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Brief Abstract: Network routers occupy a unique role in modern distributed systems. They are responsi-

ble for cooperatively shuttling packets amongst themselves in order to provide the illusion of a network with

universal point-to-point connectivity. However, this illusion is shattered – as are implicit assumptions of

availability, confidentiality or integrity – when network routers act in a malicious fashion. By manipulating,

diverting or dropping packets arriving at a compromised router, an attacker can trivially mount denial-of-

service, surveillance or man-in-the-middle attacks on end host systems. Consequently, Internet routers have

become a choice target for would-be attackers and thousands have been subverted to these ends.

In this paper, we specify this problem of detecting routers with incorrect packet forwarding behavior and

we explore the design space of protocols that implement such a detector. We further present two concrete

protocols that differ in accuracy, completeness, and overhead – one of which is likely inexpensive enough

for practical implementation at scale. We believe our work is an important step in being able to tolerate

attacks on key network infrastructure components.

Key Words: Internet algorithms, Fault tolerant robust routing, Reliable networks, Malicious routers,

Byzantine failures, Specification of an anomalous behavior detector.



1 Introduction

This paper addresses part of a simple, yet increasingly important network security problem: how to detect

the existence of compromised routers in a network and then remove them from the routing fabric.

The root of this problem arises from the key role that routers play in modern packet switched data net-

works. To a first approximation, networks can be modeled as a series of point-to-point links connecting pairs

of routers to form a directed graph. Since few endpoints are directly connected, data must be forwarded –

hop-by-hop – from router to router towards its destination. Therefore, if a router is compromised, it stands

to reason than an attacker may drop, delay, reorder, corrupt, modify or divert any of the packets passing

through. Such a capability can then be used to deny service to legitimate hosts, to implement ongoing

network surveillance or to provide an efficient man-in-the-middle functionality for attacking end systems.

Moreover, such attacks are not mere theoretical curiosities, but they are actively employed in practice.

Attackers have repeatedly demonstrated their ability to compromise routers, through combinations of social

engineering and exploitation of weak passwords and latent software vulnerabilities [1, 9, 13]. One network

operator recently documented over 5000 compromised routers as well as an underground market for trading

access to them [23].

Once a router is compromised an attacker need not modify the router’s code base to exploit its capabil-

ities. Current standard command-line interfaces from vendors such as Cisco and Juniper are sufficiently

powerful to drop and delay packets, send copies of packets to a third party, or “divert” packets through a

third party and back. In fact, several widely published documents provide a standard cookbook for transpar-

ently ”tunneling” packets from a compromised router through an arbitrary third-party host and back again

– effectively amplifying the attacker’s abilities, including arbitrary packet sniffing, injection or modifica-

tion [7, 21]. Such attacks can be extremely difficult to detect manually, and it can be even harder to isolate

which particular router or group of routers has been compromised.

The problem of detecting and removing compromised routers can be thought of as an instance of anoma-

lous behavior-based intrusion detection. That is, a compromised router can be identified by correct routers

when it deviates from exhibiting expected behavior. The problem can be broken into three subproblems:

1. Traffic validation. Traffic information is the basis of detecting anomalous behavior: given traffic

entering a part of the network, and an expected behavior of the routers in the network, anomalous

behavior is detected when the monitored traffic leaving that part of the network differs significantly

from what is expected. However, implementing such validation practically requires tradeoffs between

the overhead of monitoring, communication and accuracy.

2. Distributed detection. It is impossible to detect an anomaly at a single router. Any detection requires,

synchronizing the collection of traffic information and distributing the results so that anomalous be-

havior can be detected by sets of correct routers.

3. Response. Once a router, or set of routers, is thought to be faulty, the forwarding tables of correct

routers must be changed to avoid using those compromised nodes.

We provide a brief discussion on the first problem, but this paper concentrates primarily on the second

problem. Given a reliable traffic validation function, we examine how it can be used to build an anomalous

behavior detector for compromised routers. We have developed a formal specification for this detector, with

properties similar to those used for traditional failure detectors. Finally, we give two simple protocols that

implement our specification and analyze their accuracy, completeness and overhead.
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2 Related Work

There are two threats posed by a compromised router: the attacker may attack by means of the routing

protocol (for example, by sending false advertisements) or by having the router violate the forwarding

decisions it should make based on its routing tables. The first kind of attack is often called an attack on the

control plane, and the second is called an attack on the data plane.

The first threat has received, by far, the lion’s share of the attention in the research community, perhaps

due its potential for catastrophic effects. By issuing false routing advertisements, a compromised router may

manipulate how other routers view the network topology, and thereby disrupt service globally. For example,

if a router claims that it is directly connected to all possible destinations, it may become a “black hole” for

most traffic in the network. While this problem is by no means solved in practice, there has been significant

progress towards this end in the research community, beginning with the seminal work of Perlman. In

her PhD thesis [16], Perlman described robust flooding algorithms for delivering the key state across any

connected network and a means for explicitly signing route advertisements. There have subsequently been

a variety of efforts to impart similar guarantees to existing routing protocols with varying levels of cost and

protection. Generally, these break down into approaches based on ensuring the authenticity of route updates

and those based on detecting inconsistency between route updates [20, 12, 10, 18, 4, 8].

By contrast, the threat posed by subverting the forwarding process has received comparatively little atten-

tion. This is surprising since, in many ways this kind of attack presents a wider set of opportunities to the

attacker – not only denial-of-service, but also packet sniffing, modification and insertion – and is both trivial

to implement (a few lines typed into a command shell) and difficult to detect. This paper focuses entirely on

the problem of malicious forwarding.

The earliest work on fault-tolerant forwarding is also due to Perlman [16]. In her PhD thesis, Perlman

presented network layer protocols with Byzantine robustness. These results are also summarized in her

book [17]. She developed robust flooding, a method to deliver a packet reliably to all good routers. This

requires a good path condition, which states that each pair of nonfaulty routers is connected by at least one

path of zero or more nonfaulty routers. Robust flooding was designed to be used for public key distribution

and broadcasting link state packets (LSP), which is a necessary part of link state protocols. Perlman also

developed a novel method for robust routing on top of a link state protocol. In this protocol, the source router

first computes a route based on its local database and then sends a digitally signed route-setup packet along

the chosen route. Each intermediate router on the route verifies the signature and allocates the necessary

resources for the data packet. If the source router receives an acknowledgment of route-setup from each

intermediate router on the chosen route, then it sends the data packet. The destination router sends back

another ack, if the data packet reaches to itself. If the source does not receive this ack for the data packet

from the destination, then it detects that the chosen route is not reliable and computes a new route.

Several researchers have subsequently proposed lighter-weight protocols for actively probing the forward-

ing path to test for consistency with advertised routes. Subramanian et al’s Listen protocol [20] does this

by comparing TCP Data and Acknowledgment packets to provide evidence that a path is part of end-to-end

connectivity, while Padmanabhan and Simon’s Secure Traceroute [15] achieves a similar goal using signed

probe packets targeting intermediate routers. Both approaches only test for gross connectivity and cannot

reveal whether packets have been diverted, modified, created, reordered or selectively dropped.

The approach most similar to our own is the WATCHERS protocol, which detects disruptive routers based

on a distributed network monitoring approach [5, 2, 11]. However, the WATCHERS protocol had many

limitations in both its traffic validation mechanism and in its control protocol – many of which were docu-

mented by Hughes et al. [11]. Many of these weaknesses arose from the absence of a formal specification,

a weak threat model and an excessive requirement for per-router state (bounded only by the total size of

the network). In Appendix 7.1, we describe WATCHERS in enough detail to understand its strengths and

weaknesses, including a previously unreported flaw that allows faulty routers to go undetected.
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3 System Model

Our work proceeds from an informed, yet abstracted, model of how the network is constructed, the capabil-

ities of the attacker, and the complexities of the traffic validation problem. In this section we describe and

motivate the assumptions underlying our model.

3.1 Network Model

We consider a network to consist of individual routers interconnected via directional point-to-point links.

In using this model, we are purposely ignoring several real-life complexities. For example, real routers

are not homogeneous nodes, but in fact represent a collection of independent network interfaces which are

themselves interconnected and are, in practice, addressed and controlled distinctly. We have eliminated

this detail for the convenience of description; our analysis can trivially accommodate this expanded model.

Similarly, we have chosen to ignore the possibility of broadcast channels in our model since they are rare in

today’s wired networks and can be easily incorporated as collections of point-to-point links (although there

may be opportunities for additional optimization in broadcast environments).

Within this network, we presume that packets are forwarded in a hop-by-hop fashion – each router follow-

ing the directions of a local forwarding table. As well, we assume that these forwarding tables are updated

via a distributed link-state routing protocol such as OSPF or IS-IS. In particular, we depend on the routing

protocol to provide each node with a global view of the current network topology. Finally, we also assume

the administrative ability to assign and distribute shared keys to sets of nearby routers. This overall model is

consistent with the typical construction of large enterprise IP networks or the internal structure of single ISP

backbone networks, but is not well-suited for routers that interconnect administrative domains using BGP

(a link-vector protocol).

We define a path to be a finite sequence 〈r1, r2, . . . rn〉 of adjacent routers. Operationally, a path defines

a sequence of routers a packet can follow. We call the first router of the path the source and the last router

its sink; together, they are called terminal routers. A path might consist of only one router, in which case

the source and sink are the same. Terminal routers are leaf routers: they are never in the middle of any path.

An x−path segment is a sequence of x routers that is a subsequence of a path. A path segment is an

x−path segment for some value of x > 0. For example, if a network consists of the single path 〈a, b, c, d〉
then 〈c, d〉 and 〈b, c〉 are both 2-path segments, but 〈a, c〉 is not because a and c are not adjacent.

3.2 Threat Model

We assume that attackers can compromise one or more routers in a network and may even compromise

sets of adjacent routers as well. In general, we parameterize the strength of the adversary in terms of the

maximum number of adjacent routers along a given path that can be compromised.

However, we assume that between any two uncompromised routers that there is sufficient path diversity

that the malicious routers do not partition the network. In some sense, this assumption is pedantic since it

is impossible to guarantee any network communication across such a partition. Another way to view this

constraint is that path diversity between two points in the network is a necessary, but insufficient, condition

for tolerating compromised routers. What we are proposing is a set of protocols that offer the sufficiency

condition in the presence of the necessary diversity.

Recently, Teixeira et al. [22] empirically measured path diversity in ISP networks and found that mul-

tiple paths between pairs of nodes were common. Similarly, many enterprise networks are designed with

such diversity in order to mask the impact of link failures. Consequently, we believe that this assumption is

reasonable in practice. It is worth noting however, that this diversity usually does not extend to individual
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local-area networks – single workstations rarely have multiple paths to their network infrastructure. Conse-

quently, the fate of individual hosts and of the router, to which they are connected, are directly intertwined

in practice. So, we assume that terminal routers are not faulty.

Since link state protocols operate by periodically measuring and disseminating information, we assume

a synchronous system. The failure of a router is defined in terms of an interval of time, which in practice

corresponds with a period of time during which traffic measurements are made. Specifically, a router r is

t-faulty (that is, traffic faulty) with respect to a path segment π during τ if π contains r and, during the period

of time τ , r exhibits arbitrary behavior with respect to forwarding data that traverses π. For example, router

r can selectively alter, misroute, drop, reorder, or delay the data that flows through π, and it can fabricate

new data to send along π such that the packets, if they were valid, would have been routed through π.

3.3 Traffic Validation

A compromised router can make arbitrary alterations to the forwarding behavior of that router. Packets

can be dropped, modified, reordered, diverted and so on. However, given the distributed nature of packet

forwarding it is not possible for an adversary to perfectly conceal this behavior when it is compared against

the observations of its neighboring – non-compromised – neighbor routers. For example, it is not possible

for a single compromised router r2 to modify or drop a packet traversing the path 〈r1, r2, r3, r4〉 in an

undetectable fashion. An outside observer could query router r1 about the packets it had sent and router r3

about the packets it has received and detect any incongruity.

We call this general process traffic validation and such mechanisms are the basic failure detectors in our

system. We represent traffic validation mechanisms as a predicate TV(π, info
π,τ
ri , info

π,τ
rj ) where:

• π is a path segment 〈r1, r2, . . . rx〉 whose traffic is to be validated between routers ri and rj where

both ri and rj are in π;

• info
π,τ
r is some abstract description of the packets that router r forwarded to be routed along π over

some time interval τ .

• If routers ri and rj are not faulty, then TV(π, info
π,τ
ri

, info
π,τ
rj

) evaluates to false iff π contains a router

that was faulty in π during τ .

If all the packets1 are monitored, then TV is also transitive, due to the transitive nature of packet forward-

ing; for any path segment π, if both TV(π, info
π,τ
a , info

π,τ
b ) and TV(π, info

π,τ
b , info

π,τ
c ) are true then TV(π,

info
π,τ
a , info

π,τ
c ) is true.

Implementing a traffic validation mechanism is an engineering problem. For example, the most precise

form of info
π,τ
r is a complete copy of the packets sent and the time at which each was forwarded. However,

the storage requirements to buffer these packets and the bandwidth consumed by resending them, make this

approach impractical. In practice, designing this function is a tradeoff between accuracy and overhead.

Similarly, in an idealized network TV might be implemented simply using equality; info
π,τ
ri

= info
π,τ
rj

.

However, real networks occasionally lose packets due to congestion, reorder packets due to internal multi-

plexing, and corrupt packets due to interface errors. Consequently, TV must be somewhat more sophisti-

cated to accommodate this abnormal, but non-malicious behavior – an inherent tradeoff between the accept-

able number of false positives and false negatives.

We have explored and implemented a variety of traffic validation mechanisms, including those based

on approximate flow conservation, comparisons between incremental hashes of packet content, and set

reconciliation protocols. While detailed descriptions and empirical comparisons of these approaches is

1The routers monitoring the path segment can decide on a sampling technique and keep track of only the chosen packets. This

method may help decreasing cost significantly.
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outside the scope of this paper, we have experience with several mechanisms that are hard to defeat, have

few false positives and have acceptable implementation and state overheads.

Since this paper explores the higher-level properties and limitations of systems built upon traffic valida-

tion, and not the details of the failure detector itself, for the remainder of the paper we assume that info
π,τ
r

and TV exist and are perfectly accurate.

4 Specification

Since the objective of our protocol is to detect compromised routers, an obvious way to couch this problem

is as an implementation of a failure detection: we would define detection in terms of accuracy and complete-

ness [3]). Since this detector is based on evaluating traffic collected over a period of time, we can have the

failure detector report pairs (r, τ), which means that r was suspected as being faulty during the time interval

τ . A perfect failure detector would implement the following two properties:

Accuracy (tentative): A failure detector is Accurate if, whenever a correct router suspects (r, τ), then r

was faulty during τ .

Completeness (tentative): A failure detector is Complete if, whenever a router r is faulty at some time t,

then all correct routers eventually suspect (r, τ) for some τ containing t.

Notice that we have specified completeness by modeling it on the Strong Completeness property of [3].

We did this because all of the correct routers will need to update their link state routing tables on the basis

of the detection.

We would implement this failure detector by collecting traffic information from different points in the

router network. The data would be collected and evaluated using the traffic validation function. An indi-

vidual router’s failure detector would either do this evaluation itself or base it on the evaluation of another

router.

This approach won’t result in a failure detector with the desired properties, however. Consider two adja-

cent routers r1 and r2. The traffic at r1 claims to have sent 100 packets to r2, which agrees with the upstream

traffic into r1. Router r2, however, claims to have received only 20 packets from r2, which is consistent with

the downstream traffic. Assuming that link between the two routers is reliable, at least one of the two routers

is not telling the truth: r1 could have dropped 80 packets or r2 could have dropped them. A failure detector

implemented at r1 or r2 can determine which is faulty in a trivial manner: our specification only constrains

the behavior of failure detection by correct routers. So, in this case r1 can detect r2 and r2 can detect r1;

if either is in fact a correct router, then that router’s failure detection is correct. Any other router, however,

can’t distinguish between the case of r1 being faulty and of r2 being faulty, and so can only report that one

of the two routers is faulty. Hence, we weaken the specification: we have the failure detector return a pair

(π, τ) where π is a path segment. Since a path segment is being reported, we can also restrict the detection

to a process being faulty with respect to traffic being forwarded along π.

a–Accuracy: A failure detector is a–Accurate if, whenever a correct router suspects (π, τ), then |π| ≤ a

and some router r ∈ π was faulty in π during τ .

a–Completeness (tentative): A failure detector is a–Complete if, whenever a router r is faulty at some

time t, then all correct routers eventually suspect (π, τ) for some path segment π : |π| ≤ a such that

r was faulty in π at t, and for some interval τ containing t.

From our description so far, a would be 2 or 1 if the router making the detection is either r1 or r2.
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Note that this argument assumes that a faulty router can report an incorrect value for the traffic that

traversed a path as well as alter this traffic. We will use the term t-faulty to indicate a router that alters

traffic and the term p-faulty to indicate a router that misreports traffic. A faulty router is one that is t-faulty,

p-faulty or both. As before, we will add the phrase “in π” to indicate that the faulty behavior is with respect

to traffic that transits the path π. Thus, the a–Accuracy requirement can result in a detection if a router is

either p-faulty or t-faulty.

Distinguishing between p-faulty and t-faulty is useful because, while it is important to detect routers that

are t-faulty, it isn’t as critical to detect routers that are only p-faulty. Routers that are only p-faulty are not

directly altering the traffic flow. Hence, we weaken a–Completeness:

a–Completeness: A failure detector is a–Complete if, whenever a router r is t-faulty at some time t, then

all correct routers eventually suspect (π, τ) for some path segment π : |π| ≤ a such that r was t-faulty

in π at t, and for some interval τ containing t.

Consider a path π that contains only routers that are faulty in π. The information that they record about

their traffic cannot be counted on to detect this fact. Thus, the detection of faulty paths will be influenced

more by the maximum number of adjacent faulty routers rather than the total number of faulty routers. So,

instead of imposing an upper bound on the fraction of routers that can be faulty, we impose an upper bound

bad(k) on the number of adjacent faulty routers. For example, if bad(3) holds, then there can be no more

than 3 adjacent faulty routers in any path.

Making a bad(k) assumption has an effect on failure detection. Assume that bad(3) holds, and consider

a path 〈r1, r2, r3, r4, r5, r6, r7〉 in which r3, r4 and r5 are faulty. Suppose that over an interval τ , r1 through

r5 report having forwarded 100 packets that were to traverse this path, and r6 and r7 reports only 20 such

packets. Let r1 obtain these counters. It could be the case that r4 dropped the traffic, and r3 and r5

misreported the traffic in an effort to hide the fact that r4 is faulty. From r1’s point of view, however,

something is wrong with either r5 or r6, since their counters indicate that traffic has disappeared. To satisfy

a–Completeness, p1 needs to detect any possible routers that could have led to this traffic discrepancy. So,

the failure detector at r1 could report that the path segment 〈r3, r4, r5, r6〉 contains a faulty router, since if

r5 is faulty then r3 and r4 could be as well, given bad(3). That is, we could have the failure detector report

a k + 1-length path segment to accommodate the fact that bad(k) holds.

Another way to accommodate the fact that bad(k) holds is to weaken a–Completeness. In the example

just given, we could have r1 just suspect the path segment 〈r5; r6〉. A countermeasure protocol would stop

routing data through this path, and if r3 or r4 continue to behave in a faulty manner, they could be suspected

later. We formalize this approach by defining a condition we call being fault connected. Given a path

segment π and an interval τ , we say that a router r is fault connected to router s with respect to π if both r

and s are in π, and all of the routers between s and r are faulty in π during τ . Trivially, any router r is fault

connected to itself even if r is correct. We then weaken a–Completeness again:

a–FC Completeness: A failure detector is a–FC Complete if, whenever a router r is t-faulty at some time

t, then all correct routers eventually suspect (π, τ) for some π : |π| ≤ a and some τ containing t such

that there is a router r′ that was faulty in π at time t′ in τ and is fault-connected to r.

The choice between the two completeness properties is not clear. Using a–FC Completeness should lead

to more accurate detections but it can leave some t-faulty routers undetected. We discuss this tradeoff more

in the context of protocols that implement these two completeness conditions.

This specification has no uniformity-like property: it allows a faulty router to suspect correct routers. In

practice, this doesn’t pose a problem. In the countermeasure protocols that we have (and the countermeasure

protocol of WATCHERS), the only suspicions that elicit a reaction is when a router r suspects a path segment
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that is adjacent to r. In this case, the countermeasure protocol will cause r not to route traffic along the

suspected path segment. A faulty router can already drop packets, and so allowing a faulty router to break

links with its neighbor adds no further disadvantage.

In our terminology, Perlman’s robust routing protocol was designed assuming a Byzantine failure model.

It is m–Accurate and m–Complete, where m is the maximum length of a path in the network. WATCHERS

meets this specification. WATCHERS is 2–Accurate but it is neither a–Complete nor a–FC Complete for

any value of a.

5 Π2: A 2–FC Complete and 2–Accurate Protocol

Since TV is itself accurate and complete, an obvious approach is to have each router collect traffic infor-

mation over some agreed-upon interval, and then use consensus to have all correct routers agree upon the

traffic information. With this information, each router can agree upon which routers might be faulty.

For example, consider the 4-path segment π = 〈r1, r2, r3, r4〉 where r1 and r4 are not faulty. Let info
π,τ
i

be the traffic information that router ri collects over during the agreed upon time interval τ for the path

segment π. If at least one of the other routers is t-faulty with respect to π during this interval, then TV(π,

info
π,τ
1

, info
π,τ
4

) will be false. This implies that for some i, TV(π, info
π,τ
i , info

π,τ
i+1

) is false, which means that

at least one of routers ri and ri+1 is faulty. Since info
π,τ
i and info

π,τ
i+1

were disseminated using consensus, all

correct routers will know that at least one of {ri, ri+1} is faulty.

We use these observations to construct a 2-Accurate failure detector protocol. The first issue to address is

over which paths a router should record information. Note that it will need to run an instance of the protocol

for each path about which it records information. An obvious answer—over each data stream’s path—could

result in an enormous set of paths. We can make the set smaller by having each router keep track of each

x-path segment of which it is a member, for some value of x. The number of x-path segments can grow

very quickly with increasing x, and so x should be as small as possible. It must be large enough so that

any sequence of faulty routers will be surrounded by correct routers, since this is necessary to detect faulty

behavior.

If we assume that bad(k) holds, then the minimum value of x satisfying the above constraint is k+2. Not

all paths need be this long, and so a router also collects information about all paths of which it is a member

whose length is less than k + 2.

5.1 Protocol

The resulting protocol Π2 is shown in Figure 1. In this protocol, each router r maintains the current topology

T from which it derives its routing table. Each router r also maintains a set of path segments Pr that contain

r and that r monitors. A router r runs a thread for each path segment in Pr. Pr , which is computed from T ,

contains all (k + 2)−path segments containing r and all x−path segments, 3 ≤ x < k + 2 whose ends are

terminal routers.

For each path segment π ∈ Pr, r synchronizes with the other routers in π and collects information for the

same traffic passing through π for an agreed-upon interval τ . Periodically, r sends that traffic information

to all routers in π using consensus. This data is digitally signed to prevent an attack during consensus. We

use [x]i to indicate that x is digitally signed by i.

Consider the traffic passing through a path segment π. The traffic will be consistent — that is, TV(π,

info
π,τ
i , info

π,τ
i+1

) will be true — for each pair of routers 〈i, i + 1〉 in π unless a discrepancy is introduced

by a faulty router. In other words, if TV(π, info
π,τ
i , info

π,τ
i+1

) is false then at least one of the two routers i

or i + 1 is faulty. Note that it could either be t-faulty or p-faulty (because it reports traffic information that

does not represent the actual traffic that transited during τ . In either case, a correct router r in π will put the
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2-path segment 〈i, i + 1〉 into suspectτr [π] set, and reliably broadcast the evidence of the failure detection,

([info
π,τ
i ]i, [info

π,τ
i+1

]i+1), where info
π,τ
i is digitally signed by router i and info

π,τ
i+1

is digitally signed by router

i + 1. Upon receiving this information, all other correct routers can evaluate TV(π, info
π,τ
i , info

π,τ
i+1

) as false

and detect the fault on the 2-path segment 〈i, i + 1〉.
Π2 is given in Figure 1. In Appendix 7.3, we show that Π2 is 2–Accurate and 2–FC Complete.

5.2 Overhead

The cost of the protocol Π2 comes from the collection of traffic information and the overhead of synchro-

nization, and consensus.

Collecting traffic information: In the worst case, a router has to collect traffic information for each

packet it has routed, independent of the size of Pr. As mentioned in Section 3.3, this overhead can be

reduced.

Size of Pr: The size of Pr indicates the number of different set of routers with which r synchronizes,

maintains traffic information, and exchanges such information using consensus. By construction, |Pr| is

O(k ×Rk+1) where R is the maximum number of links incident on a router. In practice, though, we expect

|Pr| to be much smaller. We have examined two network topologies, Sprintlink and EBONE, that were

measured by the Rocketfuel project [19] and counted the number of distinct path segments that a router

monitors for different values of k in bad(k) assumption.

The Sprintlink network consists of 315 routers and 972 links. On the average, a router has 6.17 links, and

the maximum number of links that a router has is 45. In Figure 2(a), the maximum, average and median

of |Pr| that a router is incident on and monitors is given for this network. The empirical results are much

smaller than the theoretical upper bound O(k × 45k+1). This is because, among other factors, a link state

routing protocol chooses only one path between any two routers.

It is worthwhile to compare this overhead with WATCHERS, in which each router maintains 7 counters for

each of its neighbors per each destination in the network. For this topology, implementing WATCHERS, a

router maintains 7× 6.17× 315 ≈ 13, 605 counters on average; and the largest number of counters a router

maintains is 7 × 45 × 315 = 99, 225.

Assuming the same weak threat model of WATCHERS, it is sufficient for a router, implementing Π2, to

maintain one counter for each path segment in |Pr|. For this topology, assuming bad(2), a router maintains

216 counters on average; and the largest number of counters a router maintains is 2, 172. If instead we have

bad(7), these numbers become 758 and 8,073.

Examining the EBONE network, we obtain similar results. This is a smaller network: it consists of 87

routers and 161 links. On average, a router has 3.70 links, and the maximum number of links that a router

has is 11.

Synchronization, Consensus and Reliable Broadcast: For each path segment π in Pr, a router r syn-

chronizes with all the routers in π to agree on when and for how long the next measurement interval τ will

be. Perfect synchronization would not be necessary in practice, since the traffic validation function TV

could be written to accommodate a small skew. It would probably be more efficient, though, to have all the

routers in the network synchronize with each other instead of having many more, smaller synchronization

rounds.

Each router in path segment π reaches consensus about the traffic information over π during time interval

τ . To do so requires digitally signing the traffic information, since otherwise the replication is not high

enough for consensus to be solvable. Thus, there is an issue of key distribution depending on the crypto-

graphic tools that are used. Finally, there must be enough path connectivity among the routers to support

consensus [14]. An open question is whether a weaker protocol, such as Crusader’s Agreement [6], can be

used in place of Consensus.

The final reliable broadcast will be done as part of the LSA distribution of link state protocol.
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6 Πk+2: A (k+2)–Complete and (k+2)–Accurate Protocol

Π2 has considerable requirements in terms of collecting traffic information, synchronization and consensus.

These requirements can be avoided by making the detection be less accurate.

The idea is to apply TV just for the end nodes of each path segment in Pr. For example, consider the 4-

path segment π = 〈r1, r2, r3, r4〉 where r1 and r4 are not faulty. Let info
π,τ
1

, info
π,τ
4

be the traffic information

that router r1 and r4 collect over during the agreed upon time interval τ . If at least one of the other routers

is t-faulty with respect to π during this interval, then TV(π, info
π,τ
1

, info
π,τ
4

) will be false. In this case, r1

suspects 〈r2, r3, r4〉. Similarly r4 suspects 〈r1, r2, r3〉.
We use this observation to construct a less accurate failure detector protocol. Again, the first issue to

address is over which paths a router should record information. For this approach each router needs only

keep track of each x-path segment of which it is one of the end nodes, for some value of x. The number

of x-path segments can grow very quickly with increasing x, and so x should be as small as possible. It

must be large enough so that any sequence of faulty routers will be surrounded by correct routers, as this is

necessary to detect faulty behavior.

If we assume that bad(k) holds, then the minimum value of x satisfying the above constraint is k + 2.

However, monitoring only k + 2-path segments is not sufficient. For example, given that bad(2) holds,

consider the 4-path segment π = 〈r1, r2, r3, r4〉 where r1 and r3 are correct; and r2 and r4 are faulty. In this

case, r1 and r4 monitors π but r4 can hide the fact that r2 is t-faulty by simply sending traffic information

to r1 such that TV(π, info
π,τ
1

, info
π,τ
4

) holds. If r1 were to instead also monitor the path 〈r1, r2, r3〉, then

r1 could detect r2’s faulty behavior. So, it is necessary for a router r to monitor all x-path segments for

x ≤ k + 2 of which r is an end.2

6.1 Protocol

Each router r maintains T , which is the current topology from which it derives its routing tables. As before,

each router r also maintains a set of path segments Pr that r monitors. For this protocol, though, Pr contains

all x−path segments such that r is one of the end nodes and 3 ≤ x ≤ k + 2. This is the smallest set of path

segments for which there is at least one path segment that has a correct router at the other end.

For each path segment π ∈ Pr , r synchronizes with the other end router of π and collect information

for the traffic passing through π during an agreed-upon interval τ . Router r then exchanges this traffic

information with the router r′ on the other end. If r then finds TV(π, info
π,τ
r , info

π,τ
r′ ) is false then there is at

least one faulty router faulty in π during τ . In particular, either r′ is p-faulty or some router in π is t-faulty.

Indeed, r detects π −〈r〉. However, when it announces this detection to the other routers, a correct router

receiving this information should suspect π since r might be faulty. For simplicity, we also require the router

r to suspect π.

Πk+2 is given in Figure 3. In Appendix 7.4, we show that Πk+2 is (k+2)–Accurate and (k+2)–

Complete.

6.2 Overhead

Πk+2 is not very expensive. The main cost of the protocol is due to collecting traffic information.

Collecting traffic information: Assuming that a router uses the same values of τ for all the path seg-

ments in Pr, in the worst case a router has to collect traffic information for each packet it routes, which is

independent of the size of Pr. The same holds for the previous protocol Π2. However, in Πk+2 this cost

can be reduced by using sampling. For each π in Pr, r can agree with the router r′ on the other end on a

random sampling pattern. The traffic they record on π would be determined by this pattern. Although the

2Another reason to monitor these path segments is that not all paths need be k + 2 long.
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faulty routers in π could share their information on sampling and only attack the packets not being sampled

by a faulty router, by construction there is a path segment in Pr whose other end is not faulty, and so by

using suitable encryption any intermediate faulty routers will not know which packets are being sampled for

traffic information. We don’t know of a similar method of sampling that could be used for Π2.

Size of Pr: The size of Pr indicates the number of routers with which r has to exchange traffic informa-

tion. |Pr| is O(min{Rk+1, N}) where, as before, R is the maximum number of links incident to a router

and N is the number of routers in the network. The second term, N, comes because a link state routing

protocol chooses only one path between any two routers.

For the same Sprintlink(US) network topology that was analyzed before, the maximum, average and

median of |Pr| that a router monitors in this protocol is given in Figure 2(b) for different values of k in

bad(k) assumption. As expected, these values are much lower than the theoretical upper bound, and are

also much lower than the corresponding values for Π2.

Synchronization, Consensus and Reliable Broadcast: The synchronization requirements for Πk+2 are

lower than for Π2. As for each path segment π that a router r monitors, r needs to agree with only the other

end router r′ of π.

In order to exchange traffic information, neither Consensus nor the good neighbor condition of WATCHERS

is required. The routers can use a pre-agreed upon round strategy to choose the values of τ . Then the end

routers can use the same path segment they are monitoring to exchange traffic information. This is because

if an intermediate router were to fail to forward the information, then one end would detect it, which would

lead to the path segment being suspected. Still, authentication is required to avoid impersonating attacks.

To prevent a faulty router impersonating a correct router, authentication of a failure detection announce-

ment is required, which can be done with digital signatures. As with Π2, the final reliable broadcast can be

done as part of the LSA distribution of link state protocol.

7 Discussion and Conclusion

We have given two protocols that represent two different points in a tradeoff among accuracy, completeness,

and protocol overhead. The expensive protocol, Π2, results in more accurate failure detections but it can

leave some t-faulty routers undetected. Meanwhile, with a small overhead, Πk+2 results in less accurate

detections but it detects an unreliable path-segment for each t-faulty router. There are several questions that

we have not answered, including the bounds that describe the exact nature of this tradeoff.

We have developed these protocols in conjunction with countermeasure protocols that isolate a part of the

network that contains compromised routers. We don’t discuss the countermeasure protocols here, but these

two protocols should be analyzed in conjunction with countermeasure protocols in terms of effectiveness in

isolating faulty routers that are introducing discrepancy in to the network traffic. For example, on the surface

it appears that we are exploiting a tradeoff between accuracy and protocol overhead when we developed

Πk+2 as a cheaper alternative to Π2. In fact, it does not appear that Πk+2 is less effective in isolating

compromised routers or is more likely to partition a network than Π2. However, we still don’t understand at

this point the exact nature of the tradeoff of decreasing accuracy.

We believe that the second protocol, Πk+2, has a low enough overhead that a practical version could be

built. We are currently working on such a protocol and traffic validation function, as well as a practical

countermeasure protocol that could be integrated with a link-state protocol with a small extension to the

protocol and link update messages.
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failure detector()

cobegin

for each path segment π ∈ Pr:

suspectτr [π] = { } // the set of suspicious path segments in π that r detects during τ

while (true) {
synchronize with all routers in π;

collect traffic information infoπ,τ
r about π for an agreed-upon interval τ ;

consensus ([info
π,τ
1 ]1, [info

π,τ
2 ]2, ..., [info

π,τ

|π| ]|π|);

// at this point all correct routers in π agree on the values of info
π,τ
i

for all i: 1 ≤ i < |π|:
if ¬TV(π, info

π,τ
i , info

π,τ
i+1

) then

suspectτr [π] = suspectτr [π] ∪{〈i, i + 1〉};

reliable broadcast ([info
π,τ
i ]i, [info

π,τ
i+1

]i+1);

}
coend

Figure 1: Π2, A 2–FC Complete and 2–Accurate Protocol
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Figure 2: Based on bad(k); max, average and median size of Pr that a router monitors in Π2, and Πk+2.

failure detector()

cobegin

for each path segment π ∈ Pr:

suspectτr [] = { } // the set of unreliable path segments that r detects during τ

while (true) {
synchronize with the router r’ at other end of π;

collect traffic information infoπ,τ
r about π for an agreed-upon interval τ ;

exchange [infoπ,τ
r ]r and [info

π,τ
r′ ]r′ with r’ through π;

if ¬TV(π, infoπ,τ
r , info

π,τ
r′ ) then

suspectτr [] = suspectτr [] ∪{〈π〉};

reliable broadcast ([π]r);

}
coend

Figure 3: Πk+2, A (k + 2)–Complete and (k + 2)–Accurate Protocol
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Appendix

7.1 WATCHERS

The WATCHERS protocol, which detects and isolates faulty routers based on a distributed network moni-

toring approach, was developed (and criticized) at the University of California, Davis from 1997 through

2000 [5, 2, 11].A faulty router is defined to be one that drops or misroutes packets or that behaves in an

arbitrary manner with respect to the WATCHERS protocol. Cheung and Levitt [5] first proposed to use a

conservation of flow principle (CoFP) to detect faulty routers. Basically, CoFP states that each input to a

router should either be absorbed at that router or passed along to another routers.

✣✢
✤✜x

✲
Tx,y

✲
Sx,y

✲
Dx,y ✣✢

✤✜y

✣✢
✤✜x

✛
Ty,x

✛
Dy,x

✛
Sy,x ✣✢

✤✜y

• Tx,y: for transit packets that pass through both x and y.

• Sx,y: for packets with source x that pass through y.

• Dx,y: for packets with destination y that pass through x.

Figure 4: Transit packet byte counters

As shown in Figure 4, each router counts how many bytes it has received and forwarded through each

link during an agreed-upon time interval. Each router then floods the snapshots of its counters. Once it has

these counters, it uses a two-phase protocol to determine which routers are faulty. The two phases are:

1. Validation: A router a compares, for each neighbor b, its counters for the a−b link with those of b. If

the counters do not agree, it detects its neighbor as faulty. Similarly, for each neighbor b and each of

its neighbor c, a compares the b − c link counters of b with those of c. If these counters do not agree,

then a knows that at least one of b and c is faulty, and so a does nothing further with b; it assumes that

b will detect c as faulty or vice versa.

2. Conservation of flow test: If the validation phase is passed successfully, then a checks if each neigh-
bor b preserves CoFP. It does so by computing the incoming transit flow Ib and the outgoing transit
flow Ob of router b:

Ib =
∑

∀c|b↔c

(Sc,b + Tc,b) Ob =
∑

∀c|b↔c

(Db,c + Tb,c)

If | Ib − Ob |> T for some threshold T then a diagnoses b as faulty.

In this scheme, each router maintains six counters for each of its neighbors.3 Thus, if R is the maximum

connectivity in the network, then the space cost per router of this protocol O(R). Since all counters are

compared over the same time interval, all of the routers periodically synchronize with each other.

✣✢
✤✜

a ✲

✣✢
✤✜

b ✲

✣✢
✤✜
✚✙
✛✘

c ✲

✣✢
✤✜
✚✙
✛✘

d ✲

✣✢
✤✜

e

Figure 5: Consorting routers

3In fact, each router maintains seven counters for each of its neighbors. The seventh counts misrouted packets by that neighbor.

Whenever this counter is nonzero, it is identified as a faulty router.
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Later, the architects of WATCHERS noticed that this algorithm was not sufficient to detect consorting

faulty routers [16], defined as the faulty routers launching a coordinated attack and cooperating to hide each

other’s malicious behavior. For example, in Figure 5, let a send packets to e through b, c, and d. If c and

d are consorting faulty routers then they can drop all packets and still hide this attack by simply increasing

their Dc,d counters rather than Tc,d. With the motivation of this scenario, Bradley et al. extended the results

in [5] and presented the final version of the WATCHERS protocol [2]. In this version, each router maintains

a separate set of counters for each neighbor and final destination of each packet. In the example, when a

sends the packet, it updates its Se
a,b counter. b updates its T e

b,c counter after forwarding the packet. c and

d now cannot simply drop the packets and hide the attack just by updating some of their counters. In this

scheme, the space required at a router is O(RN), where N is the total number of routers in the network.

WATCHERS’ was designed assuming:

• Link state condition: Good routers agree on the exact topology of the network.

• Good neighbor condition: Each router is a neighbor to at least one good router.

• Good path condition: Each pair of good routers has at least one path of only good routers connecting

them.

• Majority good condition: A majority of the routers are good. This is required to prevent faulty routers

from triggering a new round of the protocol.

Two years later, another group at UC Davis (Hughes et al. [11]), argued that CoFP is inappropriate to use

as a security mechanism in network protocols. They mentioned three general scenarios in which WATCHERS

does not work:

• Ones for which WATCHERS can be fixed with small modifications in the protocol such as source

routing, premature aging.

• Ones that are not addressed by WATCHERS such such as packet modification and packet fabrication.

These could be addressed with a more general traffic validation mechanism.

• Ones that represent attacks on the control plane such as ghost routers, and “hot potato” examples in

[11] where faulty routers announce incorrect LSPs.

Perhaps more interesting, they did not notice that WATCHERS failed to detect one case of consorting

routers. Consider two faulty routers c and d in Figure 5. Assume that there is another (unshown) set of

bidirectional links connecting a, b and e so that the good path condition is satisfied. Thus, all of the system

requirements are met. Assume that c drops packets it sends along the c − d path but it does not reflect this

in T e
c,d. Router d can have a correct value of T e

c,d that is inconsistent with c’s counter T e
c,d, which means that

their neighbors b and e will not perform conservation of flow test for c or d respectively. Router d, being

faulty, need not detect c as faulty.

Our concerns about WATCHERS differs from the criticisms of [11]. First, there is no specification of the

problem it solves, which makes it hard to compare with other protocols. It assumes a somewhat weak threat

model (routers can’t be arbitrary faulty) and it has some system requirements whose importance isn’t clear

(namely, global synchronization and the good neighbor condition). It doesn’t detect all faulty routers, and

the amount of state each router must maintain is bounded from above only by the total number of routers in

the network.
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7.2 Basic Theorems

Theorem 1 If a router r is t-faulty at some time t and bad(k) holds, then there exists a path segment π,

such that:

• r ∈ π

• r is t-faulty in π during some τ that contains t

• only the first and last routers of π are correct

• 3 ≤ |π| ≤ k + 2

Proof: If r is t-faulty at time t, then there is a path Π, such that r is t-faulty in Π during some τ that

contains t. From the system assumption, the source and sink routers of Π are correct, and so Π must contain

at least three routers to include the faulty router r.

For each path segment π of Π that contains r, r is t-faulty in π during τ . Given bad(k), r can be in a

group of no less than one and no more than k adjacent faulty routers. This group, by definition, is bounded

on both sides by nonfaulty routers.

Theorem 2 If, for a path segment π, TV(π, info
π,τ
h , info

π,τ
j ) is false where 1 ≤ h < j ≤ |π|, then there

exists a link 〈i, i + 1〉 such that TV(π, info
π,τ
i , info

π,τ
i+1

) is false and h ≤ i < i + 1 ≤ j.

Proof: By contradiction. Assume that there is no link 〈i, i + 1〉 such that TV(π, info
π,τ
i , info

π,τ
i+1

) is

false and h ≤ i < i + 1 ≤ j. For each link 〈i, i + 1〉 such that h ≤ i < i + 1 ≤ j, TV(π, info
π,τ
i , info

π,τ
i+1

) is

true. Since TV is transitive, TV(π, info
π,τ
h , info

π,τ
j ) is true, which leads us a contradiction.

7.3 Properties of Π2

Theorem 3 The protocol Π2 is 2-Accurate.

Proof: By construction, all suspicions are path segments of length 2. For a correct router s to suspect

〈π, τ〉, that router found TV(π, info
π,τ
i , info

π,τ
i+1

) to be false, for some π that contains i and i+1. Furthermore,

since the traffic information is digitally signed, the two routers did report this traffic information. Hence, at

least one of the two routers must be t-faulty or p-faulty.

Theorem 4 The protocol Π2 is 2–FC Complete.

Formally, if a router r is t-faulty at some time t, then all correct routers eventually suspect 〈π, τ〉 for some

path segment π : |π| ≤ 2 and some τ containing t such that there is a router r′ that was faulty in π at time t′

in τ and is fault-connected to r.

Proof: By Theorem 1, if a router r is t-faulty at time t, then there exists a path segment π′, such that:

r ∈ π′; r is also t-faulty in π′ during τ containing t; only the first and last routers of π′ (which we’ll call f

and ℓ) are correct and 3 ≤ |π′| ≤ k + 2.

By construction of Pf and Pℓ, both f and ℓ monitor at least one path segment π′′ such that {f, r, ℓ} ∈ π′′

and π′′ contains π′.

Both f and ℓ compute TV(π′′, info
π′′,τ
f , info

π′′,τ
ℓ ) to be false. By Theorem 2, there exists a 2-path segment

π = 〈i, i + 1〉 such that TV(π′′, info
π′′,τ
i , info

π′′,τ
i+1

) is false where f ≤ i < i + 1 ≤ ℓ. Since all routers

between f and ℓ are faulty and fault-connected to r, at least one of {i, i+1} is faulty and fault-connected to

r.

Both correct routers f and ℓ detects this failure and reliably broadcasts to all correct routers with the

evidence of info
π′′,τ
i , info

π′′,τ
i+1

that are digitally signed by routers i and i + 1, respectively. Eventually all

correct routers suspect π = 〈i, i + 1〉.
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7.4 Properties of Πk+2

Theorem 5 The protocol Πk+2 is (k+2)-Accurate.

Proof: If a correct router suspects 〈π, τ〉, then |π| ≤ a and some router r ∈ π was faulty in π during

τ .

For a correct router, to suspect a path segment π, router s that is either the first or last router of π announces

that ‘π is unreliable’.

1. If this announcement is incorrect, then s is p-faulty.

2. If this announcement is correct, then s found TV(π, info
π,τ
1

, info
π,τ

|π|
) to be false. Assume there exists

no faulty router in π exhibiting faulty manner with respect to π during τ . Thus, each router in π

forwards the traffic traversing π correctly. Since both router 1 and router s are correct, they collection

and exchange traffic information correctly. Thus, both routers will findTV(π, info
π,τ
1

, info
π,τ

|π| ) to be

true, which contradicts our assumption.

A correct router applies the protocol Πk+2 to x-path segments where x ≤ k + 2. Hence, Πk+2 is (k+2)–

Accurate.

Theorem 6 The protocol Πk+2 is (k+2)–Complete.

We show that if a router r is t-faulty at some time t, then all correct routers eventually suspect 〈π, τ〉 for

some path segment π : |π| ≤ k + 2 such that r was t-faulty in π at t, and for some interval τ containing t.

Proof: Let r have introduced discrepancy into the traffic passing through itself during τ containing t.

Then, from Theorem 1, there exists a path segment π such that:

• r ∈ π

• r is t-faulty in π during τ containing t

• only f and ℓ — the first and last routers of π — are correct

• 3 ≤ |π| ≤ k + 2

f and ℓ monitor π and apply the protocol Πk+2 for π. After exchanging their traffic information, both f

and ℓ compute TV(π, info
π,τ
f , info

π,τ
ℓ ) to be false and suspect π and disseminate this information to the all

other correct routers by reliable broadcast. Since π contains a t-faulty router r and the length of π might be

at most k + 2, the protocol Πk+2 is (k+2)–Complete.
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