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Abstract

A constructivist neural network model is presented that learns
the past tense of English verbs. The model builds its architec-
ture in response (o the leamning task in a way consistent with
neurobiological and psychological evidence. The model out-
performs existing connectionist and symbolic past tense mod-
els in terms of learning and generalization behavior, and it dis-
plays a U-shaped learning curve for many irregular verbs. The
trained model develops a modular architecture with dissoci-
ations between regular and irregular verbs, and lesioning the
different pathways leads to results comparable with neurologi-
cal disorders. It is argued that the success of the model is due to
its constructivist nature, and that the distinction between fixed-
architecture and constructivist models is fundamental. Given
this distinction, constructivist systems provide more realistic
models of cognitive development.

Introduction

Models of learning the English past tense have in the past ten
years become representative of different theories of language
acquisition and cognition in general. While connectionist ap-
proaches (e.g., Rumelhart & McClelland, 1986; MacWhin-
ney & Leinbach, 1991; Plunkett & Marchman, 1993) have
maintained that both regular and irregular past tense forms
can be produced in a homogeneous architecture by a single
process, dual-route accounts (Pinker, 1991) argue for two dis-
tinct mechanisms in different pathways, where regular forms
are produced by a rule and irregular forms are stored in an as-
sociative memory. More recently, however, modular connec-
tionist (Westermann & Goebel, 1995) and homogeneous sym-
bolic (Ling & Marinov, 1993) models have been proposed.
While no working dual-route models exist (see Nakisa
et al., 1997, for a theory of why such models do not work),
most of the existing homogeneous models rely on a fixed, pre-
defined architecture which is chosen specifically for the task
at hand. However, as is argued below, such fixed-architecture
systems are problematic both on neurobiological and learn-
ing theoretic grounds and might be limited in their usefulness
as models of cognitive development. In this paper a construc-
tivist neural network (CNN) model is presented that learns the
English past tense by growing its architecture in response 10
the specific learning problem (see also Westermann, 1997).
The performance of this network is evaluated against three
existing models of past tense learning: the original network
by Rumelhart & McClelland (1986, R&M), the improved
backpropagation model by MacWhinney & Leinbach (1991,
Mé&L), and the Symbolic Pattern Associator (SPA, Ling &
Marinov, 1993), a symbolic decision-tree model. It is shown
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that the present constructivist model outperforms the existing
symbolic and subsymbolic models both in terms of psycho-
logically realistic learning and generalization behavior. Fur-
ther, it is shown that the constructivist growth process leads
to a modular architecture in which regular and irregular verb
forms are dissociated and can be selectively impaired by le-
sioning different pathways of the network.

In the next section, the neurobiological and learning theo-
retic arguments for constructivist models of cognitive devel-
opment are reviewed. Then, the network algorithm that was
used in the simulations in this paper and the precise experi-
mental setup are described. The Results section is concerned
with the performance of the network in terms of learning,
generalization, U-shaped learning, and emergent modularity
leading to a dissociation between regular and irregular verbs.
These results are then discussed in the final section.

Constructivist Cognitive Development

Cognitive development has recently been argued to closely
correlate with the structural development of the cortex, with
an increase in structural complexity leading to an increase in
cognitive capacities (Quartz & Sejnowski, 1997). Moreover,
the initial functional restrictions of a child’s cognitive capac-
ities seem to be essential for reaching adult competence (e.g.,
Elman, 1993). In order to understand the principles of cogni-
tive development it is therefore important to take the mecha-
nisms of brain development into account.

Recent work in this area has provided evidence that the de-
velopment of cortex is activity dependent on different levels
(see e.g., Fields & Nelson, 1992). Activity can determine the
polarity of neurons, the rate and direction of dendritic and
axonal growth, and the formation of synapses (e.g., Quartz
& Sejnowski, 1997). Stabilization and loss of these synapses
is also activity dependent (Fields & Nelson, 1992). It has
also been shown that the cortex is not innately prespecified
but readily adapts to process afferent signals from different
domains (O'Leary, 1989). These results indicate that neural
development proceeds in a constructivist way, with the neural
organization of the brain being moditied through constructive
and regressive events by complex interactions between ge-
netic predispositions and environmental inputs,

Cognitive development which is based on cortical devel-
opment will thus proceed in the same constructivist manner.
where activity dependent architectural modifications lead to
increasingly complex cognitive representations.

Most significantly, research in learning theory (Quartz,
1993) has shown that incorporating activity dependent struc-


mailto:gert@cogsci.ed.ac.uk

tural modification into a learning system is not just a way
to tune performance, but leads to entirely different learning
properties of that system, evading many of the problems that
are associated with fixed-architecture systems. Any a priori
choice of architecture severely limits the class of problems
that can be learned by a model, which is often manifested in
a trial-and-error approach to choosing the number of hidden
units in a network for a specific task and which has led to
the rejection of the concept of “learning” in favor of a “fixa-
tion of belief™ on innate representations by some (e.g., Fodor,
1980). Constructivist systems, however, can overcome these
limitations (Quartz, 1993).

Given the fact that the cortex develops in an activity-
dependent way, and taking into account that systems devel-
oping in this way are fundamentally different from fixed-
architecture systems, plausible cognitive models should like-
wise adapt their architecture in a way which is specific to
the learning task. Such models can be called constructivist,
reflecting their proximity to the constructivist developmen-
tal theories of Piaget in which structural modification of the
learning system occurs in response to environmental input
(see also Mareschal & Shultz, 1996).

The CNN which is presented in this paper models the ac-
quisition of the English past tense in a constructivist process.
The CNN is compared with other existing models, allowing
for the empirical assessment of the suitability of constructivist
models for the simulation of cognitive development.

The Constructivist Neural Network Model

For the cognitive simulations described here, a modified ver-
sion of the constructivist Supervised Growing Neural Gas
(SGNG) algorithm (Fritzke, 1994) was used because it in-
corporates constructive and regressive events which depend
on the learning task, and because it provides mechanisms to
produce outputs based on both the structure and on the iden-
tity of input signals, conforming to both neurobiological and
psychological evidence.

The SGNG algorithm constructively builds the hidden
layer of a radial basis function (RBF) network. RBF net-
works are different from backpropagation networks in that
the hidden units have a Gaussian (‘bell-shaped’) rather than a
sigmoid activation function. This allows each hidden unit to
be active only for inputs within a certain range (as opposed
to being active for all inputs above a certain threshold), thus
forming a receptive field (rf) for a region of the input space.
All input vectors are positioned in this space according to
their feature values. and the hidden units are placed at differ-
ent positions to cover the whole space. Hidden units will be
activated by an input if it falls within their rf, and the closer
the input is to the center of the rf the more the unit will be
activated.

The problem in building RBF networks is to decide on
the number and positions of the hidden units. The SGNG
algorithm solves this problem by constructing the hidden
layer during learning, adding units when and where they are
needed.

The CNN starts with just two units in the hidden layer,
cach covering roughly half of the input space (see figure 1).
The network tries to learn the task with this architecture
(by adjusting the weights with e.g., gradient descent, the

perceptron-rule, or quickprop), and when learning no longer
improves performance, a new unit is inserted. The place
where the new unit is inserted is determined by the classifica-
tion error resulting from treating inputs within one rf as sim-
ilar: the rf that previously caused the highest error is shrunk
and the new unit is inserted next to it. The idea here is that
a unit which produces a high output error is inadequate, and
therefore more structural resources are needed in that area.

Figure 1 shows a hypothetical start and end state in a two-
dimensional input space. While initially only two rfs cover
the whole of the space, later hidden units have been inserted
with different densities across the space to account for the
specific learning task.
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Figure 1: Receptive fields covering the input space at the be-

ginning (left) and the end (right) of learning.
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Figure 2: The initial architecture of the CNN,

Figure 2 shows the CNN architecture. The input layer takes
a phonological representation of the verb stem, and the out-
put layer has one unit for each possible output class (see be-
low). The hidden layer initially consists of only two units but
is constructed during learning. There are direct connections
from the input to the output layer, and each hidden unit is
fully connected to both input and output layers.

The direct input-output connections allow the past tense

classes to be produced based on the structure of the input

stem. By contrast, the (growing) hidden layer acts as a mem-

ory: it produces an output based on the identity and not the

structure of the input. Initially, though, similar verbs will fall
into the same rf even when they require different outputs (e.g.,

hear and fear requiring heard and feared, respec-

tively). During the training of the network new rfs would be
inserted in the area of such verbs, and eventually similar verbs
with dissimilar past tense forms will be discriminated (see
fig. 1). Where similar verbs have the same output class, how-
ever, (e.g., look and cook with looked and cooked),
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no new rfs will be inserted and a single rf will cover sev-
eral verbs without producing an output error. Thus, the inter-
nal structure of the network will adapt to reflect the learning
task. While taking advantage of a “starting-small” approach,
this task-dependent adaptation is in contrast to other develop-
ing systems that incorporate a pre-programmed development
such as an extension of short-term memory span, where the
final architecture is independent from the specific problem
being learned (see e.g., Elman, 1993).

Experiments

In order to allow for comparisons between different models,
the present simulations employed the corpus from MacWhin-
ney & Leinbach (1991), which was also used by Ling & Mari-
nov (1993) in their SPA model. This corpus consists of 1,404
stem/past tense pairs of English verbs. The verbs were tran-
scribed using UNIBET and, following MacWhinney & Lein-
bach (1991), represented in a template format containing slots
for consonants and vowels. Table 1 shows examples of the
phonological encoding of some verbs. Each phoneme was
represented by ten features, such as voiced, labial, dental
for consonants, and front, center, high for vowels. A tem-
plate consisted of 18 slots, resulting in a 180-bit feature vec-
tor for the representation of each verb. For the output the
verbs were classified according to how they form their past
tense (adapted from Pinker & Prince, 1988). For example,
the class /u/ — /U/ contained the verbs understand,
withstand, overtake, stand, shake, and take, and
the class /»r/ — /6/ comprised string, strike, swing,
stick. fling, cling, spin, hang, and dig. This clas-
sification resulted in 23 output classes, one for regular and 22
for irregular verbs. Each output unit of the network corre-
sponded to one output class.

Table 1: Some examples for the template-encoding of verbs.

bring br=l-Noserossrmaa
explain ---I-ksp--l--e-n--
recognize r--E-k--I-gn-3-z--
Template CCCVVCCCVVCCCVVCCC

From the original corpus of 24,802 tokens, 8,000 tokens
were randomly extracted according to the frequency of their
past tense forms. The structure of the resulting corpus is sum-
marized in table 2.

Table 2: The structure of the training corpus.

[ I Types [ Tokens |
regular 943 (88.4%) | 4519 (572%) |
irregular 123 (11.6%) | 3421 (42.8%)

| total 1.066  (100%) | 8,000 (100%)

Training was non-incremental: the whole training set of
8,000 stem/past-tense-class pairs was presented to the net-
work in random order at each epoch. Hidden units were in-
serted depending on the learning progress (see previous sec-
tion), and the network was tested for its performance on the
training set prior to each insertion.

Results
This section describes the results of the learning experiment.

Learning

The network was trained for 4,055 epochs, at which point
it correctly classified 99.6% (939 out of 943) of the regu-
lar verbs and 97.6% (120 out of 123) of the irregular verbs.
Table 3 compares the learning results of the CNN with the
R&M, M&L, and SPA models. While all models performed
equally well for the regular verbs, the CNN outperformed the
other models on the irregular verbs, closely followed by the
symbolic SPA. This success seems to be a direct consequence
of the ability of the CNN 10 allocate structure where needed,
and thus specifically for the harder-to-learn irregular verbs.
The precise structure of the trained CNN is analyzed below.

Table 3: Performance on training of the four compared
models (extended from Ling & Marinov, 1993).

R&M  M&L  SPA CNN
Verb types 420 1,650 T,038 | T.066
Percentage correct
Total 970 993 992 99.3
Regulars 98.0 1000 99.6 99.6
Irregulars 95.0 907  96.6 97.6

Generalization to Novel Verbs

The trained CNN was tested on its generalization to novel
verbs. As Ling & Marinov (1993) have pointed out, test-
ing the generalization ability of a model on existing verbs is
misleading because irregular verbs are by their nature unpre-
dictable. Therefore, in line with Ling & Marinov, the CNN
was tested on a set of 60 pseudo-verbs which had also been
tested on human subjects (Prasada & Pinker, 1993). These
verbs consisted of blocks of ten which were prototypical, in-
termediate and distant with respect to existing regular and ir-
regular verbs.
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Figure 3: Generalization of the CNN to different classes
of pseudo-verbs, in comparison with humans, the SPA, and
R&M's network (extended from Ling & Marinov 1993). P =
Prototypical, I = Intermediate. D = Distant.

The results of the generalization experiments are shown
in figure 3. The CNN had a stronger tendency to regular-
ize novel “irregular” pseudo-verbs than human subjects and
performed similarly to the SPA. For “regular” pseudo-verbs
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the network performed very similar to human subjects and
better than both the SPA and the R&M models: 29 of the
30 pseudo-regulars were regularized, and the onc remain-
ing verb, pleem, was equally strong classified as regular
(pleemed) and belonging to the sleep-slept class, thus
yielding plemt.

Developing Network Architecture

At the end of training the CNN had constructed a hidden layer
consisting of 397 rf units, i.e., on average each rf accounted
for 2.69 verbs. However, a closer analysis of the distribution
of these rfs over the input space showed a large difference
between regular and irregular verbs: the 123 irregular verb
types were distributed over 107 rfs, i.e., each irregular verb
claimed on average 87% of an rf (ranging from one to three
verbs per field). By contrast, the 943 regular verb types were
distributed over just 347 rfs (some of which covered both reg-
ular and irregular verbs), i.e., each regular verb claimed on
average just 37% of an rf, with the number of regular verbs in
a single rf ranging from one to twelve. This result clearly
shows the advantage of constructivist as opposed to fixed-
architecture models: a constructivist model can allocate its
resources where they are needed, and there is no need for an
a priori choice of the number of hidden units. Each hidden
unit processes only a small subset of the verbs and can there-
fore learn the correct output efficiently. The final network
architecture reflects the properties of the learning problem;
in this case, a number of large rfs for the regular verbs and
small, fine-grained rfs for the more difficult irregular verbs.

U-shaped Learning Curve

The most striking feature of past tense acquisition in chil-
dren is the U-shaped learning curve: an unlearning of previ-
ously correct irregular past tense forms and their subsequent
re-learning (e.g., saw—seed/sawed—saw), and a plausi-
ble model should follow this well-documented (Marcus et al.,
1992) course. However, most of the existing models have
been unable to provide a realistic account of the emergence
of the U-shaped learning curve: whereas R&M relied on the
assumption that the learning environment of a child changes
from a first stage of mainly irregular verbs to a second stage
of mainly regular verbs, and chose their training data accord-
ingly, M&L’s model could not account for any unlearning of
irregular forms. In the SPA, U-shaped learning was achieved
by the explicit manipulation of a learning parameter that con-
trolled how many times a verb had to be seen in order to be
memorized as an exception—if it occurred less often, it was
overregularized. Besides “hard-wiring” the theory that chil-
dren possess such a variable parameter, and using the result-
ing U-shaped learning curve as evidence for the same theory,
this procedure also established a perhaps unrealistically direct
relationship between the frequency of a verb and its overreg-
ularization. Plunkett & Marchman (1993) were able to show
U-shaped learning in an environment where the training cor-
pus was slowly expanded. However, it might be more plau-
sible to assume that while the learning environment of the
child is static, the child himself is undergoing changes that
will influence the processing of the environmental input (see
also Elman, 1993). Therefore, it was interesting to investi-
gate the behavior of the CNN in a non-incremental training
environment.

In fact the CNN displayed a U-shaped learning curve for
many of the irregular verbs in the training corpus. A pe-
riod of overregularization (i.e., a classification of the verb as
belonging to the regular class) was preceded by a phase of
correct classification; this was the case e.g., for saw, sold,
told, said, rang, etc. At other points during training,
many of these verbs were classified equally strongly as regu-
lar and as irregular, which corresponds to a regularization of
the past tense form, e.g., sawed and sanged. The overall
overregularization rate decreased from 25% very early on in
training to 2.4% towards the end, although there were large
differences between individual verbs. While no across-the-
board U-shaped learning affected all irregular verbs simulta-
neously, corresponding to psycholinguistic evidence (Marcus
et al., 1992) there was a phase ol overregularizations at indi-
vidual times for different verbs.

As with children, frequent verbs in the CNN were overreg-
ularized much less often than infrequent ones. The ten most
frequent irregulars were overregularized on average only in
0.16% of all cases, whereas the ten least frequent ones had an
average overregularization rate of 37.7%.

A further result corresponding to child language data
concerned the protection from overregularization by simi-
lar sounding irregulars: the three verbs hang, slide, and
bear were overregularized on average in 7.3% of all cases,
whereas ring, spring, and sing, despite comparable to-
ken frequencies, were overregularized in only 0.9% of all
cases.

The CNN model was thus successful in modeling the
whole of the U-shaped learning curve including a correct pro-
duction of past tense forms before their subsequent overregu-
larization, and its performance corresponded to the details of
children’s past tense learning.

How does the U-shaped learning in the CNN occur? Since
the verb set was held constant throughout training, the change
in performance could only be a consequence of the inter-
nal reorganization of the network architecture. Initially, the
network had only two hidden units, each of which roughly
covered about half of all verbs with their varied past tense
classes, and the CNN therefore had to rely on the direct
input-output connections for producing the correct past tense
classes. Given these restrictions the CNN initially learned
the past tense classes of fewer irregulars but of most regular
verbs.

During the training process, however, the CNN gradually
grew its hidden layer, adding more receptive fields which lead
to the reorganization of the internal representations (mainly
of irregular verbs) from a structure-based (in the direct input-
output connections) towards an identity-based (in the hidden
layer) representation.

This construction process lead to a phase in which produc-
tion of the irregular classes was partly taken over by the hid-
den layer, but the few receptive fields were large and included
regular as well as irregular verbs, thereby causing errors even
for irregular verbs that had initially been produced correctly
through the direct input-output connections. This phase in
the CNN, in which representations are relocated to insuffi-
cient resources, corresponds to the overregularization stage
in children. It is evident that with this mechanism, ditferent
verbs would be overregularized at different times, depend-
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Figure 4: The learning curves for the regular and irregular
past tense classes in the intact network and with a lesioned
hidden layer.

ing on whether they had been allocated to an individual re-
ceptive field. The process of internal reorganization of the
network’s representations becomes evident in figure 4, which
shows the learning curves for the regular and irregular past
tense classes both in the intact CNN and after lesioning the
hidden layer (by deleting the connections from the hidden to
the output layer) when only the direct input-output connec-
tions were used.

Initially, with only a few hidden units, lesioning the hidden
layer did not have a strong effect on network performance:
with or without the hidden layer, initially about 60% of the
irregular and 80% of the regular past tense forms were clas-
sified correctly. As the hidden layer grew, however, lesioning
lead to a marked decrease in performance for the irregular
verbs only, resulting in only 16% being classified correctly at
the end of training when the hidden layer was lesioned. This
result indicates that the representations of even initially cor-
rectly classified irregular verbs were shifted from the direct
connections into the growing hidden layer, leading in many
cases to the temporarily incorrect production of initially cor-
rect classes. The internal reorganization of the CNN due to
a constructivist adaptation of its structure could thus account
for the unlearning of initially correct outputs and therefore
the U-shaped learning curve in the acquisition of the English
past tense.

There was almost no effect of lesioning the hidden layer on
the regular verbs, however, suggesting a developed dissocia-
tion between regular and irregular verbs. This dissociation is
discussed in the next section.

Emergent Modularity

The functional dissociation between regular and irregular
verbs that can be observed in psycholinguistic experiments
but also in certain neurological disorders such as Specific
Language Impairment (SLI) and Williams Syndrome, has led
to the postulation of different pathways and subsystems for
the production of these forms (e.g., Pinker, 1991). Pinker
argued that irregular forms were produced in an associative
memory whereas regular forms relied on the application of a
mental rule. This rule was assumed to be independent from
environmental input, possibly having a genetic basis.
However, models in which these two functionally distinct

pathways have been hard-wired have been shown to work
only with specific, unrealistic assumptions about the structure
of a corpus with regular and irregular forms (Nakisa et al.,
1997).

I regulars

* 1 arregulars

Hidden-Output
Connections Lesiwoned

Input-Output

Figure 5: The effect of lesioning different pathways on the
production of regular and irregular past tense classes.

In the CNN, a dissociation between regular and irregular
verbs emerged as a direct outcome of the constructivist pro-
cess. During learning, the two pathways, the direct input-
output connections and the hidden layer, developed to take
on specific functions. While the regular past tense class was
produced through the direct connections, the irregular classes
were produced mainly in the developing hidden layer. The
double dissociation between regular and irregular verbs was
demonstrated by lesioning both pathways selectively (fig-
ure 5): lesioning the hidden layer in the fully trained network
left production of the regular verb class intact (97.45% cor-
rect) but severely impaired the production of irregular classes
(only 16.26% correct). 90% of the irregular errors in this case
were overregularizations, and in the other cases the network
failed to produce any output class, By contrast, lesioning
the direct input-output connections left production of the ir-
regular classes only slightly impaired (83.74% correct) but
had a marked effect on the regulars (only 32.13% correct).
This functional modularity was not pre-specified, but devel-
oped solely through the construction of the hidden layer in
response to the learning task and the resulting shift of the in-
ternal representations of the irregular verbs into this hidden
layer.

These results might account for the language deficits ob-
served in SLI and Williams Syndrome: SLI patients often
have problems with converting present tense to past tense
forms, with more pronounced difficulties for the regular
forms. Pinker (1991) cited a study in which SLI children
supplied 85% of irregular past tense forms but only 30% of
regular forms correctly. In the CNN a very similar result is
achieved by lesioning the input-output pathway. SLI could
thus consist in a failure to develop or utilize this pathway.

Similarly, children suffering from Williams Syndrome
seem to retrieve words in a deviant fashion and do not show
the normal tendency to favor high-frequency words (Pinker,
1991). The syndrome can be accompanied by high overregu-
larization rates, an effect which in the CNN can be explained
with a partial or total lesioning of the receptive field hidden
layer, or an insufficient development of this layer.

Discussion

The simulations described in this paper give empirical evi-
dence that constructivist neural networks can model the ac-
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quisition of the English past tense more closely than other
models which rely on fixed architectures. The ability of the
CNN to develop its structure in response to the specifics of
the learning task not only allowed it to allocate more struc-
ture to the difficult-to-learn irregular verbs, but also led to a
U-shaped learning curve based on the internal reorganization
of representations, and to an emergent functional modularity
with dissociations between regular and irregular verbs. The
model thus closely followed the developmental profile ob-
served in children and reflected in its final architecture prop-
erties that can be found in adults through psycholinguistic ex-
periments and in neurological disorders. Together with the
theoretical arguments for constructivist learning these results
offer compelling evidence for the usefulness of constructivist
models in the study of cognitive development.

It is interesting to note that the previous model which
came closest in its performance to the CNN is the sym-
bolic SPA. However, this model is also constructivist: it
dynamically builds a decision tree based on the training
data. The results of the present simulations suggest that the
fact that the SPA outperformed the R&M and M&L models
was not primarily due to its symbolic architecture, but was
based on its constructivist nature. Therefore, the dichotomy
fixed-architecture vs. constructivist might be more fundamen-
tal than the traditional symbelic vs. subsymbolic distinction
which previous past tense models have aimed to emphasize.
Direct comparisons between symbolic and subsymbolic mod-
els can thus only be made either within or without the con-
structivist framework, with constructivist models conforming
better to evidence from neural and cognitive development.

Although the SPA and the CNN performed similarly in
terms of learning and generalization behavior, the CNN pro-
vided better explanations of U-shaped learning and showed
an emergent modularity with dissociations between verb
types. This might be due to the advantages of subsymbolic
learning where low-level interactions between simple units
lead to emergent complex behavior.

The results from both the present and previous simula-
tions contradict the view that connectionist models entail
a homogeneous architecture. The CNN develops a modu-
lar architecture with dissociations between verb types solely
on the basis of a single learning mechanism. However,
not all constructivist models will necessarily develop such a
modular architecture. Therefore, a model of cognitive de-
velopment should be classified along the three dimensions
symbolic—subsymbolic, modular-homogeneous, and fixed-
architecture—constructivist. ~ Given this three-dimensional
classification matrix, the present paper suggests that subsym-
bolic, modular constructivist systems provide the most realis-
tic models of cognitive development in the child.
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