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Optimal 3D-UAV Trajectory and Resource Allocation of DL UAV-GE
Links with Directional Antennas

Carles Diaz Vilor1 and Hamid Jafarkhani1

Abstract— Unmanned Aerial Vehicle (UAV) is a promising
technology to solve many new challenging problems. It provides
high maneuverability and control, low manufacturing cost with
respect to other flying technologies and many other features.
In particular, there is an increasing interest in UAVs in the
field of wireless communications, due to their capacity to carry
on transceivers and establish communication among UAVs, or
between UAVs and ground base stations/users. In this work,
we investigate a UAV deployment in which each flying vehicle
serves a set of users, carrying directional antennas. To do so,
we maximize the minimum downlink rate among the users that
a UAV serves. Due to the non-convexity of the problem, we
will divide it into four sub-problems. Afterwards, an iterative
algorithm is proposed to optimize the four sub-problems by
using the block coordinate descent method, successive convex
approximation and sequential quadratic programming. Simula-
tion results show that the addition of directional antennas results
in a better performance in terms of throughput compared with
omni-directional benchmarks.

Index Terms— UAV, trajectory optimization, directional an-
tennas, resource allocation, successive convex approximation,
sequential quadratic programming, block coordinate descent

I. INTRODUCTION

Due to the low-cost of producing Unmanned Aerial Ve-
hicles (UAVs), many fields are taking benefit from their
features. Their easy deployment, control and maneuverability,
make UAV technology a promising tool. In particular, there
are many advantages in using UAVs in a communication
system. UAVs can be equipped with wireless transceivers al-
lowing them to establish communication with Ground Equip-
ments (GEs), static Base Stations (BSs) or between them.
For example, UAVs can act as relay networks for ground
users [1] or may be used as mobile base stations to multicast
information [2]. Other promising approaches use UAVs to
collect data from ground sensors [3] or to offload ground base
stations [4]. The environment and the application determine
the static or dynamic nature of the UAV deployment. In this
work, we allow UAV movements, i.e., dynamic UAV deploy-
ment, and consider optimizing such movements/trajectories.
Another advantage of UAV technology is the dominance of
the line-of-sight (LoS) channel component [5], making the
analysis simpler.

Besides, the UAV deployment problem has significantly
attracted the scientific community due to the appearance
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of 5G and Internet of Things (IoT) scenarios. One of the
premises in 5G is the use of higher frequency bands and the
availability of more bandwidth. Consequently, the number of
users in each cell can be increased at a price of increasing
interference. There are many different approaches to mitigate
interference in multi-user systems; look at [6] [7] and the
references therein. One appealing alternative is the use of
directional antennas to avoid the interference to begin with.
While there has been some UAV work that utilize directional
antennas in the system model, to the best of our knowledge,
with the exception of our group’s recent work [8], a constant-
gain directional antenna channel model has been adopted.
However, more realistic directional antenna channel models
suggest that the antenna gain within the dominant direction
is not constant [9], which may result in complex non-convex
optimization problems. To overcome such complexity, we use
the successive convex approximation algorithm [10].

In this paper, we study a new downlink (DL) UAV-to-GE
system where UAVs are equipped with directional antennas as
shown in Fig. 1. The main motivation behind these arrays is
that they provide a higher gain and do not create as much
interference as omni-directional antennas. In addition, we
allow UAVs to share the same frequency band in a multi-
user set-up, despite causing interference. We also assume
that UAVs serve as mobile base stations and connect to the
backbone of a network. We consider the design of the down-
link where UAVs transmit data to different users. To maintain
fairness in the network, we maximize the minimum user rate
as the main objective of our work.

The rest of the paper is organized as follows: We introduce
a realistic and mathematically tractable model for our problem
in terms of channel and directional antennas in Section II.
We formulate a constraint optimization problem that takes
into account physical features like power and UAV movement
characteristics in Section III. In Section IV, we propose a
solution to the resulting non-convex optimization problem.
Furthermore, we provide numerical results in Section V.

II. SYSTEM MODEL

Fig. 1 depicts a system with M UAVs carrying directional
antennas. Let us assume that the UAVs’ ground projections
are given by Q(t) = {qm(t) ∈ R2 , m = 1, 2, ...M , t ∈
[0, T ]} and fly at altitudes H(t) = {hm(t) ∈ R , m =
1, 2, ...M , t ∈ [0, T ]} , where T represents the flying time of
the UAVs. While UAVs with directional antennas have been
studied in the literature to improve the performance, in most
cases, the antenna gain is assumed to be a constant within
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Fig. 1. Multi-UAV scenario with directional antennas.

the 3dB beamwidth and 0 otherwise. Such a model ignores
the strong dependency between the gain and the LoS angle
[8], which is taken into account in this work.

To overcome the difficulty of an optimization problem
whose variables are continuous in time, we discretize the
time index. To simplify the problem, the time horizon T is
equally divided into N time slots, such that T = δN . We
also introduce the discrete-time index n = t

δ . To ensure the
accuracy of the time quantization, the following inequality
must be met: max{Vm,qδ , Vm,hδ} << Hmin where Vm,q
and Vm,h represent the maximum velocity in the horizontal
and vertical axis, respectively, and Hmin is the minimum
UAV altitude. As such, the continuous-time representation of
the horizontal and vertical UAV trajectory, qm(t) and hm(t),
can be approximately denoted by qm[n] and hm[n]. Finally,
we can re-write the discrete set of 2-D UAV locations as
Q = {qm[n] ∈ R2 , m = 1, 2, ...,M , n = 1, 2, ..., N}. Pro-
ceeding similarly with the altitude of each UAV, we define the
set: H = {hm[n] ∈ R , m = 1, 2, ...,M , n = 1, 2, ..., N}.
As previously mentioned, in this work we assume all UAVs
share the same frequency band, and therefore GEs could
suffer from interference as depicted in Fig. 1. Moreover, as
we focus on the DL, UAVs serve GEs using a time-division-
multiple-access (TDMA) scheme, so that there is a need
to introduce a set of variables that determine the UAV-GE
association at each time instant. Let us define the following
binary variables A = {ak,m[n] ∀ k = 1, 2, ...,K , m =
1, 2, ...,M , n = 1, 2, ..., N} as:

ak,m[n] =

{
1 if, at n, UAV m is associated to GE k

0 otherwise

To physically ensure that each UAV is only associated
to one GE and vice-versa, variables in A must satisfy∑
k ak,m[n] ≤ 1 ∀m,n and

∑
m ak,m[n] ≤ 1 ∀k, n. Without

loss of generality, we consider the static position of the
GEs as wk ∈ R2. A common channel model approach
for these scenarios, is using a free space path-loss model.
The reason why many authors use such model is because
as shown in [11], air-to-ground channels are mainly dom-
inated by the line-of-sight (LoS) component. Also, both
3GPP and ITU [12] recommend using such air-to-ground
models for UAV base stations. Finally, the channel gain

between UAV m and GE k at time n, is given by PL,dB =

10 log10A − 10β log10

(
dk,m[n]
d0

)
where A is a unit-less

constant depending on the antenna characteristics, d0 is a
reference distance, dk,m[n] =

√
||qm[n]−wk||2 + h2m[n]

is the Euclidean distance between the m-th UAV and the
k-th GE, while β ≥ 1 refers to the terrestrial path-loss
exponent. With this, we can express the received power at GE
k from UAV m, transmiting at power pm[n], as: pk,m[n] =

pm[n]Gm(wk)Gk A d
β
0d
−β
k,m[n], where Gm(wk) and Gk are

the antenna gains of the UAV and GE, respectively. Here,
we assume perfect omni-directional patterns at the receiver
side, Gk = 1 . On the other hand, we introduce the
notion of angle-dependent antenna gains for UAV trajectory
optimization problems in the following manner. We model
the UAV directional antenna gains as:

Gm(wk) = Do(rm)cosrm(θm(wk)) = D0(rm)
hrmm [n]

drmk,m[n]
(1)

The model depends on rm ≥ 1, which defines the maximal
directivity of the antenna at θ = 0 as: D0(rm) = 2(rm + 1)
[9]. Note that rm = 0 is the same as having an isotropic
antenna. For simplicity, we ignore side-lobes, which are rep-
resented by cos(lθ) patterns. The larger the parameter rm, the
narrower the beam and therefore the directivity of the antenna
would increase. That is why if we are interested in covering
a precise area, it is better to use narrow beams. To avoid
overloading the notation, we define ρ0(rm) = D0(rm)A dβ0
and γm = rm+β

2 . Finally, the signal to interference and noise
ratio (SINR) of the k-th user, receiving information from the
m-th UAV can be calculated as:

Γk,m[n] =

pm[n]ρ0(rm)hrmm [n]

(||qm[n]−wk||2 + h2
m[n])γm∑

i 6=m

pi[n]ρ0(ri)h
ri
i [n]

(||qi[n]−wk||2 + h2i [n])
γi

+ σ2

∀k,m, n (2)

where σ2 is the noise power at the receiver side, follow-
ing a circularly symmetric complex Gaussian distribution
CN (0, σ2). Thus, the instantaneous achievable rate of User k
is:

Rk[n] =

M∑
m=1

ak,m[n] log2(1 + Γk,m[n]) (3)

and therefore the average achievable rate over the N time

slots is: R̄k = 1
N

N∑
n=1

Rk[n]

III. PROBLEM FORMULATION

Our aim is to find a 3D-trajectory such that we maximize
the minimum average rate to the GEs using directional
antennas at the transmitter side. The problem may be subject
to different constraints, as the ones related to the velocity
of the UAVs or their initial and final positions. In addition,
not only we optimize with respect to the set Q and H , but
also we take into account the user scheduling, i.e., A and
the power set, defined by P = {pm[n] ∀m,n}. Therefore,



the overall optimization problem (P1) can be formulated as
follows:

maximize
η,A,Q,H,P

η (4a)

subject to R̄k ≥ η ∀k (4b)∑
k

ak,m[n] ≤ 1 ∀m,n (4c)∑
m

ak,m[n] ≤ 1 ∀k, n (4d)

0 ≤ ak,m[n] ≤ 1 ∀m,n, k (4e)
pm[n] ≤ Pmax ∀m,n (4f)

||qm[n+ 1]− qm[n]||2 ≤ (Vm,qδ)
2 ∀m,n

(4g)

||hm[n+ 1]− hm[n]||2 ≤ (Vm,hδ)
2 ∀m,n

(4h)
qm[1] = qm[N ] ∀m (4i)
hm[1] = hm[N ] ∀m (4j)

||qm[n]− qj [n]||2 ≥ d2min ∀ n,m, j 6= m
(4k)

Hmin ≤ hm[n] ≤ Hmax ∀ n,m (4l)

As previously mentioned, we aim to maximize the mini-
mum average rate among all users. The combination of (4a)
and (4b) achieves that goal. (4c) and (4d) take into account
the one-to-one mapping between a UAV and a GE. Constraint
(4e) is a relaxed version of the initial binary assumption made
for A. Such a relaxation simplifies the problem formulation
significantly. Once the relaxed problem is solved, we can
recover the binary values as thoroughly discussed in the
literature [13]. In addition, (4f) guarantees that UAVs do not
transmit beyond their maximum power. We have also added
realistic constraints related to the trajectory. Constraints (4g)
and (4h) represent the maximum velocity of the UAVs along
the horizontal and vertical planes, respectively. Constraints
(4i) and (4j) enforce the initial and final positions of the UAVs
to be the same, while (4k) prevents from the collision between
UAVs, as guarantees a minimum safety distance. Finally, (4l)
determines the range for the UAV altitudes.

The addition of directional antennas makes the optimization
problem even more challenging. (P1) is highly non-convex
because of constraints (4b) (both with respect to qm[n],
hm[n] and pm[n]), (4g) and (4k) (with respect to qm[n]). To
solve it, we decompose the problem into four sub-problems:
(i) scheduling optimization with fixed UAV trajectory, al-
titude and transmit power (ii) UAV trajectory optimization
with fixed scheduling, altitude and transmit power (iii) UAV
altitude optimization with fixed scheduling, trajectory and
transmit power (iv) power optimization with fixed schedul-
ing, UAV trajectory and altitude. Once the solution of each
problem is obtained separately, we apply a block coordinate
descent method to iteratively maximize the minimum user
rate until convergence [14].

IV. PROPOSED ALGORITHM

A. Scheduling Optimization
First, we solve the UAV-GE association problem, given by

the set of variables A. For fixed Q, H and P , the UAV-GE
association problem (P2) can be formulated as:

maximize
η,A

η (5a)

subject to (4b), (4c), (4d) and (4e). Since the objective
function and the constraints are linear with respect to the
optimization variables, we can efficiently solve it using stan-
dard linear programming (LP) techniques, such as the interior
point method [15].

B. UAV Trajectory Optimization
For any fixed A, H and P , the UAV trajectories qm[n]

can be optimized solving the following problem:

maximize
η,Q

η (6a)

subject to (4b), (4g), (4i) and (4k). Since constraints (4b) and
(4k) are non-convex, there is no efficient way to optimally
solve it. That is why we resort to Successive Convex Ap-
proximation (SCA) techniques [10]. SCA methods alternate
between two steps: (i) approximate the original non-convex
functions by its first-order Taylor expansion and (ii) find the
optimal solution of the approximated convex problem.

At this point, we decompose the instantaneous rate,
Rk,m[n], as the difference between the following two terms:

Rk,m[n] = R̂k,m[n]− R̃k,m[n] (7)

where:

R̂k,m[n] = log2

(
M∑
i=1

pi[n]ρ0(ri)h
ri
i [n]

(||qi[n]−wk||2 + h2
i [n])γi

+ σ2

)
(8)

and

R̃k,m[n] = log2

(
M∑
i 6=m

pi[n]ρ0(ri)h
ri
i [n]

(||qi[n]−wk||2 + h2
i [n])γi

+ σ2

)
(9)

Although the term R̂k,m[n] is non-convex with respect to
qm[n], it is convex with respect to ||qm[n]−wk||2. Therefore,
we can apply the fact that any convex function is lower-
bounded by its first-order Taylor expansion at any point of
its domain [10]. By doing so, we obtain a lower bound for
R̂k,m[n] around ||qpi [n]−wk||2 as follows:

R̂k,m[n] ≥
M∑
i=1

−Apk,i[n]
(
||qi[n]−wk||2−||qpi [n]−wk||2

)
+Bpk,m[n] = R̂lbk,m[n] (10)

where coefficients Apk,i[n] and Bpk,m[n] are:

Apk,i[n] =

( pi[n]ρ0(ri)h
ri
i [n] )γi

(||qpi [n]−wk||
2 + h2

i [n])
γi+1( M∑

j=1

pj [n]ρ0(rj)h
rj
j [n]

(||qpj [n]−wk||
2 + h2j [n])

γj + σ2
) log2(e) (11)



and

Bpk,m[n] = log2

(
M∑
i=1

pi[n]ρ0(ri)h
ri
i [n]

(||qpi [n]−wk||2 + h2
i [n])γi

+ σ2

)
(12)

Note that R̂lbk,m[n] is a concave function of UAV positions.
For R̃k,m[n], by introducing the following slack variables
S = {Sk,i[n] = (||qi[n]−wk||2 + h2i [n])γi ∀n, i 6= m}, we
obtain a more tractable constraint by making R̃k,m[n] convex
with respect to Sk,i[n].

R̃k,m[n] = log2

( M∑
i 6=m

pi[n]ρ0(ri)h
ri
i [n]

Sk,i[n]
+ σ2

)
∀k (13)

As a result, a new non-convex constraint appears: Sk,i[n] ≤
(||qi[n] −wk||2 + h2i [n])γi ∀ n, i 6= m. It can be verified,
without loss of optimality, that all constraints in the previous
inequality can be met with equality. Applying SCA to the
new non-convex constraint and to (4k), the final approximated
problem (P3) can be re-written as:

maximize
η,Q,S

η

subject to
1

N

∑
∀m,n

ak,m[n]

(
R̂lbk,m[n]−

log2

( M∑
i 6=m

pi[n]ρ0(ri)

Sk,i[n]
+ σ2

))
≥ η ∀k

Sk,i[n] ≤ (||qpi [n]−wk||2 + h2
i [n])γi+

2γi(||qpi [n]−wk||2 + h2
i [n])γi−1

(qpi [n]−wk)T (qi[n]− qpi [n]) ∀i 6= m

d2min ≤ 2(qpm[n]− qpj [n])T (qm[n]− qj [n])−
||qpm[n] − qpj [n]||2 ∀ n,m, j 6= m

||qm[n+ 1] − qm[n]||2 ≤ (Vm,qδ)
2 ∀m,n

qm[1] = qm[N ] ∀m

(14)

It can be verified that both the objective function and the
constraints are convex; thus, (P3) can be solved by standard
optimization solvers. Since we obtain a lower bound on the
original problem, the solution to (P3) is also a solution to the
original non-convex problem.

C. Altitude Optimization

Next, we consider the height optimization. For any fixedA,
Q and P , the UAV altitudes hm[n] can be optimized solving
the following problem:

maximize
η,H

η (15a)

subject to (4h), (4j) and (4l). We propose to approach this
problem by means of the so-called Sequential Quadratic
Programming (SQP). The objective function and the
constraints are three times continuously differentiable in
their domain, and therefore, we can compute the Gradient

and Hessian with respect to the altitudes. The SQP method
is an iterative way to solve non-convex problems in which
the solution for the next iteration is obtained by means
of solving a quadratic problem. Apart from being easy to
solve, SQP can reflect the non-linearities of the original
problem. An important issue in SPQ methods is the choice
of the appropriate quadratic functions. To take into account
non-linearities, SQP methods use a quadratic model of the
Lagrangian function as the objective. First, we define θ =
[η h1[1] h1[2], . . . , h1[N ] h2[1], . . . , h2[N ], . . . , hM [N ]]T .
Then, the Lagrangian can be written as:

L(θ,λ,ν) = η +

K∑
k=1

λk

(
1

N

N∑
n=1

M∑
m=1

ak,m[n] log2

(
1 +

+

pm[n]ρ0(rm)hrmm [n]

(||qm[n]−wk||2 + h2
m[n])γm∑

j 6=m

pj [n]ρ0(rj)h
rj
j [n]

(||qj [n]−wk||2 + h2
j [n])

γj + σ2

)
− η

)
+

M∑
m=1

N∑
n=1

λ(m−1)N+n+K

(
(Vm,hδ)

2 − ||hm[n+ 1] − hm[n]||2
)

+

M∑
m=1

N∑
n=1

λ(m−1)N+n+K+MN

(
Hmax − hm[n]

)
+

M∑
m=1

N∑
n=1

λ(m−1)N+n+K+2MN

(
hm[n]−Hmin

)
+

M∑
p=1

νp
(
hp[N ]− hp[1]

)
(16)

where λ and ν refer to the inequality and equality Lagrangian
multipliers. Note that the original problem, (15a), and maxi-
mizing L(θ,λ∗,ν∗) with respect to θ subject to (4h) and (4j)
are equivalent problems, where the symbol ∗ denotes optimal.
Since we do not know the value of the multipliers, estimating
λ and ν can be included in the iterative process. Finally, the
second order Taylor expansion of the Lagrangian around θp

is given by:

LQ(θ,λ,ν) ≈ L(θp,λp,νp) + ∇Lθ(θp,λp,νp)(θ − θp)

+
1

2
(θ − θp)THLθ (θp,λp,νp)(θ − θp)

where HLθ
refers to the Hessian of the Lagrangian with

respect to the parameter vector θ. To avoid overloading
with formulas, we call gi(θ) i = 1, 2, . . . ,K + 3MN and
hj(θ) j = 1, 2, . . . ,M the inequality and equality con-
strained functions associated to their respective multiplier.
Then, our new QP problem, called (P4), is:

maximize
θ

LQ(θ,λ,ν)

subject to ∇gi(θp)(θ − θp) + gi(θ
p) ≥ 0 , 1 ≤ i ≤ K + 3MN

∇hj(θp)(θ − θp) + hj(θ
p) = 0 , 1 ≤ j ≤M

(17)



For (17) to be efficiently solved by standard optimization
solvers, we actually need a PSD Hessian. In this work, we use
the BFGS method to create a positive definite quasi-Newton
matrix approximation of the Hessian [16]. Authors in [17]
provide more details on the BFGS method and a convergence
analysis of the SQP methods.

D. Power Optimization

Last but not least, there is a need to optimize with respect
to the transmit power of the UAVs. For any fixed A, Q and
H , the power optimization problem can be written as:

maximize
η,Q

η (18a)

subject to (4b) and (4f). Again, to tackle the non-convexity
of the instantaneous rate with respect to the power, we resort
to SCA. Proceeding in a similar manner as for the trajectory
optimization problem, we obtain the following approximated
convex problem (P5):

maximize
η,P

η

subject to
1

N

∑
n,m

ak,m[n]
(
R̂k,m[n]− R̃ubk,m[n]

)
≥ η ∀k

pm[n] ≤ Pmax ∀m,n
(19)

where we have approximated R̃k,m[n] by its first order upper
bound due to its concavity with respect to pm[n]:

R̃k,m[n] ≤
M∑
i6=m

Epk,i[n]
(
pi[n]− ppi [n]

)
+ F pk,m[n] = R̃ubk,m[n]

(20)

where:

Epk,i[n] =

ρ0(ri)h
ri
i [n]

(||qi[n]−wk||2 + h2
i [n])

γi( M∑
l6=m

p
p
i [n]ρ0(rl)h

rl
l

[n]

(||ql[n]−wk||2 + h2
l
[n])γl

+ σ2
) log2(e) (21)

and

F pk,m[n] = log2

(
M∑
i 6=m

ppi [n]ρ0(ri)h
ri
i [n]

(||qi[n]−wk||2 + h2
i [n] )γi

+ σ2

)
(22)

Once the solutions to the four sub-problems are obtained,
we alternatively optimize them until some convergence crite-
rion is met, given the convergence analysis provided in [13]
and [17].

V. NUMERICAL RESULTS

In this section, we provide numerical results evaluating
the performance of our proposed algorithms. To justify the
use of directional antennas instead of isotropic patterns, we
first consider a Single-UAV scenario. Our aim is to show that
before extending the problem to a Multi-UAV scenario, we
are capable of outperforming the rates that isotropic patterns

provide to the GEs. To do so, we first consider a scenario
with K = 6 GEs randomly generated in a 1000 × 1000m2

area. The path loss exponent is set to β = 2, and therefore
γ1 = r1+2

2 . We fix d0 = −30 dB and σ2 = −110 dBm
with a Pmax = 0.1W and A = 1. To maintain fairness in the
comparison, we fix the altitude to the same value h1[n] =
100m ∀n. The maximum UAV velocity is set to Vm,q = 50
m/s and we sample every δ = 0.2s. To initialize the algorithm
and define qp1[n], we first calculate the mass center of the
users cK = 1

K

∑
wk ∀n. Afterwards, we distribute each

point in qp1[n] around a circle of radius
√
Vm,qδ and center

cK . Fig. 2 provides the rates for different UAV antenna setups
and flying time (T ) as a function of the number of iterations,
k. A larger T results in a higher rate. The main message of
the Single-UAV scenario is that after convergence, the use
of directional patterns, e.g. r ≥ 1, can greatly increase the
rates compared with omni-directional antenna UAV systems
(r = 0).

Fig. 2. Minimum achieved rates as a function of the Iteration number for
different values of T and r, in a Single-UAV scenario with 6 GEs.

We also provide simulation results for M = 2 UAVs, where
the altitude optimization problem is taken into account. We
select Hmin = 100m, Hmax = 300m and K = 6 GEs
in the same squared area as the previous case. We set the
minimum safety distance between UAVs to dmin = 20m.
For both UAVs, we set ri = 2 and the flying time to
T = 20s. Again, Pmax = 0.1W, A = 1, d0 = −30 dB,
Vm,q = Vm,h = 50 m/s and σ2 = −110 dBm. To initialize
the altitudes, we set them to hm[n] = Hmin+Hmax

2 ∀n,m.
For the initial trajectories, we first run K-Means to obtain
M centroids. After computing the covariance matrix of each
cluster, we create the ellipsoids associated to a Mahalanobis
radius of s = −2 log(1 − p), where we select p = 0.3, to
construct the initial ellipsoidal trajectories. Fig. 3 shows the
initial trajectories for both UAVs (dashed-red and dashed-
blue) and the ones obtained after iteratively solving the four
sub-problems (solid-red and solid-blue). We also include the
union of the −3 dB coverage areas at each time, taking into
account the optimal altitude and power obtained at that time.
As a result of trajectory optimization, UAVs choose paths



and heights to avoid interfering with each other. We present
the time index of some trajectory points as a reference to
indicate how the two UAVs coordinately move to increase
their distance and reduce the interference. The solution to
the optimal altitudes provides more insight on how UAVs
should move. Fig. 4 demonstrates the tendency to fly at
Hmin when being near a GE. As a consequence, the rate is
increased as the antenna is pointing directly to the user under
the UAV. However, during transitions between GEs, both
UAVs tend to increase their altitudes and therefore increase
the beamwidth/coverage areas to provide service to more
than one GE. In fact, the minimum rate we obtain when
including the altitude optimization problem is: η = 0.204
bps/Hz whereas if UAVs stay at an altitude of 200m, η =
0.105 bps/Hz, meaning that the use of directional antennas
with 3D-trajectory optimization reduces interference without
compromising the rate. We also include Fig. 5, showing the
2D-velocity variation of each UAV, respectively. Fig. 5 shows
that UAVs tend to decrease their speed at some intervals.
Those intervals correspond to the times where the UAV is
near a GE and therefore it spends more time flying around to
provide more service. After that, UAVs increase their velocity,
up to Vmax,q , to reach the next GE as fast as possible.

Fig. 3. 2-UAV 6-GE scenario with the covered areas by each UAV.

Fig. 4. UAV altitudes corresponding to the optimal solution in Fig. 3.

VI. CONCLUSION

This paper has introduced the notion of UAV trajectory
optimization with directional antennas. By exploiting the
UAV mobility, a more general formulation has been proposed
to maximize the minimum rate GEs can achieve. We have

Fig. 5. UAV velocities corresponding to the optimal solution in Fig. 3.

included the solution with respect to the scheduling, 3D-
trajectory and power, which are iteratively optimized by
means of block coordinate methods, SCA and SQP. Simula-
tion results show that the trajectory with directional patterns
outperforms that of using isotropic antennas in terms of
supported rate.
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