be important to engineer prompts that can generate relevant information

about sensory domains aligned with real-world setting. We then need to discover ways in which

this information can be integrated into existing sensory models to bolster performance.

Efficient Algorithms. Real-world sensor time series often feature high dimensions

and extensive historical records. When paired with text metadata descriptions, the scale and

complexity of the data further increase. Consequently, it is critical to design efficient processing

algorithms, particularly for computations that occur on edge devices. Looking ahead, we plan to

design quantized and pruned models for sensory applications and therefore improve the inference

efficiency.

Real-Time Interactions. Our current framework transforms raw sensor time series into

valuable insights to support downstream decision making processes. converts raw sensor time

series into valuable insights that support downstream decision-making processes. However,

users often provide feedback and ask additional questions after receiving these insights. For
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instance, in human activity recognition, users might offer real-time corrections for misclassified

activities. This interaction presents an opportunity for the system to refine and improve its

future predictions. Looking ahead, we intend to integrate user feedback directly into the system,

enhancing real-time interactions between users and the framework.

Large-Scale Deployment. We focus not only on developing innovative framework

designs but also on deploying and implementing these systems in real-world environments.

Successfully running these robust learning methods necessitates both local and edge processing,

as relying solely on cloud processing is impractical due to bandwidth limitations and privacy

concerns. Effective edge processing demands careful partitioning of functions and restructuring

of inference algorithms to allow the appropriate migration of computation and data. We plan to

design FPGA co-processing methods to enable larger-scale deployment of our robust learning

methods while maintaining efficiency.
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Appendix A

Time-interval Aware Self-supervision

A.0.1 Notations

Notations used in Chapter 2 are detailed in Table A.1.
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Table A.1. Notations used in Chapter 2.

Notation Description
N number of features
S number of sampled timestamps

D a single data point, D = (T,X,M), where T ∈ RS is sampling times,
X ∈ RS×N is feature vectors, and M ∈ RS×N is binary mask

t, Ti a particular sampling time
s a particular feature
Mt set of observed and unobserved features at timestamp t, Mt ∈ RN

Mtn whether feature n has been sampled at timestamp t or not

ωih,αih
learnable parameter for frequency and phase component of Time Em-
bedding Layer

H number of embedding functions
φh(T) embedding function
T FA,FFA Time-Feature and Feature-Feature/Self Attention Module
QT ,KT Query and key vector for sampling times, T
QX ,KX Query and key vector for features, X
Z mean time interval computed from T
Zi mean time interval for timestamp Ti
Tdense,Tsparse timestamps corresponding to the lowest and highest 50% values in Z

DA
anchor augmented from D DA = (TA,XTA,MTA), where TA,XTA ,MTA

are the sampling times, features and binary mask of the anchor

DP
positive augmented from D DP = (TP,XTP,MTP), where TP,XTP ,MTP

are the sampling times, features and binary mask of the positive

µ
fraction of T that will be sampled to form the anchor, remaining 1−µ

gets picked for the positive
µl,µu lower and upper bound of µ during sampling
λ fraction of Tdense to sample, remaining 1−λ gets picked from Tsparse
λl,λu lower and upper bound of λ during sampling
B,τ batch size, temperature parameter
J,α number of masked segments and time interval to mask
qn timespan to mask for feature n
XU ,MU features and mask of the unmasked data
XV ,MV features and mask of the masked data
XVn[t : t +
qn],MVn[t : t +qn]

target features and mask for the masked out data from t to t +qn for n

XUn[t : t +
qn],MUn[t : t+qn]

features and mask for the unmasked data from t to t +qn for n

DU ,DV unmasked and masked data, DU = (T,XU ,MU), DV = (T,XV ,MV )
X̃U reconstruction of the masked out data
L,LReco,LCL Total Loss, Reconstruction Loss, Contrastive Loss
η hyper-parameter to balance the contrastive and reconstruction loss
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Appendix B

Task-specific Self-supervision

B.0.1 Notations

Notations used in Chapter 3 are detailed in Table B.1.

B.0.2 Environment

We have implemented TARNet in PYTHON with PYTORCH as the Deep Learning Library.

All the experiments were conducted on a machine with AMD EPYC 7452 32-Core Processor @

3.3GHz (2S/8C) and NVIDIA RTX A6000, running on Ubuntu 18.04.5 LTS (64-bit).

B.0.3 Training settings

We tuned TARNet-specific hyperparameters with a grid search on η{0.2,0.5,0.8},

µ{0.05,0.15, 0.25,0.35}, β{0.4,0.5,0.6}, and λ{0.65,0.80,0.95}. Generally, η = 0.5, µ =

0.15, β = 0.5, and λ = 0.8 are a good choice.

The best hyper-parameters for each dataset are reported in Table B.2 and Table B.3 for

classification and regression experiments, respectively. Dropout and the number of training

epochs are 0.01 and 300, respectively, across all datasets. We report the learning rate (lr),

number of layers of transformer block (nlayer), hidden dimension of the model (nhid), number

of self-attention heads (nhead), η , µ , β , and λ
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Table B.1. Notations used in Chapter 3.

Notation Description
S sequence length
N number of features
X a single data point, X ∈ RS×N

y target label
ỹ predicted label
p probability distribution over C classes
xt feature vector at timestamp t
TEND End Task
LEND End Task Loss
TTAR Task-aware Reconstruction
Lmasked Task-aware Reconstruction Loss for the masked part of the data
Lunmasked Task-aware Reconstruction Loss for the unmasked part of the data

λ
hyper-parameter to weight the masked, Lmasked , and the unmasked loss,
Lunmasked

LTAR Task-aware Reconstruction Loss
LTotal Sum of end task loss, LEND, and task-aware reconstruction loss, LTAR

η
hyper-parameter to weight the end task loss, LEND, and the task-aware recon-
struction loss, LTAR

C Number of classes for classification
D hidden dimension of the model
KE feed-forward dimension of Fully Connected Layers

W,b
all notations with any superscript or subscript on W and b refer to the learnable
parameters of TARNet

m binary mask, m ∈ RS

mt value of m at timestamp t
µ masking ratio
X̃ Reconstructed output of X
x̃t Reconstructed output of X at timestamp t, xt
A self-attention scores, A ∈ RS×S

Aik attention weight assigned to xk during the update of xi
σ normalized aggregate attention weight assigned to all timestamps, σ ∈ RS

σk normalized aggregate attention weight assigned to timestamp k
β hyper-parameter to select important timestamps from σ

σ ′ set of important timestamps chosen from σ
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Table B.2. Best hyper-parameter settings for classification experiments.

Dataset lr nlayer nhid nhead η µ β λ

ArticularyWordRecognition 0.001 2 128 8 0.5 0.15 0.5 0.8
AtrialFibrillation 0.01 2 64 8 0.5 0.15 0.5 0.8

BasicMotions 0.01 2 64 8 0.5 0.15 0.5 0.8
CharacterTrajectories 0.0001 4 256 8 0.2 0.15 0.5 0.8

Cricket 0.001 1 64 8 0.5 0.05 0.5 0.8
DuckDuckGeese 0.0001 4 64 4 0.5 0.15 0.5 0.8

EigenWorms 0.01 1 64 8 0.5 0.15 0.5 0.8
Epilepsy 0.01 4 64 8 0.5 0.25 0.5 0.8

ERing 0.001 8 64 4 0.8 0.15 0.5 0.8
EthanolConcentration 0.0001 2 32 8 0.5 0.05 0.5 0.8

FaceDetection 0.001 2 256 8 0.2 0.25 0.5 0.8
FingerMovements 0.0001 2 128 8 0.5 0.15 0.5 0.8

HandMovementDirection 0.0001 2 64 8 0.8 0.15 0.5 0.8
Handwriting 0.0001 8 256 16 0.2 0.05 0.5 0.8

Heartbeat 0.001 1 64 8 0.5 0.15 0.5 0.8
InsectWingbeat 0.00001 8 64 8 0.2 0.05 0.5 0.8
JapaneseVowels 0.001 4 128 8 0.5 0.25 0.5 0.8

Libras 0.01 8 64 8 0.5 0.15 0.5 0.8
LSST 0.01 4 64 8 0.5 0.15 0.5 0.8

MotorImagery 0.001 1 64 8 0.2 0.15 0.5 0.8
NATOPS 0.0001 2 256 8 0.2 0.25 0.5 0.8

PEMS-SF 0.001 4 64 16 0.8 0.15 0.5 0.8
PenDigits 0.001 8 64 8 0.8 0.15 0.5 0.8
Phoneme 0.001 4 128 8 0.5 0.25 0.5 0.8

RacketSports 0.01 1 64 8 0.5 0.05 0.5 0.8
SelfRegulationSCP1 0.00001 2 64 8 0.5 0.15 0.5 0.8
SelfRegulationSCP2 0.0001 8 32 8 0.8 0.05 0.5 0.8
SpokenArabicDigits 0.001 2 128 8 0.5 0.35 0.5 0.8

StandWalkJump 0.001 4 64 8 0.5 0.35 0.5 0.8
UWaveGestureLibrary 0.001 8 64 8 0.2 0.15 0.5 0.8

PAMAP2 0.001 8 64 8 0.8 0.15 0.5 0.8
OpportunityGestures 0.001 8 64 8 0.2 0.25 0.5 0.8

OpportunityLocomotion 0.001 8 64 4 0.2 0.15 0.5 0.8
Occupancy 0.001 4 64 8 0.2 0.05 0.5 0.8
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Table B.3. Best hyper-parameter settings for regression experiments.

Dataset lr nlayer nhid nhead η µ β λ

AppliancesEnergy 0.001 2 64 8 0.5 0.15 0.5 0.8
BenzeneConcentr. 0.001 2 64 8 0.5 0.15 0.5 0.8

BeijingPM10 0.01 2 64 8 0.5 0.15 0.5 0.8
BeijingPM25 0.01 2 64 8 0.5 0.15 0.5 0.8

LiveFuelMoisture 0.01 2 64 8 0.5 0.15 0.5 0.8
IEEEPPG 0.01 2 64 8 0.5 0.15 0.5 0.8
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Appendix C

Sensor Context Aware Self-supervision

C.0.1 Notations

Notations used in Chapter 4 are detailed in Table C.1.

C.0.2 Experimental Details

Unseen class splits used in the test set are detailed in Table C.3. For each dataset, we run

3 experiments. Mathematically, for Experiment 1, 2, and 3, the test classes are, U = fold 1, fold

2, and fold 3, respectively, while their corresponding training classes are, O = fold 2 ∪ fold 3,

fold 1 ∪ fold 3, and fold 1 ∪ fold 2, respectively.

In Table C.2, we measure ZeroHAR’s relative percentage improvement over 2nd best

results (underlined values in Table 4.2 and 4.3). We average the Accuracy and Macro F1 across 5

datasets from Table 4.2 and 4.3. ZeroHAR achieves +19.1% and +20.4% relative improvement

in Average Accuracy and Macro-F1, respectively, compared to the 2nd best results.
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Table C.1. Notations used in Chapter 4.

Notation Description
O set of observed activities
U set of unobserved activities
G O∪U , set of all activities
a,g given activity in G
N Number of training data points
Dtr Training set = {(X i,Y i)|i = 1,2,3, ...,N},Y i ∈ O
Z Number of test data points
Dte Test set = {(X i,Y i)|i = 1,2,3, ...,Z},Y i ∈U
i given data point
Y i label corresponding to X i

B set of body positions
b,e given body position in B
Mb set of IMU sensors at body position b
s,n given IMU sensor
Msb IMU sensor s at body position b
W {x,y,z} axes
w, j given axis in W
l number of timestamps in data
X i IMU data for the i-the data point, X i ∈ R|W |∑

|B|
b=1 |Mb|×l

X i
wsb uni-variate time series from w− axis of s from b, X i

wsb ∈ Rl

τ temperature parameter in contrastive learning
twsb “w−axis of s attached to b
h hidden dimension of model
Twsb R(ILM(twsb)),Twsb ∈ Rh

Ii
wsb P(K(X i

wsb))IwsbINRh

c number of descriptions per activity, a
φ Prompt

β
set of c descriptions for each of a activity, β = LLM(φ),
where β = {β1,β2, ...,βa, ...,β|G|}, βa = {βa1 ,βa2, ...,βac}

Ii Q(K(X i)), Ii ∈ Rh

α R(ILM(β )),α ∈ Rc|G|×h

A Average of c embeddings per class from α,A ∈ R|G|×h

Ai embedding for Y i,Ai ∈ Rh
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Table C.2. Relative performance comparison of ZeroHAR with 2nd best results.

Average Accuracy Average Macro F1
2nd best results 50.28 37.24
ZeroHAR results 59.88 44.82
% relative improve-
ment of ZeroHAR

+19.1% +20.4%

Table C.3. Class splits across 3 folds.

Dataset #Classes folds

Opportunity
[98]

11
fold 1: open door, close fridge, open dishwasher, close drawer. fold
2: close door, open fridge, close dishwasher, open drawer. fold 3:
clean table, drink from cup, toggle switch.

PAMAP2
[97]

12
fold 1: nordic walking, descending stairs, ironing, rope jumping.
fold 2: sitting, walking, ascending stairs, vacuum cleaning. fold 3:
lying, standing, running, cycling.

Harth [77] 11
fold 1: cycling sit, cycling stand inactive, ascending stairs, running.
fold 2: sitting, descending stairs, lying. fold 3: cycling sit inactive,
standing, walking, shuffling.

USCHAD
[145]

12
fold 1: walking forward, walking upstairs, jumping, sleeping. fold
2: walking left, walking downstairs, sitting, elevator up. fold 3:
walking right, running forward, standing, elevator down.

WISDM
[130]

18

fold 1: eating soup, walking, sitting, brushing teeth, kicking soccer
ball, writing. fold 2: eating chips, jogging, standing, drinking from
cup, playing catch with tennis ball, clapping. fold 3: eating pasta,
stairs, typing, eating sandwich, dribbling basketball, folding clothes.
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