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Default mode network connectivity and reciprocal social
behavior in 22q11.2 deletion syndrome
Matthew J. Schreiner,1,2 Katherine H. Karlsgodt,3,4 Lucina Q. Uddin,5 Carolyn Chow,2 Eliza Congdon,2

Maria Jalbrzikowski,2,6 and Carrie E. Bearden2,6

1Interdepartmental Neuroscience Program, 2Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human

Behavior, University of California, Los Angeles, CA 90095, 3Department of Psychiatry, Feinstein Institute for Medical Research, Manhasset, NY

11030, 4Zucker Hillside Hospital, Glen Oaks, NY 11004, 5Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine,

Stanford, CA 94305 and 6Department of Psychology, University of California, Los Angeles, CA 90095, USA

22q11.2 deletion syndrome (22q11DS) is a genetic mutation associated with disorders of cortical connectivity and social dysfunction. However, little is
known about the functional connectivity (FC) of the resting brain in 22q11DS and its relationship with social behavior. A seed-based analysis of resting-
state functional magnetic resonance imaging data was used to investigate FC associated with the posterior cingulate cortex (PCC), in (26) youth with
22qDS and (51) demographically matched controls. Subsequently, the relationship between PCC connectivity and Social Responsiveness Scale (SRS)
scores was examined in 22q11DS participants. Relative to 22q11DS participants, controls showed significantly stronger FC between the PCC and other
default mode network (DMN) nodes, including the precuneus, precentral gyrus and left frontal pole. 22q11DS patients did not show age-associated FC
changes observed in typically developing controls. Increased connectivity between PCC, medial prefrontal regions and the anterior cingulate cortex, was
associated with lower SRS scores (i.e. improved social competence) in 22q11DS. DMN integrity may play a key role in social information processing. We
observed disrupted DMN connectivity in 22q11DS, paralleling reports from idiopathic autism and schizophrenia. Increased strength of long-range DMN
connectivity was associated with improved social functioning in 22q11DS. These findings support a �developmental-disconnection� hypothesis of
symptom development in this disorder.

Keywords: functional MRI; resting state; velocardiofacial syndrome; dysconnectivity

INTRODUCTION

Neuropsychiatric disorders such as autism spectrum disorder (ASD)

and schizophrenia are increasingly conceptualized as disorders of cor-

tical connectivity, and current evidence suggests that both of these

conditions involve inappropriate circuit formation due to aberrant

neurodevelopment (Insel, 2010; Meechan et al., 2012). 22q11.2

deletion syndrome (velocardiofacial/DiGeorge syndrome; 22q11DS)

is a genetic disorder that represents one of the most significant genetic

risk factors known for the development of these ‘connectopathies’

(Karayiorgou et al., 2010). This microdeletion afflicts about 1 in

4000 live births, and is estimated to account for 1–2% of schizophrenia

cases, representing the only known recurrent copy number mutation

responsible for introducing new cases of schizophrenia into the popu-

lation (Karayiorgou et al., 2010). Furthermore, the prevalence of ASD

in children with 22q11DS ranges from 24% to 50%, indicating that

disorders associated with social behavioral dysfunction are a highly

penetrant aspect of the 22q11DS phenotype. The deletion encompasses

between 1.5 and 3 Mb, encoding 30–60 known genes. Phenotypic con-

sequences of the deletion are variable, ranging from cardiac defects and

immunodeficiency to language delays and cognitive impairment (Drew

et al., 2011). At present, the genetic and neurobiological mechanisms

accounting for elevated psychiatric risk in 22q11DS have yet to be fully

elucidated. Despite existing evidence for social and neurocognitive

dysfunction in 22q11DS (Jalbrzikowski et al., 2012) and the plausibility

of aberrant intrinsic brain connectivity as an integral factor in these

aspects of the phenotype, direct assays of the impact of the deletion on

brain function in humans have only recently been initiated (Gothelf

et al., 2007; Debbané et al., 2012).

Since the first reports of synchronized functional correlations in low

frequency blood oxygen level dependent (BOLD) signal within the

motor system at rest (Biswal et al., 1997), interest in the potential of

resting-state functional magnetic resonance imaging (rs-fMRI) to char-

acterize the brain’s intrinsic functional architecture has grown expo-

nentially. Functional connectivity (FC) mapping approaches have led

to the discovery of several putative resting state networks (RSNs),

which have been shown to be robust and reproducible across partici-

pants and time (Damoiseaux et al., 2006; De Luca et al., 2006; Kalcher

et al., 2012). The best characterized of these is the default mode net-

work (DMN), a collection of spatially distinct regions spanning the

medial prefrontal, lateral parietal and posterior cingulate cortices

(PCCs), that is more active in the absence of an overt cognitive

task and is implicated in social cognition, mind wandering and self-

referential thought (Raichle et al., 2001; Greicius et al., 2003; Rosazza

et al., 2011). Aberrant connectivity within the DMN has been impli-

cated in a number of neuropsychiatric disorders, and accordingly, the

dynamics of this RSN and the degree of network dysfunction may serve

as a valuable biomarker for nascent psychiatric disorders in at-risk

individuals (Broyd et al., 2009; Soddu et al., 2011; Whitfield-Gabrieli

and Ford, 2012). As such, mapping the functional architecture of the

brain in 22q11DS may help to elucidate gene–brain–behavior relation-

ships. We hypothesized that individuals with 22q11DS would show

reduced intra-network FC between the major hub regions of the

DMN, the PCC and ventromedial prefrontal cortex (Uddin et al.,

2009), in accordance with existing evidence for DMN dysfunction in

both idiopathic schizophrenia and ASD (Broyd et al., 2009; Assaf et al.,
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2010; Rudie et al., 2012). Secondly, given known developmental shifts

in patterns of functional brain connectivity (Uddin et al., 2010), we

investigated age effects on DMN connectivity, with the hypothesis that

22q11DS patients would fail to show the typical developmental pattern

of ‘local to distributed’ organization with increasing age (Fair et al.,

2009). Finally, as social impairment is a fundamental aspect of both

idiopathic schizophrenia and ASD, we investigated whether abnorm-

alities in DMN connectivity were associated with impairment in recip-

rocal social behavior in 22q11DS. Given the DMN’s critical role

in social information processing, we hypothesized that increased con-

nectivity within DMN regions would be associated with better social

competence.

MATERIALS AND METHODS

Participants

The total (initial) sample consisting of 87 participants aged 6–28 years

(31 patients with a molecularly confirmed diagnosis of a 22q11.2

microdeletion and 56 age- and sex-matched typically developing con-

trols) was recruited from an ongoing longitudinal study at the

University of California, Los Angeles. Exclusion criteria for all study

participants were: additional neurological or medical condition that

might affect imaging measures, insufficient fluency in English, en-

dorsement of substance or alcohol abuse and/or dependence within

the past 6 months and any condition that is a contraindication for MRI

(pregnancy, claustrophobia, etc.). Healthy controls additionally did

not meet criteria for any major mental disorder, based on information

gathered during administration of the Structured Clinical Interview for

DSM-IV Axis I Disorders [SCID; (First et al., 1996)], with an add-

itional developmental disorders module, as applied by Addington et al.

(2012) (for participants over the age of 16 years) and/or the

Computerized Diagnostic Interview Schedule for Children [C-DISC;

(Jensen et al., 1995)] for participants aged �16 years. Diagnoses of

autism spectrum disorder were determined using the Autism

Diagnostic Observation Schedule (Lord et al., 2000) administered to

the child and the Autism Diagnostic Interview-Revised (Lord et al.,

1994), administered to the subject’s parent/primary caretaker. All clin-

ical interviews were conducted by highly trained MA- or PhD-level

psychologists; inter-rater reliability and case consensus procedures

have been described in detail elsewhere (Meyer et al., 2005; Ho

et al., 2012). All participants and/or their parents underwent a verbal

and written informed consent process after complete description of

the study. The UCLA Institutional Review Board approved all study

protocols. Table 1 provides demographic information for all partici-

pants included in our [group-level fMRI] analyses, [following exclu-

sion of subjects with excess motion (see below) during their scan].

Neurobehavioral measures

Estimates of general intellectual functioning were obtained for all

participants from the two-subtest (vocabulary and matrix reasoning)

version of the Wechsler Abbreviated Scale of Intelligence (Lord

et al., 1994). Parents of study participants completed the Social

Responsiveness Scale [SRS; (Meyer et al., 2005)], a quantitative meas-

ure of reciprocal social behavior that has been extensively validated in

both clinically ascertained and population-based samples. The measure

represents the three criterion domains for autism and correlates

strongly with a gold standard diagnosis of ASD based on the Autism

Diagnostic Interview (Constantino et al., 2003).

fMRI data acquisition

Structural and functional scans were acquired at either the

Ahmanson–Lovelace Brain Mapping Center (BMC) or the Staglin

Center for Cognitive Neuroscience (CCN) in Los Angeles, CA, USA.

Both sites had an identical three Tesla Siemens Tim Trio system,

utilizing a 12 channel head coil. The primary structural scan used

for registration purposes consisted of a matched-bandwidth high-

resolution T1 image [voxel size 1.5� 1.5� 4.0 mm, echo time

(TE)¼ 34 ms, repetition time (TR)¼ 5000 ms, echo spacing¼ 0.89 ms,

34 axial slices, slice thickness 4.0 mm, slice spacing 0 mm, flip angle

908, field of view (FOV)¼ 210, matrix size¼ 128� 128]. Subsequently,

a 5 min resting state functional scan was acquired, during which a

black screen was presented and participants were instructed to keep

their eyes open, remain relaxed and attempt to avoid falling asleep.

The resting state scan consisted of 152 BOLD 3D images (voxel

size 3.0� 3.0� 4.0 mm, TE¼ 30 ms, TR¼ 2000 ms, echo spacing¼

0.79 ms, 34 axial slices, slice thickness 4.0 mm, slice spacing 0 mm,

flip angle 908, FOV¼ 192, matrix size¼ 64� 64).

fMRI data pre-processing

All data were pre-processed and analyzed with tools from the FMRIB

Software Library (FSL; http://fsl.fmrib.ox.ac.uk/fsl/). Scans were ob-

tained with an interleaved slice acquisition sequence, and no slice-

timing-correction was applied. Each subject’s full functional scan was

motion-corrected by registering each image to the middle volume as a

reference, using FMRIB’s linear image registration tool. Any subject

with >2 mm of translational motion or 28 of rotational motion was

excluded from further analysis (controls¼ 5; 22q11DS¼ 5), resulting

in 51 controls and 26 22q11DS patients with useable data. For the

remaining subjects, there were no significant differences in rotational

or translational motion between the two groups (P¼ 0.6921). The 4D

functional images were skull stripped using FSL’s Brain Extraction

Tool and spatially smoothed with a 5 mm full width half maximum

isotropic Gaussian kernel and bandpass temporal filtering

(0.005 Hz < f < 0.1 Hz). An initial first level analysis was run in FMRI

Expert Analysis Tool (FEAT), modeling the global signal and the six

motion parameters, and the data were registered to the matched-band-

width high-resolution T1 and then to Montreal Neurological Institute

(MNI-152) space. Next, the residuals from this analysis were normal-

ized to prepare for extraction of the timeseries, using the formula

(residual-mean)/s.d.) to result in a mean of 0 and standard deviation

Table 1 Subject Demographicsa

22q11DS
participants
(N¼ 26)

Typically
developing
controls
(N¼ 51)

P-value

Age [mean� s.d.(range)] 15.9� 4.9 (8–26) 14.4� 6.4 (6–28) 0.273
Gender, male; n (%) 17 (65) 28 (55) 0.384
Full Scale IQ (mean� s.d.) 78.6� 15.8 114.1� 20.8 <0.0001
SRS t–scoreb (mean� s.d.) 70.8� 16.7 47.5� 10.4 <0.0001
Autism spectrum disorder diagnosis, n (%) 10 (38) 0 (0) <0.0001
Psychotic disorder diagnosis, n (%) 2 (8) 0 (0) 0.0454
ADHD diagnosis, n (%) 14 (54) 0 (0) <0.0001]
ODD diagnosis, n (%) 1 (4) 0 (0) 0.1628]
Anxiety disorder diagnosis, n (%) 7 (27) 0 (0) <0.0001]
Mood disorder diagnosis, n (%) 5 (19) 0 (0) 0.001]
Current antipsychotic treatment, n (%) 3 (12) 0 (0) 0.013
Current antidepressant treatment, n (%) 8 (31) 2 (4) 0.0007
Current psychostimulant treatment, n (%) 2 (8) 0 (0) 0.0454]
Scanner Sitec 16 (62) BMC,

10 (38) CCN
31 (61) BMC,

20 (39) CCN
0.9497

aFive 22q11DS patients and five controls were excluded (from initial sample) due to excessive
motion; bSRS data were not available for 16 controls; cno significant difference between distribution
of medicated subjects between the two scanner sites.
ADHD, attention deficit hyperactivity disorder
ODD, oppositional defiant disorder
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of 1. Then, a brain mask was created by adding 100 to each voxel and

binarizing the image. A 6 mm region of interest (ROI) was placed in

the posterior cingulate (PCC: MNI coordinates: 0, �52, 30;

Supplementary Figure S1), following previously published work

(De Luca et al., 2006; Uddin et al., 2009). These ROIs were registered

to each subject’s functional dataset (utilizing the transformation

matrix derived from the earlier subject-to-standard space registration)

and the mean time-series within the registered ROI was extracted from

the original residuals file. For the primary connectivity analysis, the

average time course of the PCC-seed was normalized and was entered

into FEAT as an explanatory variable for the scaled residuals generated

following pre-processing. Finally, the statistical contrast output from

FEAT for each subject was normalized via Fisher’s z-transformation

and used as an input to the group-level analyses (described below).

Additionally, we used statistical maps generated from the PCC ROI

and extracted an index of the correlation of the PCC with the ventro-

medial prefrontal cortex (vmPFC; 6 mm diameter sphere centered at

MNI coordinates: 4, 56, �12) to obtain a metric of PCC–vmPFC con-

nectivity at rest and quantify the degree of correlation within the DMN

between these two hub regions.

Group-level analyses

In order to rule out potential scanner-related differences, we checked

for differences between scanners in each group, then for interactions

between scanner and any covariates of interest in each group, for our

two group-level analyses. Once it was determined that there were no

differences between scanners, nor were there significant interactions

between scanner and our model parameters, in any ROI (all P > 0.05),

all subsequent group-level analyses were conducted with scanner loca-

tion included in the model as a covariate. In order to investigate

group-level effects on DMN connectivity, outputs from the partici-

pant-level analysis for each subject were entered into an ordinary

least squares analysis. First, a between-groups comparison was

conducted to investigate differences in whole-brain PCC-derived

functional connectivity between 22q11DS patients vs controls (control-

ling for age, gender and scanner location); secondly, an interaction

term (age� diagnosis) was added to the group comparison model,

in order to explore differential effects of age on DMN connectivity

between the two groups. Two-tailed t-tests were used to compare the

strength of the z-transformed Pearson’s correlation between the PCC

seed and vmPFC seed between groups. Finally, a regression analysis

within the 22q11DS group was conducted to investigate the association

between SRS t-scores and PCC-derived FC (controlling for age, gender

and scanner location). In all analyses, covariates (age, gender and SRS

t-score) were demeaned. Cluster correction for multiple comparisons

was carried out using Gaussian random field theory (min z > 2.3; clus-

ter significance: P < 0.05, corrected).

RESULTS

Group differences in PCC connectivity

In both healthy controls and 22q11DS participants, regions in which

spontaneous BOLD fluctuations were significantly correlated with the

PCC include the precuneus, the vmPFC and portions of inferior/lateral

parietal cortex; areas classically considered part of the DMN

(Figure 1a). However, group comparisons revealed significant differ-

ences in both the spatial extent and magnitude of DMN connectivity.

Controls showed significantly stronger FC between the PCC and other

DMN regions, including the precuneus, the left and right precentral

gyrus, the left frontal pole and left lateral occipito-parietal regions

(Figure 1b). In contrast, 22q11DS participants displayed a more diffuse

pattern of FC with the PCC (Figure 1b), involving significantly stron-

ger connectivity with the right inferior frontal gyrus (IFG).

Information on all cluster locations, sizes and significance can be

found in Table 2.

Functional connectivity between DMN hubs

The strength of correlation between seed regions in the PCC and

vmPFC was significantly greater for controls than for 22q11DS partici-

pants (P¼ 0.0358), providing further evidence of diminished within-

network connectivity in 22q11DS (Supplementary Figure S2).

Age effects

22q11DS participants showed a distinct pattern of age-associated

changes in FC with the PCC, relative to controls (Figure 2a).

Group contrasts show that compared to 22q11DS participants, con-

trols exhibited significantly increased connectivity between the PCC

seed and right middle temporo-occipital cortex with increasing age,

relative to 22q11DS participants (Table 2; Figure 2b). In contrast,

22q11DS participants show differential connectivity between the

PCC seed, the right temporal pole/parahippocampal gyrus and inferior

portions of the right lateral frontal cortex, with increasing age (Table 2;

Figure 2b).

Association with social behavior in 22q11DS

Cortical areas with significant connectivity to the PCC that were also

significantly associated with lower SRS scores (i.e. better social com-

petence) were predominantly constrained to the right frontal cortex,

including lateral and medial regions as well as portions of the anterior

cingulate cortex (ACC) and paracingulate gyrus and left medial frontal

pole (Table 2; Figure 3).

Medication effects

In order to account for any potentially confounding influence of

psychotropic medications on our findings, the analyses described

Fig. 1 PCC functional connectivity in 22q11DS patients and healthy controls. Top panel (1 a) depicts
within-group functional connectivity. Red colors indicate regions of significant functional connectivity
to the PCC in patients with 22q11DS, while blue colors indicate regions of significant functional
connectivity to the PCC in healthy controls and purple indicates areas of overlap across groups. As
seen here, both healthy controls and 22q11DS patients exhibit functional connectivity to areas
classically considered part of the DMN, though the strength of the DMN network in 22q11DS
patients, especially along long-distance connections, appears less robust. The bottom panel (1 b)
depicts significant group differences in PCC connectivity between 22q11DS patients vs controls. As
depicted here, controls showed significantly stronger functional connectivity between the PCC and
other DMN regions, including the precuneus, the left and right precentral gyrus, the left frontal pole
and left lateral occipito-parietal regions. In contrast, 22q11DS patients displayed a more diffuse
pattern of functional connectivity with the PCC, involving significantly stronger correlations between
the PCC and right inferior frontal gyrus.
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above were re-run excluding any subjects currently taking antipsych-

otic, psychostimulant or antidepressant medications (11 patients, 2

controls). The observed group differences remained significant, with

controls displaying significantly greater FC than 22q11DS participants

between the PCC seed and the frontal pole (Supplementary Figure S3).

Correlations between the PCC and vmPFC seed regions remained

significantly stronger for controls relative to 22q11DS participants

(P¼ 0.0132). Regarding age effects, controls continued to show

increased PCC connectivity to the ACC, right lateral parietal and

superior frontal cortex with increasing age. However, the age�

diagnosis interaction effects changed slightly upon removal of medi-

cated subjects. Specifically, differential age-associated increases in FC

with the PCC in controls no longer reached the threshold for statistical

significance. In contrast, relative to controls, patients showed differen-

tial age-associated increases in connectivity between the PCC and

right inferior temporal cortex. Finally, the observed association

between increased PCC to frontal connectivity and lower SRS scores

remained significant, after excluding 22q11DS participants on

medications.

DISCUSSION

22q11DS is a recurrent genetic mutation associated with defects in

cortical circuit formation and high rates of neuropsychiatric disorders

characterized by marked social impairment. Evidence from animal

models of 22q11DS suggests that disruptions in long-range neural syn-

chrony may be a fundamental component of the disorder (Sigurdsson

et al. 2010); nevertheless, very little is known about the functional

architecture of the resting brain in human subjects with 22q11DS.

Using a seed-based approach, we observed a pattern of reduced

long-range connectivity between the PCC and other DMN nodes in

22q11DS participants, consistent with a ‘developmental disconnection’

model of the disorder. Furthermore, the strength of PCC-frontal con-

nectivity was associated with increased social competence, thus linking

integrity of DMN connectivity with social behavior in 22q11DS. As

default network regions are implicated in social information process-

ing and internal representations of self (Uddin et al., 2007), our find-

ings offer new evidence that within-network robustness is an integral

Table 2 Significant Cluster Locations from Group Analyses

Contrast Cluster index Cluster size (voxels) X Y Z P-value Anatomical region

CONT > 22qDS (Figure 1b) 1 432 6 �48 16 2.56E-06 Precuneus
2 349 44 �12 48 3.22E-05 Right precentral gyrus
3 284 �58 �6 28 2.69E-04 Left precentral gyrus
4 227 �22 48 6 0.00198 Left frontal pole
5 167 �54 �64 20 0.0195 Left lateral occipitoparietal regions

22qDS > CONT (Figure 1b) 1 174 54 18 10 0.0147 Right inferior frontal gyrus
CONT Age > 22qDS age (Figure 2b) 1 189 66 �48 �4 0.00837 Right middle temperoccipital cortex
22qDS Age > CONT age (Figure 2b) 1 284 24 6 �24 2.76E-04 Right temporal pole/parahippocampal gyrus

2 163 34 32 �12 0.00233 Right lateral frontal cortex
22qDS participants only, SRS (Figure 3) 1 405 10 40 �4 1.19E-07 Anterior cingulate/paracingulate gyrus

2 277 26 62 �2 2.03E-05 Right lateral frontal cortex
3 250 12 66 24 6.38E-05 Right medial frontal cortex
4 179 �12 72 10 0.00162 Left medial frontal pole

CONT > 22qDS (med exclusion) (Supplementary Figure S3) 1 498 0 �60 32 5.96E-08 Precuneus
2 462 �22 48 12 2.38E-07 Frontal pole

Fig. 2 Developmental effects on PCC connectivity. Figure 2a depicts brain regions in which greater
functional connectivity with the PCC is associated with increasing age in 22q11DS patients [red�right
(R) vmPFC, left (L) frontal cortex] and controls [blue�paracingulate gyrus, anterior cingulate gyrus
(ACC), R superior frontal gryus, L putamen, R lateral temporal cortex, R lateral parietal lobe, R
cerebellum]. Figure 2b depicts regions in which there is a significant age� diagnosis interaction [i.e.
differential PCC connectivity with increasing age for 22q11DS patients (22q11DS) vs controls (Cont)].
Red colors indicate regions in which there is differentially increased connectivity in 22q11DS patients
(R vmPFC, Subcallosal cortex, R orbitofrontal cortex), whereas blue colors indicate differentially
increased PCC functional connectivity with increasing age in controls (Cont�occipital pole, R lateral
temporal cortex).

Fig. 3 Association between PCC connectivity and SRS. Regions in which PCC connectivity is signifi-
cantly associated with a lower SRS score in 22q11DS patients. As shown, connectivity between the
PCC and diffuse frontal regions, including the vmPFC, is associated with a lower SRS score (and
hence, improved social functioning) in 22q11DS.
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factor in modulating the severity of the behavioral phenotype in

22q11DS.

Our findings accord with recent neuroimaging and electrophysiolo-

gical studies in adults with idiopathic autism spectrum disorders,

which have revealed a pattern of altered intrinsic connectivity of

long-range DMN circuitry (Murias et al., 2007; Kennedy and

Courchesne, 2008). The majority of studies of adolescents and adults

with ASD have found reduced functional connectivity of the DMN

(Kennedy and Courchesne, 2008; Assaf et al., 2010; Weng et al.,

2010); however, a recent study of children with ASD found a pattern

of hyper-connectivity of the PCC with medial and anterolateral tem-

poral cortex as well as local hypo-connectivity within posteromedial

corte� (Lynch et al., 2013) suggesting that the pattern of DMN alter-

ations in idiopathic ASD may vary as a function of developmental

stage (Di Martino et al., 2009b). A meta-analysis of the functional

neuroimaging literature also indicated that the PCC is consistently

hypo-activated in social tasks in idiopathic ASD relative to typically

developing individuals (Di Martino et al., 2009a), suggesting a neural

basis for self-referential processing deficits in both task-positive and

task-negative (i.e. resting state) contexts. Moreover, our observed as-

sociation between long-range DMN connectivity and social behavior in

22q11DS is consistent with a previous study in healthy adults

(Di Martino et al., 2009b), reporting that lower levels of autistic

traits, as assessed by the SRS, were related to increased FC between

the pregenual ACC and anterior mid-insula, brain regions important

for social processing previously shown to be hypo-active in ASD pa-

tients (Di Martino et al., 2009a). Collectively, these findings support

the notion that DMN integrity may be a candidate marker of social

competence, in both clinical and non-clinical populations.

Our results are also consistent with those of animal models of

22q11DS, which have reported dramatically reduced neural synchrony

between anatomically distant brain regions, suggesting a cellular basis

for our findings of disrupted long-range FC (Sigurdsson et al., 2010).

In the mouse model, reduced hippocampal-prefrontal synchrony was

associated with working memory deficits; a core feature of psychosis.

The contribution of disrupted connectivity to other aspects of the

phenotype (i.e. social deficits) has not yet been explored in the

22q11DS mouse model, but would be an important extension of

this study.

As our sample included a large proportion of young children, we did

not see a high rate of psychotic disorder in our sample, and thus we did

not analyze DMN activity as a predictor of psychotic symptoms; this is

an active area of investigation for our future longitudinal studies.

Multiple studies have now been conducted indicating aberrant net-

work connectivity, both in the DMN and globally, in patients with

idiopathic schizophrenia as well as their first degree relatives, indicat-

ing that altered FC during rest may be associated with genetic risk for

the illness (Whitfield-Gabrieli and Ford, 2012; Williamson and Allman

2012; Alexander-Bloch et al., 2013). Remarkably consistent with our

findings, (Woodward et al., 2011.) recently reported increased con-

nectivity between the PCC and the left IFG�a brain region typically

considered part of the salience network�in patients with schizophrenia

relative to controls, suggesting that the functional topography of the

DMN may be similarly altered in patients with idiopathic schizophre-

nia and 22q11DS.

To our knowledge, only one prior study of resting state fMRI in

22q11DS has been conducted (Debbane et al., 2012). Using

independent components analysis, an exploratory data-driven ap-

proach to analysis of resting-state fMRI data that is an alternative

to model-based (ROI) approaches, Debbane et al. (2012) identified

group differences in several networks, including the DMN.

Interestingly, their findings are largely congruent with those reported

here, with 22q11DS participants showing greater connectivity to

diffuse frontal regions not typically considered part of the DMN,

and controls exhibiting stronger connectivity between frontal and

posterior regions such as the precuneus and PCC. This study also

reported associations between altered connectivity and psychotic

symptom severity (Debbane et al., 2012). In contrast, our analysis

focuses on a dimensional indicator of social behavior, which is likely

to cut across multiple diagnostic categories involving social impair-

ment (i.e. psychosis and ASD).

The strength of FC within DMN nodes may rely on underlying

structural connectivity between brain regions. Diffusion tensor

imaging studies have identified reduced white matter integrity in

long-range fiber tracts in 22q11DS (see Schreiner et al., 2012 for a

review), suggesting altered white matter microstructure in tracts con-

necting these brain regions. Notably, a recent study of healthy adoles-

cents found that FC between the mPFC and PCC depends upon the

maturation of the underlying cingulum white matter tract, suggesting

that structural connectivity defects may contribute to the observed

reductions in functional connectivity in 22q11DS participants

(Gordon et al., 2011). Multimodal imaging studies are now underway,

in order to address this question.

The wide age range and relatively large number of typically develop-

ing controls in our study allowed us to investigate developmental ef-

fects on resting state connectivity. The differential increase in

connectivity between the PCC and right lateral temporal cortex evident

in controls is consistent with previous literature indicating increases in

long-range connectivity within the DMN with maturation (Supekar

et al., 2010). In contrast, 22q11DS participants showed evidence of

more diffuse frontal connectivity with the PCC, to regions outside of

the classic DMN, with increasing age. These findings suggest an altered

developmental trajectory of resting state network development in

22q11DS, which may be relevant to the emergence of psychopathology

in adolescence. However, given that medication status had an impact

on the age� diagnosis interaction results, further investigation is

needed. Prospective longitudinal studies are required in order to con-

firm the intriguing possibilities raised by our cross-sectional findings.

These findings must be interpreted in the light of several caveats.

First, we chose to use global signal regression (GSR) in order to ac-

count for sources of any physiological, non-neuronal noise in the data.

Previous studies have raised the concern that adjusting for global signal

may artificially induce, or inflate the strength of, negative functional

correlations in resting state networks (Cole et al., 2010); however, there

is no currently accepted consensus in the field on whether or not to

apply GSR to rs-fMRI data. Given these concerns, and to avoid such

interpretive difficulties regarding anticorrelations, we focused our ana-

lyses only on positive correlations. Second, the possibility of differen-

tial motion between experimental groups has become a growing

concern for interpretation of group differences in resting-state data

(Power et al., 2012). Though there are limitations to any method of

addressing this, we used a conservative threshold for motion exclusion

and ensured that there were no differences in motion between diag-

nostic groups. Thus, motion artifacts are not likely to account for the

observed group differences in connectivity patterns. Finally, the two

diagnostic groups differed significantly in terms of Full Scale IQ.

Intellectual disability is a known and well-characterized aspect of the

22q11DS phenotype, and prior rs-fMRI studies in 22q11DS and other

cognitive impaired populations (e.g. idiopathic schizophrenia) have

typically not accounted for IQ differences (Yu et al., 2011; Debbané

et al., 2012). In this context, IQ is considered a group defining variable

and thus could not be included in our group comparison models (Ho

et al., 2012). Thus, we cannot rule out the possibility that variability in

IQ may have had an effect on the results of group comparisons. The

relationship between IQ and DMN connectivity is a complex develop-

mental issue, which warrants further consideration in future studies
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including both 22q11DS patients and other neurodevelopmental dis-

orders. However, it is important to note that SRS scores were not

associated with IQ ‘within’ our 22q11DS sample, and thus could not

account for the within-group relationships observed.

In summary, this study reveals dysfunction in long-range connect-

ivity within DMN regions in 22q11DS, a recurrent genetic mutation

associated with abnormal neuronal migration and high rates of schizo-

phrenia and ASD. Consistent with previous findings in the general

population (Di Martino et al., 2009b), we found that increased long-

range connectivity in 22q11DS was associated with the SRS, a continu-

ous measure of autistic traits, suggesting that: (i) DMN circuitry is a

clinically relevant locus of dysfunction in this syndrome, which may

have predictive validity for subsequent development of psychopath-

ology and (ii) that alterations in FC identified in the context of this

syndrome may fall on a continuum with the broader population.

Future translational investigations in both human and animal

models will clarify the contributions of specific genes within the

22q11.2 locus to the observed disruptions in neural connectivity.
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