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Abstract

Given a simplicial complex ∆ and its barycentric subdivision Sd∆, we explore two homogeneous

systems of parameters: one is the elementary symmetric functions inside the N-graded Stanley-

Reisner ring of ∆, k[∆], and the other is written based on a balanced coloring of Sd∆ which lives

inside the Nd-graded Stanley-Reisner ring of Sd∆, namely, k[Sd∆]. The first is stable under sym-

metries and the other is stable under colorful automorphisms of Sd∆. In this paper, we develop

methodology to explore comparing the resolutions of k[∆] and k[Sd∆] over their respective pa-

rameter rings. We then prove it in the trivial case, which is simply the coinvariant algebra with

alternate grading and one non-trivial case.
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CHAPTER 1

Introduction

Given a polynomial ring S = k[x1, . . . , xn] any squarefree monomial ideal is a Stanley-Reisner ideal

denoted I∆. Those monomials which generate I∆ define non-faces of a simplicial complex. This

bijection between homogeneous squarefree monomial ideals and (regular,finite) simplicial complexes

leads us to be able to answer questions about the topology of ∆ through study of the related Stanley-

Reisner ring k[∆] = S/I∆. In [1], we investigated nice properties of a certain homogeneous system

of parameters, called the universal system of parameters by Herzog and Moradi [12]. The universal

system of parameters, θ = (θ1, . . . , θd), are the universal system of parameters in the image of the

quotient map S → S/I∆. These are particularly nice since they are stable under symmetries. This

ring is standard N-graded, where degN(xi) = 1.

We then studied a particular class of simplicial complexes, namely, balanced simplicial complexes.

Given a simplicial complex ∆ on a vertex set V, a proper coloring is a map κ : V → [ℓ] such that for

all edges {i, j} in ∆, κ(i) ̸= κ(j). A simplicial complex of dimension d−1 is called balanced if there

is a proper coloring with precisely d colors. In this thesis we are particularly interested in studying

a certain class of balanced simplicial complexes, namely, barycentric subdivisions of simplicial

complexes, which will be denoted Sd∆. We may define a homogeneous system of parameters,

γ = (γ1, . . . , γd) where γi is the sum of all vertices of color i. These systems of parameters are

particularly nice, since they are stable under the colored automorphims of ∆. This ring is Nd-

graded where degNd(yF ) = ϵκ(F ), where ϵκ(F ) is the standard basis vector in Nd.

Let A = k[z1, . . . , zd] and consider the two maps:

A → k[∆]

zj 7→ θj
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and

A → k[Sd∆]

zj 7→ γj

For the second map, we apply a grading specialization stated in Definition 3.1.5, Nd → N, taking

ϵj 7→ j. The paper [1] asks:

Is the shape of the (minimal, finite, free) resolution of k[∆] over A is the same as the resolution

of k[Sd∆] over A (under the grading specialization).

Since two rings are isomorphic as A-modules if their resolutions over A are the same, then showing

the resolutions are equal gives us Conjecture 3.3.4. If F∆
• is a resolution of k[∆] over A and FSd∆

•

is a resolution of k[Sd∆] over A, then a weaker version of Conjecture 3.3.4, is Conjecture 3.3.2,

which asks if the graded Betti numbers of F∆
• are the same as the graded Betti numbers of FSd∆

• .

In this thesis, we attempt to extend the study of these resolutions by setting up the theory for a

new approach to resolving Conjectures 3.3.2 or 3.3.4 and proving it for both the trivial case and a

non-trivial base case.

Our set up is as follows. We observe that

TorA0 (k[∆],k) ∼= k[∆]/(θ1, . . . , θd).

However, when ∆ is an n-simplex, I∆ is empty and k[∆] = S = k[x1, . . . , xn]. Thus

TorA0 (k[∆],k) ∼= S/(θ1, . . . , θn) = S/(e1(x), . . . , en(x))

where e1(x), . . . , en(x) are the elementary symmetric functions in variables x = (x1, . . . , xn). Let

In be the ideal generated by the n elementary symmetric functions in variables x. This ring,

An := S/(e1(x), . . . , en(x)),

is simply the coinvariant algebra, which is a well studied object in combinatorics, algebraic geometry,

and representation theory. If I∆ is non-empty, then we define I∆n = In + I∆. The ring

A∆
n := S/I∆n
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is a generalized coinvariant algebra. It is our goal in much of the thesis to understand this ring. In

particular, we give an explicit conjectural basis for when I∆ is generated by a single monomial. We

also compute the Hilbert series of A∆
n and give a combinatorial method for computing the Hilbert

series. We believe that this should extend naturally with a bit more time.

The thesis is structured as follows. In Chapter 2 we layout the preliminaries for simplicial complexes,

Stanley-Reisner rings (Section 2.1), Hilbert series (Section 2.2), resolutions of Stanley-Reisner rings

(Section 2.3), and universal system of parameters (Section 2.4), all of which will be required for

the rest of the thesis.

In Chapter 3 we focus on introducing in detail the motivating conjectures for this work. In Section

3.1 we give a presentation of the Stanley-Reisner ring of the barycentric subdivision of a simplicial

complex and introduce a certain system of parameters for this ring. In Section 3.2, we review a

generalization of a well-known formula of Hochster. This all leads to the two motivating conjectures

which are stated in Section 3.3.

In Chapter 4, we review monomial orderings (Section 4.1), Gröbner bases and Buchbergers algo-

rithm (Section 4.2). We then review symmetric polynomials (Section 4.3.1) with the purpose of

introducing the coinvariant algebra in the same section. We then introduce a combinatorial method

for computing the Artin basis for the coinvariant algebra (Section 4.3.3).

In Chapter 5, we discuss a generalization of the coinvariant algebra (Section 5.1), give its Hilbert

series and generalize the combinatorial model from the previous section for a certain case. We then

give an explicit (conjectural) description of the basis of the generalized coinvariant algebra for a

certain case (Section 5.2). We also give the code used in computational verification (Section 5.3).

In Chapter 6, we set up the necessary machinery to use the methodology constructed in the previous

chapters to eventually be able to resolve one of the motivating conjectures.
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CHAPTER 2

Stanley-Reisner rings

2.1. Simplicial complexes & their Stanley-Reisner rings

Let S = k[x1, . . . , xn] be a polynomial ring. Using multi-index notation, a monomial xa :=

xa11 · · ·xann for a vector a = (a1, . . . , an) ∈ Nn. The support set of supp(a) = {i : ai > 0}. Then, we

use the notation that for F ⊂ [n], xF is the monomial xa with supp(a) = {i : ai = 1 if i ∈ F}.

In other words, xF =
∏

i∈F xi. A monomial is called squarefree if for all ai ∈ α, ai = 0 or ai = 1.

An ideal is squarefree if it is generated by squarefree monomials. Let I∆ be an ideal generated by

homogeneous squarefree monomials. This ideal is called the Stanley-Reisner ideal and the quotient

ring S/I∆ is called the Stanley-Reisner ring. This ring has an alternate topological characterization

as first laid out in Reisner’s P.h.D. thesis at the University of Minnesota, Twin Cities. CITATION

In this section we give a general introduction to simplicial complexes and Stanley-Reisner theory.

For more a more in depth exploration of the bijection between squarefree monomial ideals and

simplicial complexes see [13].

Definition 2.1.1. A ∆ be a (finite, regular) simplicial complex on n vertices is a collection of

subsets G ⊆ [n] := {1, . . . , n}, called faces, such that the following hold

• Each v ∈ [n] is also in ∆;

• If F ′ ⊆ F, and F ∈ ∆, then F ′ ∈ ∆.

We note that ∅ is always in ∆. A face F if called a facet if there does not exist F ′ ∈ ∆ such

that F ⊆ F ′. The dimension of a face F in ∆, denoted dim(F ) = |F | − 1. It follows that if F

is a maximal facet, i.e, dim(F ) ≥ dim(Fi) for all other facets F1, . . . , Fk of ∆, the dimension of

∆, dim(∆) = dim(F ) = |F | − 1. A simplicial complex is completely determined by its facets. A

simplicial complex ∆ = 2[n] is called an n-simplex and is denoted ∆n and has dimension n − 1.

Since each facet is a simplex, one can alternatively define ∆ =
⋃

1≤k≤n Fi for simplicies Fi on a

vertex set [n]. A minimal non-face of ∆ is a subset G ⊆ [n] such that G ̸∈ ∆ (non-face) and there

does not exist any other subset G′ ⊆ [n] such that G′ ⊆ G (minimality). One may also completely
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characterize a simplicial complex on n vertices by its non-facets by removing the minimal-non faces

from the simplex ∆n in such a way that it respects the simplicial complex structure.

A subcomplex ∆′ of ∆ is a collection of faces of ∆ which respects the simplcial complex requirements.

We define three particularly important subcomplexes of ∆

– The k-skeleton of ∆ is the complex ∆(k) := {F ∈ ∆ : dim(F ) ≤ k}.

– The star of a face F ∈ ∆ is st(F ) := {F ′ ∈ ∆ : F ⊆ F ′}.

– The closed star st(F ) is the smallest subcomplex of ∆ that contained st(F ).

– The link of a face F ∈ ∆ is link(F ) := {F ′ ∈ st(F ) : F ∩ F ′ = ∅}.

– A sub-restricted simplicial complex ∆|S , with S ⊂ [n], is generated by all faces F ∈ ∆

such that F ⊆ S.

We may encode topological data of the simplicial complex in an algebraic structure. This algebraic

structure, called the Stanley-Reisner ring, is the focus of this section and is a particular case of

a broader class of algebraic objects called face rings, which encode topological data (in particular

homological data) of cell complexes.

Definition 2.1.2. Let ∆ be a simplicial complex on n vertices and let S = k[x1, . . . , xn], where k

is a field. We define the Stanley-Reisner ideal I∆ = (xG : G ̸∈ ∆). By the Hilbert Basis theorem,

it is sufficient to say that I∆ is generated by all minimal non-faces of ∆ and this set is finite. The

Stanley-Reisner ring is the quotient k[∆] := S/I∆.

The ring k[∆] has a particularly nice S-module structure. Not only is k[∆] an Nn-graded (or

Z-graded for a coarser grading) finitely generated S-module, but its Krull dimension is exactly

d = dim(∆) + 1.

Definition 2.1.3. Given a commutative ring R, an R-module M is Nn-graded if

M =
⊕
b∈Nn

Mb

and for xa ∈ R xaMb ⊆ Ma+b.

Since k[∆] is a finitely generated Nn graded S-module it is natural to ask about writing down a

(finite, free) resolution for k[∆]. We will address this shortly, but before proceeding, we will give a

classic example.

5



Example 2.1.4. Let n = 4 and let ∆ be the simplicial complex given by facets F1 = {1, 2, 3} and

F2 = {3, 4}. The dimension of F1 is 2 and the dimension of F2 is 1. The complex has the graphical

form:

∆ =

1

2

3 4

The Stanley-Reisner ring for ∆ is

k[∆] = k[x1, x2, x3, x4]/(x1x4, x2x4).

The ideal here is given by the two minimal non-faces in ∆, that is {1, 4} and {2, 4}.

2.2. f-vectors, h-vectors, and Hilbert Series

Combinatorially, we can keep track of the number of faces of each dimension in a simplicial complex

of dimension d through the f-vector f := (f−1, f0, . . . , fd) where fi = #{F ∈ ∆ : dim(F ) = i}.

Although elementary in nature, we may obtain homological information via the f -vector via the

relation:

d∑
i=0

fi−1(q − 1)d−i =

d∑
j=0

hjq
d−j(2.1)

Thus the h-vector is uniquely determined by the f -vector. How does the h-vector give us anything

interesting if it is so easily determined by the f -vector? To explain, we first give the definition of

a generating function for k[∆].

Definition 2.2.1 (Hilbert Series for the Stanley-Reisner Ring). We give three definitions for the

Hilbert series of k[∆], each of which illuminates slightly different information:

(1)

Hilb(k[∆]; q) =
h0 + h1q + · · ·+ hdq

d

(1− q)d
,

6



(2)

Hilb(k[∆]; q1, . . . , qn) =
∑
b∈Nn

dimk(k[∆]b)q
b

(3)

Hilb(k[∆];x1, . . . , xn) =
∑
F∈∆

∏
i∈F

xi
1− xi

.

Remark 2.2.2. Definition (3) may become definition (1) by setting xi = q for all 1 ≤ i ≤ n.

Example 2.2.3. Referring to Example 2.1.4 we will compute its Hilbert series using Definition

2.2.1 (1) and (3).

Using (1): The f -vector of ∆ is f = (1, 4, 4, 1) since we have one empty set, 4 vertices, 4 edges,

and 1 2-face. Using the relations from Equation 2.1,

1 · (1− q)4 + 4 · (1− q)3 + 4 · (1− q)2 + 1 · (1− q) = 1− 2q2 + q3.

Since dim(∆) = 3− 1, then by (i) we have

Hilb(k[∆]; q) =
1− 2q2 + q3

(1− q)3
.

Using (2):

Hilb(k[∆];x1, . . . , xn) = 1 +
x1

1− x1
+

x2
1− x2

+
x3

1− x3
+

x4
1− x4

+
x1

1− x1
· x2
1− x2

+
x1

1− x1
· x3
1− x3

+
x2

1− x2
· x3
1− x3

+
x3

1− x3
· x4
1− x4

+
x1

1− x1
· x2
1− x2

· x3
1− x3

=
x1

1− x1
+

x2
1− x2

+
x3

1− x3
+

x4
1− x4

+
x1x2

(1− x1)(1− x2)
+

x1x3
(1− x1)(1− x3)

+
x2x3

(1− x2)(1− x3)
+

x3x4
(1− x3)(1− x4)

+
x1x2x3

(1− x1)(1− x2)(1− x3)

2.3. Resolutions of Stanley-Reisner rings

Given a commutative ring S and an S-module M it is natural to ask about the structure of M.

Since bases for modules only exist when the module is free, then we must ask for a minimal system

7



of generators. However, we are then faced with the problem that these generators do not give much

information about the structure of M. We therefore use free resolutions to give an approximation

of our module. In this section we will go over the basic theory about free resolutions. For more in

depth descriptions see [7,13,15] and [6]. For more on the topic through the lens of toric topology,

see [4].

Definition 2.3.1. Given a commutative graded ring S and a finitely generated Nn-graded S-module

M, the sequence

F• : 0 M F0 . . . Fd Fd+1 · · ·
∥⊕

a∈Nn S(−a)β0,a

∥⊕
a∈Nn S(−a)βd,a

∂d∂1∂0

is a finite free minimal resolution of M if

(1) F• is a complex meaning that ∂i ◦ ∂i+1 = 0 for all 0 ≤ i ≤ d;

(2) F• is exact everywhere but in homological degree 0, meaning that for all 1 ≤ i ≤ n,

ker(∂i) = im(∂i+1);

(3) F• is finite, meaning that there exists d such that Fi = 0 for all i > d. This d is called the

length of the resolution,

(4) F• is minimal, meaning that ∂i+1(Fi+1) ⊆ R+Fi where R+ is the irrelevant ideal, i.e., no

invertible elements appear in the differential matrices.

Remark 2.3.2. In this paper we are only dealing with finite free minimal resolutions. However,

there are many modules that are not finitely generated. These modules still have free resolutions to

give an approximation of the structure of the module. In this case, we drop the finite requirement.

Furthermore, finite free resolutions need not be minimal. Not only can finite free resolution may be

refined to be minimal, every minimal resolution for an S-module M is isomorphic.

As referenced earlier, when k[∆] = S/I∆ is viewed as an S-module, it has Krull dimension d =

dim(∆) + 1. For general S-modules, this is not always so concrete. We are able to come to this

conclusion due to the Hilbert Syzygy theorem.

Theorem 2.3.3 (Hilbert’s Syzygy Theorem). If M is a finitely generated module over a polynomial

ring k[x1, . . . , xn], then M has a finite free resolution of length at most n.

8



Another way to phrase the Hilbert Syzygy theorem is that the Fi in a resolution F• of an S-module

M are always free modules over S. More importantly, the Hilbert Syzygy theorem tells us that the

length of the resolution is not only finite, but its length is bounded by n.

In the definition of free resolutions, Definition 2.3.1, we see that Fi =
⊕

a∈Nn S(−a)βi,a , which is

called the i-th syzygy module. We will now dissect this definition. Here, S(−a) is the free module

generated in degree a ∈ Nn and is isomorphic to (xa) as an Nn-graded S-module. Each S(−a)

has a given rank denoted βi,a = βi,a(M). This invariant is called the i-th Betti number of M, and

measures the minimal number of generators in degree a for Fi. The Betti numbers are a topic of

great interest in various fields of mathematics. They have many definitions, however, we will use

the functorial definition in this paper.

Definition 2.3.4 (Betti numbers). Let S = k[x1, . . . , xn] be a polynomial ring and let M be an

S-module. For a ∈ Nn, the i-th Betti number

βi,a = dimkTor
S
i (M,k)a.

It is often an area of interest to compute the Betti numbers given a module since these are not

always known (or simple) to compute. However, in our setting the Betti numbers can be explicitly

computed via Hochster’s formula. In order to state Hochster’s formula for computing the Betti

numbers for a simplicial complex, we first translate Nn-graded Betti numbers for I∆ into N-graded

Betti numbers for S/I∆. The equalities line up rather simply so that shifting to the quotient from

the ideal only shifts the indexing of the Betti numbers by 1:

βi,j(I∆) =
∑
|a|=j

βi,a(I∆) =
∑
|a|=j

βi+1,a(S/I∆) = βi+1,j(S/I∆).

Theorem 2.3.5 (Hochster’s Formula, [10]). For any simplicial complex ∆, given k[∆] = S/I∆ as

an S-module,

βi,j(k[∆]) =
∑
|a|=j,

a∈{0,1}n

dimk H̃
j−i+1(∆|a,k).

Example 2.3.6. Let ∆ be the simplicial complex from Example 2.1.4. It has resolution

9



F• : 0 k[∆] F0 F1 F2 0
∥

S(−0)1
∥

S(−1)2
∥

S(−3)1

∂2∂1∂0

The differentials are

∂0 =

[
x1x4 x2x4

]
, ∂1 =

−x2

x1

 , ∂2 = 0.

2.4. Systems of parameters and R-sequences for k[∆]

Definition 2.4.1. Let S = k[x1, . . . , xn] and let M be an S-module with Krull dimension k. Then

f1, . . . , fk ∈ M is a system of parameters (SOP) if the length of M/(f1, . . . , fk)M is finite. A

homogeneous system of parameters (HSOP) is a SOP which is homogeneous. A linear system of

parameters (LSOP) is a system of parameters which is linear.

Definition 2.4.2 (Universal System of Parameters (i)). Let ∆ be a simplicial complex on n vertices

with Stanley-Reisner ring k[∆] = S/I∆. The universal system of parameters are the elementary

symmetric functions under the image of the quotient map S → S/I∆.

Alternatively, may also define the universal system of parameters via the faces of the simplicial

complex.

Definition 2.4.3 (Universal System of Parameters (ii)). Let ∆ be a simplicial complex on n ver-

tices with dimension d − 1 and with Stanley-Reisner ring k[∆] = S/I∆. The universal system of

parameters is defined to be the sequence Θ = (θ1, . . . , θd) where

θi =
∑
F∈∆
|F |=i

xi.

The universal system of parameters have shown up in various places before being so named by

Herzog and Moradi [12]. Work by De Concini, Eisenbud, and Procesi [5] on algebras with straight-

ening laws; Garsia and Stanton [9] on their work in invariant theory of permutation groups; and

finally, D.E. Smith [14] in his algebraic geometric work on sheaves of posets.

10



Example 2.4.4. Computing the universal system of parameters for the Stanley-Reisner ring in

Example 2.1.4, we have Θ = (θ1, θ2, θ3) where

θ1 = x1 + x2 + x3︸ ︷︷ ︸
vertices

θ2 = x1x2 + x1x3 + x2x3 + x3x4︸ ︷︷ ︸
edges

θ3 = x1x2x3︸ ︷︷ ︸
the 2−face

Since the dimension of ∆ is 2, then the length of this sequence is 3 = dim(∆) + 1.

One special property of an HSOP, which is sometimes used as the definition of an HSOP is this:

If f1, . . . , fk is an HSOP for M , then they generate a finitely generated algebra A = k[f1, . . . , fk]

over which M is a finitely generated module. So we may construct a parameter ring from any

HSOP. Consider the map k[∆] → A = k[z1, . . . , zd] with θi 7→ zi. We may write k[∆] as a finitely

generated graded A-module. It is the focus of this paper to understand that module structure.

11



CHAPTER 3

Conjectures on Stanley-Reisner rings

3.1. Stanley-Reisner rings of barycentric subdivisions

The barycentric subdivision of a simplicial complex is a simplicial complex of the same dimension,

and thus has a Stanley-Reisner ring in the sense of Chapter 2. However, for our purposes, we give

a slightly non-standard labeling of the variables. Recall that in this paper we are using multi-index

notation so that a monomial xa = xa11 · · ·xann , but that xG =
∏

i∈G xi. Another way of indexing

variables is through sets so that for S = {i1, . . . , ik} ⊂ [n], yS = yi1,··· ,ik . Then if S1, . . . , Sk ⊆ [n],

a monomial in this setting would be of the form ya = ya1S1
· · · yakSk

.

Definition 3.1.1 (Stanley-Reisner ring of the Barycentric Subdivision of ∆). Let ∆ be a simplicial

complex on vertex set [n] of dimension d − 1, and let Sd∆ be its baryentric subdivision. Then we

define the Stanley-Reisner ring for Sd∆ to be

k[Sd∆] := k[yF : F ∈ ∆]/ISd∆

where

ISd∆ = (yF yG : F ̸⊆ G or G ̸⊆ F ).

Note that ISd∆ is given by the standard Stanley-Reisner relations. Furthermore, this ring has the

quality that if ya ∈ k[Sd∆], then

ya = ya1F1
ya2F2

· · · yakFk
,

then F1 ⊆ F2 ⊆ · · · ⊆ Fk ⊆ [n], i.e., the Fi are a nested chain. There are two natural gradings one

may give k[Sd∆], one is an N-grading, and the other is an Nd-grading.

Remark 3.1.2. Although, this particular definition was arrived at independently, it is also used by

Huang in [11] and is written in terms of Boolean algebras. In his case, it is written in terms of

the face poset of ∆. In terms of poset language, ISd∆ is generated by all yG1 · · · yGk
∈ ∆ such that

G1, . . . , Gk are incomparable in the face poset of ∆.
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Definition 3.1.3 (N-grading as a ring). As a ring, k[Sd∆] may be given the standard N-grading

where

degN yF := dim∆ F + 1.

Definition 3.1.4 (Nd-grading as a vector space). It is natural to give the ring k[Sd∆] a multigrading

by Nd where

degNd(yF ) := ϵi,

F ∈ ∆ when dim∆ F = i− 1 and ϵi is the i-th standard basis vector. So then for all vertices v ∈ ∆

the elements yv in k[Sd∆] have degree ϵ1.

Definition 3.1.5 (A grading specialization). In order to recover k[Sd∆] as a ring from the k-vector

space k[Sd∆] one may apply a specialization map

ν : Nd −→ N

ϵj 7−→ j

Example 3.1.6. Let ∆ be a simplicial complex on V∆ = {1, 2, 3, 4} with facets F1 = {1, 2, 3} and

F2 = {3, 4, 5}. Under the barycenteric subdivison map we obtain the complex Sd∆ on vertex set

VSd∆ = {1, 2, 3, 4, 12, 13, 23, 34, 35, 45, 123, 345}

given here:

∆bowtie =

1

2

3

4

5

barycentric
subdivision

1

2

3

4

5

12

13

23

34

35

45
123 345

= Sd∆bowtie.

The Stanley-Reisner rings of ∆ and Sd∆ are the quotients

k[∆] =
k[x1, x2, x3, x4, x5]

⟨x1x4, x1x5, x2x4, x2x5⟩.
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and

k[Sd∆] =
k[y1, y2, y3, y4, y5, y12, y13, y23, y34, y35, y45, y123, y345]

⟨y1y2, y1y3, y1y4, y1y5, y2y3, y2y4, y2y5, y3y4, y3y5, y4y5, . . . y34y123, y35y123, y45y123⟩
.

Without even writing out the entire ideal for k[Sd∆], one can already see that ISd∆ is much larger

than that of k[∆].

3.1.1. Parameter Rings for k[∆] and k[Sd∆]. Let ∆ be a d − 1-dimensional simplicial

complex and let A := k[z1, . . . , zd]. Recall from section 2.4 the universal system of parameters

θ = (θ1, . . . , θd) for a Stanley-Reisner ring, k[∆], is a homogeneous system of parameters. Thus,

k[∆] is a finitely generated N-graded A-module under the ring map

A −→ k[∆]

zj 7−→ θj for j = 1, 2, . . . , d.

Similarly, for the barycentric subdivision Sd∆ of ∆, the colorful system of parameters, γ =

(γ1, . . . , γd), is a homogeneous system of parameters to k[Sd∆]. Thus, k[Sd∆] is finitely gener-

ated as a Nd-graded A-module under the ring map

A −→ k[Sd∆]

zj 7−→ γj for j = 1, 2, . . . , d.

Remark 3.1.7. From here on, we will consider k[Sd∆] to be N-graded under the grading special-

ization in definition 3.1.5.

Example 3.1.8. Using the same simplicial complex ∆ and Sd∆ from Example 3.1.6 The universal

system of parameters in k[∆] is

θ = (x1 + x2 + x3 + x4 + x5, x1x2 + x1x3 + x2x3 + x3x4 + x3x5 + x4x5, x123 + x345).

Given that degN(θi) = i we may write k[∆] as an N-graded k[θ]-module. On the other side of things

we have the colorful system of parameters

γ = (y1 + y2 + y3 + y4 + y5, y12 + y13 + y23 + y34 + y35 + y45, y123 + y345)
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inside k[Sd∆]. The N3 grading is degN3 γi = εi. Thus, k[Sd∆] as a N3-graded k[γ]-module.

Remark 3.1.9. Since there is an obvious map between k[∆] and k[Sd∆] sending θi 7→ γi, 1 ≤ i ≤ d,

by mapping xF 7→ yF . This map fails to be a ring isomorphism and instead lingers at merely a k-

vector space isomorphism.

3.2. A colorful Hochster formula

As discussed in Section 2.3, Hochster’s formula, stated in Theorem 2.3.5, is useful for computing

the graded Betti numbers. This formula was generalized in [1] where a “colorful” version is given.

We use this section to give this generalization.

Definition 3.2.1. Let ∆ be a simplicial complex on a vertex set V. A map κ : V → [d] is an

(proper, vertex-) d-coloring of ∆ if for any edge E ∈ ∆ on vertices i, j ∈ V, κ(i) ̸= κ(j). In

particular, when d = dim(∆) + 1 the coloring is called balanced.

A proper, vertex d-coloring κ is only dependent on the 1-skeleton of a simplicial complex. It also

allows us a natural setting for defining an Nd-multigrading on k[∆]. If xi ∈ k[∆] = S/I∆, then

deg(xi) := εκ(i) where εj is the j-th standard basis vector in Nd. It is easy to check that grading

preserves homogeneity of I∆.

Definition 3.2.2 (Colorful SOP i). Let ∆ be a simplicial complex with a d-coloring κ and let

γ = (γ1, . . . , γd) where

γj =
∑

i∈κ−1(j)

yi.

Remark 3.2.3. When the simplicial complex is balanced, then the colorful SOP are a homogeneous

system of parameters.

Example 3.2.4. We return to the example from above, representing the coloring with actual colors.

Sd∆bowtie =

1

2

3

4

5

12

13

23

34

35

45
123 345
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The colorful system of parameters for k[Sd∆] are

γ1= y1 + y2 + y3 + y4 + y5

γ2= y12 + y13 + y23 + y34 + y35 + y45

γ3= y123 + y345.

This gives us the parameter ring k[γ1, γ2, γ3].

In [1], it is shown that k[∆] is finitely-generated as an Nd-graded module over the polynomial ring

A := k[z1, . . . , zd] via the ring map A → k[∆], zj 7→ γj . It is natural to ask about the structure

of k[∆] as an A-module, thus we first ask for the shape of the (minimal, finite-free) resolution of

k[∆] as an A-module. The shape of this resolution is given by the Nd-graded Betti numbers and is

determined by the isomorphism in the following theorem.

Theorem 3.2.5. (Colorful Hochster formula, [1])

Let ∆ be a simplicial complex with fixed coloring κ. If k[∆] is the Stanley-Reisner ring of ∆ and

γ = (γ1, . . . , γd) is a colorful system of parameters, then if we view k[∆] as an Nd-graded A-module,

where ring map A = k[z1, . . . , zd] → k[∆], zj 7→ γj , we have

TorAi (k[∆],k)a ∼=


0 if a ̸∈ {0, 1}d,

H̃#S−i−1(∆|S ,k) if a =
∑

j∈S ϵj ∈ {0, 1}d,

for any a ∈ Nd.

Furthermore, these k-vector space isomorphisms are equivariant with respect to the automorphism

group of ∆ with respect to the coloring κ. When a simplicial complex is given a trivial coloring,

i.e., every vertex is a different color, then the above formula reduces to Theorem 2.3.5. However,

our purposes require a balanced d-coloring since our primary use of the colorful Hochster formula

is to predict the shape of the free resolution of k[Sd∆] over A.

3.3. Conjectures on Stanley-Reisner rings

One may have observed from Example 3.2.4 that there is another way to define the colorful system

of parameters when the simplicial complex is the Barycentric subdivision of a simplicial complex.
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Proposition 3.3.1 (Colorful SOP ii). Let ∆ be a simplicial complex with Barycentric subdivision

Sd∆ then if γ = (γ1, . . . , γd) is a Colorful SOP, then

γj =
∑
F∈∆
|F |=j

yF .

Proof. We need only show that the two definitions of γ are equivalent. Label Sd∆ so that if

v is a vertex of Sd∆, then v is the Barycenter of a face F ∈ ∆. Set v = F. Then k[Sd∆] has the

presentation as in Definition 3.1.1. Since Sd∆ is a Barycentric subdivison, then it is possible to

give Sd∆ a balanced d-coloring, i.e., d = dim(Sd∆)+ 1 = dim(∆)+ 1. Let κ denote the coloring so

that for v ∈ V, κ(v) = dim∆(v) + 1 where dim∆ denotes the dimension of v ∈ ∆. This is a proper,

balanced d-coloring which induces an Nd-grading. The result then follows naturally. □

Observe that we can view both k[∆] and k[Sd∆] as A-modules. Our goal is to compare k[∆] and

k[Sd∆] as A-modules were zi acts by multiplication by θi on k[∆] and zi acts by multiplication by

γi on Sd∆. We state two conjectures made in [1]. In Conjecture 3.3.2, we ask if the resolutions

of k[Sd∆] has the same resolution shape as k[∆] under the grading specialization from Definition

3.1.5 when both are regarded as N-graded A-modules, i.e., do they have the same graded Betti

numbers. In Conjecture 3.3.4, we ask if the first two maps in the resolutions are equal, i.e., are

k[∆] and k[Sd∆] isomorphic as N-graded A-modules.

Conjecture 3.3.2. For any simplicial complex ∆ of dimension d− 1 with barycentric subdivision

Sd∆, for each i = 0, 1, . . . , d,

TorAi (k[∆],k)j ∼= TorAi (k[Sd∆],k)j ∼=
⊕
S⊆[d]

j=
∑

s∈S

H̃ |S|−i−1((Sd∆)|S ,k)(3.1)

as vector spaces.

Remark 3.3.3. The original motivation was to understand the action of a subgroup Autκ(Sd∆) of

the group of simplicial automorphisms Aut(Sd∆),

Autκ(Sd∆) := {g ∈ Aut(∆) | κ(g.i) = κ(i) for all i in [n]}.

This group contains those Nd-graded simplicial automorphims which preserve the balanced, proper

coloring of Sd∆. Since k[Sd∆] is Nd-graded, i.e., graded by color, then k[Sd∆] =
⊕

a∈Nd k[Sd∆]a,
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where k[Sd∆]a is the a-th graded piece. Not only is k[Sd∆]a a k-vector space, it is a representation

of Autκk(Sd∆), which means it’s a module over the group algebra k[Autκ(Sd∆)]. For a subgroup

G ⊆ Autκ(Sd∆), the Grothendieck ring Rk(G) is used to keep track of these representations. For

any class [U ] of Rk(G), the dimension homomorphism Rk(G) → Z, [U ] 7→ dimk U allows us to

ignore the kG-module structure and phrase equivariant statements in terms of non-equivariant

statements. We now give the original conjecture as stated in [1] specialized to the case of ∆ being

only a simplicial complex:

For any simplicial complex ∆ of dimension d − 1, and any subgroup G of Aut(∆), for each m =

0, 1, . . . , d one has these equalities in Rk(G):

[
Tork[Θ]

m (k[∆],k)j

]
=

[
Tork[Γ]m (k[Sd∆],k)j

]
=

∑
S⊆[d]:

j=
∑

s∈S s

[
H̃#S−m−1 ((Sd∆) |S ,k)

]

Equivalently, one has this equality in Rk(G)[[t]]:

(3.2) Hilbeq(Tor
k[Θ]
m (k[∆],k), t) =

[
Hilbeq( Tor

k[Γ]
m (k[Sd∆],k), t1, . . . , td)

]
t1=t
t2=t2

...
td=td

.

When kG is semisimple, the first line of equalities in the conjecture would be isomorphisms:

Tork[Θ]
m (k[∆],k)j ∼= Tork[Γ]m (k[Sd∆],k)j =

⊕
S⊆[d]:

j=
∑

s∈S s

H̃#S−m−1 ((Sd∆) |S ,k)

This happens, e.g., if one ignores the group action by taking G = {1}, or more generally, when

#G ∈ k
×.

Conjecture 3.3.4. [1] Since the universal system of parameters and the colorful system of param-

eters can be seen to generate the same N-graded A = k[z1, . . . , zd] subalgebra, zi :=
∑

F∈∆:

dim∆(F )=i

yF ,

we may write k[∆] and k[Sd∆] as N-graded A-modules. When viewed as such, there exists an

equivariant isomorphism between k[∆] and k[Sd∆].

Note that in [1], Conjecture 3.3.4 is written as only a question. However, since the paper has been

uploaded to the arXiv, the question has been upgraded to a conjecture due to more solid evidence

that it holds.
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Remark 3.3.5. The conjectures in [1] are much more general than we are stating here. In the paper,

we allow ∆ to be a finite- regular- CW-complex whose maximal cells look like simplicies (i.e., they

come from a structure called a simplicial poset) and the ring k[∆] is a generalized version of the

Stanley-Reisner ring called the face ring of an object that Richard Stanley calls simplicial posets,

i.e., the face poset of ∆. For more specifics on the generalized versions, we direct the reader to the

original motivating paper [1] and Stanley’s book [15]. Ultimately, it would be wonderful to show

these conjectures hold for CW-complexes, however at this time we focus on the case when ∆ is only

a simplicial complex.

19



Example 3.3.6. We give an example of Conjecture 3.3.2. First, recall that under the grading

specialization Sd∆ is N-graded by colors {1, 2, 3} where deg(yF ) = dim∆(F ) + 1. We continue with

the simplicial complex from Example 3.1.6 and Example 3.1.8. First, we begin by calculating the

color restricted subcomplexes of Sd∆.

(Sd∆|){1,2,3} =

1

2

3

4

5

12

13

23

34

35

45
123 345

(Sd∆|){1,2} =

1

2

3

4

5

12

13

23

34

35

45

(Sd∆|){1,3} =

1

2

3

4

5

123 345

(Sd∆|){2,3} = 12

13

23

34

35

45
123 345

(Sd∆|){1} =

1

2

3

4

5

(Sd∆|){2} = 12

13

23

34

35

45

(Sd∆|){3} = 123 345

(Sd∆|)∅ = ∅

We next calculate the Tor groups given the colorful Hochster formula from 3.2.5. For calculating

TorA0 (k[∆],k)j we have the following non-zero reduced cohomology groups:

j S ⊆ [4] Reduced Cohomology Resolution Factor

0 ∅ H̃0−0−1((Sd∆)|∅,k) = k
1 A(−0)1

1 {1} H̃1−0−1((Sd∆)|{1},k) = k
4 A(−1)4

2 {2} H̃1−0−1((Sd∆)|{2},k) = k
5 A(−2)5

3 {3}, {1, 2} H̃1−0−1((Sd∆)|{3},k)⊕ H̃2−0−1((Sd∆)|{1,2},k) = k
3 A(−3)4.
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For calculating TorA1 (k[∆],k)j we have the following non-zero reduced cohomology groups:

j S ⊆ [4] Reduced Homology Resolution Factor

5 {2, 3} H̃2−1−1((Sd∆)|{2,3},k) = k
1 A(−5)1.

One may check that the rest are zero. Conjecture 3.3.2 tells us that by colorful Hochster formula,

the resolution of k[∆] as an A-module is

F∆
• : 0 k[∆] A(−0)1 A(−5)1 0.

⊕
A(−1)4

⊕
A(−2)5

⊕
A(−3)3

∂0

One may verify using the package ResolutionsOfStanleyReisnerRings in Macaulay2.
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CHAPTER 4

The Coinvariant algebra and its Gröbner basis

4.1. Monomial Orderings

A Gröbner basis, which will be discussed in the next section, is dependent on a monomial ordering.

In some contexts, this is also called a term order. However, we are then faced with a problem:

When given two monomials, how do we say that one is larger than the other? In this section we

will define monomial orderings and give three common monomial orderings.

Definition 4.1.1 (A Monomial Ordering). Let S = k[x1, . . . , xn] be a polynomial ring. A monomial

ordering is a relation > on the set of monomials xa, a = (a1, . . . , an) ∈ Zn
≥0 that satisfies:

(1) > is a total (or linear) order on Zn
≥0;

(2) If xa > xb, then xa+c > xb+c, a,b, c ∈ Zn
≥0;

(3) > is a well-ordering on Zn
≥0.

Definition 4.1.2. We give definitions and examples here. Recall that if xa ∈ S = k[x1, . . . , xn],

then deg(xa) = a1 + · · ·+ an.
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Name Definition: xa < xb iff... Example

Lexicographic (lex) there exists 1 ≤ i ≤ n such that a1 =

b1, a2 = b2, . . . , ai−1 = bi−1, and ai < bi.

x21 > x1x2 > x1 > x22

Degree reverse lexicographic

(degrevlex)

deg(xa) < deg(xb) or deg(xa) =

deg(xb) and there exists 1 ≤ i ≤ n such

that a1 = b1, a2 = b2, . . . , ai−1 = bi−1,

and ai > bi.

x21 > x1x2 > x1x3 > x22

Degree lexicographic (deglex) deg(xa) < deg(xb) or deg(xa) =

deg(xb) and there exists 1 ≤ i ≤ n such

that a1 = b1, a2 = b2, . . . , ai−1 = bi−1,

and ai < bi.

x21 > x1x2 > x22 > x1x3

4.2. Gröbner basis

A Gröbner basis is a way of transforming a set of polynomials algorithmically into a generating

set for an ideal. [16] Let R = k[x1, . . . , xn] be a multivariate polynomial ring over a field k. Given

an monomial ordering, G is a Gröbner basis of an ideal I of R if the leading term ideal LT(G) is

equal to the leading term ideal LT(H), where H is the set generating I. (In some literature, the

leading term ideal is referred to as the “initial ideal.”) For our purposes, we will be using degrevlex

(Definition 4.1.2).

The algorithm often used to compute this basis is called the Buchberger algorithm. In this section,

we will define Gröbner bases and give some of the necessary machinery that is necessary for running

the Buchberger algorithm.

Let LCM(f, g) be the least common multiple for polynomials f, g, and define LT(f) to be the

leading term of a polynomial f. The most important tool for the Buchberger algorithm will be the

S-polynomial, where S stands for “syzygy.”

Definition 4.2.1 (S-polynomial). Let f, g ∈ S be polynomials. The S-polynomial is

S(f, g) :=
LCM(LM(f),LM(g))

LT(f)
· f − LCM(LM(f),LM(g))

LT(g)
· g.
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The pair f, g are called a critical pair.

If both p and q belong to the same ideal I ⊂ R, then S(p, q) ∈ I, thereby dealing with the ideal

membership problem.

Theorem 4.2.2 (Buchberger Criterion). G is a Gröbner basis if and only if for all pairs p, q ∈ G

S(f, g) ≡ 0 modulo G.

This is the necessary condition to write down the algorithm that allows us to obtain a Gröbner

basis of an ideal I.

Algorithm 4.2.3 (Buchberger algorithm). Input A set of polynomials A. Output A Gröbner

basis G.

(1) G := F.

(2) For all g, f ∈ G, reduce the S-polynomial S(f, g) until S(f, g) is irreducible with respect to

G via the multivariate division algorithm.

(3) If the remainder of S(f, g) after division by the elements in G (this is the result of step

(2)) is nonzero, then add it to the set G.

(4) Continue this process until S(p, q) = 0 with respect to G for all p, g ∈ G. Note that this will

also include those polynomials added via step (3).

An important use of Gröbner basis comes from the power of the following theorem.

Theorem 4.2.4. Let R be a commutative ring in n variables, and let I ⊂ R be a homogeneous ideal

of S. Then the leading term ideal LT(G) = {g1, . . . , gk} of the Gröbner basis G, is also homogeneous,

HilbR(R/I; q) = HilbR(R/LT(G); q)

When the terms in LT(G) form a regular sequence we have

HilbR(R/LT(G); q) = (1− qdeg(g1)) · · · (1− qdeg(gk))

(1− q)n
.

Proof. The proof that the Hilbert series are equal can be found in [6, Thm. 15.26]. □

Remark 4.2.5. Note that the leading terms to not necessarily form a regular sequence. For example,

take the leading term ideal LT(G) = (x5, y5, x4y4) which is both minimal and reduced inside the ideal

they generate. However, they do not form a regular sequence.
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Computationally, this means we may understand properties of R/I by studying the initial ideal

LT(G)) of the Gröbner basis of the ideal I. Since LT(G) is generated by monomials, this ideal is

often easier to understand than the original ideal I. In particular, it is quite useful in the case when

one has an ideal I = J1+J2 composed of two ideals J1, J2 ⊆ R. By computing the Gröbner basis of

I, this larger ideal is now relatively tractable. This being said, as we have seen, there are complexity

issues with computing Gröbner bases and they are often better used in actual computation by using

math computational software such as Macaulay2 or SageMath.

4.3. The Coinvariant Algebra

4.3.1. Symmetric polynomials. Recall from Chapter 2 our discussion on the elementary

symmetric functions. In this section we will use another set of symmetric functions known as the

homogeneous symmetric functions. We give both of their definitions here:

• the elementary symmetric functions

ek(x1) =
∑

1≤j1≤···≤jk≤n

xj1 · · ·xjk

where x1 = (x1, x2, . . . , xn) is a list of variables and

• the homogeneous symmetric functions

hk[xt] =
∑

k≤j1≤···≤jk≤n

xj1 · · ·xjk

where xt = (xt, xt+1, . . . , xn) is also a list of variables.

For the following work it is important to remark that the input variables to both of these these

functions do not necessarily include x1, . . . , xn and are allowed to vary. When we drop the subscript

so that x1 = x it means that it is the entire list of variables x1, . . . , xn. The following is a well

known proposition.

Proposition 4.3.1. Let k[x1, . . . , xn] be a polynomial ring. The reduced Gröbner basis for the ideal

generated by the elementary symmetric functions, e1(x), . . . , e(x), is given by

h1[x1], h2[x2], . . . , hn[xn].
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Example 4.3.2. If we consider n = 3 the elementary symmetric functions are

e1(x1, x2, x3) = x1 + x2 + x3 e2(x1, x2, x3) = x1x2 + x1x3 + x2x3 e3(x1, x2, x3) = x1x2x3

and the homogeneous symmetric functions which form a Gröbner basis for the ideal (e1(x), e2(x), e3(x))

are

h1(x1, x2, x3) = x1 + x2 + x3 h2(x2, x3) = x22 + x2x3 + x23 h3(x3) = x33.

4.3.2. A Gröbner basis for the coinvariant algebra. Let S = k[x1, . . . , xn] be a polyno-

mial ring over a field k of characteristic 0. The symmetric group Sn acts on S by permuting the

variables, giving us the Sn-invariant subring,

SSn = {f ∈ S | σ.f = f for all σ ∈ Sn}.

This algebra is generated by the elementary symmetric functions given in variables x1, . . . , xn. So,

the ideal (SSn
+ ) = (e1(x), . . . , en(xn)) ⊂ S is invariant underSn-action. By considering the quotient

of S by this ideal, we obtain the coinvariant algebra, An = k[x1, . . . , xn]/(e1(x), . . . , en(x)). This is

a well studied algebra. For more on this topic we direct the reader towards [8,9].

In Proposition 4.3.1 we stated that a reduced Gröbner basis for In = (e1(x), . . . , en(x)) is given by

hi[xi] for all 1 ≤ i ≤ n. Then the basis forAn is given by the set {xa11 · · ·xann | 0 ≤ ai ≤ i−1 for all i}.

These are called the substaircase monomials but are also known as the Artin basis. [2]. From here

it is easy to see that A has vector space dimension n!. For more on this particular decomposition

we refer the reader to Bergeron’s book [3, Section 7.2] and Sturmfels’ book [17, Theorem 1.2.7].

Theorem 4.3.3. If S = k[x1, . . . , xn] and let In = (e1(x), . . . , en(x)), then An = S/In is the

coinvariant algebra. Then

HilbS(An; q) = [n]q!

where

[n]q! := [n]q[n− 1]q · · · [1]q and [n]q := 1 + q + q2 + · · ·+ qn.
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Proof. The coinvariant algebra An has the Gröbner basis

G = {h1[x1], h2[x2], . . . , hn[xn]}.

The leading term ideal is then

LT(G) = {x1, x22, . . . , xnn}.

The elements of the leading term ideal of a Gröbner basis form a regular sequence in A, so by

Theorem 4.2.4,

HilbS(An; q) = HilbS(S/LT(G; q) =
(1− q)(1− q2) · · · (1− qn)

(1− q)n

By multiplying out the above computation, we obtain the desired result. □

4.3.3. A combinatorial method for computing the Artin basis. We now give a combina-

torial method for computing the Artin basis. First, we define a combinatorial object for computing

monomials. Let S = k[x1, . . . , xn]. Draw an n × n box and label the rows on the left by 1, . . . , n

beginning at the northwest corner. These represent the possible choices 1, . . . , n for support of a

monomial xa11 · · ·xann . To determine a1, . . . , an, we follow the following rules:

(1) Each box can hold a maximum of 1 ball.

(2) Balls can only be placed in boxes which are not filled. We call unfilled boxes open.

(3) Balls must be left-aligned, i.e., we begin on the west side and find the next open box in

whichever row we are attempting to place a ball.

(4) For all 1 ≤ i ≤ n, each ball in row i contributes to the power of the variable xi in the

monomial xa11 · · ·xann , i.e., for the variable xaii ,

ai = #{balls in row i}

Example 4.3.4. Let n = 3 so that we have monomials xa ∈ S = k[x1, x2, x3]. Then we have the

corresponding monomials and boxes:
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1

2

3

x1x
2
3

To obtain the Artin basis, we draw a path along the diagonal beginning in the northwest corner and

proceeding south one box, then walking east one box, then walking south one box, etc.. We then fill

in everything above the diagonal. The resulting box is given in Figure 4.1. Since everything above

the diagonal is filled, then the only boxes in which we may place a ball lie below the diagonal.

1

2

3

n

...
...

. . .

Figure 4.1. A combinatorial method for computing the Artin basis for An

Proposition 4.3.5. The possible fillings of an n×n-box restricted to below the diagonal as described

above are in bijection with the substaircase monomials in n variables.

Proof. Recall that the set of substaircase monomials are given by

{xa11 · · ·xann | 0 ≤ ai ≤ i− 1 for all i}.

By inducting on i we can see that for each row 1 ≤ j ≤ i

#{open boxes in row j} = aj

so that monomials from the placement of the balls are precicely those monomials in the set

{xa11 · · ·xajj | 0 ≤ ak ≤ j − 1 for all 1 ≤ k ≤ j}.
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□

Corollary 4.3.6. Let S = k[x1, . . . , xn] and let In = (e1(x), . . . , en(x)) then

Hilb(S/In; q) =
∏

1≤i≤n

(1− q#{open boxes in row i}+1).

Proof.

∏
1≤i≤n

(1− q#{open boxes in row i}+1) =
∏

1≤i≤n

(1− qi+1) = [n]q! = Hilb(S/In; q).

□

Example 4.3.7. Let n = 3 so that we have monomials S = k[x1, x2, x3]. To obtain the substaircase

monomials for S/In we draw the 3 × 3 box with diagonal marked as below. We then have the

following monomials which correspond with possible left-aligned fillings of boxes below the diagonal.

1

2

3

x2

1

2

3

x3

1

2

3

x23

1

2

3

x2x3

1

2

3

x2x
2
3

We may translate the choices for ball placement in the n×n-box into the theory of integer partitions.

Let b be the number of total balls placed then λ ⊢ b is the partition where each part λj is equal to

the number of balls in row j. We note that these may not be increasing, so we rearrange accordingly,

which can be done since our rings are commutative. Let xa, where ai = #{balls in row i}, then we

say a is equivalent to a partition λ if a and λ differ by rearrangement and a monomial is of type λ

if its exponent vector is equivalent to λ. This format allows us to count the number of monomials

of each type λ whose parts lie under the diagonal.

Lemma 4.3.8. Let 1 ≤ b ≤ n and let λ = (λ1, . . . , λk) ⊢ b, then the number of ways to uniquely left

align λ1, . . . , λk under the diagonal inside the box from Figure 4.1 is equal to

∏
1≤j≤k

s.t. λj ̸=λj−1

(
n− λj −#{λi | λi > λj}

#{λi | λi = λj}

)
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Proof. Begin by an n× n-box. Let λ = (λ1, . . . , λk) ⊢ b. Choose λj such that λj ̸= λj−1. We

now count the number of choices for the left-aligned placement of λj in the n× n. By drawing the

diagonal and restricting choices for left-aligned placements of the parts of λ, we reduce the number

of choices for λj to n− λj positions. However, this is not yet a sufficient restriction. Since we have

already placed λ1, . . . , λj−1 and λ1 ≥ · · · ≥ λj−1 < λj , then we must remove a position for each λi

for 1 ≤ i ≤ j − 1. This gives us a total count of n− λj −#{λi | λi > λj} choices of where to place

λj . Since we are only iterating over distinct λj , then from the n− λj −#{λi | λi > λj} choices we

must choose #{λi | λi = λj} spots to place all λi that are equal to λj . This gives us the binomial

coefficient. By taking the product of each of distinct λj in λ, we obtain the final count. □

Theorem 4.3.9. Let An =
⊕

b∈N(An)b be the N-graded coinvariant ring. Then, for 1 ≤ b ≤ n the

dimension of the b-th graded piece

dimk(An)b =
∑
λ⊢b

 ∏
1≤j≤#λ

s.t. λj ̸=λj+1

(
n− λj −#{λi | λi > λj}

#{λi | λi = λj}

)
Proof. We have shown that the number of ways to place b balls in b left-aligned boxes under

the diagonal in an n× n as in Figure 4.1 is in bijection with the substaircase monomials of degree

b. A partition λ ⊢ b gives us the number of ways to fill #λ-boxes with b balls. Since by Lemma

4.3.8 we have the number of ways to fit partitions λ ⊢ b under the diagonal in an n × n-box as in

Figure 4.1, we need only sum over all λ ⊢ b to obtain the number of generators of the b-th graded

piece (An)b. □

Corollary 4.3.10. The Hilbert series of An = S/In can be written as

HilbS(An, q) =
∑

1≤b≤n

∑
λ⊢b

 ∏
1≤j≤#λ

s.t. λj ̸=λj+1

(
n− λj −#{λi | λi > λj}

#{λi | λi = λj}

)
· qλ


Proof. The Hilbert function HilbFS((An)b) = dimk(An)b so by Theorem 4.3.9, we obtain the

coefficients in the Hilbert series. □
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CHAPTER 5

A Gröbner basis and Hilbert series for IG∆

5.1. A Hilbert series for I∆n

As discussed, a Gröbner basis for the Sn-invariant ideal In := (e1(x), . . . , en(x)), and thus the

coinvariant algebra An = k[x1, . . . , xn]/(e1(x), . . . , en(x)), is well-known. Since we have the basis

for An, the Hilbert series is easily calculable as well Theorem 4.3.3 states that

Hilb(An; q) = [n]q!.

Recall from section 2.1 that the Stanley-Reisner ring for a simplex ∆n on n vertices is the free

polynomial ring over a field k in n variables. From from section 2.4, we also know that the ideal

generated by the universal system of parameters (θ1, . . . , θd) is equal to the Sn-invariant ideal

(e1(x), . . . , en(x)). Thus,

k[∆n]/(θ1, . . . , θd) = k[x1, . . . , xn]/(θ1, . . . , θd)

= k[x1, . . . , xn]/(e1(x), . . . , en(x))

= An.

It seems somewhat natural to then extend these results to any simplicial complex ∆. If ∆ is a

simplicial complex with minimal non-faces G1, . . . , Gk, then the Stanley-Reisner ideal for ∆ is

I∆ = (m1, . . . ,mk) where mi = xGi . Note that each mi is a squarefree monomial. This gives us the

following equality of rings:

k[∆]/(θ1, . . . , θd) = k[x1, . . . , xn]/I∆ + (θ1, . . . , θd)

= k[x1, . . . , xn]/(θ1, . . . , θd,m1, . . . ,mk)

= k[x1, . . . , xn]/(e1(x), . . . , en(x),m1, . . . ,mk).
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Ultimately, we would like to find the Hilbert series for k[∆]/I∆n for any arbitrary I∆, however that

problem at this point seems just beyond reach. In this section we focus on showing that this new

method works for I∆ = (m) where m is a squarefree monomial, i.e., the simplicial complex ∆ has

a single minimal non-face. We hope that with some more work, this method will generalize.

We begin by observing that when I∆ is empty, e.g., ∆ is an n-simplex, A∆
n = An and the theory

holds from Section 4.3. The next base case is for I∆ to be generated by a single squarefree monomial,

m = xi1 · · ·xit , for a minimal non-face G = {i1, . . . , it} of ∆. First, we intend to find the Hilbert

series of I∆n . The Hilbert series only cares about the dimension of the graded pieces of A∆
n =

S/(I∆ + In), so we consider the map that sends

xi1 · · ·xit 7→ xn · · ·xn−t.

Then we need only find the dimension of each graded piece for S/(In + (xn−t · · ·xn). Furthering

the combinatorial model from Section 4.3, we notice that all monomials in S = k[x1, . . . , xn] whose

support is the set is a subset of {n− t, . . . , n} is divisible by m and therefore will not be a part of

the basis of A∆
n .

We may compute these terms combinatorially, following the method from Section 4.3.

(1) Begin with the n× n-box with upper diagonal boxes filled as in Figure 4.1.

(2) Let mc be a distinct color. Fill in all the boxes in rows n, . . . , n− t with the color mc.

(3) The rules for acceptable monomials are the same as before with one exception:

(a) One begins by placing a ball in any box beginning from the left-most boarder.

(b) Only one ball may be placed in each box.

(c) For xa, a = #{boxes in row i}.

(d) The number of balls in the left-most column with color mc cannot be greater than

deg(m).

From these choices of balls in boxes, we may write down an integer partition. Let b be the number

of total balls placed then λ ⊢ b is the partition where each part λj is equal to the number of

balls in row j. We note that these may not be increasing, so we rearrange accordingly. Let xa,

where ai = #{balls in row i}, then we say a is equivalent to a partition λ if a and λ differ by

rearrangement and a monomial is of type λ if its exponent vector is equivalent to λ. This format

allows us to count the number of monomials of each type λ whose parts lie under the diagonal. A
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part λj of a partition λ ⊢ b, b ∈ N has color mc if λj is in a row which has boxes filled with color

mc.

Theorem 5.1.1. Let I∆ be generated by a single squarefree monomial. Then

Hilb(A∆
n , q) =

∑
b∈N

∑
λ⊢b

s.t. Q(λ)

qλ

where Q(λ) is the criterion that (1) if λ = (λ1, . . . , λk), then all λi fit left-aligned under the diagonal,

(2) (n− 1)− |λ| ≥ deg(m), (3) the number of parts of λ with color mc must be less than deg(m).

Proof. Let b ∈ N and let λ = (λ1, . . . , λk) ⊢ b such that λ fulfills the criterion Q(λ). We will

show that any monomial of type λ is in the generating set of the b-th graded piece of A∆
n . Say xa

is a monomial of type λ. This means that a = (a1, . . . , an) where ai = #{balls in row i} and the

non-zero ai can be rearranged to equal λ. Since λ fulfils the first criterion, then xa is a substaircase

monomial by construction. Now we only need to show that it is not divisible by m. A monomial

is divisible by m if it is of type µ where (n− 1)− |µ| < deg(m), thus any monomial that is in the

basis for A∆
n must be of type µ where µ is such that (n−1)−|µ| ≥ deg(m). Since λ fulfils (2), then

it’s possible that m does not divide xa. The only case left to check is that supp(m) ̸⊆ supp(xa).

But λ fulfils criterion (3). Therefore, m does not divide xa which is of degree b since the non-zero

parts of a rearrange to equal λ. Thus, xa is a generator of (A∆
n )b. □

Example 5.1.2. Let n = 5 and let I∆ = (x4x5). The next figure demonstrates the final result after

drawing a 5× 5-box, drawing the diagonal. Here the blue represents the monomial x4x5.

1

2

3

4

5
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b Parititons Configurations # of choices Total # of choices

0 ∅ 1 1 1

1 5 4 3 2 4 4

2 5 4 3 1

5 4 3
3 2 3 2 2

5 8

3 5 4 2

5 4 3
3 2 3 2 5 4 2

7

5 4
3 3
2 2

2 11

4 5 1

5 4
3 2 3 2

4

5 4
3 3

2

5 4 3
3 3 5 4
2 2 2 2

4 11

5 5
3 2

2

5 4
3 3

2

5 4
3 3
2 2

2

5 4
3 3
2 2

2 8

6 5
3

1

5
3
2

1

5 4
3 3
2 2

2 4

7 5
3
2

1 1
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For the sake of space, we have removed all computations that contribute 0 to the number of choices

and leave it to the reader to confirm there are no possible ways to fit the parts of λ left-aligned

under the diagonal without at least two parts being the color of x4 ∗ x5.

The Hilbert series of A∆
5 is

Hilb(A∆
5 ; q) = 1 + 4q + 8q2 + 11q3 + 11q4 + 3q5 + 4q6 + q7

Remark 5.1.3. Before closing this section, we want to make some notes about generalizing this

concept. We note that the proof of Theorem 5.1.1 only works because we are removing a single

monomial. Removing any other monomials results in more complicated division as seen by the

Buchberger algorithm.

5.2. A Gröbner basis for I∆n

Following from our knowledge for a basis when ∆ = ∆n (an n-simplex), we ask for a generalization

of this basis. However, as remarked earlier, this is a complicated request. In this section, we give a

conjectural reduced Gröbner basis for the ideal I∆n = (e1(x), . . . , en(x),m), i.e., ∆ has exactly one

minimal nonface. We denote this ideal I∆n since it is the ideal I∆ invariant under the stabilizer of

m under the Sn action. It is our belief that once a reduced Gröbner basis is known in the case

when I∆ = (m1,m2), then we will be able to write down a basis for I∆n when I∆ is generated by

any arbitrary number of squarefree monomial ideals.

Definition 5.2.1. For a squarefree monomial m ∈ k[x1, . . . , xn], the jump set of m is the set

{k1, . . . , kℓ+1} where xikj+1
· · ·xikj+1

has the property that for all kj+1 ≤ m ≤ kj+1, im+1 = im+1,

i.e., the sequence (ikj+1, · · · , ikj+1
) increases by exactly one at each step. If i1 ̸= 1, then we call the

jump from 1 to i1 an open jump. Similarly, if it ̸= n, then we call the jump from it to n an open

jump. Any other jump (ikj , ikj+1) is called a closed jump.

Since any square free monomial can be written in the form

m = xi1 · · ·xik1xik1+1
· · ·xik2xik2+1

· · · · · ·xikℓxikℓ+1
· · ·xit ,

then a jump set uniquely determines a squarefree monomial. For ease of notation, we parti-

tion the support of m into sets K1, . . . ,Kℓ+1, i.e., following the form in Definition 5.2.1, Kj =
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{ikj+1
, · · · , ikj+1} so that

m = xi1 · · ·xik1︸ ︷︷ ︸
xK1

xik1+1
· · ·xik2︸ ︷︷ ︸

xK2

xik2+1
· · · · · ·xikℓ xikℓ+1

· · ·xit︸ ︷︷ ︸
xKℓ+1

.

Conjecture 5.2.2 (Gröbner basis for I∆n = (e1(xn), . . . , en(xn),m)). Let S = k[x1, . . . , xn] be

a polynomial ring over a field k. Let e1(xn), . . . , en(xn) be the elementary symmetric functions

in n variables. Then for any squarefree monomial m ∈ S, the reduced Gröbner basis for I∆n =

(e1(xn), . . . , en(xn),m) is given by the following list of polynomials:

h1[x1, . . . , xn], . . . , hp[xp, . . . , xn],ℓ+1∏
j=2

(xikj+1
· · ·xikj+1

)

hik1 [xik1+1, . . . , xn], . . . ,

ℓ+1∏
j=2

(xikj+1
· · ·xikj+1

)

hik1+1−2[xik1+1−1, . . . , xn],

ℓ+1∏
j=2

(xikj+1···xikj+1
)

hik2 [xik2+1, . . . , xn], . . . ,

ℓ+1∏
j=2

(xikj+1
· · ·xikj+1

)

hik2+1−2[xik2+1−1, . . . , xn], . . . ,

 ℓ+1∏
j=ℓ+1

(xikj+1
· · ·xikj+1

)

hikℓ [xikℓ+1, . . . , xn], . . . ,

 ℓ+1∏
j=ℓ+1

(xikj+1
· · ·xikj+1

)

hikℓ+1−2[xikℓ+1−1, . . . , xn]

xithit−1[xit , . . . , xn],

hit [xit+1, . . . , xn], . . . , hn−1[xn].

In certain circumstances, the following adjustments are made to the basis:

• if p = ik1 , then the basis also includes

hik1+1[xik1+1, . . . , x̂it , . . . , xn], . . . , hit−1[xit−1, . . . , x̂it , . . . , xn].

• if ik1 > 1, then m itself is included in the basis as well.

• furthermore, when ik1 ≥ t, we substitute ht[xt, . . . , xn] with ht[xt, . . . , xn]−m.

Here,

• {k1, . . . , kt} is the jump set of m

• p = ik1 when it < n and p = it when it = n;
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• and x̂it denotes the removal of xit from the set of variables in which the reduced homoge-

neous function hm[xm, . . . , xn] is generated.

Since I∆n is a homogeneous ideal generated by a Gröbner basis, then the Gröbner basis is also

homogeneous. Therefore, the proof will follow from counting the number of elements of each

degree and comparing them with the Hilbert series of Theorem 5.1.1 and then showing they are in

the ideal.

The following Corollary follows by observing the degrelex ordering on the polynomials listed in

Conjecture 5.2.2.

Corollary 5.2.3. The leading term ideal LT(I∆n ) is generated by the monomials

x1, x
2
2, . . . , x

p
p,ℓ+1∏

j=2

xKj

x
ik1
ik1+1, . . . ,

ℓ+1∏
j=2

xKj

x
ik1+1−2

ik1+1−1,

· · ·

xKℓ+1x
ikℓ
ikℓ+1, . . . ,x

Kℓ+1x
ikℓ+1−2

ikℓ+1−1

xitit , x
it
it+1, . . . , x

n−1
n .

• If p = ik1 , then we also have

x
ik1+1

ik1+1, . . . , x
it−1
it−1.

• If ik1 > 1, then m is also a leading term.
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5.3. SageMath Code

The conjectural basis in Conjecture 5.2.2 has been verified for many various squarefree monomials

in polynomial rings with up to n = 10 variables. We provide the code for future verification and

expansion. The example in the code is for the simplicial complex on n vertices with the minimal

nonface G = {1, 2, 6}. Note that in SageMath the counting begins at 0 instead of 1. It is important

for our cases and future generalizations, that we translate the counting back to beginning at 1.

R.<x0,x1,x2,x3,x4,x5,x6,x7,x8> = QQ[’x0’,’x1’,’x2’,’x3’,’x4’,’x5’,’x6’,’x7’,’x8’]

e = SymmetricFunctions(QQ).e()

n = 9

m = x0*x1*x5

L = [m]

for i in range(n):

ei = e[i+1].expand(n)

L.append(ei)

J = ideal(L);

BJ = J.groebner_basis();

sep = ’’

for i in range(len(Sequence(BJ))):

pretty_print(Sequence(BJ)[i])

sep
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CHAPTER 6

The search for an equivariant isomorphism of Stanley-Reisner

rings

6.1. An equivariant Tor calculation for k[∆]

Although it is our goal to eventually give an explicit formula for TorAi (k[∆],k) so that it can be

compared to TorAi (k[Sd∆],k) in order to prove or disprove Conjecture 3.3.4 or more weakly Con-

jecture 3.3.2, here we apply our knowledge of the Hilbert series for A∆
n to compute the dimensions

of TorA0 (k[∆],k)j .

Lemma 6.1.1. Let ∆ be a simplicial complex on n vertices with Stanley-Reisner ring k[∆] = S/I∆

and let In = (e1(x), . . . , en(x)). If we write I∆n = In + I∆, then

TorA0 (k[∆],k) ∼= k[x1, . . . , xn]/I
∆
n .

Proof. A basic property of Tor gives us that

TorA0 (k[∆],k) = k[∆]⊗A k.

Since k is an A = k[z1, . . . , zd]-module by evalutation map A → k[∆], zj 7→ εj(x) 7→ 0, then

k[∆]⊗A k
∼= k[∆]/In

= k[x1, . . . , xn]/(In + I∆)

= k[x1, . . . , xn]/I
∆
n .

□

Theorem 6.1.2. Let ∆ be a simplicial complex with a single minimal non-face. Then

dimkTor
A
0 (k[∆])b = #{λ ⊢ b | Q(λ)},
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where Q(λ) is the criterion that (1) if λ = (λ1, . . . , λk), then all λi fit left-aligned under the diagonal,

(2) (n−1)−|λ| ≥ deg(m), and (3) the number of parts of λ with color mc must be less than deg(m).

Proof. By Theorem 5.1.1 we are given the Hilbert series of A∆
n . The result follows from the

isomorphism from Lemma 6.1.1. □

6.2. Future work

Since the Hilbert series of A∆
n = S/(In + I∆) is invariant under the automorphism taking a

xi1 · · ·xit ∈ I∆ Sn(m) 7→ xn−t · · ·xn, then the Hilbert series for A∆
n depends only on the num-

ber of monomials of each degree in I∆ and not on the particular choices for support sets for each

monomial in I∆. It is our hope to use this to extend our results to be able to write down the

Hilbert series of A∆
n for an arbitrary choices of I∆. So although we will not be able to write down

the particular syzygies, we will be able to explicitly compute the N-graded Betti numbers for the

0th syzygy module in the resolution of k[∆] as an A-module. Once we have these counts, our desire

is to then be able to compute the rest of the Betti numbers using results from commutative algebra.

We also hope to then be able to compare them with the Betti numbers for the resolution of k[Sd∆]

over A as given by Theorem 3.2.5. Finally, we hope to use a similar technique used to obtain the

basis given in Conjecture 5.2.2 to be able to find a basis for A∆
n in total generality. As there is a

clear pattern and as they are a subset of the substaircase monomials, there may be a way to do

this combinatorially using the “balls in boxes” method described in this paper.

6.3. Big Example

Let ∆ be a simplicial complex on n = 4 vertices with facets F1 = {1, 2, 4} and F2 = {2, 3, 4} The

Stanley-Reisner ring of ∆ is

k[∆] = S/I∆ = k[x1, x2, x3, x4]/(x1x3).

From Conjecture 5.2.2 (verified with SageMath and Macaulay2) the basis for the coinvariant

Stanley-Reisner ring

A∆
n = k[∆]/(e1(x), e2(x), e3(x), e4(x), x1x3)

is

{x1, x2x3, x22, x33, x34}.
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This means that we can calculate the basis elements for each graded piece of A∆
n .

Degree j Spanning Sets of (A∆
n )j Resolution Factor

0 {1} A(−0)1

1 {x2, x3, x4} A(−1)3

2 {x23, x24, x2x4, x3x4} A(−2)4

3 {x2x24, x23x4, x3x24} A(−3)3

4 {x23x24} A(−4)1

Since ∆ is Cohen-Macaulay, there is no higher homology. Thus, the resolution of k[∆] as an

A-module is

F∆
• : 0 k[∆] A(−0)1 0.

⊕
A(−1)3

⊕
A(−2)4

⊕
A(−3)3

⊕
A(−4)1

∂0

The Barycentric subdivision of ∆, denoted Sd∆, is given by facets:

{1, 12, 124}, {1, 14, 124},

{2, 12, 124}, {2, 24, 124},

{4, 14, 124}, {4, 24, 124},

{2, 23, 234}, {2, 24, 234},

{3, 23, 234}, {3, 34, 234},

{4, 24, 234}, {4, 34, 234}.
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The Stanley-Reisner ring a la Definition 3.1.1, is

k[Sd∆] = k[y1, y2, y3, y4, y12, y14, y23, y24, y34, y124, y234]/ISd∆,

where

ISd∆ = (y1y2, y1y3, y1y4, y2y3, y2y4, y3y4,

y12y14, y12y23, y12y24, y12y34, y14y23, y14y24, y14y34, y23y24, y23y34, y24y34,

y124y234,

y1y23, y1y24, y1y34, y2y14, y2y34, y3y12, y3y14, y3y24, y3y24, y4y12, y4y23,

y1y234, y3y124, y12y234, y14y234, y23y124, y34y124)

When Sd∆ is given a proper balanced coloring, then the colorful system of parameters, γ =

(γ1, γ2, γ3), for k[Sd∆] are

γ1 = y1 + y2 + y3 + y4, γ2 = y12 + y14 + y23 + y24 + y34 γ3 = y124 + y234

Since ∆ is Cohen-Macaulay, Sd∆ is also Cohen-Macaulay, which means Sd∆ has no higher homology

(dually, cohomology). By Theorem 3.2.5, we obtain the following resolution for k[Sd∆] as an A-

module:

FSd∆
• : 0 k[Sd∆] A(−0)1 0.

⊕
A(−1)3

⊕
A(−2)4

⊕
A(−3)3

⊕
A(−4)1

∂0

We notice that FSd∆• has the same graded Betti numbers as F∆
• . Therefore, in this case, Conjecture

3.3.2. We want to note that this is not entirely new information. We already did know that the

conjecture held for Cohen-Macaulay simplicial complexes. However, the constructive method of

obtaining the equality by computing the Betti numbers directly from the basis of A∆
n is new.
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