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Tobacco smoke contains multiple toxic compounds, and maternal tobacco smoking during 

pregnancy has been related to negative infant and child outcomes. Newborn blood spots are 

collected shortly after birth to test the baby for a set of metabolic disorders, after which the State 

of California stores them for research use. High-resolution metabolomics (HRM) is an analytical 

approach utilizing ultra-high resolution mass spectrometry and data science methods to 

characterize and quantify small molecules (metabolites) in biological samples. In this dissertation, 

we employed HRM as a tool to demonstrate the usefulness of neonatal dried blood spots (DBS) 

and nicotine metabolites in epidemiological studies, and to better understand the biological 

pathways through which maternal tobacco use may have long-term impacts on child metabolism. 

We first examined the utility of archived newborn blood spots which have been stored for 

29 years. We used 899 neonatal DBS of children without cancer before age 6. High-resolution 
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metabolomics with liquid chromatography mass spectrometry (LC-MS) was performed and the 

relative ion intensities of common metabolites and selected xenobiotic metabolites of nicotine 

(cotinine and hydroxycotinine) were evaluated. In total, we detected 26,235 mass spectral features 

across two separate chromatography methods (C18 and HILIC). For most of the 39 metabolites 

related to nutrition and health status, we found no statistically significant annual trends across the 

years of storage. Nicotine metabolites were captured in the DBS with relatively stable intensities.  

We then assessed the usefulness of nicotine biomarkers in the same population and built a 

prediction model for maternal tobacco smoking in pregnancy based on birth certificate information 

using a combination of self- or provider-reported smoking and biomarkers (smoking metabolites 

cotinine and hydroxycotinine) in neonatal blood spots as the alloyed gold standard. Potential 

predictors of smoking were selected from the California birth certificate. Logistic regression with 

stepwise backward selection was used for prediction model building. Five predictors were selected 

by the stepwise procedure, including maternal race/ethnicity, maternal education, child’s birth year, 

parity, and child’s birth weight. We calculated an overall discrimination accuracy of 0.724 and an 

AUC of 0.805 (0.770-0.839) in the training set. Similar accuracies were achieved in the internal 

and external validation sets.  

Lastly, we performed a HRM analysis in 899 newborns, following an untargeted 

metabolome-wide association study (MWAS) workflow. A total of 26,183 features (15,562 in 

HILIC column and 10621 in C18 column) were detected with HRM of which 1,003 were found to 

be associated with maternal smoking. Smoking affected metabolites and metabolic pathways in 

neonatal blood included vitamin A (retinol) metabolism, the kynurenine pathway, and tryptophan 

and arachidonic acid metabolism. The metabolites and pathway perturbations associated with 
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cigarette smoking that we identified suggested inflammatory responses and have also been 

implicated in chronic diseases of the central nervous system and the lung.  

In summary, our studies support the usefulness of DBS stored long-term for 

epidemiological studies of the metabolome, build a prediction model that may benefit future birth 

registry-based studies in California when there is missing maternal smoking information, and 

suggest that infant metabolism in the early postnatal period reflects smoking specific physiologic 

responses to maternal smoking with strong biologic plausibility. 
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Chapter 1. Introduction and Background 

1.1 Maternal perinatal tobacco use 

The tobacco epidemic is one of the biggest public health threats worldwide, leading to more 

than 8 million death per year around the world. More than 7 million of deaths are results of direct 

tobacco use exposure and 1.2 million are the result of non-smokers being exposed to secondhand 

smoke.1 Tobacco use is responsible for approximately one-third of all cancer deaths 2 and high 

rates of morbidity and mortality from oral cancer, lung cancer, gastric cancer, cardiovascular 

disorders, and headache.3-10 In the United States, tobacco use remains the leading cause of 

preventable diseases, disability, and death, resulting in more than 480,000 deaths each year.11 In 

2020, nearly 12.5% of U.S. adults aged 18 years or older currently smoked cigarettes.11 Some 

demographic groups have a higher percentage of tobacco use and related health problems. 

According to a report of tobacco product use among U.S. adults in 2020,12 the current smoking 

prevalence is higher among men than women (14.1% vs. 11.0%), highest among people aged 25-

44 years (14.1%) and 45-64 years (14.9%), and highest among non-Hispanic American 

Indian/Alaska Native adults (27.1%) followed by non-Hispanic Black adults (14.4%), non-

Hispanic White adults (13.3%), Hispanic adults (8.0%) and non-Hispanic Asian adults (8.0%). 

Moreover, current smoking is generally more prevalent among disadvantaged groups such as 

people with lower education levels, with lower household income, without health insurance 

coverage, being sexual minority, or with mental health issues.12 

Over the past decades, the prevalence of current cigarette smoking among U.S. adults 

declined from 51% in 1965 to 31% in 2012 among males and from 34% to 23% among females.11 

Among California women, interview-based studies revealed that maternal pregnancy smoking 

prevalence declined from approximately 50% in the late 1970s 13 to 15% from 1995-2002 14 and 
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5% from 2008-2018.15  The prevalence of maternal smoking estimated using our data was in line 

with the trend described above , with approximately 40% in the 1980s down to less than 5% in the 

2000s (Figure 1-1). Despite the rate declining by more than half since 1964, cigarette smoking 

remains the most preventable cause of disease and death in the U.S. with disparities persisting 

across population groups.16 In recent decades, smoking rates in California pregnant women have 

been approximately 5% lower than nationwide,17 which is partly due to demographics as 

immigrant Mexican women make up about 25% of all pregnant women and most are non-

smokers.18 Components in cigarette smoke including polycyclic aromatic hydrocarbons (PAHs), 

N-nitrosamines, aromatic amines, aldehydes, volatile organic hydrocarbons, and metals have long 

been known or suspected carcinogens. Nicotine is also a modifier of cancer progression,19 and thus 

may be contributing to childhood cancers due to prenatal and early childhood exposure from 

smoking mothers. Smoking in pregnancy has also been associated with adverse infant and child 

outcomes, including low birth weight, preterm birth, and congenital anomalies.20,21 

 

1.2 Accuracy of interview-based or birth certificate reported maternal pregnancy smoking 

As it is a risk factor for multiple pediatric diseases, maternal pregnancy smoking is an 

important confounding variable to be adjusted for in studies of maternal exposures and child 

outcomes, such as childhood cancers.22 Record-linkage studies are advantageous due to their (often) 

population-based nature, larger sample size, and lower cost, but frequently have limited or no 

information on lifestyle factors such as smoking. Systematically recorded smoking data may not 

be available in vital statistics records for some periods or in some regions possibly resulting in 

uncontrolled confounding.  

 
 



 
 

3 
 

Even when these records collect smoking status, the quality of the data might be a concern 

as self-reported data on pregnancy smoking may be unreliable due to social stigma, thus, the 

missing data is not missing at random. Two studies in the United States in the 2000s and 2010s 

showed that approximately 14% of smokers deny smoking in interviews.23,24 Compared with 

smoking data from other sources including CDC surveys and medical records, it has been reported 

that birth certificates only capture 70.6-82.0% of prenatal smoking.25-27 Maternal smoking may be 

underreported due to several reasons: women failed to disclose their smoking to their provider; 

providers failed to accurately record the information in the medical record; the medical record was 

not received by the hospital; or inaccurate input when clerks fill out the birth certificate.26  

 

1.3 Accuracy of blood spots to capture smoking 

Given concerns about the accuracy of recorded smoking on the birth certificate, 

measurement of tobacco smoking using a biomarker of exposure is preferable in research studies. 

For pregnant women close to the time of delivery, cotinine levels in newborns' dried blood spots 

can be used as a biomarker of maternal smoking, with high sensitivity (92.3%) and specificity 

(99.7%).28,29 Cotinine is the best marker of recent smoking including active and secondhand 

smoke.30,31 Although cotinine has a longer half-life than its parent compound, nicotine, it is only 

detectable for about 17 hours.32 Hydroxycotinine, metabolized by the hepatic enzyme cytochrome 

P450 2A6, is the major metabolite of cotinine in most individuals,33,34 and is detectable for a longer 

period with an approximated half-life of 18 hours.35  

 

1.4 Research into the metabolomics of smoking 

The usefulness of neonatal dried blood spots 
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Approximately 98% of babies born in the United States participate in newborn screening, 

a public health program that aims to identify early metabolic and genetic defects to prevent disease 

and disability.36 Several US states and other nations store neonatal dried blood spots (DBS) for 

research purposes.36,37 Research using DBS continues to increase,38-41 particularly studies 

employing metabolomics tools including studies of pediatric leukemia,42,43 estimating gestational 

age,44 and those attempting to assess the early-life exposome.45 Research targeting rare diseases 

must often rely on biospecimens that are collected routinely and have been stored for long time 

periods in order to accumulate a sufficient number of samples to address hypotheses with adequate 

statistical power. Thus, a key question is whether metabolites are sufficiently stable in DBS over 

time to produce robust estimates of endogenous or exogenous metabolites (such as those from 

dietary sources or tobacco use), or whether they degrade, limiting their use for metabolomics 

research.  

In previous studies, the stability of metabolites in DBS was shown to be time-and-

temperature dependent with good stability in the short term (a week under all temperature 

conditions); long-term stability of metabolites in DBS varied with the storage environment, 

depending on temperature and humidity.46,47 For example, it has been reported that folate, essential 

for embryonic development, and hemoglobin concentrations in DBS decreased with storage at 

warmer temperatures (4°C vs. −80°C), and greater humidity (humid vs. ambient).47  Others found 

major alterations in metabolites occurring only at room temperature (21°C), with no attenuation 

observed in frozen samples (-20°C or −80°C) over a 2-year period.48 Improved understanding of 

the stability of metabolites in blood spots that were stored in -20°C for several decades will enhance 

the value of this important resource for environmental epidemiology research.  
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High-resolution metabolomics 

High-resolution metabolomics (HRM) is an analytical approach utilizing ultra-high 

resolution mass spectrometry and data science methods to characterize and quantify small 

molecules (metabolites) in biological samples.49,50 Untargeted metabolomics is a hypothesis-free 

approach that profiles endogenous and exogenous metabolites in biological samples to gain 

insights into exposures and pathways underlying disease. Importantly, the development of hybrid 

approaches to obtain information on identified metabolites without loss of information on un-

identified metabolites, considerably enhances translational potential for epidemiologic and model 

systems research.51 Untargeted profiling of neonatal DBS has recently been shown to provide a 

valuable measure of metabolic alterations associated with pediatric disease, including inborn errors 

of metabolism and the growth in infants associated with breast-feeding.52-55 

 

HRM studies on tobacco smoking 

Tobacco smoking is related to metabolomic changes as recently documented for adult 

smokers, children exposed to passive smoke, and pregnant women.56-58 A study of military 

personnel observed alterations in lipid and xenobiotic metabolism, and diverse effects on amino 

acid, sialic acid and purine and pyrimidine metabolism in tobacco smokers compared to non-

smokers.56 Another study among preschool children reported secondhand smoke-induced urinary 

metabolites including kynurenine, tyrosyl-tryptophan, and 1-(3-pyridinyl)-1,4-butanediol, 

peptides, and pyridines.57 Utilizing second-trimester amniotic fluid, a third study found low-level 

maternal nicotine exposure from light smoking or secondhand smoke to be associated with 

dysregulated metabolic pathways in the fetus such as aspartate and asparagine metabolism, 
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pyrimidine metabolism, and metabolism of other amino acids, and also saw decreases in acetylated 

polyamines.58 

 

1.5 Objective 

The linkages between maternal smoking during pregnancy and childhood metabolic 

outcomes remain largely unexplored.59 Here, we first assessed the feasibility of applying 

untargeted HRM to archived DBS which were selected for a population-based record-linkage 

study of childhood cancers in California.60 We comprehensively assessed the stability of 

metabolites across all study years (1983-2011) and metabolites with confirmed identifications 

were characterized for stability over increasing storage times. 

Then, we generated a clinical prediction model 61 for maternal late pregnancy smoking 

based on variables routinely collected on birth certificates  and a combination of self- or provider-

reported smoking information and metabolomics-derived smoking biomarkers together used as the 

alloyed gold standard for maternal smoking. Clinical prediction models have been used to predict 

tobacco-related disease,62 calibrate self-reported maternal smoking using urinary cotinine,63 and 

to characterize smoking patterns in older adults.64 

Lastly, to better understand the biological pathways through which maternal tobacco use 

may be increasing the risk of disease, we performed a high-resolution metabolomics (HRM) 

analysis in 899 children born from 1983 to 2011 in California following an untargeted 

metabolome-wide association study (MWAS) workflow. 
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Figure 1-1. Pregnancy smoking rate by year, 1983-2011 
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Chapter 2. Metabolite stability in archived neonatal dried blood spots used for 

epidemiological research 

2.1 Abstract 

Background: Epidemiologic studies of low-frequency exposures or outcomes using 

metabolomics analyses of neonatal dried blood spots (DBS) often require assembly of samples 

with substantial differences in duration of storage.  Independent assessment of stability of 

metabolites in archived DBS will enable improved design and interpretation of epidemiologic 

research utilizing DBS.   

Methods: Neonatal DBS routinely collected and stored as part of the California Genetic Disease 

Screening Program between 1983 and 2011 were used. The study population included 899 

children without cancer before age 6 born in California. High-resolution metabolomics with 

liquid chromatography mass spectrometry (LC-MS) was performed and the relative ion 

intensities of common metabolites and selected xenobiotic metabolites of nicotine (cotinine and 

hydroxycotinine) were evaluated. 

Results: In total, we detected 26,235 mass spectral features across two separate chromatography 

methods (C18 and HILIC). For most of the 39 metabolites related to nutrition and health status, 

we found no statistically significant annual trends across the years of storage. Nicotine 

metabolites were captured in the DBS with relatively stable intensities. 

Conclusions: This study supports the usefulness of DBS stored long-term for epidemiological 

studies of the metabolome. Omics-based information gained from DBS may also provide a 

valuable tool for assessing prenatal environmental exposures in child health research. 

 



 
 

9 
 

2.2 Introduction 

Approximately 98% of babies born in the United States participate in newborn screening, 

a public health program that aims to identify early metabolic and genetic defects to prevent disease 

and disability.36 Several US states and other nations store neonatal dried blood spots (DBS) for 

research purposes.36,37 Research using DBS continues to increase,38-41 particularly studies 

employing metabolomics tools including studies of pediatric leukemia,42,43 estimating gestational 

age,44 and those attempting to assess the early-life exposome.45 Research targeting rare diseases 

must often rely on biospecimens that are collected routinely and have been stored for long time 

periods in order to accumulate a sufficient number of samples to address hypotheses with adequate 

statistical power. Thus, a key question is whether metabolites are sufficiently stable in DBS over 

time to produce robust estimates of endogenous or exogenous metabolites (such as those from 

dietary sources or tobacco use), or whether they degrade, limiting their use for metabolomics 

research.  

In previous studies, the stability of metabolites in DBS was shown to be time-and-

temperature dependent with good stability in the short term (a week under all temperature 

conditions); long-term stability of metabolites in DBS varied with the storage environment, 

depending on temperature and humidity.46,47 For example, it has been reported that folate, essential 

for embryonic development, and hemoglobin concentrations in DBS decreased with storage at 

warmer temperatures (4°C vs. −80°C), and greater humidity (humid vs. ambient).47  Others found 

major alterations in metabolites occurring only at room temperature (21°C), with no attenuation 

observed in frozen samples (-20°C or −80°C) over a 2-year period.48 Improved understanding of 

the stability of metabolites in blood spots that were stored in -20°C for several decades will enhance 

the value of this important resource for environmental epidemiology research.  
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High-resolution metabolomics (HRM) is an analytical approach utilizing ultra-high 

resolution mass spectrometry and data science methods to characterize and quantify small 

molecules (metabolites) in biological samples.49,50 Untargeted metabolomics is a hypothesis-free 

approach that profiles endogenous and exogenous metabolites in biological samples to gain 

insights into exposures and pathways underlying disease. Importantly, the development of hybrid 

approaches to obtain information on identified metabolites without loss of information on un-

identified metabolites, considerably enhances translational potential for epidemiologic and model 

systems research.51 Untargeted profiling of neonatal DBS has recently been shown to provide a 

valuable measure of metabolic alterations associated with pediatric disease, including inborn errors 

of metabolism and the growth in infants associated with breast-feeding.52-55 

Here, we assess the feasibility of applying untargeted HRM to archived DBS which were 

selected for a population-based record-linkage study of childhood cancers in California.60 We 

comprehensively assessed the stability of metabolites across all study years (1983-2011) and 

metabolites with confirmed identifications were characterized for stability over increasing storage 

times. 

 

2.3 Methods 

Study population 

We utilized data from the Smoking and Embryonal Tumor Study, a large population-based 

case-control study of childhood cancers, which ascertained cancer cases from the California 

Cancer Registry and included controls from among births in California between 1983 and 2011.65 

Population controls ascertained from California birth rolls were frequency matched (20:1) to 

cancer cases by year of birth. From this population, we randomly selected 1400 children (501 
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retinoblastoma cases and 899 controls) for HRM analysis. The demographic, socioeconomic, and 

gestational characteristics of cases and controls were previously reported.60,66 Starting 2007, 

smoking status before and during pregnancy was reported on the birth certificate as responses to 

the questions about the number of cigarettes smoked per day in the 3 months before pregnancy 

and during each trimester. 

California’s newborn screening program, the Genetic Disease Screening Program (GDSP), 

began in 1966.37 The GDSP obtained blood samples from babies’ heel-sticks between 12 and 48 

hours after birth.67 Blood samples were put on six small circles on a specialized filter paper, dried 

at room temperature for at least 3 hours, and shipped to the Neonatal and Prenatal Screening 

Laboratory within 24 hours of collection.67 Since 1982, after the routine screening, left-over 

specimens were packed and stored at -20°C. Additional details concerning dried blood specimen 

collection and storage are described elsewhere.68,69 In preparation for shipment, the GDSP 

anonymized all samples (i.e. none contained information on year sampled) and placed the samples 

into plastic bags. All bags were loosely put into a box and shipped to the laboratory for HRM 

analysis. Thus, the samples were ‘naturally randomized’ as they were tossed together at random 

in the box for shipment. 

High-resolution metabolomics 

HRM profiling was completed according to established methods.70,71 Samples were 

punched using a 5 mm hole puncher, extracted with 2:1 acetonitrile in water (containing a mixture 

of stable isotopic internal standards), and then mixed on an orbital shaker in the dark at low speed 

for 12 hours at 0-4 °C. Samples were then centrifuged to remove any particulate matter and were 

analyzed in triplicate using liquid chromatography interfaced to an ultra high-resolution mass 

spectrometer (Thermo Scientific Q-Exactive HF).72 DBS samples along with the NIST 1950 and 



 
 

12 
 

QSTD (internal quality control) samples were analyzed in batches of 40 study samples using an 

acetonitrile gradient and two technical columns that include hydrophilic interaction liquid 

chromatography (HILIC) with positive electrospray ionization (ESI) and C18 hydrophobic 

reversed-phase chromatography with negative ESI, to enhance the coverage of metabolic feature 

detection.73 The NIST 1950 samples were analyzed at the beginning and the end of the entire run 

and the QSTD samples were analyzed at the beginning, middle, and the end of each batch. Raw 

data was extracted using apLCMS74 with modifications by xMSanalyzer,75 and batch corrected 

using ComBat.76 For data analysis, we only included metabolomic features with median 

coefficients of variation among technical replicates <30% and Pearson correlation 

coefficients >0.7. Ten samples were considered as outliers and excluded from the analyses, among 

which 6 were removed from the HILIC positive column and 6 were removed from the C18 negative 

column (2 overlapping samples). Feature tables of detected signals (referred to as metabolite 

features) were then generated with mass-to-charge ratio (m/z), retention time, and ion intensity as 

the unique identifier for each signal.73 

Statistical analysis 

Intensities for each feature were generated based on the median of three replicate measures. 

If more than 2 out of 3 replicates were missing, the summarized value was represented as a missing 

value. Metabolite features were then filtered to keep only those metabolites detected in greater 

than 50% of all samples, with the exception of cotinine and hydroxycotinine.  For cotinine and 

hydroxycotinine, signals were retained even though they were present in less than 50% of samples. 

Missing values were then imputed by using one-half of the lowest signal intensity in the complete 

dataset and intensities were log2-transformed before analyses. To control for potential confounders 

including Hispanic ethnicity and maternal age, we calculated residuals of intensities derived from 
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linear regression against Hispanic ethnicity and maternal age prior to downstream analyses. A total 

of 894 control subject samples were included in the analysis. 

Nutrition and Health Biomarker Assessment 

For evaluation of targeted metabolites, we selected a small set of metabolites as examples 

for the overall quality of the blood spot over 3 decades of storage. We focused on 39 health and 

nutrition-related metabolites that had previously been assessed in adult serum samples by our team; 

77 i.e. a type of sample commonly used to examine metabolites in blood. By focusing on the same 

set of metabolites that can be found in blood serum in analyses obtained on the same metabolomics 

platform, we can better understand what we newly see in children’s blood samples archived as 

dried blood spots.  We plotted the intensities by year of births using the R packages “ggplot2” and 

“cowplot” with LOESS smoothing. To examine the feasibility of using cotinine in long-term stored 

neonatal DBS as a biomarker to assess maternal smoking status, we also extracted cotinine and 

hydroxycotinine detected using HILIC with positive ESI.78 A linear trend test was performed for 

each selected metabolite to assess whether there were intensity changes across samples collected 

over the 29 years such as increasing/decreasing trends. 

Endogenous and Exogenous Features 

For analysis of untargeted metabolomics data, the detected mass spectral features were 

matched to the Human Metabolome Database (HMDB), Kyoto Encyclopedia of Genes and 

Genomes (KEGG), and LipidMaps with a mass error threshold of 10 ppm. Using this approach, 

metabolite identification is consistent with Level 4 using Schymanski criteria, meaning we have 

assigned unequivocal molecular formula using spectral information such as m/z and adduct, but 

have insufficient evidence to propose possible structures.79 We classified the features as 

endogenous metabolites or having exogenous origin (e.g. food, plant, microbial, drug, cosmetic, 
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or toxin/pollutant) using HMDB. For the endogenous metabolites, we plotted the intensities by 

year of births following the same procedure as described above. For the exogenous features, we 

followed the statistical strategy of Bunning et al.80 and fitted LOESS regression models using the 

R package “stats” to assess feature intensity according to the year of birth with a default span of 

0.75. Then we used the fitted model to obtain the predicted values for the year of birth of each 

feature and created a matrix of birth years (N=29, 1983-2011) and feature intensities. This matrix 

was the input for a Fuzzy C-means Clustering analysis (R package “Mfuzz”). We calculated the 

minimum centroid distance for a range of clusters and selected 10 clusters as the optimal number 

for the HILIC column and the C18 column. 

 
2.4 Results 

The demographics of subjects were shown in Table 2-1. Mothers were mostly white and 

more than half identified themselves as non-Hispanic. The average maternal and paternal ages at 

birth were 27.2 and 30.2, respectively. More than half (54.2%) of all mothers were born in the US 

and the remaining were Mexican-born (26.4%) or other foreign-born (19.4%). Forty-one percent 

were firstborn children. Only 2 (1.6%) mothers of children born in 2007 and later reported having 

actively smoked during pregnancy.   

In total, we detected 26,235 mass spectral features (15,596 in HILIC and 10,639 in C18), 

and after filtering out missing values and pre-processing, 21,759 features (12,998 in HILIC column 

and 8,761 in C18 column) were retained for downstream analyses. 

The 39 nutritional and health indicator metabolites detected in DBS (Table 2-2) included17 

amino acids and their metabolites, 2 health indicators (creatine and cholesterol), 4 vitamin 

coenzymes, 10 fatty acid or lipid metabolites, 4 nucleotide metabolites, and 2 exogenous chemicals 

(benzoic acid and caffeine). The MS/MS details of the metabolites with annotation level 1 were 
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previously published.56,70 Their log2-transformed, confounder adjusted residuals of relative 

intensities over years of birth are shown in Figures 2-1 and 2-2. Most of the selected metabolites 

appeared to remain stable across the years 1983-2011, with the exception of methionine, 

sphingosine, sphinganine, choline, arachidic acid, and caffeine. Stability over the period was seen 

for 17 out of the 39 selected metabolites with slopes close to zero and no linear trends were detected 

for the remaining metabolites. 

From the untargeted metabolomics data, we selected 1,137 mass spectral features having 

accurate mass match to endogenous features (547 in HILIC column and 590 in C18 column) and 

1,944 with accurate mass match to exogenous features (1,020 in HILIC column and 924 in C18 

column). Note that none of these had confirmed identity; the selection strategy was intended to 

support examination of groups of signals enriched in endogenous metabolites and exogenous 

chemicals. There was some fluctuation in levels of the endogenous features over time, but the 

majority (~80%) of these remained stable across samples collected over the years 1983-2011 

(Supplemental Tables 2-S1, Figures 2-S1 & 2-S2). All detectable exogenous features were used 

as input into clustering analyses and the clustering results are shown in Supplemental Figures 2-

S3 & 2-S4. Each feature only contributed to one cluster. No distinct pattern was detected for either 

of the columns. There were some increasing and some decreasing trends as well as some general 

fluctuations of features in both columns. The exogenous features with cluster IDs are listed in 

Supplemental Table 2-S2 & 2-S3. 

Residuals of intensities for metabolites of nicotine are shown in Figure 2-3. Among the 

899 subjects, we detected cotinine in 79 (8.8%) and hydroxycotinine in 284 (31.8%) DBS and their 

intensities were highly correlated (Spearman’s rho correlation coefficient = 0.77, Supplemental 

Figure 2-S5). Overall, we did not observe samples from children born in earlier years to have lower 



 
 

16 
 

intensity for cotinine or hydroxycotinine compared to those born in the more recent years. A small 

negative linear trend was seen for hydroxycotinine (beta = -0.04, P < 0.01) while a small positive 

linear trend was seen for cotinine (beta = 0.05, P = 0.04).  

 
2.5 Discussion 

In this study of archived DBS from a large population of children born in California, we 

found that almost three decades of storage in -20 °C freezers did not affect the deterioration of 

metabolites that reflect the general human physiology or exogenous metabolites that are markers 

of common lifestyle-related exposures such as cotinine and caffeine. This was true for both the 

nutritional and health indicator metabolites and some of the exogenous chemicals (Table 2-2; 

Figures 2-1 & 2-2). Our study was conducted in a multi-ethnic California population and our 

results support the feasibility of future studies that investigate maternal behavior and exposures 

and rare childhood diseases based on metabolic profiles, such as studies of maternal smoking and 

caffeine intake, in DBS stored for decades. 

There is no gold standard to assess metabolite stability in stored DBS samples.  Different 

studies assessed the stability of various metabolites in DBS with cross-sectionally collected 

specimens and repeated analysis prospectively conducted over a certain time course. 

Phosphatidylethanol, a direct ethanol metabolite, remained stable at 4°C or -80°C for at least 9 

months.81 In another study, amino acid reference materials degraded after storage for 28 days at 

ambient temperature in a dry environment and the degradation rate ranged from 3% - 7% per year 

for several amino acids including alanine, arginine, leucine, methionine, and phenylalanine. An 

even higher rate of degradation was seen for acylcarnitines such as free carnitine, acetylcarnitine, 

and propionylcarnitine.82 However, degradation occurred when DBS were collected between 3-7 

days after birth and stored at ambient temperatures and in a dry environment.82 Degradation 
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appears to be minimal for amino acids in our samples, likely because California’s neonatal blood 

spots are collected within 12-48 hours after birth, mailed within 24 hours of sampling, and stored 

at -20°C.  Highly unstable metabolites can be expected to be largely lost by the time of storage, so 

detected metabolites can be expected to be biased towards those that are relatively more stable.  

There is a possibility that trapping of metabolites within the proteinaceous matrix may stabilize 

and inhibit degradation, and this could contribute to differences seen compared to amino acid 

reference materials. 

Another targeted metabolomics study found that most of 404 detected metabolites in DBS 

remained stable for the first month of storage, declined rapidly within 1-3 months of storage, and 

remained stable for at least one year regardless of the storage conditions (4°C vs. -20°C vs. −80 °C; 

with/without desiccant; with/without an O2 scavenger).83 Phospholipids, sphingolipids, 

acylcarnitines, amino acids, and steroids were the main chemical groups that degraded by over 

30%.84 However, there were no significant changes in the total number of metabolites detected 

over a one-year period. Our study assessed the stability of metabolites by examining the patterns 

of ion intensities in relation to DBS age. We did not measure changes of metabolite intensities 

over time; i.e. we did not repeatedly test the same sample over time for metabolite levels. However, 

since we observed a similar number of metabolites in long-term stored DBS in every year this may 

suggest some general stability in the number of features that can be identified over a very long 

time in DBS stored at -20 ℃.  Palmer employed untargeted metabolomics and examined the 

stability of metabolites  for dried blood spots and dried urine spots over a 12-month period under 

different storage temperatures (-20, +4, and +21 °C).85 They found greater instability in polar 

compounds measured by HILIC in dried blood spots stored at -20 °C. Although the platform they 

used was not completely comparable to ours, we did observe slightly higher variation with 
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confirmed metabolites identified in the HILICpos column (Figure 2-1) than for those in the C18neg 

column (Figure 2-2). 

Amino acids have been a focus of newborn screening and the most up-to-date 

quantification platforms can now differentiate isomers.86 We have found methionine to be the least 

stable amino acids in our samples, which corresponds to previous findings.77,82,87 During long-term 

storage, methionine tends to be slowly oxidized into methionine sulfoxide and methionine 

sulfone.77 As an essential amino acid, methionine’s carbon skeletons cannot be synthesized by the 

body and needs to be provided in the diet to meet requirements.88 Dietary intake of methionine is 

suspected to affect the fetal genome and pregnancy outcomes and thus has been a target in studies 

of pregnancy outcomes.88 Our results suggest that a slight degradation of methionine is common 

in DBS stored long-term. 

We also observed varying intensities across sample years for lipid metabolites such as 

sphingosine, sphinganine, and choline. Sphingolipid metabolites are lipid mediators that regulate 

cellular functions such as cell growth, immune cell trafficking, inflammation, and cancer.77,89 A 

measurable amount of sphingosine and sphinganine in DBS suggests the possibility of measuring 

these physiologic parameters and use them to evaluate maternal and child health. Choline was 

classified as an essential nutrient by the Institute of Medicine in 1998 and both too low and too 

high levels may cause health concerns.77,90 Maternal choline supplementation during pregnancy 

has been suggested to benefit several physiologic systems in the offspring.91 Therefore, the varying 

intensities of choline over the past decades in California newborns we observed in the DBS may 

indicate novel use of choline supplements by pregnant women over time or a major change in diets 

and/or changes in the underlying distribution of chronic diseases among mothers possibly due to 

a shift in the age or ethnic/race composition of the population of pregnant women.  
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The intensities of metabolites measured in neonatal DBS are influenced by many factors 

including the mother’s metabolic status, dietary intake, the maturity of the infant, and maternal 

behaviors.82 Pregnancy is frequently a motivator for behavior change, with some women choosing 

to stop smoking, reducing or eliminating caffeine from the diet, and eating healthier foods.92 

Although the prevalence of caffeine consumption in pregnancy varies by countries and cultures, 

worldwide 60% to 75% of pregnant women drink caffeine-containing beverages.93  Caffeine was 

detected in 737 (82%) of our samples with no significant difference in relative intensities over time 

in the DBS collected in earlier vs. recent years. The fact that caffeine was detected in a majority 

of samples possibly indicates breastfeeding-related exposures. The mean half-life of caffeine is 5 

hours in adults but 82 hours in newborns.94 In the US, the rate of breastfeeding initiation was about 

60% to 70% in the 1980s to 90s.95 In 2018, 93.8% of California women reported having initiated 

breastfeeding.96 Our DBS represent the child’s metabolism affected by maternal behavior in late 

pregnancy and the newborn’s postnatal diet.   

Although maternal smoking is of great interest in studies of pregnancy and offspring health, 

there are concerns about the accuracy of self-reported smoking.97-99 Thus, cotinine and 

hydroxycotinine measures in DBS may be more accurate measures compared to self-reported 

smoking data. Neonatal DBS cotinine is a good biomarker of maternal smoking close to the time 

of delivery and can predict umbilical cord blood cotinine well (R2 = 0.80) both at room temperature 

and after long-term freezer storage.68 As shown in several studies, cotinine of ≥10 ng/ml in 

neonatal blood spots represents maternal active smoking.68,100 It has been suggested that the 

optimal threshold for DBS cotinine to distinguish smokers from nonsmokers is lower than the 

threshold used in adult blood (3.13-6 ng/mL vs. 10 ng/mL).101 Cotinine is the primary metabolite 

of nicotine and half of the cotinine is subsequently metabolized into hydroxycotinine.102 A study 
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of 13 newborns at San Francisco General Hospital reported an elimination half-life for cotinine 

and hydroxycotinine of 16.3 hours and 18.8 hours in umbilical cord blood, respectively.35 Thus, 

given that the DBS were collected 12-48 hours after birth, it is plausible that we would observe 

hydroxycotinine (32% in our sample) more frequently than cotinine. However, hydroxycotinine 

also has other sources including dietary sources such as tomatoes and eggplant.103 Our study 

suggests that cotinine and hydroxycotinine remain detectable in DBS after very long-term storage 

(up to 29 years), which supports the usefulness of cotinine measures to assess maternal smoking 

status in health studies of pregnancy exposures based on newborn blood.63,104   

Interpreting our endogenous features plots and the exogenous clustering results will require 

further investigations. As mentioned above, while the majority of endogenous features remained 

stable throughout decades of storage some, such as lipid metabolites, appeared to be less stable. 

Lipids and lipid metabolites are known to be prone to oxidation and hydrolysis.105,106 Even though 

lipid profiles derived from DBS are no less reproducible than those from plasma or whole blood, 

the process of spotting and air drying blood spots might still lead to some level of lipid oxidation 

and hydrolysis and it is recommended to interpret those results carefully.106 Clustering analysis 

allowed us to group exogenous features with similar patterns across time of storage. The patterns 

may suggest differences in maternal lifestyle factors especially diets that may contribute to 

metabolite changes in newborns over time or reflect environmental exposures that wax and wane. 

We examined exogenous chemicals such as benzoic acid, caffeine, and cotinine in this study, and 

our results for mass spectral signals matching exogenous chemicals indicate that further 

exploration utilizing MS/MS targeted metabolomics platform together with a clustering approach 

will be useful for environmental epidemiology. 
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Despite having high specificity, annotation using the combination of m/z and retention time 

is challenging due to the presence of isomers, similar molecular-weight interferences, and in-

source degradation products.104 Metabolites can degrade or interconvert during the process of 

extraction and the degradation varies from one metabolite to another. During the extraction process, 

high-energy, high-abundant compounds are more likely to be lost compared to less-abundant, 

lower-energy ones.104 This may explain why we did not identify all nutritional and health-related 

metabolites that were assessed for stability by Accardi et al.77 Thus, to improve the accuracy of 

metabolite annotation, it is recommended to conduct an untargeted analysis in parallel with a 

targeted MS/MS confirmation.104  

Other than the characteristics of the metabolites, there are other possible reasons why some 

metabolites that should be detectable were not detected in all samples including instability due to 

initial handling and storage of the blood spots that were prepared in clinics and labs all over 

California before being mailed to the California Neonatal Screening program. Specifically, the 

blood spots were not collected by one research group but rather for neonatal screening purposes 

i.e. they represent a public health effort at the community level to collect, transport, extract, and 

analyze or store these samples. There can be sample-handling issues at every phase of the process, 

which may cause potential variations that affect sample quality. Thus, it is especially encouraging 

to find that mostly these samples are of high quality. Nevertheless, limitations include the inability 

to detect all metabolites that should possibly be detectable in all samples.  

In Table 2-3, we summarize the uncontrollable and controllable factors contributing to the 

quality and consistency of routinely collected neonatal blood spots for epidemiological research. 

Overall, it is advisable to 1) have enough samples to minimize contributions from factors that may 

corrupt the sample data and interpretations; 2) design studies with discovery and validation subsets 
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whenever feasible; 3) work towards a minimum standards guiding the use of blood spots in 

targeted and untargeted metabolomics in epidemiologic research; and 4) design a quantification 

strategy and improve comparability between studies. 

This study supports the usefulness of archived DBS in epidemiologic studies of rare 

diseases in later childhood or life that have to rely on archived routine biospecimens and using an 

untargeted metabolomics approach. This reflects a strength of California’s newborn screening 

program's use of specific protocols for the collection and storage of DBS, which allowed us to 

assess the stability of DBS derived metabolites in samples collected in different years.41 Results 

from this study support the feasibility of conducting metabolomics studies using archived DBS 

stored for decades.  Utilizing existing biospecimens from statewide newborn screening programs 

will provide a unique and important resource for future epidemiologic health and environmental 

exposure studies.  

 

 

 

 

 

 

 

 

 

 

 



 
 

23 
 

2.6 Tables and figures 

Table 2-1. Demographic characteristics of the study population (1983-2011) 

Demographic characteristics Subjects (N = 899) 
    N (%) 
Infant sex   
  Male 440 (48.9) 
  Female 459 (51.1) 
Ethnicity   
  Hispanic 424 (47.2) 
  Non-Hispanic 475 (52.8) 
Race   
  Native American 5 (0.6) 
  Asian 84 (9.4) 
  Pacific Islander 31 (3.5) 
  Black 57 (6.4) 
  White 717 (80.2) 
  Missing 5 
Maternal age (years), Mean (SD) = 27.2 (6.2)   
  19 or less 102 (11.3) 
  20-24 224 (24.9) 
  25-29 240 (26.7) 
  30-34 214 (23.8) 
  35 and older 119 (13.2) 
Paternal age (years), Mean (SD) = 30.2 (7.1)   
  19 or less 33 (3.9) 
  20-24 175 (20.7) 
  25-29 215 (25.4) 
  30-34 198 (23.4) 
  35-39 137 (16.2) 
  40+ 89 (10.5) 
  Missing 52 
Maternal education (years)   
  8 or less years 93 (11.9) 
  9-11 years 162 (20.7) 
  12 years 235 (30.1) 
  13 to 15 years 155 (19.8) 
  16 more years 136 (17.4) 
  Missing 118 
Paternal education (years)   
  8 or less years 109 (14.9) 
  9-11 years 107 (14.6) 
  12 years 229 (31.2) 
  13 to 15 years 146 (19.9) 
  16 more years 143 (19.5) 
  Missing 165 
Mother's place of birth   
  Mexico 237 (26.4) 
  US 487 (54.2) 
  Other foreign 174 (19.4) 
  Missing 1 
Parity   
  0 374 (41.6) 
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  1 266 (29.6) 
  2 147 (16.4) 
  3 72 (8.0) 
  4 or more 39 (4.3) 
  Missing 1 
Maternal smoking   
Any smoking during pregnancy (2007+)   
  Yes 2 (1.6) 
  No 124 (98.4) 
  Missing 2 
Any smoking in 3 months before pregnancy (2007+)   
  Yes 3 (2.4) 
  No 123 (97.6) 
  Missing 2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

25 
 

Table 2-2. Selected nutritional and health indicator metabolites and xenobiotic metabolites of nicotine with identification confidence 
level (Schymanski EL; Jeon J; Gulde R; Fenner K; Ruff M; Singer HP; Hollender (2014) Identifying Small Molecules via High 
Resolution Mass Spectrometry: Communicating Confidence.  J Environ. Sci. Technol 48: 2097–8) 

m/z time Metabolite Classification Adduct form Mode Confidence 
90.0550 52.4 Alanine Amino Acid M+H HILIC+ 4 

116.0707 64.5 Proline Amino Acid M+H HILIC+ 1 
120.0656 60.6 Threonine Amino Acid M+H HILIC+ 4 
126.0220 56.1 Taurine Amino Acid M+H HILIC+ 1 
132.1020 40.8 Leucine/Isoleucine Amino Acid M+H HILIC+ 1 
145.0982 42.0 Lysine Amino Acid M-H C18- 4 
146.0459 19.0 Glutamate Amino Acid M-H C18- 1 
154.0623 23.2 Histidine Amino Acid M-H C18- 1 
166.0848 45.6 Phenylalanine Amino Acid M+H HILIC+ 4 
173.1040 124.4 Arginine Amino Acid M-H C18- 4 
182.0811 46.0 Tyrosine Amino Acid M+H HILIC+ 1 
150.0584 48.5 Methionine Amino Acid M+H HILIC+ 1 
203.0827 21.9 Tryptophan Amino Acid M-H C18- 1 
147.0766 77.1 Glutamine Amino Acid M+H HILIC+ 1 
104.0707 58.8 2-Aminobutyrate Amino Acid Metabolites M+H HILIC+ 1 
180.0653 44.2 Hippurate Amino Acid Metabolites M+H HILIC+ 1 
209.0922 51.0 Kynurenine Amino Acid Metabolites M+H HILIC+ 1 
132.0766 53.7 Creatine Health Indicators M+H HILIC+ 1 
369.3513 25.3 Cholesterol Health Indicators M-H2O+H HILIC+ 1 
124.0586 273.2 Niacin Vitamins Coenzymes M+H HILIC+ 4 
137.0716 48.3 Methylnicotinamide Vitamins Coenzymes M+H HILIC+ 4 
169.0965 68.4 Pyridoxamine Vitamins Coenzymes M+H HILIC+ 1 
170.0809 220.7 Pyridoxine Vitamins Coenzymes M+H HILIC+ 4 
162.1125 41.5 Carnitine Fatty Acid Metabolism M+H HILIC+ 4 
204.1230 34.3 Acetyl-carnitine Fatty Acid Metabolism M+H HILIC+ 4 
277.2176 225.5 a-Linolenic acid Fatty Acid Metabolism M-H C18- 1 
284.2575 271.0 Oleic acid Fatty Acid Metabolism M-H C18- 4 
311.2960 291.3 Arachidic acid Fatty Acid Metabolism M-H C18- 1 
258.1091 113.1 Glycero-3-Phosphocholine Lipid Metabolism M+H HILIC+ 1 
300.2896 21.8 Sphingosine Lipid Metabolism M+H HILIC+ 1 
302.3053 20.9 Sphinganine Lipid Metabolism M+H HILIC+ 1 
104.1071 107.9 Choline Lipid Metabolism M+H HILIC+ 4 
524.3710 27.5 LysoPC(18:0) Lipid Metabolism M+H HILIC+ 1 
115.0497 264.4 5,6-Dihydrouracil Nucleotide metabolism M+H HILIC+ 4 
137.0458 40.7 Hypoxanthine Nucleotide metabolism M+H HILIC+ 1 
167.0208 19.1 Urate Nucleotide metabolism M-H C18- 1 
153.0407 246.5 Xanthine Nucleotide metabolism M+H HILIC+ 4 
121.0294 284.6 Benzoic acid Exogenous Chemical M-H C18- 4 
195.0876 31.8 Caffeine Exogenous Chemical M+H HILIC+ 1 
177.1023 31 Cotinine Xenobiotic metabolites of nicotine M+H HILIC+ 1 
193.0973 31 Hydroxycotinine Xenobiotic metabolites of nicotine M+H HILIC+ 1 
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Table 2-3. Factors contributing to sample quality 
Uncontrollable 
Time and location dependent supplies 
Site-specific standard operating procedures for collection, processing and delivery 
Duration of storage 
Sample-specific differences in lipid content and hematocrit impacting stability of metabolites during blood spot 
drying and delivery 
Sample-specific resolubilization of metabolites/loss of metabolites due to free-radical polymerization and protein 
trapping 
Controllable  
LC-MS-specific variation in operation and analytical drifts 
Data extraction software-dependent variations in feature identification and intensity determination 
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Figure 2-1. Log2-transformed residual of relative ion intensities of selected metabolites detected in HILIC 
column, adjusted for Hispanic ethnicity and maternal age 
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Figure 2-2. Log2-transformed residual of relative ion intensities of selected metabolites detected in C18 
column, adjusted for Hispanic ethnicity and maternal age 
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Figure 2-3. Log2-transformed residual of relative ion intensities of cotinine and hydroxycotinine, adjusted for 
Hispanic ethnicity and maternal age 
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2.7 Supplemental materials 

Supplemental Table 2-S1. Suggested m/z matches annotation for endogenous features (uploaded separately) 
 
Supplemental Table 2-S2. Exogenous features detected in HILIC column with suggested m/z matches 
annotation and cluster IDs (uploaded separately) 
 
Supplemental Table 2-S3. Exogenous features detected in C18 column with suggested m/z matches annotation 
and cluster IDs (uploaded separately) 
 
Supplemental Figure 2-S1. Endogenous Features in HILIC column with suggested m/z matches annotation 
(uploaded separately) 
 
Supplemental Figure 2-S2. Endogenous Features in C18 column with suggested m/z matches annotation 
(uploaded separately) 
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Supplemental Figure 2-S3. FCM clustering for exogenous features in HILIC column. Features were fitted to a 
loess curve and Z-score scaled (red lines), adjusted for Hispanic ethnicity and maternal age, as a function of 
birth year. Averaged trend is shown in black lines. 
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Supplemental Figure 2-S4. FCM clustering for exogenous features in C18 column. Features were fitted to a 
loess curve and Z-score scaled (red lines), adjusted for Hispanic ethnicity and maternal age, as a function of 
birth year. Averaged trend is shown in black lines. 
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Supplemental Figure 2-S5. Spearman’s rho correlation of log2-transformed cotinine and hydroxycotinine 
detected in the DBS 
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Chapter 3. A prediction model for classifying maternal pregnancy tobacco exposure using 

California state birth certificate information 

3.1 Abstract 

Background. Many studies have linked maternal smoking to adverse birth outcomes. However, 

assessing maternal smoking status in interviews or from birth certificates underestimates true 

smoking rates due to the stigma attached. Here, we built a prediction model for maternal tobacco 

smoking in pregnancy based on birth certificate information using a combination of self- or 

provider-reported smoking and biomarkers (smoking metabolites) in neonatal blood spots as the 

alloyed gold standard. 

Methods. We relied on a population-based case-control study that included 894 cancer-free 

children by the age of 6 born in California between 1983 and 2011 to perform high-resolution 

metabolomics analyses and extract cotinine (m/z = 177.1023) and hydroxycotinine (m/z = 

193.0973) from newborns' neonatal dried blood spots. Potential predictors of smoking were 

selected from the California birth certificate. Logistic regression with stepwise backward selection 

was used for prediction model building. Model performance was evaluated in the training sample, 

a bootstrapped sample, and an external validation sample. 

Results. Out of seven predictor variables entered into the logistic model, five were selected by the 

stepwise procedure, including maternal race/ethnicity, maternal education, child’s birth year, 

parity, and child’s birth weight. We calculated an overall discrimination accuracy of 0.724 and an 

AUC of 0.805 (0.770-0.839) in the training set. Similar accuracies were achieved in the internal 

and external validation sets. 

Conclusions. This easy-to-apply model may benefit future birth registry-based studies in 

California when there is missing maternal smoking information; however, some smoking status 
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misclassification remains a concern when only variables from the birth certificate are used to 

predict maternal smoking.  

 

3.2 Introduction 

Prevalence of current cigarette smoking among US adults has decreased across the past 5 

decades, from 51% in 1965 to 31% in 2012 among males, and 34% to 23% among females.107 For 

pregnant women, the prevalence of smoking decreased from 25.7% in 1985 to 10.1% in 2014.108 

Among California women, interview-based studies revealed that maternal pregnancy smoking 

prevalence declined from approximately 50% in the late 1970s 13 to 15% from 1995-2002 14 and 

5% from 2008-2018.15 Tobacco smoke contains multiple toxic compounds that can cross the 

placenta after either direct or passive exposure to cigarettes.  

As it is a risk factor for multiple pediatric diseases, maternal pregnancy smoking is an 

important confounding variable to be adjusted for in studies of maternal exposures and child 

outcomes, such as childhood cancers.22 Record-linkage studies are advantageous due to their (often) 

population-based nature, larger sample size, and lower cost, but frequently have limited or no 

information on lifestyle factors such as smoking. Systematically recorded smoking data may not 

be available in vital statistics records for some periods or in some regions possibly resulting in 

uncontrolled confounding.  

Even when records collect smoking status, the quality of the data might be a concern as 

self-reported data on pregnancy smoking may be unreliable due to social stigma, thus, missing 

data are not missing at random. Two studies in the United States in the 2000s and 2010s showed 

that approximately 14% of smokers deny smoking in interviews.23,24 Compared with smoking data 

from other sources including CDC surveys and medical records, it has been reported that birth 
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certificates only capture 70.6-82.0% of prenatal smoking.25-27 Maternal smoking may be 

underreported due to several reasons: women fail to disclose their smoking to their provider; 

providers failed to accurately record the information in the medical record; the medical record was 

not received by the hospital; or inaccurate input when clerks fill out the birth certificate.26  

Given concerns about the accuracy of recorded smoking on the birth certificate, 

measurement of tobacco smoking using a biomarker of exposure is preferable in research studies. 

For pregnant women close to the time of delivery, cotinine levels in newborns' dried blood spots 

can be used as a biomarker of maternal smoking, with high sensitivity (92.3%) and specificity 

(99.7%).28,29 Cotinine is the best marker of recent smoking including active and secondhand 

smoke.30,31 However, although cotinine has a longer half-life than its parent compound, nicotine, 

it is only detectable for about 17 hours.32 In adults, cotinine is the primary metabolite of nicotine 

and half of the cotinine is subsequently metabolized into hydroxycotinine.109 While 

hydroxycotinine has a slightly longer half-life of 19 hours, it has other sources (e.g., dietary sources 

such as tomatoes and eggplant).35,103 

Clinical prediction models have been used to predict tobacco-related disease,62 calibrate 

self-reported maternal smoking using urinary cotinine,63 and to characterize smoking patterns in 

older adults.64 Here, we generated a clinical prediction model 61 for maternal late pregnancy 

smoking based on variables routinely collected on birth certificates  and a combination of self- or 

provider-reported smoking information and metabolomics-derived smoking biomarkers together 

used as the alloyed gold standard for maternal smoking. 

 

3.3 Methods 

Study design and participants 
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We utilized data from the Smoking and Embryonal Tumor Study, a large population-based 

case-control study of childhood cancers, which ascertained cancer cases from the California 

Cancer Registry and included controls from among births in California between 1983 and 2011 (N 

= 1400). For the present study, we included 899 participants selected as controls and were cancer-

free by the age of 6. Covariates were obtained from California birth certificates, including mothers' 

tobacco use information. From 1989 to 2005 medical providers collected some limited smoking 

information during pregnancy by answering to the question "Were there pregnancy complications 

due to tobacco use during pregnancy?". Starting in 2007, the "number of cigarettes per day (3 

months before pregnancy and during each trimester)" was reported on the California birth 

certificate.22  

We obtained neonatal dried blood spots from the Genetic Disease Screening Program 

(GDSP).110 The GDSP collected blood samples from babies' heel-sticks between 12 and 48 hours 

after birth.111 Blood samples were put on six small circles on a specialized filter paper, dried at 

room temperature for at least 3 hours, and shipped to the Neonatal and Prenatal Screening 

Laboratory within 24 hours of collection.111 After screening, left-over specimens were packed and 

stored at -20°C.111 Neonatal blood spots were analyzed using liquid chromatography with ultra-

high resolution mass spectrometry.112 Additional details concerning dried blood specimen and 

metabolomics analysis were previously described.113 After excluding 6 samples considered 

outliers, 894 subjects were left for the analysis. 

Outcome definition 

We extracted cotinine (m/z = 177.1023) and hydroxycotinine (m/z = 193.0973) from the 

feature table generated by xMSanalyzer.75 As a large volume of blood is needed to detect enough 

metabolites to discern secondhand smoke exposure,29 we considered both metabolites’ presence 
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to be evidence of maternal active smoking. We considered mothers to be active smokers if they 

were self- or provider-reported smokers on birth certificates or if we detected cotinine or 

hydroxycotinine in the newborn’s blood at intensities greater than the 86th percentile, a cut-off 

chosen based on the prevalence reported by contemporaneous surveys of California women across 

our study period.13-15,114 This yielded an overall mean prevalence of smoking of 17% from any 

smoking indicators. 

Predictors  

We identified potential predictors as those that were established or possible risk factors of 

maternal smoking and were associated with maternal smoking when evaluated in univariate 

analysis in our data. We excluded candidate predictors that with missing data over 10% such as 

factors that were only recorded during a short period to minimize possible misclassifications when 

imputing missing values for the predictors.115 Also, to improve model performance for predicting 

a rare event, we followed the events per variable (EVP) rule that recommends at least 10 

individuals need to have the event of interest for every predictor variable included in the model.115 

After excluding variables with missingness more than 10%, with very unbalanced distributions, 

only available for a short period, or highly correlated, we selected 7 variables as input predictors. 

These included maternal race/ethnicity (White non-Hispanic, Hispanic any race, Black, 

Asian/Pacific Islander, other), maternal age at childbirth (continuous), parity (0, 1, or 2+), 

gestational age in weeks (preterm birth ≤ 36 weeks, term births > 36 weeks), birth weight in grams 

(1499 or less, 1500-2499, 2500-3999, 4000+), child birth year (1983-1991, 1992-1996, 1997-2001, 

2002-2011), and maternal education in years (≤8, 9-11, 12, 13-15, 16+).  

Statistical analysis 
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Missing values of predictors were imputed with the R package "missForest". As the 

outcome is binary, we then utilized a stepwise logistic prediction model for model specification 

and estimation. We fitted a full model and then performed backward selection to generate a 

simplified model. We estimated the coefficients with maximum likelihood methods. Model 

performance was assessed using two criteria: calibration and discrimination. We fitted the 

calibration plot and used calibration plot intercept and calibration slope to describe model fit. We 

reported accuracy, area under the receiver operating characteristic (ROC) curve (AUC) and 95% 

confidence interval (CI), sensitivity, specificity, and sample-level positive predicted value (PPV) 

and negative predicted value (NPV) to evaluate the ability of our model to classify outcomes 

correctly. The threshold of classifying smokers vs. non-smokers was determined by the 

"closest.topleft" methods, which set the optimal threshold to be the point closest to the top-left part 

of the plot representing perfect sensitivity or specificity. Internal validation was performed with 

bootstrap methods and accuracy was reported.  

To assess the external validity of the model, we obtained data from the UCLA Environment 

and Pregnancy Outcomes Study (EPOS).116 EPOS is a case-control study nested within the 2003 

birth cohort of all women residing in Los Angeles County. Cases of preterm birth and low 

birthweight were randomly selected from zip codes near an air pollution monitoring station. 

Controls were matched to cases by birth month and zip codes. A total of 2543 subjects were 

enrolled in the EPOS with a response rate of 40%. In addition to variables available on California 

birth certificates, the EPOS survey questionnaire collected information on lifestyle factors 

including smoking status (pregnancy smoker, former smoker, never smoker). After excluding 

subjects missing potential predictors or outcome information, there were 2493 subjects in the 
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EPOS population. We conducted sensitivity analysis limiting to children born in 2003 in our data 

and compared the model performances in the subset with that in EPOS data.  

We performed additional sensitivity analyses to examine model performance in different 

settings. To assess whether additional eligible predictors available only during a shorter period 

would enhance the model performance, specifically, we added the month when mothers started 

prenatal care and neonatal intensive care unit admission as predictors and tested model 

performance. Given the large drop in smoking prevalence across the study period, we split the 

sample into two periods (birth year ≤ 1996 vs. > 1996) and tested how the model performed during 

the earlier period with much higher smoking rates versus during the later period with reduced rates. 

 
3.4 Results 

Overall, 149 women were defined as smokers, including 17 mothers identified by self-

report or had tobacco-related pregnancy complications reported on the birth certificate. 

Specifically, 15 mothers were recorded to have pregnancy complications related with tobacco use 

(1989-2005) and 2 reported smoking cigarettes during pregnancy (2007-2011). Demographic 

characteristics of the study population are shown in Table 3-1. Compared to non-smoking mothers, 

smokers were more often White non-Hispanic (47.0% smokers vs. 31.3% non-smokers) or Black 

(10.1% smokers vs. 5.1% non-smokers) and less likely to be Hispanic (33.6% smokers vs. 49.9% 

non-smokers) or Asian (7.4% smokers vs. 11.0% non-smokers). Compared with non-smoking 

mothers, smokers were also more often younger than 29 years of age when the index child was 

born (69.8% smokers vs. 61.6% non-smokers), living in low to medium socioeconomic status (SES) 

neighborhoods (77.1% smokers vs. 70.6% non-smokers), and high school graduates (72.5% 

smokers vs. 55.3% non-smokers). Children whose mothers were smokers were less likely to be 

firstborn (37.6% smokers vs. 42.2% non-smokers) and born after the year 2002 (10.1% smokers 
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vs. 41.1% non-smokers), while they were more likely to be male (56.4% smokers vs. 47.4% non-

smokers). Preterm births were similarly distributed among smoking mothers and non-smokers in 

our population (9.2% vs. 9.9%) with relatively small numbers.  

Characteristics of potential predictors in the EPOS data are reported in Supplemental Table 

3-S1. Questionnaire-based pregnancy smoking prevalence was approximately 5% in EPOS 

population. 

Out of the 7 predictors entered into the logistic model for the outcome smokers defined as 

having any of the smoking indicators, five remained in the final model. Important predictor 

variables were identified based on the maximum likelihood ratio in the logistic regression. They 

were maternal race/ethnicity, maternal education, child birth year, parity, and birth weight group 

in a descending order of importance (Table 3-2).  

We selected the optimal threshold to classify smokers vs. non-smokers and evaluated the 

model performance in the training, bootstrapped internal validation, and external validation data 

sets (Table 3-3 and Figure 3-1). The optimal thresholds approximately equalled the prevalence of 

the outcome in each set. The overall accuracy and AUC were approximately 0.7-0.8 in all 3 

samples. The maximum sensitivity reached 0.91 when having a specificity better than chance (> 

0.5), while the maximum specificity was 0.86 when sensitivity was required to be above 0.5.  

Adding additional predictors into the model did not appreciably enhance the discrimination 

performance compared with the final stepwise model selected (AUC 0.811 vs. 0.805). 

Supplemental Table 3-S2 showed the performance of our model in 3 validation data sets containing 

children born in different time periods. We reached a higher AUC of 0.791 in a subgroup with 

lower smoking prevalence than during the period when heavy smoking was more prevalent 

(AUC=0.660). In the validation data set with births in 2003 only, two mothers were identified as 
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smokers and both were correctly classified by the model.  Among non-smokers, 36 out of 46 were 

correctly classified, which yielded an AUC of 0.913 (95% CI 0.771-1.000). 

 
3.5 Discussion 

Our study utilized self- and provider reported birth registry data on maternal smoking in 

pregnancy in combination with smoking biomarker data from neonatal blood spots and built a 

maternal tobacco use in late pregnancy prediction model that uses variables from birth certificates. 

Five demographic characteristics predicted maternal pregnancy smoking in our sample. Compared 

with non-smokers, smoking mothers tended to be more often White non-Hispanic, less educated, 

had children in the early period of the study, were multipara, and gave birth to infants with lower 

birth weight. This model can be used to predict smoking in order to at least partially account for 

uncontrolled confounding due to missing maternal smoking information when conducting studies 

using California birth certificates. 

Research studies of maternal and child health often rely on registry data, especially from 

state administered birth certificates. Nicotine metabolites, cotinine and hydroxycotinine, have been 

used as biomarkers of maternal smoking in newborn dried blood spots but these are resource 

intensive and costly to analyze. We combined the metabolite-derived biomarker measures and the 

data on birth certificates to build a prediction model that can help future studies using state-based 

birth registry data to predict maternal smoking status. The model can be applied to California state-

based studies, even for years when maternal smoking was not collected on the birth certificate. In 

the United States and globally, pregnancy smoking prevalence and uptake are higher among 

disadvantaged groups who usually have low socioeconomic status (SES) and/or are related to 

racial/ethnic disparities.117-119 In addition, smoking co-occurs with other environmental or lifestyle 

exposures or adverse health conditions, such as ambient air pollution, maternal underweight, small 
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gestational age, and drug abuse.120,121 Thus, lack of ascertainment of smoking as well as other 

unhealthy lifestyle characteristics might lead to bias in effect estimates due to uncontrolled 

confounding. Therefore, our study may enhance the use of existing birth data by helping to predict 

maternal smoking status missing on many birth certificates due to changes in data collection or 

lack of reporting and to obtain a more reliable proxy for this important confounding variable 

needed for adjustment in many maternal and child health studies.  

Moreover, our model is validated and easy to apply to other studies utilizing California 

birth certificates. We used stepwise logistic regression to predict a binary maternal smoking 

variable and obtained overall discriminant accuracy of around 70%-80% for apparent model 

performance, internal validation, and external validation. Previous studies identified pregnancy 

smoking or pregnancy smoking cessation predictors using univariate analysis usually aimed to 

identify clinically meaningful intervention groups. Some also had detailed smoking behavior 

information available as predictors such as the frequency, amount, and duration of smoking and 

even the second hand smoke exposure.118,122,123  However, these models were not validated against 

internal and external testing data set and these smoking predictors are rarely if ever available in 

routine register based data, which limits the transportability of these models outside of the study 

population. This even applies to a study that randomly split the sample into a training and testing 

data set and reached an overall percentage of correct smoking status classification of 76%. Their 

model used predictors such as interview-based smoking behavioral variables and thus is not 

applicable to studies where there was missing maternal smoking information.123  

Researchers have shown that demographic characteristics including maternal age, maternal 

race/ethnicity, maternal education, parity, prenatal care, household income, unemployment, and 

antenatal stress are related with maternal smoking.117-119,124 In addition, maternal cigarette smoking 
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during pregnancy increases the risk for pregnancy complications and poor pregnancy outcomes, 

including preterm delivery, restricted fetal growth, and low birth weight.119,125 Our model 

identified the same predictors available to us on birth certificates overlapping with this list and 

reached good prediction performance with the fewer number of predictors.  

Our predictor selection process balanced adding all potential predictors and making the 

model easy to apply in future studies. We did not include SES or prenatal care information (month 

when prenatal care began, principal source of payment for prenatal care, number of prenatal care 

visits) in the model input. Although smokers were more likely to live in neighborhoods with lower 

SES (Table 1), census-based neighborhood SES was not originally available on the birth certificate 

and was created in our sample through a geocoding process. Moreover, SES of the neighborhoods 

changes over time and one would have to generate a time-varying SES variable for usage in future 

studies. Thus, we decided to leave out potential predictors like prenatal care, pregnancy 

complications and labor complications because they were only collected for a shorter period or 

had very few events recorded, including the complications placenta previa, abruptio placenta, 

premature rupture of membranes, and neonatal intensive care unit admission. We added prenatal 

care and neonatal intensive care unit admission as predictors in a sensitivity analysis as they had 

relatively few missing data points and an adequate number of events happened, but the model 

performance was very similar to our selected model. One variable that was eliminated during 

model simplification (from full model to final stepwise model) was preterm birth. This may be due 

to the fact that it is highly correlated with birthweight, a more complete variable.  

Our model has a relatively good discrimination performance comparable with other 

smoking prediction models and is easy to apply in California birth data. A study that used a much 

more complex decision tree model and a multinomial logistic regression model to characterize the 
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smoking patterns among seniors obtained classification accuracies of 0.671 and 0.501, 

respectively.64 Another study employed machine learning methods to predict smoking cessation 

and their best model reached an accuracy of 0.640 and an AUC of 0.660.126 The performance of 

our model was the highest in the training set and slightly lower in the external validation set. 

Moreover, when comparing the model performance in subsets collected in earlier and later years, 

the model performed better among children born after 1996 when smoking became less prevalent 

compared to in earlier years, not only according to the negative but also the positive predictive 

value. This may reflect the fact that demographic variables can better predict maternal smoking 

status in more recent years when social unacceptability of smoking increased and smoking became 

more prevalent in socially disadvantaged individuals. 

We acknowledge limitations in our study. First, although much more reliable than self-

reported smoking, the gold standard for our smoking outcome still is an imperfect measure. 

Neonatal dried blood spots are typically collected from the infant during the postpartum hospital 

stay, or by trained midwives for out-of-hospital births, though the latter accounts for less than 1% 

of California births.127,128 Only if the mother smoked close to giving birth or after birth and  

attempted breastfeeding would we have been able to capture smoking in neonatal biomarkers. In 

California, 67%-86% of mothers attempted any breastfeeding during 2004 to 2008, while as many 

as 90% initiated breastfeeding in 2010.96,129 After smoking a cigarette, about 10% of its nicotine 

and nicotine metabolites (cotinine, hydroxycotinine, and cotinine N-oxide) pass through the 

epithelial cells of mammary glands into breast milk. Prolonged labor may also affect the 

transmission of nicotine metabolites from maternal blood to offspring due to its short half-life, but 

we expect that effect to be minimal as less than 1% of women in our sample had prolonged labor. 

Second, we had to eliminate variables that may predict pregnancy smoking for various reasons. 
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Adding more predictors might have helped the model to achieve a better AUC but the model would 

become less universally applicable. Third, the EPOS validation data set we relied on only captured 

births in 2003 in Los Angeles County and had a 40% response rate. However, we previously 

conducted extensive analyses comparing responders, non-responders, and the overall birth cohort 

and observed few differences in the characteristics of interest to this study.116 In addition, the EPOS 

data is representative of most of the LA population as it was sampled from birth records in a 

population-based manner rather than being a select sample of women recruited from prenatal 

clinics and hospitals.130 

In conclusion, we constructed a prediction model using birth certificate data to predict 

maternal smoking reaching an AUC of 0.805. The model may benefit future studies in the state 

that employ birth registry data. It can help to improve adjustment for maternal smoking and may 

also help guide clinical intervention to reduce smoking in pregnancy in California. 
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3.6 Tables and figures 

Table 3-1. Demographic characteristics of the study population (N = 894) 

  Non-smoker Smoker 
(N=745) (N=149) 

Birth year     
1983-1991 147 (19.7%) 84 (56.4%) 
1992-1996 145 (19.5%) 35 (23.5%) 
1997-2001 147 (19.7%) 15 (10.1%) 
2002-2011 306 (41.1%) 15 (10.1%) 

Sex     
Male 355 (47.7%) 84 (56.4%) 
Female 390 (52.3%) 65 (43.6%) 

Birth weight     
1499 g or less 10 (1.3%) 2 (1.3%) 
1500-2499 26 (3.5%) 15 (10.1%) 
2500-3999 624 (84.0%) 118 (79.2%) 
4000 + 83 (11.2%) 14 (9.4%) 
Missing 2 0 

Maternal age     
<20 82 (11.0%) 18 (12.1%) 
20-24 182 (24.4%) 42 (28.2%) 
25-29 195 (26.2%) 44 (29.5%) 
30-34 179 (24.0%) 35 (23.5%) 
35+ 107 (14.4%) 10 (6.7%) 

Maternal race/ethnicity     
White non-Hispanic 233 (31.3%) 70 (47.0%) 
Hispanic 372 (49.9%) 50 (33.6%) 
Black 38 (5.1%) 15 (10.1%) 
Asian/PI 82 (11.0%) 11 (7.4%) 
Other 20 (2.7%) 3 (2.0%) 

Parity     
0 314 (42.2%) 56 (37.6%) 
1 230 (30.9%) 37 (24.8%) 
2+ 200 (26.9%) 56 (37.6%) 
Missing 1 0 

Preterm birth     
Preterm 71 (9.9%) 13 (9.2%) 
Term 646 (90.1%) 129 (90.8%) 
Missing 28 7 

Census-based neighborhood SES level     
1 (low) 161 (21.7%) 34 (22.8%) 
2 208 (28.1%) 40 (26.8%) 
3 154 (20.8%) 41 (27.5%) 
4 116 (15.7%) 20 (13.4%) 
5 (high) 102 (13.8%) 14 (9.4%) 
Missing 4 0 

Maternal education     
8 or less years 80 (11.9%) 12 (11.8%) 
9-11 years 137 (17.9%) 23 (22.5%) 
12 years 195 (25.5%) 39 (38.2%) 
13 to 15 years 134 (17.5%) 21 (20.6%) 
16 more years 128 (16.8%) 7 (6.9%) 
Missing 71 47 



 
 

48 
 

Table 3-2. Maternal smoking logistic regression prediction model using birth data, outcome defined as 
having any of the smoking indicators (N = 894) 
Variable Odds ratio (95% CI) P value Coefficient 
Maternal Race/Ethnicity   

White non-Hispanic Reference 
Hispanic 0.36 (0.20, 0.64) 0.001 -1.011 
Black 1.14 (0.52, 2.41) 0.729 0.134 
Asian/PI 0.58 (0.26, 1.20) 0.158 -0.543 
Other 0.93 (0.20, 3.26) 0.918 -0.071 

Maternal Education    
8 or less years Reference 
9-11 years 1.38 (0.69, 2.80) 0.373 0.319 
12 years 1.06 (0.50, 2.24) 0.880 0.057 
13 to 15 years 0.73 (0.33, 1.64) 0.446 -0.313 
16 more years 0.22 (0.07, 0.62) 0.006 -1.530 

Birth year    
1983-1991 Reference 
1992-1996 0.46 (0.28, 0.74) 0.002 -0.780 
1997-2001 0.18 (0.09, 0.33) 0.000 -1.724 
2002-2011 0.09 (0.05, 0.16) 0.000 -2.428 

Parity    
0 Reference 
1 0.90 (0.54, 1.46) 0.663 -0.110 
2+ 1.86 (1.17, 2.97) 0.009 0.620 

Birth weight    
1499 g or less Reference 
1500-2499 2.85 (0.48, 24.80) 0.284 1.049 
2500-3999 0.99 (0.19, 7.77) 0.990 -0.012 
4000 + 0.68 (0.12, 5.68) 0.684 -0.389 
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Table 3-3. Performance of the maternal smoking prediction model using the optimal threshold when 
classifying probabilities to binary outcome 

Metrics Training set  Bootstrapped set External validation set 
(EPOS data) 

Optimal threshold 0.17 0.17 0.05 
Accuracy 0.724 0.724 0.667 
AUC (95% CI) 0.805 (0.770, 0.839) 0.805 (0.770, 0.839) 0.689 (0.636, 0.743) 
Sensitivity 0.759 0.759 0.648 
Specificity 0.717 0.717 0.668 
PPV 0.349 0.349 0.091 
NPV 0.937 0.937 0.974 
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Figure 3-1. Model performance in the training set 
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3.7 Supplemental materials 

Supplemental Table 3-S1. Demographic characteristics of predictors in the EPOS data (N = 2493) 

  Non-smoker Smoker 
(N=2371) (N=122) 

Maternal age     
Mean (SD) 27.9 (6.39) 28.7 (6.54) 
Median [Min, Max] 28.0 [13.0, 47.0] 28.5 [15.0, 43.0] 

Maternal race/ethnicity     
White non-Hispanic 394 (16.6%) 34 (27.9%) 
Hispanic 1625 (68.5%) 42 (34.4%) 
Black 148 (6.2%) 32 (26.2%) 
Asian/PI 172 (7.3%) 14 (11.5%) 
Other 32 (1.3%) 0 (0%) 

Parity     
0 948 (40.0%) 47 (38.5%) 
1 727 (30.7%) 31 (25.4%) 
2+ 696 (29.4%) 44 (36.1%) 

Preterm birth     
Preterm 957 (40.4%) 54 (44.3%) 
Term 1414 (59.6%) 68 (55.7%) 

Maternal education     
8 or less years 337 (14.2%) 4 (3.3%) 
9-11 years 508 (21.4%) 28 (23.0%) 
12 years 625 (26.4%) 51 (41.8%) 
13 to 15 years 383 (16.2%) 19 (15.6%) 
16 more years 518 (21.8%) 20 (16.4%) 

Birth weight     
1499 g or less 68 (2.9%) 3 (2.5%) 
1500-2499 417 (17.6%) 33 (27.0%) 
2500-3999 1744 (73.6%) 76 (62.3%) 
4000 + 142 (6.0%) 10 (8.2%) 
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Supplemental Table 3-S2. Performance of the maternal smoking prediction model in 3 validation sets 
containing children born in different periods 
Metrics Births ≤ 1996 Births > 1996 Birth in 2003 only 
Optimal threshold 0.24 0.07 0.07 
Accuracy 0.594 0.732 0.792 
AUC (95% CI) 0.660 (0.590, 0.730) 0.791 (0.716, 0.865) 0.913 (0.771, 1.000) 
Sensitivity 0.653 0.700 1.000 
Specificity 0.576 0.734 0.783 
PPV 0.324 0.151 0.167 
NPV 0.842 0.973 1.000 
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Chapter 4. An untargeted metabolome-wide association study of maternal perinatal 

tobacco smoking in newborn blood spots 

4.1 Abstract 

Background: Maternal tobacco smoking in the perinatal period increases the risk for adverse 

outcomes in offspring. To better understand the biological pathways through which maternal 

tobacco use may have long-term impacts on child metabolism, we performed a high-resolution 

metabolomics (HRM) analysis in 899 newborns, following an untargeted metabolome-wide 

association study (MWAS) workflow. 

Methods: The study population included 899 children without cancer diagnosis before age 6 and 

born between 1983 and 2011 in California. Newborn dried blood spots (DBS) were collected by 

the California Genetic Disease Screening Program between 12 hours and 48 hours after birth and 

stored for later research use. Based on HRM, we considered mothers to be active smokers if they 

were self- or provider-reported smokers on birth certificates or if we detected any cotinine or high 

hydroxycotinine intensities in newborn blood. We used partial least squares discriminant analysis 

and Mummichog pathway analysis to identify metabolites and metabolic pathways associated with 

maternal tobacco smoking. 

Results: A total of 26,183 features (15,562 in HILIC column and 10621 in C18 column) were 

detected with HRM of which 1,003 were found to be associated with maternal smoking. Smoking 

affected metabolites and metabolic pathways in neonatal blood included vitamin A (retinol) 

metabolism, the kynurenine pathway, and tryptophan and arachidonic acid metabolism. 

Conclusions: The metabolites and pathway perturbations associated with cigarette smoking that 

we identified suggested inflammatory responses and have also been implicated in chronic diseases 

of the central nervous system and the lung. Our results suggest that infant metabolism in the early 
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postnatal period reflects smoking specific physiologic responses to maternal smoking with strong 

biologic plausibility. 

 
4.2 Introduction 

Tobacco use is one of the most significant public health issues globally, with the number 

of global consumers of tobacco increasing over the past few decades.6 In the U.S., the prevalence 

of current cigarette smoking among adults declined from 51% in 1965 to 31% in 2012 among 

males and from 34% to 23% among females.11 It has also been reported that approximately 50% 

of California women smoked during pregnancy in the early 1980s 13 and this number declined to 

15% in the 1990s 14 and 5% in the 2010s.15 Despite the rate declining by more than half since 1964, 

cigarette smoking remains the most preventable cause of disease and death in the U.S. with 

disparities persisting across population groups.16 In recent decades, smoking rates in California 

pregnant women have been approximately 5% lower than nationwide,17 which is partly due to 

demographics as immigrant Mexican women make up about 25% of all pregnant women and most 

are non-smokers.18 Components in cigarette smoke including polycyclic aromatic hydrocarbons 

(PAHs), N-nitrosamines, aromatic amines, aldehydes, volatile organic hydrocarbons, and metals 

have long been known or suspected carcinogens. Nicotine is also a modifier of cancer 

progression,19 and thus may be contributing to childhood cancers due to prenatal and early 

childhood exposure from smoking mothers. Smoking in pregnancy has also been associated with 

adverse infant and child outcomes, including low birth weight, preterm birth, and congenital 

anomalies.20,21 

  For pregnant women close to the time of delivery, cotinine levels in their newborns' dried 

blood spots are a reliable biomarker of maternal smoking with high sensitivity (92.3%) and 

specificity (99.7%).28,29 Cotinine best represents recent smoking,30 with a half-life longer than its 
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parent compound, nicotine, and it is detectable for 15-20 hours after active smoking.32,33 

Hydroxycotinine, metabolized by the hepatic enzyme cytochrome P450 2A6, is the major 

metabolite of cotinine in most individuals,33,34 and is detectable for a longer period with an 

approximated half-life of 18 hours.35  

Tobacco smoking is related to metabolomic changes as recently documented for adult 

smokers, children exposed to passive smoke, and pregnant women.56-58 A study of military 

personnel observed alterations in lipid and xenobiotic metabolism, and diverse effects on amino 

acid, sialic acid and purine and pyrimidine metabolism in tobacco smokers compared to non-

smokers.56 Another study among preschool children reported secondhand smoke-induced urinary 

metabolites including kynurenine, tyrosyl-tryptophan, and 1-(3-pyridinyl)-1,4-butanediol, 

peptides, and pyridines.57 Utilizing second-trimester amniotic fluid, a third study found low-level 

maternal nicotine exposure from light smoking or secondhand smoke to be associated with 

dysregulated metabolic pathways in the fetus such as aspartate and asparagine metabolism, 

pyrimidine metabolism, and metabolism of other amino acids, and also saw decreases in acetylated 

polyamines.58 

To better understand the biological pathways through which maternal tobacco use may be 

increasing the risk of disease, we performed a high-resolution metabolomics (HRM) analysis in 

899 children born from 1983 to 2011 in California following an untargeted metabolome-wide 

association study (MWAS) workflow. 

 

4.3 Methods 

Study population 
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The study utilized the controls from a population-based case control study of childhood 

cancers 60 that enrolled 1400 children with cases ascertained from the California Cancer Registry. 

Population controls (20:1 matching rate) were randomly selected from California birth rolls and 

frequency-matched to cases by birth year. For this analysis, we only included 899 cancer-free 

controls.131 Detailed demographic, socioeconomic, and gestational information for each child was 

collected from California birth certificates. In the years from 1989 to 2005 medical providers 

collected limited smoking information during pregnancy by answering the question "Were there 

pregnancy complications due to tobacco use during pregnancy?". Starting in 2007, the "number of 

cigarettes per day (3 months before pregnancy and during each trimester)" was reported on the 

California birth certificate.22  

We obtained neonatal dried blood spots (DBS) for this analysis from the California Genetic 

Disease Screening Program. Nearly all newborns in the United States participate in a newborn 

screening program for genetic and metabolic diseases, and in California, the DBS are stored for 

research purposes after testing is complete.36,37 Blood samples are collected from newborns by a 

heel-stick from the child between 12 and 48 hours after birth.67 The blood fills six small circles on 

specialized filter paper and is dried at room temperature for at least 3 hours before shipment to the 

Neonatal and Prenatal Screening Laboratory within 24 hours of collection.67 Since 1982, 

specimens left-over after the routine screening are packed and stored at -20°C. Additional details 

concerning dried blood specimen collection and storage are described elsewhere.68,69 

High-resolution metabolomics 

Neonatal blood spots were analyzed using liquid chromatography with ultra-high 

resolution mass spectrometry (LC-HRMS; Fusion, Thermo Scientific).112 Samples were punched 

using a 5mm hole puncher and treated with 2:1 acetonitrile in water containing a mixture of stable 
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isotopic internal standards. Samples were mixed for 12 hours at 0-4 °C in the dark and then 

centrifuged to remove particulate matter. The resulting supernatant was analyzed in triplicate using 

hydrophilic interaction liquid chromatography (HILIC) with positive electrospray ionization (ESI) 

and C18 hydrophobic reversed-phase chromatography with negative ESI to enhance the coverage 

of metabolic feature detection.132 The mass spectrometer was operated using ESI mode at a 

resolution of 120,000 and mass-to-charge ratio (m/z) range of 85-1275. Blood spot samples were 

analyzed in batches of 40. To evaluate system performance, we used two separate quality 

assessment methods. Our first Q.C. sample was NIST 1950 133, which was analyzed at the 

beginning and end of the entire analytical run. The second Q.C. sample (Q-Std) included 

commercially purchased plasma pooled from an unknown number of males and females. Q-Std 

was analyzed at the beginning, middle, and end of each batch of 40 samples for normalization and 

batch effect evaluation. Raw data files were extracted and aligned using apLCMS 134 with 

modifications by xMSanalyzer 135. Uniquely detected ions consisted of mass-to-charge ratio (m/z), 

retention time (rt), and ion abundance, referred to as metabolite features. Prior to data analysis, 

metabolite features were batch corrected using wavelet analysis 136. For this analysis, we only 

included metabolic features with fewer than 30% missing values across all samples, with median 

coefficients of variation (CV) among technical replicates < 30% and Pearson correlation > 0.7.137 

Following quality assessment, replicate intensities were summarized using the median value, log2 

transformed, and auto-scaled. Missing values were imputed using k-nearest neighbors (k=10) 138 

imputed using the impute R package. 

Exposure assessment 

We extracted cotinine (m/z = 177.1023) and hydroxycotinine (m/z = 193.0973) from the 

feature table generated by xMSanalyzer. In order to indicate secondhand smoke exposure, larger 
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blood spots than were available to us would be needed to reach the detection limit for these 

metabolites.29 Thus, we considered either metabolite to be evidence of maternal active smoking. 

Specifically, we considered mothers to be active smokers if they were self- or provider reported 

smokers on birth certificates or if the newborn blood had cotinine detected or if hydroxycotinine 

intensities detected were high i.e. greater than the 86th percentile chosen based on previous 

estimates of the prevalence of maternal smoking in pregnancy.139  

Statistical analysis 

After excluding 6 samples considered outliers and 10 samples with missing covariates, a 

total of 883 samples were left in the analysis. To control for potential confounding from maternal 

race/ethnicity (White non-Hispanic, Hispanic of any race, other), maternal age (<20, 20-24, 25-29, 

30-34, >=35), birth year, infant's sex, and neighborhood socioeconomic status (SES)140, we 

regressed the intensities of all metabolites other than cotinine and hydroxycotinine against 

confounders listed above in the following analyses.  

We used a combination of univariate and multivariate analyses to identify neonatal blood 

spot metabolic features associated with maternal perinatal smoking. We adopted multivariate 

analysis partial least square - discriminant analysis (PLS-DA) to identify features that were 

significantly associated with maternal smoking status.141,142 Features with Variable Importance in 

Projection (VIP) scores >= 2 were selected and fold changes for metabolites were calculated as 

the ratio of covariate-adjusted intensities comparing smokers and non-smokers. Logistic 

regression was then used to assess associations between discriminative metabolite features and 

maternal smoking. To evaluate the performance of selected features, we conducted a 10-fold cross-

validation test utilizing support vector machine (SVM) and calculated the classification accuracy 
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of those selected features. All feature selection approaches were implemented within the R 

package mixOmics v6.3.1. We adjusted for multiple testing using false-discovery rate (FDR)-

adjusted p-values.  

Discriminative features selected by PLS-DA were first matched to a reference database of 

authenticated chemical standards (identification confidence level 1) previously analyzed using the 

same HRM.70 The error tolerance was ±5 parts-per-million (ppm) and ±15 seconds (s) for m/z and 

retention time, respectively. Details about the reference database have been published previously. 

112,143 Additional features were annotated by xMSannotator144 which links to databases of 

metabolites (Human Metabolome Database; LipidMaps; KEGG; others). Accurate mass m/z for 

adducts formed under positive/negative ESI mode were matched to the Human Metabolome 

Database (HMDB), with a mass error threshold of 10 ppm. xMSannotator also took the correlation 

of intensities and retention time into consideration, which ensures accuracy of annotation. Only 

results with an annotation score >= 2 (scoring system 0-3, a higher score representing higher 

confidence) were kept. 

In order to identify perturbed metabolism pathways, we conducted pathway enrichment 

analysis utilizing mummichog v 2.4.2 145. Features previously selected by PLS-DA VIP > = 2 and 

FDR-adjusted p-value < 0.05 were included in the pathway enrichment analysis. Pathways were 

considered as being statistically significantly enriched if gamma-adjusted p-values were smaller 

than 0.05.146 We only reported pathways with a size of at least 3 metabolites per pathway detected. 

We performed a sensitivity analysis among children born at term only (gestational age >= 37 weeks) 

to determine whether there were similar perturbated pathways present among term birth neonates. 
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4.4 Results 

The demographic characteristics of the 883 subjects included in this study are shown in 

Table 4-1. Compared to non-smoking mothers, smokers tended to be more often White non-

Hispanic (48.4% vs. 30.8%), aged 25-34 years when the index child was born (56.9% vs. 49.7%), 

foreign born (62.7% vs. 52.1%), and high school graduates (61.3% vs. 49.0%). Children whose 

mothers were smokers were less likely to be firstborn (35.9% vs. 42.3%) and born after the year 

2000 (15.7% vs. 44.9%), while they were more likely to be male (56.9% vs. 47.4%) and preterm 

births (11.9% vs. 9.5%). 

In total, we detected 26,183 features (15,562 in HILIC column and 10621 in C18 column) 

with missing values in less than 30% of the samples. After discriminant analysis, we observed 520 

HILICpos features and 483 C18neg features as being statistically significantly associated with 

maternal smoking (Figure 4-1). Among these features, we confirmed the identity of 17 metabolites 

using authentic standards (confidence level 1, Table 4-2). The pathway enrichment analysis 

selected 10 pathways that were associated with maternal smoking exposure (Table 4-3). Sensitivity 

analysis in which we restricted to children born at term corroborated the identification of vitamin 

A (retinol) and androgen and estrogen biosynthesis pathways and identified other amino acid-

related pathways. (see Supplemental Table 4-S2) We listed the annotated metabolites within each 

enriched pathway in the Supplemental Table 4-S1.  

 
4.5 Discussion 

Our study is one of the first to examine metabolic signals in newborn blood due to maternal 

perinatal smoking, importantly we utilized a very large population-based sample of California 

children born over almost 3 decades. High-resolution metabolomic profiling methods allowed us 
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to identify newborn blood metabolome perturbations due to tobacco smoke exposure and our 

results suggest the involvement of vitamin A (retinol), tryptophan, and arachidonic acid 

metabolism pathways, as well as androgen and estrogen biosynthesis and metabolism. Some of 

these pathways such as the kynurenine pathway and tryptophan metabolism have previously been 

associated with an increased risk of chronic disease like lung cancer and neurological diseases.  

We identified higher levels of vitamin A (retinol) in infants of smoking mothers and the 

vitamin A (retinol) metabolism pathways were enriched in both the HILICpos and C18neg 

columns. Retinoids, which include retinol, retinoic acid, and retinyl ester, regulate biologic 

processes and play a role in the prevention and treatment of several chronic diseases, including 

cancer.147 Retinol and retinyl esters are the most abundant forms of retinoids present in the body 

and originate either directly from diet or are produced in the body through enzymatic cleavage of 

specific carotenoids.147,148 Cigarette smoking exposure has been associated with the reduction of 

retinoic acid and may be responsible for an increased lung cancer risk in rats.42 In addition, retinoic 

acid is crucial for regulating immune system homeostasis and for inflammatory responses.149 We 

observed an alteration in vitamin A metabolism in newborn blood as a metabolic consequence of 

maternal tobacco smoking, suggesting a possible upregulation to counteract inflammatory actions. 

Consistent with the existing literature, our results indicate an association between maternal 

smoking and elevated kynurenine in newborn blood as well as with tryptophan metabolism. 

Tryptophan is an essential amino acid used to build proteins and is a biosynthetic precursor for 

many neurologically active compounds. The kynurenine pathway plays a vital role in tryptophan 

metabolism and accounts for 95% of all tryptophan metabolism.57,150  Activation of the tryptophan 

metabolism via the kynurenine pathway prevents hyperinflammation and has immunosuppressive 

effects. It also regulates energy homeostasis and brain function.151 Tryptophan/kynurenine 
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metabolism has been linked with several diseases related to smoking. For example, a nested case-

control study of 5,364 smoking-matched case–control pairs found that those measuring in the 

highest quintile of kynurenine were at a 20-30% higher risk of developing lung cancer with the 

strongest associations seen for current smokers, lesser among former smokers, and none among 

never smokers.152 The kynurenine pathway has also been implicated in the pathophysiology of a 

range of neurodegenerative diseases including multiple sclerosis, Amyotrophic Lateral Sclerosis, 

Huntington's and Parkinson's disease, and Alzheimer's disease.153 Low serum tryptophan can also 

contribute to immunodeficiency.154 On the other hand, study results have been inconsistent with 

some finding a decreased level of kynurenine in smokers relative to non-smokers.155 Inconsistent 

findings may be due to the nature of the disease investigated155,156 or lifestyle factors and 

medications that are related to the disorder under investigation. 

Steroid hormones play a major and complex role in mediating physiological and behavioral 

processes and cigarette smoking has been shown to affect the secretion, synthesis, metabolism, 

distribution, and excretion of hormones.157 We identified enriched pathways related to the 

biosynthesis and metabolism of steroid hormones such as androgen, estrogen, and C21-steroid 

hormone. The sex hormones, androgens and estrogens, have a role in modulating several 

regulatory system and mediating sex-related differences in disease development.157 Studies have 

demonstrated that smoking resulted in a decreased level of plasma estrogens in women of 

childbearing age, pregnant women, and newborns of smoking mothers, which was likely due to a 

smoking-induced hydroxylation and an increase in clearance.157,158 In addition, a higher level of 

17-OH pregnenolone, a pregnane (C21) steroid, was seen in smoking mothers with male fetuses 

compared to non-smokers.158 Smoking during pregnancy induces changes in the production of 

steroid hormones in both mothers and newborns and these changes are seen to be differed by fetal 
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sex. These may indicate that smoking has an undesirable influence on adrenal steroidogenesis and 

the influence on male children may be associated with defects in adult reproductive function.158 

We identified several other tobacco smoking-related pathways and metabolites that were 

previously mentioned in the literature in connection with smoking. Acetylcholine is a small 

molecule that plays an important role in maintaining homeostasis and brain functions, acting as a 

neurotransmitter in the peripheral nervous system.159 Nicotinic acetylcholine receptor (nAChR), 

as a major class of acetylcholine receptors, is a typical ion channel type receptor. Nicotine in 

tobacco products, as an agonist of nAChR, evokes rapid depolarization responses to elicit neuronal 

excitation or skeletal muscle contraction.159 Long-term exposure to nicotine exerts protection 

against neurotoxicity induced by toxic insults and the neuroprotective effects induced by long-

term nAChR stimulation indicate that central nervous system nAChRs play crucial roles in 

promotion of neuronal survival under conditions such as brain ischemia and neurodegenerative 

diseases. 159 Arachidonic acid metabolites and enzyme transcripts involving both the lipoxygenase 

and cyclooxygenase pathways were reported to have different concentrations in smokers with 

asthma compared with never smokers, in multiple types of samples including urine, sputum, and 

blood.160 Alanine aminotransferase is widely used as a clinical biomarker of hepatic health as it is 

involved in the transamination of alanine and presents in substantially higher concentrations in the 

liver than other organs.161 Smoking has been shown to be associated with elevated alanine 

aminotransferase levels among anti-hepatitis C virus antibody-seropositive individuals.162 

Hippurate has also been shown to be increased with exposure to byproducts of cigarette smoke, 

such as phenolic compounds and toluene, in a study examining cigarette smoking associated 

vaginal tract metabolomic profile.163 Itaconate was reported to be significantly increased with 
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cigarette smoking and has been implicated as an immune-response regulator in macrophages in a 

multi-omics study.164  

Our sensitivity analysis that excluded preterm births infants found pathways previously 

also identified in a study that investigated maternal light active smoking and secondhand smoke 

exposures in amniotic fluid and maternal serum.58 These pathways affected by maternal smoking 

exposure include vitamin A (retinol), lysine, tyrosine, porphyrin, and urea cycle/amino group 

metabolism. Smoking is a known risk factor for preterm birth 165 and the metabolic perturbations 

observed in the whole population but not in term birth may involve pathways related to preterm 

delivery. Out of the nine enriched pathways we identified as being different in smokers in analyses 

that included preterm births, four pathways (tryptophan metabolism, arachidonic acid metabolism, 

steroid hormone biosynthesis and metabolism, fatty acid oxidation and metabolism) were 

previously reported as preterm birth predictive pathways.165  

Previous studies investigated tobacco metabolism and related pathways in adults -including 

pregnant women - and children, and our study affirms that several pathways previously identified 

are also perturbed in newborn infants whose mothers smoked in pregnancy. For example, the 

vitamin A (retinol) metabolism pathway, which plays a role in the development of the immune 

system, was reported to be perturbed by tobacco smoke exposure based on both second-trimester 

amniotic fluid and corresponding maternal serum analyses.58 Similar to our findings, previous 

studies also identified kynurenine, a part of tryptophan metabolism, as smoking-related 

metabolites in adult smokers’ serum and children’s urine samples after secondhand smoke 

exposure.57,166 Furthermore, five metabolic pathways (aspartate and asparagine metabolism and 

pyrimidine urea cycle/amino group metabolism, arginine and proline metabolism, and xenobiotics 

metabolism) reported as being perturbed by tobacco smoke exposure in both second-trimester 
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amniotic fluid and in adult serum of military personnel,56,58  were not seen to be enriched in our 

study. The differences in findings across studies may be due to sample type and age, as well as 

differences in other demographic cofactors that influence metabolism and the kinetics of nicotine 

metabolism.167 It has been suggested that neonates have a much slower nicotine metabolism such 

that nicotine has a 3 to 4 times longer half-life in newborns compared with adults.167 Cotinine, on 

the other hand, is reported to have a similar half-life in neonates, older children, and adults of about 

16.3 hours (95% CI, 12.4 to 23.9) in blood and 22.8 hours (95% CI, 19.5 to 25.8) in urine.35,167 

Despite having slightly longer half-life, this biomarker derived measure from neonatal blood spots 

is nevertheless imperfect and may underestimate maternal smoking due to a number of reasons 

such as women not initiating breastfeeding.139 The metabolic signals we identified in this study in 

newborn blood may only reflect those metabolic pathways most strongly associated with chronic 

pre-and perinatal tobacco smoke exposure. 

We acknowledge several limitations of this study. First, we were only able to control for 

potential confounders that are reported on birth certificates and with relatively low missingness. 

For example, we decided not to adjust for maternal and paternal education due to the large 

missingness of these variables. Second, due to the nature of untargeted metabolomics, we cannot 

obtain the absolute concentration of cotinine as a measure for current smoking status. Instead, we 

utilized cotinine and hydroxycotinine and selected a plausible cutoff according to reported 

maternal smoking in California during the years of the study. Thus, we might have misclassified 

exposure status, however, this would have been non-differential for exposure and the metabolomic 

profile. Our classification of smokers favored high specificity over sensitivity, therefore we may 

have called some smokers non-smokers. We would not have been able to identify tobacco 

metabolites in all exposed infants if mothers did not smoke within 20 hours of sample collection, 
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and in particular among neonates of mothers who never initiated breastfeeding. Nevertheless, we 

were able to identify a number of metabolites and pathways that were strongly associated with 

tobacco smoke and have been reported previously in relation to smoking. Another limitation is the 

limited ability to annotate and confirm metabolites using the untargeted platform. We were able to 

improve the coverage range and accuracy of the annotation by adopting pathway analysis. 

However, there may still be incorrect matches that could affect the interpretation of our results. 

MS/MS analysis is recommended for specific metabolites of interest. 

In conclusion, we identified metabolites and pathway perturbations that have previously 

been associated with cigarette smoking, inflammatory responses, and diseases of the central 

nervous system and the lung in neonatal blood. Our results provided a global view of the newborn 

infant’s metabolism in response to maternal smoking in the perinatal and early postnatal period. 

Our study suggests that maternal smoking during pregnancy has an impact on the child’s 

metabolism during development and implicates pathways related to diseases previously associated 

with smoking such as lung disease and brain development. 
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4.6 Tables and figures 

Table 4-1. Demographic characteristics of the study population 
  Non-smoker (N=730) Smoker (N=153) 
  N = 883 
Maternal race/ethnicity   
White non-Hispanics 225 (30.8%) 74 (48.4%) 
Hispanic of any race 370 (50.7%) 49 (32.0%) 
Other/not specified 135 (18.5%) 30 (19.6%) 
Birth Year   
1983-1990 121 (16.6%) 63 (41.2%) 
1991-2000 281 (38.5%) 66 (43.1%) 
2001-2011 328 (44.9%) 24 (15.7%) 
Sex   
Male 346 (47.4%) 87 (56.9%) 
Female 384 (52.6%) 66 (43.1%) 
Maternal age   
<20 81 (11.1%) 18 (11.8%) 
20-24 181 (24.8%) 38 (24.8%) 
25-29 193 (26.4%) 44 (28.8%) 
30-34 170 (23.3%) 43 (28.1%) 
35+ 105 (14.4%) 10 (6.5%) 
Census-based neighborhood SES index    
1 (Low) 163 (22.3%) 30 (19.6%) 
2 208 (28.5%) 40 (26.1%) 
3 145 (19.9%) 47 (30.7%) 
4 117 (16.0%) 18 (11.8%) 
5 (High) 97 (13.3%) 18 (11.8%) 
Parity   
0 309 (42.3%) 55 (35.9%) 
1 226 (31.0%) 38 (24.8%) 
2+ 194 (26.6%) 60 (39.2%) 
Missing 1 0 
Preterm birth   
Preterm 67 (9.5%) 17 (11.9%) 
Term 638 (90.5%) 126 (88.1%) 
Missing 25 10 
Maternal education   
Less than high school 82 (12.5%) 10 (9.0%) 
High school graduate 321 (49.0%) 68 (61.3%) 
Some college, college graduate or more 252 (38.5%) 33 (29.7%) 
Missing 75 42 
Foreign-born   
Yes 380 (52.1%) 96 (62.7%) 
Missing 0 1 
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Table 4-2. Confirmed a chemical identity of metabolic features associated with maternal smoking status 
among studied infants 
m/z RT (s) Adduct Form Metabolite Coefficient FDR VIP Mode 
90.055 52.4 M+H Alanine 2.90E-01 2.93E-03 2.23 HILICpos 
102.055 66.2 M+H 1-Aminocyclopropane-1-carboxylate 3.41E-01 1.22E-03 2.11 HILICpos 
116.0344 78.1 M+H Maleamate 3.25E-01 1.33E-03 2.15 HILICpos 
132.0766 53.7 M+H Creatine 2.51E-01 1.03E-02 2.01 HILICpos 
146.0924 25.7 M+H Guanidinobutanote 5.40E-01 8.05E-05 2.85 HILICpos 
146.1176 36.4 M+H Acetylcholine 4.75E-01 1.27E-04 2.73 HILICpos 
180.0653 44.2 M+H Hippurate 3.17E-01 1.45E-03 2.20 HILICpos 
209.0922 51 M+H Kynurenine 3.89E-01 2.11E-04 2.86 HILICpos 
241.0308 183.1 M+H Cystine -3.36E-01 8.27E-04 2.34 HILICpos 
269.2263 22.4 M+H Vitamin A (Retinol) 3.73E-01 9.35E-04 2.29 HILICpos 
129.0187 22.6 M-H Itaconate 4.29E-01 1.37E-04 2.33 C18neg 
180.0667 19.6 M-H L-Tyrosine 4.22E-01 1.37E-04 2.18 C18neg 
188.0566 17.8 M-H N-Acetyl-Dl-Glutamic Acid 5.32E-01 2.93E-05 2.60 C18neg 
195.0512 18.8 M-H Gluconic Acid 3.46E-01 2.82E-04 2.72 C18neg 
309.2803 291.2 M-H FA 20:1 (Gondoic acid) 3.26E-01 3.76E-04 2.72 C18neg 
311.296 291.3 M-H Arachidic Acid 2.47E-01 1.14E-03 2.63 C18neg 
588.076 17.2 M-H Adenosine-5'-Diphosphoglucose 4.02E-01 2.06E-04 2.20 C18neg 
a Chemical identification was conducted by matching peaks by accurate mass and retention time to authentic 
reference standards in an in-house library run under identical conditions using tandem mass spectrometry. 
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Table 4-3. Enriched metabolomic pathways associated with maternal smoking status among all infants 
(N=883) 
Pathway Overlap size Pathway size  p-value Mode 
Vitamin A (retinol) metabolism 4 24 0.00992 HILICpos 
Tryptophan metabolism 7 73 0.02596 HILICpos 
Arachidonic acid metabolism 4 33 0.03218 HILICpos 
C21-steroid hormone biosynthesis and metabolism 5 49 0.03823 HILICpos 
N-Glycan biosynthesis 3 23 0.04579 HILICpos 
Vitamin A (retinol) metabolism 3 22 0.01622 C18neg 
Androgen and estrogen biosynthesis and metabolism 4 40 0.0184 C18neg 
Fatty acid oxidation 1 3 0.04781 C18neg 
Fatty acid metabolism 2 18 0.05966 C18neg 
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Figure 4-1. Identification of metabolic features associated with maternal smoking exposure among studied 
infants. A) Type 1 Manhattan plot for features in the HILIC column (positive ion mode), VIP score vs m/z. Red dots 
represent features that were positively associated with maternal smoking exposure and green dots represent features 
that were negatively associated with maternal smoking exposure; B) Type 1 Manhattan plot for features in the C18 
column (negative ion mode), VIP score vs mass-to-charge. 
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4.7 Supplemental materials 

Supplemental Table 4-S1. Mummichog Annotated Metabolites 

Pathway Name KEGG ID Ion M/Z Time VIP Coefficient P vlaue Adjusted 
p value 

Fold 
change Mode 

Metabolite 
annotation 
confidence 

Androgen and estrogen biosynthesis and 
metabolism 

16alpha-Hydroxyandrost-4-ene-3,17-dione C05140 M-H 301.1810 205.6 2.167 0.357 6.01E-04 1.21E-03 0.375 C18neg 4 

5beta-Dihydrotestosterone C05293 M-H 289.2177 223.5 2.076 0.298 7.45E-04 1.36E-03 0.128 C18neg 4 

4-methoxyestrone CE2189 M-H 299.1656 34.7 2.118 0.328 6.69E-04 1.26E-03 0.194 C18neg 4 

Arachidonic acid metabolism 

(5Z)-(15S)-11alpha-Hydroxy-9,15-dioxoprostanoate C04671 M+H 352.2220 47.7 2.289 0.328 6.05E-04 1.13E-03 0.357 HILICpos 4 

10,11-dihydro-12-oxo-LTB4 CE5944 M+Na 335.2214 26.5 2.065 0.311 1.38E-03 1.85E-03 0.245 HILICpos 4 

15(R)-HEPE CE7081 M+H 317.2109 24.0 2.569 0.366 1.33E-04 4.85E-04 0.441 HILICpos 4 

15-oxo-PGE1 CE7092 M+H 352.2220 47.7 2.289 0.328 6.05E-04 1.13E-03 0.357 HILICpos 4 

C21-steroid hormone biosynthesis and metabolism 
Androst-4-ene-3,17-dione C00280 M+H 309.1825 49.1 2.287 -0.306 3.42E-03 3.84E-03 -0.382 HILICpos 4 

5beta-Androstane-3,17-dione C03772 M+H 289.2154 26.8 2.061 0.301 9.94E-04 1.53E-03 0.326 HILICpos 4 

11-Dehydrocorticosterone C05490 M+H 344.1981 55.7 2.426 0.257 5.16E-04 1.03E-03 0.020 HILICpos 4 
Electron transport chain Ubiquinone C00399 M-H 299.1656 34.7 2.118 0.328 6.69E-04 1.26E-03 0.194 C18neg 4 
Fatty acid oxidation Ubiquinone C00399 M-H 299.1656 34.7 2.118 0.328 6.69E-04 1.26E-03 0.194 C18neg 4 

N-Glycan biosynthesis 
Farnesyl diphosphate C00448 M+H 383.1412 55.6 2.149 0.296 9.68E-04 1.51E-03 0.147 HILICpos 4 

Dolichyl beta-D-glucosyl phosphate C01246 M+H 489.2238 64.2 2.350 -0.319 2.78E-04 7.41E-04 -0.630 HILICpos 4 

3'-UMP C01368 M+Na 347.0250 197.4 2.140 0.527 5.02E-05 3.15E-04 0.239 HILICpos 4 

Tryptophan metabolism 

Alanine C00041 M+H 90.0550 52.4 2.227 0.290 2.50E-03 2.93E-03 0.107 HILICpos 1 

Beta-alanine C00099 M+H 90.0550 52.4 2.227 0.290 2.50E-03 2.93E-03 0.107 HILICpos 1 

Sarcosine C00213 M+H 90.0550 52.4 2.227 0.290 2.50E-03 2.93E-03 0.107 HILICpos 1 

Kynurenine C00328 M+H 209.0922 51.0 2.863 0.389 1.92E-05 2.11E-04 0.183 HILICpos 1 

Melatonin C01598 M+H 255.1102 43.7 3.183 0.500 6.67E-07 4.56E-05 0.312 HILICpos 4 

4,6-Dihydroxyquinoline C05639 M+H 162.0561 33.8 2.584 0.411 5.18E-05 3.21E-04 0.213 HILICpos 4 

Vitamin A (retinol) metabolism 

Vitamin A (Retinol) C00473 NA 269.2263 22.4 2.289 0.373 4.28E-04 9.35E-04 0.743 HILICpos 1 

all-trans-4-Hydroxyretinoic acid C16677 M+H 317.2109 24.0 2.569 0.366 1.33E-04 4.85E-04 0.441 HILICpos 4 

all-trans-4-Hydroxyretinoic acid C16677 M-H 315.1966 203.6 2.021 0.338 9.49E-04 1.59E-03 0.204 C18neg 4 

9-cis-retinoate CE1617 
M+H-
H2O 299.2005 24.0 3.021 0.442 3.85E-06 9.07E-05 0.424 HILICpos 4 

4-hydroxy-all-trans-retinyl acetate CE2961 M-H 325.2176 227.5 2.218 0.328 5.96E-04 1.21E-03 1.116 C18neg 4 

5-oxo-EPE CE7111 M+H 315.1953 23.9 3.076 0.405 4.81E-06 1.04E-04 0.533 HILICpos 4 
* Schymanski EL; Jeon J; Gulde R; Fenner K; Ruff M; Singer HP; Hollender (2014) Identifying Small Molecules via High Resolution Mass Spectrometry: Communicating Confidence.  J Environ. Sci. Technol 48: 2097–8 
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Supplemental Table 4-S2. Enriched metabolomic pathways associated with maternal smoking status 
among term birth infants only (N=764) 
Pathway Overlap size Pathway size p-value Mode 
Vitamin A (retinol) metabolism 3 24 0.02277 HILICpos 
Androgen and estrogen biosynthesis and metabolism 4 41 0.0258 HILICpos 
Putative anti-Inflammatory metabolites formation from 
EPA 2 12 0.0279 HILICpos 

Lysine metabolism 3 28 0.03428 HILICpos 
Tyrosine metabolism 9 109 0.00235 C18neg 
Porphyrin metabolism 3 22 0.01496 C18neg 
Urea cycle/amino group metabolism 4 56 0.04605 C18neg 
Parathion degradation 1 3 0.04798 C18neg 
Vitamin B12 (cyanocobalamin) metabolism 1 4 0.0663 C18neg 
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Chapter 5. Conclusion and Public Health Implications 

This dissertation investigated the measurement of maternal perinatal tobacco smoking and 

the associated metabolic signals in newborn blood spots, a validated biosample that is useful for 

epidemiological studies of rare diseases in childhood. In the first project (Chapter 2), we 

comprehensively assessed the stability of metabolites across all study years (1983-2011) and found 

that almost three decades of storage in -20 °C freezers did not affect the deterioration of metabolites 

that reflect the general human physiology or exogenous metabolites that are markers of common 

lifestyle-related exposures such as cotinine and caffeine. In the second project (Chapter 3), we 

utilized the combination of self- or provider-reported smoking and metabolites-derived smoking 

information and constructed a prediction model using birth certificate data to predict maternal 

smoking reaching an AUC of 0.805. The model may benefit future studies in the state that employ 

birth registry data and populations and would help to improve adjustment for maternal smoking 

and may also help guide clinical intervention to reduce smoking in pregnancy in California. In the 

third project (Chapter 4), we identified metabolites and pathway perturbations that have previously 

been associated with cigarette smoking, inflammatory responses, and diseases of the central 

nervous system and the lung in neonatal blood. Our results provided a global view of the newborn 

infant’s metabolism in response to maternal smoking in the perinatal and early postnatal period. 

Neonatal dried blood spots are valuable resources for epidemiological studies of child 

outcomes and childhood rare diseases. The collection and storage of DBS are minimally invasive 

and inexpensive and easy to multiplex and automate. The handling and logistics allows the 

deployment of DBS storage and shipment even in resource-poor settings. Moreover, DBS samples 

are compatible with many bioanalytical methods including chromatography, mass spectrometry, 

DNA, and immunoassays. With all the advantages, DBS applications are emerging in areas of 
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large scale neonatal screening, targeted and nontargeted metabolic profiling, and epidemiological 

disease surveillance.168 Research targeting rare diseases must often rely on biospecimens that are 

collected routinely and have been stored for long time periods in order to accumulate a sufficient 

number of samples to address hypotheses with adequate statistical power. Results of this 

dissertation support the feasibility of conducting metabolomics studies using archived DBS stored 

for decades.  Utilizing existing biospecimens from statewide newborn screening programs will 

provide a unique and important resource for future epidemiologic health and environmental 

exposure studies.  

Although its prevalence drops over the past decades, maternal smoking remains to be 

prevalent and not only causes direct adverse health effects but also interferes with normal response 

to environmental exposures, increasing the susceptibility for disease. The developmental origin of 

the health and disease (DOHaD) concept proposes that early life exposures during critical windows 

can be persistent and may result in health consequences in later life. According to the DOHad 

principle, the health burden due to maternal smoking ranges in magnitude similar to ambient ozone 

exposure, which is recognized as a severe public health problem with high priority in research and 

policymaking. 169 Thus, the impact of maternal smoking remains a public health focus. Our results 

explore the effect of maternal smoking in offspring from a metabolic perspective and suggest that 

maternal smoking during pregnancy impacts the child’s metabolism during development and 

implicates pathways related to diseases previously associated with smoking, such as lung disease 

and brain development. In addition, the application of the prediction model we built in the second 

project will at least partially account for uncontrolled confounding due to missing maternal 

smoking information when conducting studies on childhood are diseases using California birth 

certificates. 
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Complementing traditional epidemiological studies, our findings re-emphasize the 

importance of tobacco control, especially for vulnerable populations such as pregnant women and 

newborns. By combining large population-based data with metabolomics and prediction models 

approaches, our studies provide a valuable understanding of maternal smoking measurements and 

its health impact in vulnerable populations that may guide future research, disease surveillance, 

and policymaking. 
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