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Abstract. Analogous to an experiment, a Structural Health Monitoring (SHM) system may be thought
of as an information-gathering mechanism. Gathering the information that is representative of the struc-
tural state and correctly inferring its meaning helps engineers (decision-makers) mitigate possible losses by
taking appropriate actions (risk-informed decision-making). However, the design, research, development,
installation, maintenance, and operation of an SHM system is an expensive endeavor. Therefore, the deci-
sion to invest in new information is rationally justified if the reduction in the expected losses by utilizing
newly acquired information is more than the intrinsic cost of the information acquiring mechanism incurred
over the lifespan of the structure. This paper investigates the economic advantage of installing an SHM
system for inference of the structural state, risk, and life-cycle management by using the value of infor-
mation analysis. Among many possible choices of SHM system designs (different information-gathering
mechanisms), pre-posterior decision analysis can be used to select the most feasible design. Tradition-
ally, the cost-benefit analysis of an SHM system is carried out through pre-posterior decision analysis that
helps one evaluate the benefit of an experiment or an information-gathering mechanism using the expected
value of information (EVoI) metric. This paper proposes an alternate normalized metric that evaluates the
expected-reward ratio (benefit/gain of using an SHM system) relative to the investment-risk (cost of SHM
over the lifecycle). The analysis of evaluating the relative benefit of various SHM system designs is carried
out by considering the concept of the value of information (VoI), by performing pre-posterior analysis, and
the idea of a perfect experiment is discussed.

∗Corresponding author.
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1 Introduction
Structural health monitoring (SHM) [1] aims to assess the current structural health state in such a

way to enable stakeholders to make informed performance, maintenance, and/or repair decisions, based
on appropriate analyses of in-situ measured data. This goal is achieved by a modern paradigm involving
periodically-spaced or continuous data acquisition, extraction of relevant features to establish the damage
detection or classification hypothesis, and evaluating the hypothesis under all the sources of uncertainty and
variability that inevitably corrupt the monitoring and inference process. SHM is integrated with predictive
degradation/failure and demand/loads models ("prognosis") into a decision-making framework for optimal
life cycle management of the structure [2]. However, the benefits related to improved decision-making
that an SHM system is expected to bring to life cycle management are balanced by the costs that it incurs.
Fundamentally, the evaluation of an SHM system essentially depends on its design; at the core of any
well-designed SHM system is a data acquisition system that relies on (usually an array of) deployed sensors
to initiate the information workflow from which ultimate decisions about operations, maintenance, and other
life cycle actions will be made. Therefore, an SHM system can be thought of as an information-gathering
mechanism, yet there are costs to design, research, develop, install, maintain, and operate the SHM system.
Therefore, along the lines of the discussion by Howard [3], agreeing to invest in new information is rationally
justified if the reduction in the expected losses by utilizing newly-acquired information is more than the
intrinsic cost of the information acquiring mechanism incurred over the lifespan of the structure. Along the
lines of this logic, a lot of focus has been on evaluating the value of SHM by using Bayesian pre-posterior
decision analysis and value of information (VoI) as a metric to evaluate the benefit of an SHM system in
various application problems [4, 5, 6, 7, 8, 9, 10].

One of the primary objectives of this paper is to evaluate the economic advantage of using a particular
SHM strategy at two levels. First, we quantify whether the SHM strategy leads to an expected-reward
to investment-risk ratio greater than unity for an instance of decision making, considering a fixed time
occurrence. For this scenario, we consider an initial one-time cost of designing and installing an SHM
system as the investment-risk (money spent). As a consequence of acquiring new information from the
SHM system that ostensibly informs an updated understanding of the structural state, we expect to make
better maintenance decisions at a given instance in time. We expect that the decision supported by newly
acquired data is better than the decision made without any data, and it leads to a higher average cost-saving
(or the expected-reward) than the money spent on the SHM system itself (the investment-risk). Second, we
consider the life cycle of the structure where the state of the structure evolves with time, and maintenance
decisions are to be made over time. In this scenario, in addition to the initial design and installation costs,
we also consider the cost of maintaining and operating an SHM system over the life span of the structure.
Making optimal data-informed (obtained from an SHM system) maintenance decisions over the lifespan of
the structure is expected to lead to relative cost-savings as compared to making maintenance decisions not
backed by continuously updated data. A feasible SHM system design is the one that leads to higher cost
savings as a consequence of better decision-making than the cost of design, installation, maintenance, and
operation of the SHM system over the lifespan of the structure. In other words, an economically beneficial
SHM system is the one that yields a expected-reward to investment-risk ratio greater than unity. This paper
is based on this key philosophy. We propose an expected-reward to investment-risk ratio as an alternative
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metric to the Expected Value of Information (EVoI) traditionally used in pre-posterior decision analysis.
To evaluate the expected-reward to investment-risk ratio, we need a decision-making framework. In

this paper, we use Expected Utility Theory [11, 12], further including the behavioral risk profile of the
decision-maker modeled using an individual’s utility vs. loss/wealth function as proposed in Chadha et al.
[13]. We consider the case where the degree of damage in the structure is completely characterized by a
continuous state parameter. Due to numerous real-world uncertainties, it is often challenging to accurately
estimate the unknown state parameter. Therefore, the state parameter is assumed unknown and not directly
measurable, and hence is probabilistically inferred from observable sensor data. We also assume a specific set
of maintenance strategies are already predefined for the structure of interest and have base consequence costs
predefined by the stakeholder (organization or individual) for making an assessment for every possibility of
the true structural state. We include the stakeholder’s risk perception in the decision-making process, i.e., the
valuation about the outcome of an action, using risk profiling. The utility of a decision-maker is subjective
and hence considers the fact that different decision-makers mentally assign a different importance factor
(or in economic terms, the utility or risk-intensity) to the seriousness/urgency in taking necessary actions
with the increasing intensity of structural damage. An individual’s utility vs. loss/wealth (the risk-profile)
may be used to obtain the modified consequence-cost of performing maintenance strategies. The approach
herein incorporates a layer of human psychology on selecting appropriate maintenance strategies that not
only depend on the posterior distribution of unmeasurable damage state but also consider the behavioral
risk-profile of the decision-maker.

Our goal is to evaluate the economic advantage of deploying an SHM system before actually installing
it. In other words, we shall only deploy a feasible SHM system that leads to anexpected-reward to investment-
risk ratio greater than unity. This can also be formulated into a design optimization problem: among all
the possible SHM system designs, choose/decide the optimal SHM system design as the one that maximizes
the expected-reward to investment-risk ratio. This is a useful problem because we don’t have the SHM
data yet. To evaluate the benefit of an SHM system, we must consider all relevant uncertainties in the
data and arrive at an expected value of the reward (averaged over all the possibilities of data, process,
etc.). This type of analysis is called pre-posterior decision analysis. It is a decision-making framework
that helps the decision-maker to analyze the potential benefit of gathering additional information without
actually performing an experiment or installing an information-gathering system. This pre-posterior analysis
helps us decide: (i) if the investment should be made to gather additional information, and (ii) if multiple
mechanisms for acquiring the information are available, which source of the information is the best.

We consider the inland waterway navigation infrastructure as an application case. The locks and
dams that comprise the inland waterway navigation infrastructure consist of multi-hundreds of billions of
dollars of capital investment in a major economic transportation corridor [14, 15, 16]. The United States
Army Corps of Engineers (USACE) spends further billions of dollars in maintaining and operating this
infrastructure, where the unscheduled shutdown of these assets and dewatering for inspection or repair is
very costly [17, 18, 19]. The need for SHM to help facilitate maintenance and operations appears strong,
but highly constrained budgets suggest SHM system allocation efforts must be optimized to meet risk-based
constraints and yield the maximum possible value of information. This serves as a strong motivation to
apply pre-posterior decision theory to analyze the VoI acquired through an SHM system (or the Value of
SHM). Given the maintenance and repair policies proposed by the organization, pre-posterior decision
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analysis can be used to arrive at an SHM system design that can be supported by the budgetary constraints
of the organization while reducing total life cycle cost.

Within a navigation lock system, miter gates are one of the most common locking gates used; their most
common failure mechanisms include loss of load-transferring contact in the quoin block (boundary-related
damage) [20]. Loss of contact leads to the formation of a gap between the gate and the wall quoin blocks at
the bottom of the gate. The amount (or length) of loss of contact at the bottom of the gate is referred to as
gap length. We assume that the degree of damage of the miter gate is completely characterized by this gap
length. A high fidelity finite element model (FEM) of the gate is used to infer the gap length using a network
of strain gauges. To perform the pre-posterior decision analysis, we have to consider all the possibilities
of upstream and downstream loads, gap length evolution with time, and the uncertainties in strain-gauge
readings. This would require us to run the FEM numerous times which is computationally prohibitive. We
address this problem by using a Gaussian Process Regression (GPR) machine learning model of the gate that
is trained using the strain-gauge measurements obtained from limited FEM runs. Finally, we demonstrate
an example where we compare three strain-gauge network designs including two randomly placed sensors
with different numbers of sensors and one KL divergence-based optimized sensor network design (proposed
in [21]). We also investigate the impact of various risk-profiles of decision-makers on the value of SHM.

Six new contributions to this field are discussed in this paper: (1) we introduce a normalized measure
of quantifying the value of SHM using expected-reward to investment-risk ratio; (2) we consider the benefit
of SHM at two levels: (i) cost-saved as a consequence of better decision-making at any instance of time; (ii)
net cost saved over the lifespan of SHM system usage; (3) along with the impact of the design of an SHM
system towards the value it creates, we have also considered the influence of behavioral tendencies (biases
and heuristics) of the decision-makers on the value of SHM; (4) two equivalent approaches to quantify the
benefit of an SHM system are detailed, first using EVoI or equivalently using expected-reward to investment-
risk ratio, and secondly using the idea of a perfect experiment; (5) we propose a relative risk-adjusted
reward metric to quantify the relative benefit of one feasible design relative to another feasible design; and
(6) the elucidated framework is applied to a real-world case study involving SHM and maintenance of a
miter-gate.

The rest of the paper is arranged as follows. Section 2 briefs the concepts of the expected utility
theory, prior and posterior decision theory, and pre-posterior decision analysis. Section 3 details the Value
of SHM considering an instance of decision-making. Section 4 describes the demonstration problem and
models the risk profile of the decision-maker. Section 5 details the Value of SHM for lifecycle cost analysis
considering the entire lifespan of the structure. Section 6 demonstrates a numerical example that applies the
decision-making theoretical framework to the miter gate problem. Finally, Section 7 concludes the paper.

2 Decision making framework
To evaluate the economic VoI and worthiness of an information-gathering SHM system, we first need

to detail the following:

1. A decision-making and VoI analysis framework.

2. Description of the structure, the information-gathering system, and the data to be acquired.
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Once these items are defined, the following questions are investigated:

1. Is installing an SHM system beneficial relative to the absence of any SHM system?

2. Which SHM system yields the maximum expected-reward to investment-risk among the given set of
available SHM system designs?

3. Is an information-theory based Kullback-Leibler (KL)-divergence (or any other objective function)
based optimal sensor design economically better than a random sensor network design in terms of
life cycle cost management?

4. What is the impact of the decision-maker’s risk-profile on the value of SHM system?

5. Given an SHM system design, the base consequence cost of making maintenance decisions, the
risk-profile of the decision-makers, what is the possible range of SHM system cost for it to be feasible?

2.1 Prior and posterior decision analysis
We begin by describing the decision-making framework. In previous work [13], we detailed an

Expected Utility Theory based decision-making workflow to select an optimal action (specifically to choose
a maintenance strategy) for a predefined set of choices considering the decision maker’s behavioral risk
profile modeled by an individual’s utility vs. loss function. The same framework is adapted as the decision-
making model for this paper. Therefore, we abundantly borrow the results from Chadha et al. [13] for this
section. We briefly describe the behavioral psychology weighed decision-making framework in a form
suitable for the current application. We start by presenting some preliminary definitions and notations.
The real number space in d dimensions is represented by ℝd , with ℝ1 ≡ ℝ. A random variable Y is a
real-valued function defined on a discrete or a continuous sample space SY and is assumed to take values in
a measurement space ΩY ∈ ℝd , such that Y ∶ SY ⟶ ΩY ∈ ℝd . Lower case letters y represent realizations
of the random variable Y , such that y ∈ ΩY . The probability density function is represented by fY (y). For
a random variable Y following a Gaussian distribution, with the mean �y and the standard deviation �y, we
write the following:

fY (y) =
1
�y
�
(y − �y

�y

)

= 1

�y
√

2�
e
1
2

(

y−�y
�y

)2

;

Y ∼ N(�y, �2y).

(1)

The expected value of a function g(y) with respect to random variable Y is denoted by EY [g(y)]. The
random variable can be any order tensor. No symbolic distinction is made for different dimensions d of the
measurement space and the random variable. The vector-dimensionality of a random variable is contextual
and is defined as needed.

Consider an SHM based decision-making problem (like choosing a maintenance action) that depends
on the state parameter(s) (defined later). Let Θ denote a random variable that represents the uncertain state
parameter with the state parameter spaceΩΘ, such that � ∈ ΩΘ is a realization of Θ. The decision space (for
example: set of different maintenance actions, or equivalently, the set of the corresponding damage labels)
is represented by ΩD such that ΩD = {d0, d1,⋯ , dn} and � ∈ ΩΘ. Here, the elements of ΩD, i.e., di ∈ ΩD,
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represent a damage label that has a corresponding maintenance action associated with (or designed for)
it. The decision-maker attempts to answer the question: For a given probability distribution of the state
parameter, what damage rating must be assigned to the structure that leads to an optimal maintenance
strategy?

To answer this question, we first define the uncertainty in the state parameter � by its probability
density function fΘ(�). Let �true represent the true value of the state parameter, and we assume that it can’t
be measured. The numerical value of �true falls in the domain ΩΘ. To predict the optimal decision, we
need to minimize the average loss or the expected risk (also called the Bayes risk functional) arising as a
consequence of making the decision. To arrive at the Bayes risk, we define the loss/cost functionL

(

di, �true
)

that defines the total loss or regret as a consequence of making the decision di considering all the possible
values of the true state parameter �true ∈ ΩΘ. It gives an extrinsic cost involved with decision-making. The
expected loss or the Bayes risk Ψprior(di) is then defined as

Ψprior(di) = EΘ
[

L
(

di, �true = �
)]

= ∫ΩΘ
L
(

di, �true = �
)

fΘ(�) d�. (2)

We understand that in the definition of the Bayes risk in Eq. (2), we consider all the possible values of the
true gap length. From here on, unlike Eq. (2), we omit writing �true = � in the argument of the cost function
while evaluating the expected value over the state-parameter space ΩΘ. The optimal decision, denoted by
dprior ∈ ΩD, is the one that minimizes the Bayes risk, or

dprior = argmin
di

Ψprior(di). (3)

The prior distribution fΘ(�) embeds our prior knowledge of the state parameter � before any additional
information is available. Obtaining the optimal decision using Eq. (3) is called a prior decision analysis.

We now consider a scenario where additional information is available. For sake of argument, we
assume that the new information is obtained by a mechanism z (for example an SHM system). Let ΩXz

represent the continuous measurement (or additional information) space, such that xz ∈ ΩXz
. LetXz denote

the random variable representing the new/additional measurement/information obtained by the mechanism
z. Designing and installing the information gathering system incurs an intrinsic cost C(z). Therefore, the
sum total of the extrinsic and the intrinsic cost functions (C(z) +L(di, �true)) is used for the further decision
analysis. With the availability of additional information, we define our Bayes conditional risk Rz(di; xz)
(conditioned on the new information/data xz) and obtain the optimal decisiondz as:

Rz(di; xz) = EΘ|Xz

[

L(di, �) + C(z)
]

= ∫ΩΘ

(

L(di, �) + C(z)
)

fΘ|Xz
(�|xz) d�

dz(xz) = argmin
di

Rz(di; xz).
(4)

In the equation above, the quantity Rz(di; xz) represents Bayes conditional risk defining the expected value
of loss as a consequence of making a decision di considering the posterior distribution of the state parameter
fΘ|Xz

(�|xz) (conditioned on the new information obtained by the mechanism z). If the new information
is representative of the current state of the structure, the decision obtained using Eq. (4) is anticipated to
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be better than the decision obtained by the prior analysis using Eq. (3) because additional information xz
reduces the uncertainty and updates the decision-makers understanding of the true state parameter through
inference. Utilizing equation set (4) to obtain the optimal decision is referred to as posterior decision
analysis. The subscript (.)prior and (.)z in Bayes risk and the optimal decision are meant for the prior analysis
and the posterior decision analysis respectively (considering the new information obtained by the mechanism
z). We realize that the posterior fΘ|Xz

(�|xz) is non-causal. The state parameter can be thought of as a
cause with measurement being its effect. In this regard, inferring the state parameter (cause) given the
measurement (effect) is non-causal.

2.2 Pre-posterior decision analysis
As was discussed in the previous section, obtaining good quality new information about the system

is consequential in making a better decision. However, acquiring information/data bears a cost. The
pre-posterior decision analysis is the framework that helps the decision-maker to analyze the potential
benefit of gathering additional information without actually performing an experiment or installing an
information-gathering system. The decision-maker can pay to obtain the measurement made by the SHM
system, or carrying out an inspection, or observe the outcome of an experiment. However, carrying any of
these activities bears cost (like the cost to design the SHM system, sensor, and maintenance costs, labor
costs to carry out inspection, testing costs, etc.). Acquiring the new information, regardless of mechanism, is
meaningful and economical if and only if the additional cost required to gather the information is outweighed
by the reduction in the expected losses evaluated by considering the additional information. This observation
can be thought of as an asset integration tenet of expected utility theory as noted in [22]; in other words,
the prospect of paying to acquire new information is acceptable if and only of the utility resulting from
experimenting exceeds the utility evaluated without it. Thus, pre-posterior analysis helps us decide if
the price should be paid to gather additional information, and, if multiple mechanisms for acquiring the
information are available, which source of the information is the best.

To describe the framework, let ΩZ represent the space of all the possible information acquiring
mechanisms or systems (synonymously called experiments from here on), such thatΩZ = {z0, z1, z2,⋯ , zm}.
Let Xzi represent the random variable denoting the outcome/measurement of the data obtained by carrying
out the experiment zi, such that xzi ∈ ΩXzi

. Here z0 represents the null case of carrying out no experiment,
such thatXz0 = {�}. Let C(zi) represent the intrinsic cost of conducting the experiment zi, with C(z0) = 0.
For the experiment zi, the cost of making a decision dj for a given state-parameter � is given by the sum
of extrinsic and intrinsic costs (L(dj , �true) + C(zi)). The total cost (L(dj , �true) + C(zi)) is independent of
the outcome xzi because the cost of conducting the experiment does not change with the outcome. Given
the experiment-outcome pair (zi, xzi), the remaining calculation is the same as posterior decision analysis
discussed in Section 2.1, with an exception of using the cost (L(dj , �true) + C(zi)) in place of the cost
L(dj , �true) in the definition of Bayes conditional risk as defined in Eq. (4). Therefore, the most optimum
decision for a given experiment-outcome pair (zi, xzi) is then given as:

dzi(xzi) = argmindj
Rzi(dj; xzi), where, (5a)

Rzi(dj; xzi) = EΘ|Xzi

[

L(dj , �) + C(zi)
]

. (5b)
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In the equation above, Rzi(dj; xzi) represents the Bayes conditional risk for the experiment-outcome pair
(zi, xzi) and the decision outcome dj . The discussion so far is exactly the same as the posterior decision
analysis. However, our goal for the pre-posterior analysis is to decide if and which experiment must be
performed such that the new information obtained adds to the value of decision-making. We note that the
experiment is actually not carried out during this phase of decision analysis, and therefore, all the possible
measurement outcomes must be considered. Since the measurements depend on the state of the structure,
the probability distribution of the measurements depends on three quantities: (1) the prior distribution of the
state-parameter at an instance of time; (2) the simulation or physics-based model (like FEM) that establishes
a map between the state-parameter and the measurements; (3) a reasonably assumed noise structure. Since
the measurements are uncertain and are quantified by their probability distribution function, the quantity
that interests us is the expected value of the minimum Bayes conditional risk Rzi(dj; xzi) weighted over
all the possible outcomes xzi ∈ ΩXzi

conditioned upon the prior distribution of the state-parameter. It is
defined by the Bayes risk Ψavg(zi) for an experiment zi, such that:

Ψavg(zi) = EXzi

[

min
dj
Rzi(dj; xzi)

]

= EXzi

[

Rzi(dzi(xzi); xzi)
]

; (6a)

z = argmin
zi

Ψavg(zi). (6b)

Here, z ∈ ΩZ represents the optimal experiment. We observe that if no additional information is acquired,
as is the case with z0, the decision-making process reduces to prior analysis, such that,

Ψavg(z0) = mindi
Ψprior(di) = Ψprior(dprior). (7)

One of the quantities required to evaluate the Bayes conditional riskRzi(dj; xzi) is the posterior fΘ|Xzi
(�|xzi).

However, unlike the posterior analysis, we do not have the measurement/outcome data xzi because no exper-
iment has yet been performed. As the experiment is not performed and the measurements are not available
during this phase of decision analysis, we consider all possible measurements that are simulated for a given
prior distribution of the state parameter. Therefore, this analysis is called pre-posterior decision analysis.
To evaluate the posterior fΘ|Xzi

(�|xzi), we use the Bayes theorem that, which in turn requires obtaining the
likelihood fXzi |Θ

(xzi|�). Since there is no availability of the data, the likelihood is assumed/modeled by the
decision-maker based on past observation, physics-based simulations, or a reasonable assumption.

3 Value of information considering an instance of decision-making

3.1 Conditional value of information
Consider the prior and posterior decision analysis detailed in Section 2.1. We restate our assumption

that the new information is of good quality in a way that it helps the decision-maker to have a better
understanding of the state parameter in comparison to the decision-maker’s prior knowledge. It is expected
that with additional information the expected loss should reduce. Acquiring new information via the
system z ∈ ΩZ helps us make better decisions as it reduces uncertainties in the state parameter, i.e., the
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distribution fΘ|Xz
(�|xz) has lower variance than fΘ(�). This brings us to the definition of Conditional Value

of Information CVoI(xz) as:

CVoI(xz) = Ψprior(dprior) − Rzi(dzi(xzi); xzi). (8)

Note that the quantity Rzi(dzi(xzi); xzi) defined in Eq. (5b) takes into account the additional cost C(z)
of acquiring the information. Therefore, obtaining the new information xz ∈ ΩXz

is advantageous if
the expected loss Rzi(dzi(xzi); xzi) < Ψprior(dprior), or equivalently, CVoI(xz) > 0. However, it is more
reasonable and desirable to define a quantity that measures the average VoI considering all the possible
measurements as discussed in next section (since the measurements/data are generically stochastic).

3.2 Expected value of information or the value of experiment
When we perform a pre-posterior analysis for the experiment (or the information gathering system)

zi ∈ ΩZ , all the possible values of the measurement xzi ∈ ΩXzi
corresponding to the experiment zi are to

be considered. Therefore, the Expected Value of Information EVoI(zi) (also called the Expected Value of
Experiment) is then defined as the expected value of the CVoI(xzi) averaged over the entire measurement
space Xzi , yielding,

EVoI(zi) = EXzi

[

CVoI(xzi)
]

= Ψavg(z0) − Ψavg(zi) = Ψprior(dprior) − Ψavg(zi). (9)

To understand the quantity EVoI(zi), we expand the expression in Eq. (9) using Eq. (6a) and (2) as:

EVoI(zi) = mindj
EΘ

[

L
(

dj , �
)]

− EXzi

[

min
dj
Rzi(dj; xzi)

]

= min
dj
EΘ

[

L
(

dj , �
)]

− EXzi

[

min
dj
EΘ|Xzi

[

L(dj , �) + C(zi)
]

]

= min
dj
EΘ

[

L
(

dj , �
)]

− EXzi

[

min
dj
EΘ|Xzi

[

L(dj , �)
]

]

− C(zi)

= Csave(zi) − C(zi),

(10)

where,

Csave(zi) = mindj
EΘ

[

L
(

dj , �
)]

− EXzi

[

min
dj
EΘ|Xzi

[

L(dj , �)
]

]

. (11)

To proceed further, we note that the following identity holds

EXzi

[

min
dj
EΘ|Xzi

[

L(dj , �)
]

]

≤ min
dj
EXzi

[

EΘ|Xzi
[L(dj , �)]

]

= min
dj
EΘ

[

L
(

dj , �
)]

. (12)

Note that, EΘ|Xzi

[

L(dj , �)
]

is a function of (dj , xzi) (state-parameter � is integrated out). Thus, it is easy
to visualize the identity defined in Eq. (12) by defining the function f (dj , xzi) = EΘ|Xzi

[

L(dj , �)
]

and
observing that:

EXzi

[

min
dj

(

f (dj , xzi)
)

]

≤ min
dj
EXzi

[

f (dj , xzi)
]

. (13)
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The identity (12) when applied to Eq. (11) leads to another important formula:

Csave(zi) ≥ 0 (14)

As mentioned in [6], the EVoI can be normalized by the minimum prior consequence cost Ψprior(dprior) to
obtain the Relative Value of Information of an experiment z (denoted by RVoI(z)) as:

RVoI(z) =
Ψprior(dprior) − Ψavg(z)

Ψprior(dprior)
=

EVoI(z)
Ψprior(dprior)

. (15)

The EVoI is impacted by two aspects. The first is gaining additional information that helps reduce the
expected losses by an amount Csave(zi). Secondly, setting up an experiment zi incurs additional intrinsic
cost, that leads to increase in the expected cost by an amount C(zi). Therefore, performing an experi-
ment/inspection to gain new information is advantageous if and only if the cost of the experiment C(zi) is
less than the reduction in losses Csave(zi), or if Csave(zi) −C(zi) ≥ 0. In other words, it would be economical
and rational to perform an experiment zi ∈ ΩZ if and only if EVoI(zi) ≥ 0. The value of experiment z0
is EVoI(z0) = 0 because no new information is gained (or Csave(z0) = 0) and since there is no mechanism
available to acquire new information, we have C(z0) = 0.

Inspired from the Gambling theory [23] and the stock-market trading system design [24, 25], in the
next section, we propose an alternate normalized metric to quantify the VoI that is inherently suitable for
business oriented decision-making in SHM.

3.3 Expected-reward to investment-risk ratio for an information gathering system
We consider the concept of reward to risk ratio used in designing trading systems in the stock market.

A technical analysis [26, 27] based trading system utilizes the newly acquired information on the price action
of a stock to make trading decisions. Since the stock market is inherently uncertain and there is always a
chance of a black-swan or a fat-tail event [28] (also known as a high-consequence low-probability event in
the field of reliability analysis), a trading-system must ensure that the trader gets out of a position taking a
predefined loss instead of incurring severe portfolio-crippling loss. Therefore, a trading system is designed
to expect a reward by risking a predefined monetary loss. This trading philosophy is popularly known as
"winning by losing" in the trading world. Thus, among many possible trading-system designs, the one with
a higher expectancy or adjusted reward to risk ratio (adjusted for the probability of winning and losing
trades yielded by the trading system–also informally called Batting average) is the optimal. The goal is not
to choose the system that gives maximum profit but may lead to severe draw-downs (hence can possibly
lead to complete ruin–also called gambler’s ruin), rather the goal is to design a system that yields maximum
reward for a given risk (expecting a consistent long term compounding of wealth). Similarly, Edward O.
Thorp [24, 23, 25] in his groundbreaking research developed a risk-adjusted reward-based betting system
for Black Jack and Roulette (in collaboration with Claude Shannon) that decided on when and how much
(optimal position sizing) to bet based on newly acquired information using card-counting for Black Jack
and wearable-computer running a physics-based updating model for Roulette.

Along a similar line of reasoning, the reward obtained by newly acquired information/data from
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an SHM system (in terms of making optimal maintenance decisions and increasing the life-span of the
structure) must outweigh the financial resources risked for the design, installation, maintenance, and
operation of an information-gathering system. We define the expected-reward to investment-risk ratio �(z)
for an information gathering system z as:

�(z) =
Csave(z)
C(z)

=
Csave(z)

EVoI(z) + Csave(z)

= 1
C(z)

(

min
dj
EΘ

[

Lj (�)
]

− EXzi

[

min
dj
EΘ|Xzi

[

Lj(�)
]

])

.
(16)

Therefore, the SHM systemwith �(z) ≥ 1 is a feasibly acceptable systemwith a positive risk-adjusted reward.
The quantity Csave(z) denotes the expected-reward as a consequence of data-informed decision-making,
and the quantity C(z) can be thought of as an investment-risk (money paid to design and install an SHM
system). Among many possible information gathering systems in ΩZ , the most desirable system z is the
one that yields the maximum risk-adjusted reward, or

z = argmax
zi

�(z). (17)

Consider two feasible designs z1 and z2, such that �(z1) > 1 and �(z2) > 1. To quantify the relative
benefit of one feasible design with respect to another feasible design in terms of their risk-adjusted reward,
we propose relative risk-adjusted reward metric, denoted by �(z1, z2), such that:

�(z1, z2) =
�(z1) − 1
�(z2) − 1

. (18)

For two feasible designs z1 and z2, �(z1, z2) quantifies the relative risk-adjusted reward of the design z1 as
compared to the design z2. The value of �(z1, z2) greater than one implies that the design z1 leads to higher
risk-adjusted savings as compared to the design z2 by �(z1, z2) times.

3.4 Perfect experiment and perfect information
We now consider an experiment z with the cost C(z) that gives the exact value (zero error) of the

state parameter, such that, � = xz, where, xz ∈ ΩXz
. This implies

fXz|Θ(xz|�) = fΘ|Xz
(�|xz) = �(xz − �); (19a)

fXz
(xz) = fΘ(�). (19b)

It might appear that the experiment z defined above involves directly measuring the state parameter. However,
in most of the practical problems, the state parameter is not directly measured, and rather it is inferred from
some other attainable measurement. If that is the case, then we assume that the inferred state parameter
gives the true value of the state parameter without any error. In that case, ΩXz

would denote the space of
the predicted/inferred gap length, such that Eq. (19) holds.
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Using Eq. (5b) and (19), the Bayes conditional risk for the experiment z is written as

Rz(dj; xz) = EΘ|Xz

[(

L
(

dj , �
)

+ C(z)
)]

= ∫�

(

L
(

dj , �
)

+ C(z)
)

�(� − xz) d�

= L
(

dj , � = xz
)

+ C(z).
(20)

Using Eq. (6a) and (20), the average Bayes risk associated with the perfect experiment z is defined as:

Ψavg(z) = EXz

[

min
dj
Rz(dj , xz)

]

= EXz

[

min
dj

(

L
(

dj , � = xz
)

+ C(z)
)

]

. (21)

As a consequence of Eq. (19b), we can write

Ψavg(z) = EΘ

[

min
dj

(

L
(

dj , �
)

+ C(z)
)

]

. (22)

We call any experiment z that satisfies Eq. (19) as a perfect experiment. Since the cost of any experiment z
is independent of its outcome xz and the decision space ΩD, Eq. (22) can be simplified as

Ψavg(z) = EΘ

[

min
dj

(

L
(

dj , �true = �
))

]

+ C(z). (23)

The value of perfect experiment is defined using Eq. (9) as

EVoI(z) = Ψprior(dprior) − Ψavg(z). (24)

Using Eq. (2) and (3), we can write Ψprior(dprior) = mindj EΘ
[

L
(

dj , �
)]

. Therefore, using Eq. (23) and
(24), we get

EVoI(z) = Csave(z) − C(z), where, (25a)

Csave(z) = mindj
EΘ

[

L
(

dj , �
)]

− EΘ

[

min
dj

(

L
(

dj , �
))

]

. (25b)

We note that a perfect experiment yields an exact and error-free value of the state parameter. We now
define the value of perfect information PVoI as the cost of the perfect experiment ẑ for which the EVoI
vanishes, or

EVoI(ẑ) = 0. (26)

In other words, ẑ is a fictitious experiment that is a special case of a perfect experiment in which the
reduction in losses due to additional information Csave(ẑ) compensate with the cost of the experiment C(ẑ),
or the risk-adjusted reward becomes unity: �(ẑ) = 1. Hence, PVoI = C(ẑ) is the maximum expense that
should be incurred out of pocket to acquire additional information. Experiment or SHM system z with the
cost C(z) > C(ẑ) need not even be considered. Therefore, a rational decision-maker decides to perform an
experiment z if either of the following five equivalent statements hold:

EVoI(z) ≥ 0 (27a)
Csave ≥ C(z); (27b)
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RVoI(z) ≥ 0; (27c)
�(z) ≥ 1; (27d)

C(z) ≤ C(ẑ). (27e)

Equation set (27) gives the conditions satisfying the asset integration tenet of expected utility theory as
mentioned in [22]. In other words, the prospect of carrying out an experiment z is acceptable if the utility
resulting from carrying out the experiment exceeds the utility evaluated without it, i.e., EVoI(z) ≥ 0. We
reinforce the fact that the experiments z0 and ẑ have zero value of experiment because z0 does not yield any
new information, and the experiment ẑ yields the maximum possible information at the highest rationally
payable cost C(ẑ).

Having discussed the decision-making and VoI framework, we detail a demonstration problem in the
next section.

4 Demonstration problem description

4.1 Miter gate
To demonstrate the application of the concepts discussed so far, we consider an example problem

of the Greenup miter gate maintained and managed by USACE located on the Ohio River, USA. Fig. 1
shows the Greenup lock and the miter gate (image adapted from the USACE website and Eick et al. [29]).
Loss of contact in the quoin blocks (boundary related damage) is the most commonly observed damage
mode in such systems [19, 30, 20]. Loss of contact leads to a formation of a gap between the gate and the
wall quoin blocks at the bottom of the gate. The amount (or length) of loss of contact at the bottom of the
gate is referred to as gap length in this paper. Therefore, we consider the gap length as the continuous state
parameter � ∈ ΩΘ (refer to Fig. (2)), such that ΩΘ = [�min, �max]. Here, �min is the lower bound of the gap
length, and �max is the upper bound of the gap length which indicates that the gate is critically damaged
and the failure is to follow. This value is suggested by the USACE engineers based on their experience and
past inspection data. In many cases, the data related to the failure of the structure may not be available
because the decision-makers are risk-averse and they don’t want to see a gap length to be large enough
leading to failure. In such scenarios, a rigorous high-fidelity numerical simulation should be performed to
estimate the �max. Based on feedback from the field-engineers [20], the upper bound of the gap length can
be considered as �max = 180 inches for the gates that have similar structural characteristics as the Greenup
miter gate. If no value of �min is specified, it can be taken as 0 inches (indicating pristine state of the gate).
Unlike non-binary rating protocols used by USACE, i.e. (A, B, C, D, F, and CF), to build our framework,
we use a rather simplified binary labeling system that consists of two discrete damage labels/index of the
miter gate, such that the decision space is ΩD = {d0, d1}, where the binary decisions are

d0 ∶ label indicating that the gate is undamaged with excellent operational capacity;
d1 ∶ label indicating that the gate is damaged and is not safely operational.

(28)
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Figure 1: Greenup locks and miter gate

The loss-of-contact part of the gate is always submerged in highly turbid water, and it consequently
cannot be easily measured directly during normal operational conditions. Hence, gap length is an unknown
parameter and must be inferred from indirect measurements. The Greenup miter gate is equipped with a
strain gauge network illustrated by red dots in Fig. 2. These strain-gauge readings are recorded in real-time
and are used as the observable set of measurements that will be used to infer the gap length. We simulate
our data acquisition process using a high-fidelity FEM of the Greenup miter gate previously validated in the
undamaged condition with the available strain sensor readings [20]. When the miter gate is first deployed,
the gap length is reasonably assumed to be zero. A FEM of the pristine miter gate needs to be constantly
updated as and when new information from the strain gauge sensor network is obtained. Because a very
limited amount of data is available from Greenup, we turn to a FEM as the ground truth surrogate for data.
In that regard, we assume that there is no measurement bias and the sensor readings are subject to random
unbiased noise. As with any such model, its representative predictive value is only as good as its validation
with regard to the real structure that it represents. In this case, the FEM was previously validated to the
Greenup miter gate in the undamaged condition, as mentioned earlier, but the modeling of the damage
itself could not be validated on actual data from the gate in a known damaged condition, so modeling bias
error in the damage state could creep into the process. That does not change or otherwise invalidate the
demonstration of the proposed approach or its utility, but rather it provides caution on interpreting the
specific results for this case beyond the demonstration of the overall approach. The posterior distribution
fΘ|Xz

(�|xz) of the gap length given the strain sensors measurement is then obtained using Bayesian inference.
Here, Xz denotes a random variable that represents the measurement obtained from the sensors deployed in
the SHM system z, with ΩXz

representing the space of those measurements. Fig. 2 shows the physics-based
FEM of the miter gate.



15

Figure 2: Physics-based model of miter gate and the bearing gap

To simulate the strain gauge data, we rely on a Gaussian Process Regression (GPR) based model
trained using simulated observable strain values obtained from the validated FEM. Although there are
infinite possible locations where strain gauges can be placed on a real miter gate, the FEM discretely covers
the possible sensor locations using a countable number of strain gauges. The FEM itself is constructed
using 3D quadrilateral and triangular shell elements in ABAQUS and consists of a total of 64919 elements.
Every element has a local coordinate system {ti} defined in the undeformed state, and a global coordinate
system {Ei} . The thickness of the element is in the direction t3, and the top and bottom surface of the
element is spanned by the vectors (t1, t2) as shown in Fig. 3. The strain gauges are attached to the top and
bottom surface of each element, measuring uniaxial strains along the direction t1 and t2. Each element
is identified by its geometric centroid at the origin of the local coordinate system. Therefore, there are
four possible arrangements of strain gauges on each element. These possibilities are identified using the
following abbreviations:

TH: top element, horizontal orientation along t1;
TV: top element, vertical orientation along t2;
BH: bottom element, horizontal orientation along t1;
BV: bottom element, vertical orientation along t2.

(29)

Based on the above abbreviations, for a typical element m, xmTH and xmTV in Fig. 3 represent the measurement
of strain from gauges attached to the top surface and oriented along t1 and t2, respectively. Similarly, xmBH
and xmBV in Fig. 3 represent the measurements of strain from gauges attached to the bottom surface and
oriented along t1 and t2, respectively.
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Figure 3: Orientation and the location of the strain gauge and different type of shell elements used in FEM

The gate is subjected to uncertain upstream and downstream hydrostatic loads quantified by the
hydrostatic upstream and downstream heads; these are denoted by the random variables Hup and Hdown,
with realizations ℎup ∈ ΩHup

and ℎdown ∈ ΩHdown
, respectively, where ΩHup

and ΩHdown
represents space of

all possible values of upstream and downstream head, respectively. The water heads over the lifespan of the
miter gate are modeled by time-series models using Autoregressive Moving Average (ARMA) as follows:

ℎup(ti) = 172 + "
up
i + 0.33ℎup(ti−2) + 0.35ℎup(ti−2) + 0.52"

up
i−2 + 0.55"

up
i−1, where, "

up
i ∼ N(0, 22);

ℎdown(ti) = 95 + "downi + 0.23ℎdown(ti−2) + 0.25ℎdown(ti−2) + 0.52"downi−2 + 0.61"downi−1 , where, "
down
i ∼ N(0, 22).

(30)
Figure 4 illustrates one realization of the hydrostatic head time-series constructed using ARMA over a 60
months time period.
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(a) Upstream water level (b) Downstream water level
Figure 4: Realization of the hydrostatic water head time-series

For an ith strain gauge in the SHM system z, we assume an independent zero-mean additive Gaussian
noise, denoted by a random variable �zi with the realization "zi, is assumed for each strain gauge,

�i ∼ N(�"zi = 0, �
2
"zi
) (31)

The standard deviation of noise is assigned to be �"zi = 5 × 10
−6 in accordance with reasonable commercial

strain gage performance.

4.2 Maintenance actions for the miter gate and the associated cost function
LetM0 andM1 represent the actions associated with the labels d0 (rating the structure as undamaged)

and d1 (rating the structure as damaged) respectively. That is, if the structure is labeled/rated as di, with
i ∈ {0, 1}, then we perform the maintenanceMi, such that

M0 ∶ Do nothing (continue operation);
M1 ∶ Shut down, inspect, and repair or replace as required based on the inspection results.

(32)

Choosing eitherM0 orM1 will have an associated consequence cost depending on what the true state of
damage is. For instance, choosingM0 for a newly constructed gate (with the true gap length value being
zero or small) is obviously an optimal decision. On the other hand, the same maintenance actionM0 can
lead to catastrophic consequences when the true value of gap length is close to �max (implying a heavily
damaged gate). Similarly, choosing M1 for a pristine gate is unnecessary, while it may be an optimal
decision when the gate is approaching critical failure (with a larger value of true gap length). Therefore,
to consider the economical consequence of deciding a maintenance action (or, equivalently choosing the
state label), the organization need to estimate the cost of performing maintenance for all the possible true
degrees of damage defined by the state parameter gap length �true ∈ ΩΘ. The organization estimates this
cost based on a detailed cost analysis of past maintenance data and/or their current maintenance policies.

For the sake of demonstration purposes, we adopt a linear cost function as discussed in Chadha et
al. [13]. This represents a case where the cost linearly increases with the true degree of damage. Another
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reasonable assumption would be a step function that assigns equal consequence cost to a range of true gap
length values. We evaluate the consequence cost for both the maintenance strategies considering the extreme
values of true gap length (�true = �min = 0 inches and �true = �max = 180 inches) and linearly interpolate
the cost function for all the intermediate �true values. We do this because the extreme values of the gap
have interpretable physical meaning. The value of �true = 0 inches indicates that the gate is pristine, and
the value of �true = 180 inches indicates that the gate is severely damaged and a critical failure is expected.
Under such damage conditions, the economical consequence of choosing a maintenance action can be
reasonably evaluated since the consequences of decision-making are well-defined. However, we note that
the organization can estimate/design the cost functions as per their requirements and policies that need
not necessarily be linear (another practical example can be a step-wise consequence cost). The framework
developed here is generic and can support any such cost model. Let L(d0, �true) and L(d1, �true) denote the
consequence costs of performing the maintenance actionsM0 andM1 respectively when the true degree of
damage is defined by �true, such that:

L(d0, �true) =
(

L(d0, �max) − L(d0, , 0)
�max − �min

)

�true + L(d0, 0);

L(d1, �true) =
(

L(d1, �max) − L(d1, 0)
�max − �min

)

�true + L(d1, 0).
(33)

In the equation above, the extremes costs L(di, 0) and L(di, �max) are assumed to be known and fixed by the
organization (refer to Section 3.2 of Chadha et al. [13] for more details). Since L(d0, , �max) is the maximum
extreme cost, all other extreme costs can be expressed as a fraction of L(d0, , �max). For the purposes of
numerical simulation in this paper, we assume L(d1, 0) = 0.15L(d0, �max) and L(d1, �max) = 0.4L(d0, �max).
We assign dollar value of $1 million to L(d0, �max). Under this assignment, Fig. 5 gives the cost functions
L(d0, �true) and L(d1, �true).

Figure 5: The cost function L(di, �true)

The base cost functions L(di, �true) are defined by the organization. Although the base cost is assumed
to be linear in this paper, it can bear any form (step-function, piecewise function, quadratic, etc.). In
most cases, these costs are estimated based on the available data and are approximate. When it comes
to maintenance decisions guided by the organization’s maintenance policies or collective experience, we
consider the real-world scenario where inspection engineers are authorized to execute those decisions. These
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decisions are subjective to the engineer’s experience and their thought processes assumed commensurate
with the broader policies or guidance provided by the organization. Therefore, the maintenance decisions
may have slightly different cost consequences as defined by the base cost function. The risk profile of the
decision-maker can be mathematically modeled by their utility vs. wealth (or loss) function, or generally
a utility function. An individual’s utility gives their evaluation of the consequence/outcome of an action.
The utility may be different from the real dollar cost (or value). Since a risk-averse decision-maker aims at
losing less (or gaining more), his perceived value of cost/loss is higher than the real dollar cost. This leads
to a concave-down utility function. On the other hand, a risk-seeker decision-maker is willing to risk more
and hence assign a lower valuation to the real cost, leading to concave up utility function. As discussed in
Section 4.2 and 4.3 of Chadha et al. [13], an individual’s utility (or the risk-profile) can be used to obtain
the modified cost-functions. This allows us to incorporate the risk-perception into the decision-making
process. The risk-adjusted cost functions (distinguished by a hat (⋅̂)) can be expressed as:

L̂(d0, �true; 
, �) = a0 log
(

1 + b0

(

L(d0, �max) − L(d0, 0)
�max − �min

)

�true

)

+ L(d0, 0);

L̂(d1, �true; 
, �) = a1 log
(

1 + b1

(

L(d1, �max) − L(d1, 0)
�max − �min

)

�true

)

+ L(d1, 0).
(34)

The risk-profile is parameterized by (
, �). For a given risk profile (
, �), the constants a0, a1, b0, and b1 may
be obtained by solving Eq. [18] and [19] of Chadha et al. [13]. We note the following conditions defining
the characteristics of the risk-profile:

L̂(di, �true; 
, �) > L(di, �true) or � < 
 ∶ For risk-averse profile;
L̂(di, �true; 
, �) = L(di, �true) or � = 
 ∶ For risk-neutral profile;
L̂(di, �true; 
, �) < L(di, �true) or � > 
 ∶ For risk-seeker profile.

(35)

For the purpose of simulation, we consider the following five risk-profiles:

Risk-profiles ID 
 �

Extreme risk-averter RP1 0.8 0.25
Moderate risk-averter RP2 0.8 0.6
Neutral risk bearer RP3 0.8 0.8
Moderate risk-seeker RP4 0.8 0.95
Extreme risk-seeker RP5 0.8 0.999
Table 1: Examples of different risk profiles

Figure 6 illustrates the modified cost function for various risk-profiles listed in Table 1.
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(a) Modified cost function for label d0 (b) Modified cost function for label d1
Figure 6: Risk intensity modified cost function

Empowered with the idea of risk profiles, we realize that risk profiles can be interpreted in two ways:
1) Forward interpretation: each risk profile represents individual decision-maker’s behavior; 2) Inverse
interpretation: each risk profile represents a risk-intensity that the organization wants to include over the
base cost to make a decision. A risk-averse profile demands a conservative decision, i.e., a tendency to
perform the maintenanceM1 at a relatively lower level of damage to avoid any disastrous and expensive
consequence. On the other hand, a risk-seeker profile allows more flexible decision-making that would
recommend the maintenanceM1 only when the degree of structural damage is approaching failure, i.e.,
in a more risky state. To include the behavioral influence of the decision-maker into the decision-making
framework discussed in Section 2 and 3, we simply replace the cost functions with the risk-modified cost
functions, i.e., L(dj , �true)→ L̂(dj , �true; 
, �).

Remark 1: For a multi-dimensional state parameter (unlike a scalar used in this paper), the cost function
would take a form of a hypersurface. The risk-intensity of the decision-maker can then be introduced by
defining an appropriate mapping function that takes the base hypersurface to a risk-modified hypersurface
parameterized by appropriate risk-parameters with appropriate boundary restrictions. If the hypersurface is
a Riemannian manifold, then the local risk-intensity at a given state-vector can be defined by Riemannian
curvature at that state.

4.3 A practical and simple example of pre-posterior decision analysis
As discussed in the introduction, the unscheduled shutdown of these navigation locks and inspecting

them with divers or even dewatering them for inspection or repair is very costly to USACE. Consider the
following simple information-gathering mechanism concerning the miter gate problem at hand:

1. z0: No acquisition of data.

2. z1: Send the diver to measure the gap length.

3. z2: Dewater the gate and measure the exact gap length.

We analyze which option to choose among the above three choices constituting the inspection (or exper-
iment) space ΩZ = {z0, z1, z2} using the pre-posterior decision analysis. We assume the cost of these
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inspections as C(z0) = $0, C(z1) = $0.02, and C(z2) = $0.2 (in millions). We also note that z2 is a perfect
experiment/inspection as it yields the exact value of the gap length. As such, with an aim of focusing on the
pre-posterior analysis, we consider a prior distribution modeled by a Gaussian distribution with the mean
�� = 75 inches and standard deviation �� = 20 inches, i.e., fΘ(�) =

1
20
�
(

�−75
20

)

. We consider the linear
cost function (or RP3) for the purpose of this example.

Since the information acquired through z1 and z2 directly give the gap length,ΩXzi
represents the space

of gap length obtained from the experiment zi such that ΩXzi
≡ ΩΘ. Since we are not actually collecting

new information (or conducting an experiment) for pre-posterior analysis, the likelihood fXzi |Θ
(xzi|�) is

to be provided by the organization from the past data/experience/simulation. If no past data is available,
a reasonable assumption of the likelihood must be made. Experiment z1 involves sending a diver in. We
assume that the gap length measured by the diver has some noise. We assume Gaussian noise of zero mean
and a standard deviation of 3 inches leading to the likelihood fXz1

|Θ(xz1|�) =
1
3
�
(xz1−�

3

)

. Since, z2 is a
perfect experiment, we have fXz2

|Θ(xz2|�) = �
(

xz2 − �
)

.
Given all the entities discussed above, by virtue of equivalence in the Eq. (27a) and (27e), there are

two approaches to know if inspection must be conducted, and if yes, then which among the two z1 and
z2 is most optimal. The first approach involves obtaining the expected value of information EVoI(zi) and
using Eq. (27a) to make a decision, whereas, the second approach involves obtaining the value of perfect
information PVoI = C(ẑ) and using Eq. (27b) to make a decision. The Fig 7 and 8 illustrates the two
approaches to decide on choosing the inspection strategies.

Figure 7: Approach 1 to make a decision on choosing the inspection strategies
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Figure 8: Approach 2 to make a decision on choosing the inspection strategies

We can obtain the value of perfect information by solving for C(ẑ) in the slightly modified form of
Eq. (26):

EVoI(ẑ) = min
dj
EΘ

[

L̂(dj , �true; 
, �)
]

− EΘ

[

min
dj

(

L̂(dj , �true; 
, �)
)

]

− C(ẑ) = 0. (36)

Solving the equation above for C(ẑ) for the current case, we obtain C(ẑ) = $0.263 million.
Approach 1 given in Fig. 7 requires evaluation of the posterior and the evidence which can be involved

and computationally expensive to obtain. On the other hand, approach 2 illustrated in Fig. 8 demands an
evaluation of C(ẑ) using Eq. (36), that if solved numerically would require using sample-based integration
which is computationally cheaper to perform than to obtain the posterior and the evidence. We suggest
readers use either approach 1 or 2 as it suits their problem.

For the given three inspection strategies zi, table 2 details the expected costs and the value of
experiment/inspection EVoI(zi). Table 2 clearly indicates that performing both the experiments z1 and z2
will be beneficial in accordance with all four conditions in Eq. set (27). However, although dewatering
yields a higher net savings Csave(z2) > Csave(z1), sending the diver in for taking measurement yields the best
risk-adjusted reward, i.e., �(z1) > �(z2). The relative risk-adjusted reward of design z1 relative to the design
z2 is �(z1, z2) = 38.387, i.e., design z1 leads to 38.387 times more risk-adjusted savings as compared to the
design z1. Fig. 9 shows the decision tree for pre-posterior analysis.
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Data-acquisition
strategy

C(zi)
(in millions) Ψavg(zi) EVoI(zi) RVoI(zi)

Csave(zi)
(in millions) �(zi)

z0 0 0.254 0 0 0 N/A
z1 0.020 0.135 0.119 0.468 0.139 6.950
z2 0.200 0.223 0.031 0.122 0.231 1.155

Table 2: Information gathering mechanisms and their VoI

Figure 9: The decision tree for pre-posterior analysis

All the discussions carried so far, including the example in this section, consider only one instance of
true gap length value at a fixed time (or the structural state at a fixed instance of time). The next section is
about quantifying the value of information-gathering over time evolution of true gap length, or the life cycle
of the structure.

5 Value of information for life cycle cost analysis
Over the life cycle of the miter gate, the structural state evolves from pristine condition (defined by 0

gap length value) to approaching critical failure (defined by gap length being unacceptably high as �max).
This evolution of state takes over the lifespan of the structure and is quantified by ΩT = [0, tmax]. We use
months as the unit of time. Therefore, to evaluate the Value of Information gathered throughout the lifespan
of the structure, we need a gap-growth or degradation model.
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5.1 Gap-growth (degradation) model
LetΘt denote a random variable representing the gap length at any time t ∈ ΩT , such that its realization

is denoted by �(t) ∈ ΩΘ(t), with ΩΘ(t) = ΩΘ. Since the time evolution of the gap length is not precisely
known, we model it probabilistically (as shown in Fig. 10), such that fΘ(t)(�(t)) denotes the prior distribution
of gap length at time t.

The gap evolution over time is described by a piecewise multi-stage degradation model as follows:

�(tk+1) = �(tk) + �(tk)w(tk+1).Q(tk+1).exp
(

�(tk+1).U (tk+1)
)

(37)

In the equation above, �(tk+1) denotes the gap length at time step tk; Nt is the total number of time
steps; U (tk+1) is a stationary Gaussian stochastic process; �tk+1 , Q(tk+1), and w(tk+1) are degradation state-
dependent model parameters, which are given as follows

�(tk+1) = �j;
Q(tk+1) = Qj;
w(tk+1) = wj ,

(38)

where, the index j represents the degradation state, such that

j = ℎs(�(tk)). (39)

The function ℎs(⋅) maps the gap length to the degradation state j, such that

j = ℎs(�(t)) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, if �(t) ∈ [0, e1];
2, if �(t) ∈ [e1, e2];

⋮

Nd , if �(t) ∈ [eNd−1,∞],

(40)

where, ei for i ∈ {1, 2,⋯ , (Nd − 1)} are the switching points that govern the transition between different
degradation stages and Nd is the number of degradation stages. We assumed Nd = 3 for the current
study. Since the switching points ei in Eq. (40) are uncertain in nature, they are modeled by the Gaussian
distribution as shown below

ei ∼ N(�ei , �
2
ei
) ∀ i ∈ {1, 2,⋯ , Nd − 1}. (41)
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Figure 10: The time-evolution of gap length

5.2 Inflation adjusted cost function
Since we intend to do a lifecycle cost analysis that deals with decision-making at different time periods,

we estimate all the costs at the current time. We do inflation-adjustment to define the cost for any future
time. The factor (r(t) + 1)t adjusts for the future inflation, where r(t) is the assumed future monthly rate of
inflation at time t (in months). We consider the following costs

1. Cost A: The inflation adjusted consequence-cost of decision making at time t for the risk-profile (
, �),
denoted by ̂̃L(dj , �true(t), t; 
, �), such that

̂̃L(dj , �true(t), t; 
, �) = L̂(dj , �true(t); 
, �).(r(t) + 1)t. (42)

We notemaintenance/repair/inspection decisions aremade based on planned inspections/data-gathering
at discrete time-steps. We assume a discrete time-space, denoted by ΩTA = {tA1 , tA2 ,⋯ , tANA}, con-
tainingNA time-step (not necessarily uniform), such that tANA ≤ tmax.

2. Cost B: Themaintenance cost of the information gathering system, denoted byCM (t) = CM .(r(t)+1)t.
Here, CM is the current estimated cost of maintenance for one instance of system maintenance. We
assume that the maintenance of data-gathering system is done at discrete time-step, defined by
the space ΩTB = {tB1 , tB2 ,⋯ , tBNB }, containing NB time-step (not necessarily uniform), such that
tBNB ≤ tmax.

3. Cost C: The operation cost of the information gathering system, denoted by CO(t) = CO.(r(t) + 1)t.
Here, CO is the current estimated operation-cost per month. We assume that the operational-cost is
evaluated every month defined by the discrete time-space ΩTC = {tC1 , tC2 ,⋯ , tCNC } containingNC

time-step (not necessarily uniform), such that tCNC ≤ tmax.

4. Cost D: The cost of design and initial installation of an information gathering system C(z). We
assume this to be an initial cost and hence time-independent.
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5.3 Expected value of information for lifecycle cost analysis
To start with, we consider the case when no new information is available. The expected consequence-

cost at time t, denoted by Ψprior(di, t), and the optimal decision, denoted by dprior(t) ∈ ΩD is defined
as:

Ψprior(di, t) = EΘ(t)
[

̂̃L(dj , �true(t), t; 
, �)
]

= EΘ(t)
[

L̂(dj , �true(t); 
, �).(r(t) + 1)t
]

dprior(t) = argmin
di

Ψprior(di, t).
(43)

Assuming time-continuous decision-making, the total expected cost as a consequence of making optimal
decisions over the structure’s life span ΩT , denoted by ΨpriorLC, is obtained as

ΨpriorLC =
NA
∑

n=1
min
di
Ψprior(di, tAn) =

NA
∑

n=1
Ψprior(dprior(tAn), tAn). (44)

The subscript LC in ΨpriorLC and the following future notations represents Life-Cycle.
Now consider a situation when new information about the structure is available through the mechanism

z (simulated for the purpose of preposterior analysis). Let Xz(t) be the random variable representing the
acquired (or simulated) data, such that its realization is denoted by xz(t) ∈ ΩXz(t). Therefore, the most
optimum decision at time t for a given experiment-outcome pair (z, xz(t)) is then given as

dz(xz, t) = argmin
dj

Rz(dj; xz(t)), where, (45a)

Rz(dj; xz(t)) = EΘ(t)|Xz(t)

[

̂̃L(dj , �true(t), t; 
, �) + C(z)
]

= EΘ(t)|Xz(t)
[

L̂(dj , �true(t); 
, �).(r(t) + 1)t
]

+ C(z).
(45b)

The Bayes risk Ψavg(z, t) is obtained by evaluating the expected value of the conditional Bayes risk
Rz(dz(xz, t); xz(t)) corresponding to optimal decisiondz(xz, t) for all the possible information/data (that
is probabilistically defined by fXz(t)(xz(t)) and is conditioned upon the prior distribution of the gap-length
at time t, or fΘ(t)(�(t)), which in turn is obtained from the prior gap-degradation model). We have:

Ψavg(z, t) = EXz(t)

[

min
dj
Rz(dj; xz(t))

]

= EXz(t)
[

Rz(dz(xz(t)); xz(t))
]

. (46)

Considering decision-making at a fixed time t (as discussed in Section 3.2), the EVoI for the experiment z
at time t is given by:

EVoI(z, t) = Ψprior(dprior(t), t) − Ψavg(z, t). (47)

The quantity EVoI(z, t) is useful to evaluate the advantage of information-gathering as a consequence of
decision-making using the acquired data through the experiment z at a fixed instance of time t (not the
entire lifespan). Since EVoI(z, t) measures the benefit of SHM for decision-making at an instance of time,
in the form presented in Eq. (47), it only considers the cost A at time t and cost D and ignores the cost of
maintenance and operations. The expression of EVoI(z, t) in Eq. (47) is particularly desirable to understand
how the value of acquiring information to make maintenance decisions evolves over time. Finally, Eq. 47
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can be written in a more desirable form using Eq. (46) and (43) as:

EVoI(z, t) = Csave(z, t) − C(z), where,

Csave(z, t) = EXz(t)

[

min
dj

̂̃L(dj , �true(t), t; 
, �)
]

− min
dj
EΘ(t)

[

̂̃L(dj , �true(t), t; 
, �)
]

.
(48)

In the equation above, Csave(z, t) gives the expected cost saved by virtue of making a better decision based
on newly acquired data at time t through the mechanism/system z.

Finally, the total expected cost including the consequence-cost of making optimal decisions based on
newly available data, and also including the maintenance-cost (cost B) and operational-cost (cost C) of the
information gathering system over the structure’s life span, denoted by ΨavgLC is obtained as

ΨavgLC(z) = C(z) +
NA
∑

n=1

(

Ψavg(z, tAn) − C(z)
)

+
NB
∑

n=1
CM .

(

r(tBn) + 1
)tBn +

NC
∑

n=1
C0.

(

r(tCn) + 1
)tCn . (49)

Note that, for null experiment z0, we have ΨavgLC(z0) = ΨpriorLC. Finally, the Expected Value of Information
over the lifecycle EVoILC(z) of the information gathering mechanism z is defined as

EVoILC(z) = ΨpriorLC − ΨavgLC(z)
= CsaveLC(z) −

(

C(z) + CM&O(z)
)

.
(50)

In the equation above, CM&O(z) denotes the total cost of maintenance and operation of the SHM system
over the lifespan of the structure, such that

CM&O(z) =
NB
∑

n=1
CM .

(

r(tBn) + 1
)tBn +

NC
∑

n=1
C0.

(

r(tCn) + 1
)tCn . (51)

The quantity CsaveLC(z) in Eq. (50) denotes the expected savings over the lifecycle of the structure, such
that:

CsaveLC(z) =
NA
∑

n=1

(

mindiEΘ(tAn )
[

̂̃L(dj , �true(tAn), tAn; 
, �)
])

.(r(tAn) + 1)
tAn

−
NA
∑

n=1

(

EXz(tAn )

[

min
di
EΘ(tAn )|Xz(tAn )

[

̂̃L(dj , �true(tAn), tAn; 
, �)
]

])

.(r(tAn) + 1)
tAn

(52)

TheRelative Value of Information over the lifecycle of an experiment z (denoted by RVoI(z)) can be obtained
by normalizing EVoILC(z) with respect to the prior lifecycle cost ΨpriorLC:

RVoILC(z) =
ΨpriorLC − ΨavgLC(z)

ΨpriorLC
=

EVoILC(z)
ΨpriorLC

. (53)
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Finally, the risk-adjusted return ratio for lifecycle cost analysis is defined as

�LC(z) =
CsaveLC(z)

EVoILC(z) + CsaveLC(z)
. (54)

For two feasible designs z1 and z2, such that �LC(z1) > 1 and �LC(z2) > 1, the relative benefit of one feasible
design with respect to another feasible design in terms of their risk-adjusted reward over the lifecycle of the
structure is defined by �LC(z1, z2), such that:

�LC(z1, z2) =
�LC(z1) − 1
�LC(z2) − 1

. (55)

An SHM system z with EVoILC(z) ≤ 0, or equivalently �LC(z) ≥ 1 leads to net cost-saving (in average
sense) over the lifespan of the structure and hence is economically feasible. The next section deals with the
application of the theoretical results discussed so far into a miter gate problem.

Remark 2: Note that EVoILC(z) is a differential measure. On the other hand, the expected-reward to
investment-risk �LC(z) is a normalized metric. Therefore, EVoILC(z) quantifies absolute gain in dollar over
the lifecycle, whereas, �LC(z) quantifies the compounded gain in percentage over the lifecycle. In that
regard, �LC(z) is a better metric than EVoILC(z). For instance, consider two feasible SHM systems:

1. z1: SHM system z1 leads to an expected reward of 1100$ on an investment of 1000$ over the lifecycle
of the structure

2. z2: SHM system z2 leads to an expected reward of 10100$ on an investment of 10000$ over the
lifecycle of the structure

Both the systems have same expected value of information over the lifecycle, i.e., EVoILC(z1) = EVoILC(z2) =
100$. Therefore, both the investment scenarios are equivalent as per the EVoI metric. However, it is clear
that the first scenario lead to a percentage gain of 10% (or �LC(z1) = 1.1) and the second scenario leads to a
net percentage gain of 1% (or �LC(z2) = 1.01). Therefore, clearly, SHM system z1 is superior to the system
z2 which EVoILC(z) fails to capture. The design z1 leads to 10 times more risk-adjusted savings than the
design z2, i.e., �LC(z1, z2) = 10. Therefore, an optimal design is the one that maximizes the risk-adjusted
reward and not the one that maximizes absolute gain.

Similar to �LC, RVoILC is also a normalized measure. We note that, for two designs z1 and z2, the
following condition holds:

RVoILC(z1)
RVoILC(z2)

=
EVoILC(z1)
EVoILC(z2)

≠
�LC(z1)
�LC(z2)

. (56)

Since �LC(z) is expressed in terms of the expected-reward and investment-risk ratio (that are crucial in
making business decisions), inherently by its very definition it is advantageous to use �LC for the scenario
where the business decision on SHM are to be made.
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6 Numerical simulation
We consider the miter gate structure with strain data acquired using strain gauge network. As such,

consider the following four SHM system designs, including three strain-gauge network designs and one null
design:

1. z0: No acquisition of data (null design).

2. z1: Acquire data using Bayesian optimized strain-gauge network containingNsg(z1) = 10 number of
strain-gauges as detailed in Yang et al. [21] (optimized using risk-weighed KL divergence objective
functional).

3. z2: Acquire data using strain-gauge network randomly distributed across the miter gate structure
containingNsg(z2) = 10 number of strain-gauges.

4. z3: Acquire data using strain-gauge network randomly distributed across the miter gate structure
containingNsg(z3) = 20 number of strain-gauges.

Let Xzi(t) be the random variable representing strain-gauge readings at time t for the network design zi
with i ∈ {1, 2, 3}. Evaluating EVoILC(zi) and the reward to risk ratio �LC(z) over the lifecycle, requires
obtaining the posterior distribution fΘ(t)|Xzi (t)

(�(t)|xzi(t)) using Bayesian inference as discussed in the next
section.

6.1 Bayesian inference
For any given sensor-design z, a realization of the measurement vector xz ∈ ΩXz

(say at any fixed
time t and z here represent any design zi of interest) is the strain recorded atNsg(z) number of strain gauge
locations. The measurements obtained from the strain gauges are used to infer the gap length � using the
Bayes theorem. In the context of inferring �, the evidence fXz

(xz) is just a normalizing constant. Therefore,
the Bayes theorem may be written as

fΘ|Xz
(�|xz) ∝ fXz|Θ(xz|�)fΘ(�). (57)

The prior distribution at any time t is obtained from the gap length evolution model discussed in Sec-
tion 5.1. For the problem at hand, we estimate the likelihood fXz|Θ(xz|�) using simulated data obtained
through the FEM model or a digital twin. Let gz(�, ℎup, ℎdown) define the true strain response for the
sensors included in design z obtained by the FEM or digital twin model, such that gz(�, ℎup, ℎdown) =
(gz1(�, ℎup, ℎdown),⋯ , gzNsg(z)(�, ℎup, ℎdown)). Similarly, xz = (xz1,⋯ , xzNsg(z)) ∈ ΩXz

represent the ob-
served strain readings. The measurement model for the strain gauges included in the design z is given
by

xz = gz(�, ℎup, ℎdown) + "z. (58)

In the equation above, xz is one of the realizations of the random vector Xz. The vector "z is the realization
of the random vector �z with "z = ("z1, "z2,⋯ , "zNsg(z)). It represents the measurement noise/error vector
for the design z, where "zi denotes the error between the measurement output and FEM predicted response
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(assumed to be the true response) corresponding to the ith strain gauge in the design z. Let �zi (with "zi
as its realization) denote the random variable for the noise in ith strain gauge. We assume that "z follows
a zero-mean Gaussian distribution with independent components, i.e., the noise/error terms of allNsg(z)
strain gauges are assumed to be statistically independent. In addition, we assume that each strain gauge has
same standard-deviation �"zi , such that

f�z("z1, "z2,⋯ , "zNsg(z)) =
Nsg(z)
∏

i=1
f�zi("zi) =

Nsg(e)
∏

i=1

1
�"zi

�

(

"zi
�"zi

)

. (59)

Using the measurement model defined in Eq. (58), and the description of noise in Eq. (59), the likelihood
of observing the strain measurement xz ∈ ΩXz

for the gap length � can be written as

fXz|Θ(xz|�) =
Nsg(z)
∏

i=1

1
�"zi

�

(

xzi − gzi(�, ℎup, ℎdown)
�"zi

)

. (60)

Since the relationship between the gap-length � and the strain data xz is highly non-linear and complex,
we numerically infer the posterior distribution by using particle filters (see [21, 31, 16]). Evaluation of
the likelihood fXz|Θ(xz|�) at numerous values of � at different time periods using the full finite element
model is exorbitantly expensive. Therefore, we use a digital twin modeled by GPR model to predict the
true strain value gz(�, ℎup, ℎdown). To simulate the measurement data, we obtain the response of the digital
surrogate gz(�true, ℎup-true, ℎdown-true) parameterized by a chosen/fixed value of true gap length �true subjected
to chosen/fixed input loading (ℎup-true, ℎdown-true). This strain gauge response is now corrupted by Gaussian
noise of standard deviation �"zi to mimic the real-world measurement noise. This corrupted strain response
is now used as the measurement/observed data xz ∈ ΩXz

.

6.2 Numerical results

6.2.1 Considering no SHM system is installed: Null design z0

For design zo, there is no new information in the form of strain-gauge measurements. Therefore, we
use the prior gap-length degradation model illustrated in Fig. 10 to evaluate the minimum prior expected
Bayes risk, i.e., mindi Ψprior(di, t) = Ψprior(dprior, t), for various modified consequence cost or risk-profiles.
This quantity provides a base relative to which the benefit of other SHM designs {z1, z2, z3} at making
better (or worse) maintenance decisions are evaluated. We make the following observations:

1. The minimum expected cost is a continuously increasing function. This is expected as the assumed
base cost-function illustrated in Fig. 5 increases as the degree of damage increases. It is obvious
that the gap-length would increase over time and hence the cost of maintenance would also increase
accordingly.

2. For a fixed time, the minimum expected cost increases as the risk-aversion of the decision-maker
increases (or equivalently, risk-seeker tendencies of the decision-maker decreases). A risk-averse
profile demands a conservative decision, i.e., a tendency to perform the maintenance M1 (more
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expensive and conservative than the maintenanceM0) at a relatively lower level of damage to avoid
any disastrous and expensive consequence. On the other hand, a risk-seeker profile allowsmore flexible
decision-making that would recommend the maintenance M1 only when the degree of structural
damage is approaching failure, i.e., in a more risky state.

Figure 11: Design z0: minimum prior expected Bayes risk or expected loss

6.2.2 Considering SHM system with 10 optimally designed sensors: Design z1

Sensor network design z1 was arrived by maximizing the KL divergence that quantifies the relative
gain in information contained in the posterior distribution of the gap-length conditioned upon acquired (or
simulated) strain data as compared to the information contained in the prior distribution of the gap-length
[21]. All the sensors in the design z1 are closer to the gap and hence lead to better inference of the state (or
the gap-length). Figure 12 illustrates the sensor-network design z1.
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Figure 12: Design z1: sensor network design

We make the following observations:

1. Figure 13 illustrates the inferred posterior gap-degradation model. We observe that the variability in
the posterior distribution of the gap-length at every time instance is smaller relative to the variability
observed in the gap-length in prior distribution shown in figure 10. This is because the acquired sensor
data helps us better understand (or infer) the current state of the structure (defined by gap-length).

2. Figure 14 illustrates the cost saved as a consequence of choosing optimal maintenance strategy at the
various instance of time based on newly acquired strain data for various risk-profiles. As mentioned
before, since Csave(z1, t) evaluates the advantage of SHM on decision-making relative to the null
design z0 at an instance of time, we do not consider the cost of maintenance and operation (cost B
and C) of the SHM system in the evaluation of the quantity Csave(z1, t). For each of the risk-profiles,
we observe that the Csave(z1, t) is greater than or equal to zero (as per Eq. (14)) and it increases to
a certain range of gap-length following which it goes down. The value of Csave(z1, t) evaluates the
economical benefit of arriving at a data-informed maintenance decision as a consequence of having
an SHM system installed as compared to the decisions we would have made using null design z0
(or by using our prior understanding of the state-parameter). However, beyond a certain gap-length
value, the maintenance decision obtained using the posterior distribution of gap-length is the same
as the decision obtained using the prior gap-length distribution. For instance, when the gap length
is towards the higher end of the spectrum, say � = 170 inches (closer to the critical failure), it is
obvious that an engineer with any risk-profile would choose to label the gate as damaged. In such
obvious decisions, SHM is not necessarily useful at that instance of time. Similarly, it can be seen
that beyond 100 inches, the Csave(z1, t) for extreme risk seeker profile starts to decrease because the
optimal decision making considering the SHM system is converging towards the decision made using
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prior distribution (that does not have an SHM system installed).

3. As time passes, the gap value increases. We also observe a shift in the peaks of Csave(z1, t) towards
the lower gap-length as the risk aversion increases (or towards the higher gap-length as intensity of
risk-seeking increases). This is because the increase in risk-aversion of the decision-maker decreases
the threshold of the gap beyond which it is obvious to her/him that the gate is damaged and the SHM
system does not offer much benefit.

4. Figure 15 illustrates the cost classifier for various risk profiles that differentiates between a feasible
and non-feasible SHM system considering the net benefit over the entire lifespan of the structure. It
answers the following question: given an SHM system design, the base consequence cost of making
maintenance decisions, the risk-profiles of the decision-maker, what is the range of SHM system cost
for it to be feasible over the lifespan of its usage? Every point on the plot gives a coordinate for the
cost combination (C(z), CM&O(z)). An SHM system with a cost combination of (C(z), CM&O(z)) is
feasible if it yields �LC ≥ 1 or EVoILC ≥ 0. A straight line classifier illustrated in different colors
for various risk-profiles is the locus of the cost coordinates (C(z), CM&O(z)) for which �LC = 1 or
EVoILC = 0. An SHM system with the cost coordinate (C(z), CM&O(z)) belonging to the region
below and including the classifier is a feasible design and leads to net cost saving over the lifespan
of its usage. The converse holds for the region above the classifier. Finally, we observe that as the
intensity of risk-aversion behavior increases, the flexibility to choose an SHM system decreases. This
is because a risk-averse decision-maker makes more conservative and expensive decisions. For an
SHM system to be feasible in the scenario where maintenance decisions are expensive, it must cost
less.

Figure 13: Design z1: posterior gap-degradation model
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Figure 14: Design z1: cost saving (Csave(z1, t)) over time as a consequence of making better decisions

Figure 15: Design z1: cost classifiers for different risk profiles
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6.2.3 Considering SHM system with 10 random sensors: Design z2

The design z2 illustrated in Fig. 12 is obtained by randomly selecting 10 sensors using Latin Hypercube
Sampling (LHS) that is subjected to a space-filling property.

Figure 16: Design z2: sensor network design

We make the following observations:

1. Figure 17 illustrates the inferred posterior gap-degradation model for the design z2. We observe that
the variability in the posterior distribution of the gap-length obtained using the design z2 at every
time instance is smaller relative to the variability observed in the gap-length in prior distribution
shown in figure 10 but larger relative to the posterior gap-degradation model obtained using optimal
design z1 as shown in Fig. 13. This is not surprising because the optimal sensors were designed to
yield posterior with the maximum gain in information relative to the information contained in the
prior. Just as seen in the design z1, Fig. 18 illustrates similar properties in Csave(z2, t) for various risk
profile. The plots of Csave(z2, t) have similar properties of Fig. 14 as discussed in Section 6.2.2.

2. Figure 19 illustrates the cost classifier for the design z2 considering the lifecycle of the structure.
Design z2 being a random design with merely 10 sensors combined with the fact that the cost functions
corresponding to other relatively risk-averse behavior lead to conservative and expensive decisions
budgetarily limits the choices of feasible SHM system z2 as compared to the optimal design z1. This
is evident from the fact that for a given risk profile, the classifier for the design z2 shifts below the
classifier for the design z1. Hence, a random design with 10 sensors underperforms as compared
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to an optimal design with 10 sensors (as expected). However, we may anticipate competing results
(relative to optimal KL divergence-based design) if we add more sensors (since the design is random).
We consider such a design in the next section.

Figure 17: Design z2: posterior gap-degradation model

Figure 18: Design z2: Cost saving (Csave(z2, t)) over time as a consequence of making better decisions



37

Figure 19: Design z2: cost classifiers for different risk profiles

6.2.4 Considering SHM system with 20 random sensors: Design z3

The design z3 shown in Fig. 20 is obtained by randomly selecting 20 sensors using Latin Hypercube
Sampling (LHS).
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Figure 20: Design z3: sensor network design

We make the following observations:

1. As seen in Fig. 21, design z3 leads to better inference of gap-length as compared to the design z2.
Fig. 22 illustrates similar properties in Csave(z3, t) for various risk profile as observed for the design
z1 and z2.

2. We observe that the resulting Csave(z3, t) is better than the results obtained for the design z2 illustrated
in Fig. 18. This is not surprising since we have double the number of sensors and hence have superior
edge due to additional data.

3. Figure 23 illustrates the cost classifier for design z3 considering the lifecycle of the structure. Just like
the designs z1 and z2, we observe that SHM strategy z3 is feasible for all the risk-profiles. Although
design z3 has 20 sensors, it leads to almost similar performance (or slight under performance) as the
design z1 for the following two reasons:

• Design z1 is optimal (optimized using KL divergence of the posterior relative to the prior
ga-length distribution);

• Design z1 has half the number of sensors as design z3. Therefore, it has lower intrinsic cost, or
C(z1) < C(z3).
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Figure 21: Design z3: posterior gap-degradation model

Figure 22: Design z3: cost saving (Csave(z3, t)) over time as a consequence of making better decisions
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Figure 23: Design z3: cost classifiers for different risk profiles
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6.2.5 Key observations:

Table 3 presents the cost-savings over the lifecycle of the structure corresponding to various SHM
designs for all five risk profiles.

Risk-profiles Expected-reward over the lifecycle CsaveLC
Design z1 Design z2 Design z3

Extremem risk-averter 0.0025 0.0025 0.0031
Moderate risk-averter 0.0863 0.0859 0.0832
Neutral risk-bearer 0.0806 0.0802 0.0717
Moderate risk-seeker 0.0940 0.0120 0.0699
Extreme risk-seeker 0.3070 0.1930 0.3033

Table 3: Expected-reward or cost-saved over the lifecycle

Based on Table 3, following are the key observations:

1. Among the three SHM designs considered, KL divergence optimized design z1 is the most valuable
SHM system. Design z1 outperforms the design z2 for all the risk profiles, and it outperforms the design
z3 for risk-neutral, moderate risk-seeker, and extreme risk-seeker profiles. By outperformance, we
mean that for a fixed C(z) and CM&O(z), the design z1 maximizes the expected-reward to investment-
risk ratio. This shows the importance of well-designed SHM systems.

2. The value of SHM not only depends on its design, but it is also impacted by the behavioral biases
involved in the decision-making. As the intensity of risk-aversion behavior increases, the flexibility
to choose a feasible SHM system decreases (as seen from the classifier of extreme risk-averter for all
three designs). This is because a risk-averse decision-maker makes more conservative and expensive
decisions. For an SHM system to be feasible in the scenario where maintenance decisions are
expensive, it must cost less. This budgetary constraint restricts our options for a feasible SHM system
design.

7 Conclusion
This paper utilizes pre-posterior decision analysis to evaluate the VoI acquired using an SHM system.

An SHM system provides additional information from which the state of the structure can be inferred.
However, it costs to design, install, maintain and operate an SHM system. Therefore, it is warranted to
quantify the net benefit an SHM strategy would yield while in its design phase. Since there is no availability
of real data (as the SHM system is in its design phase and has not yet been installed), the likelihood of
observing the measurement data (like strain gauge reading) is assumed/modeled by the decision-maker
based on the past observation, physics-based simulation, or a reasonable assumption. Since the SHM system
is not installed yet and the measurements are not available, to evaluate the net benefit of an SHM system,
it is necessary to consider all possible outcomes and uncertainties. This analysis is called pre-posterior
decision analysis.

The benefit of an SHM system relative to the case where no new data is acquired is studied at two
levels. Firstly, the benefit of an SHM strategy is investigated for an instance of decision-making at a fixed
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time occurrence. The SHM strategy that leads to a greater than one expected-reward to investment-risk
ratio for an instance of decision making considering a fixed time occurrence. For this scenario, an initial
one-time cost of designing and installing an SHM system is considered as the investment-risk (money spent).
Secondly, the net advantage of using an SHM system over the life cycle of the structure is evaluated. In this
scenario, in addition to the initial design and installation costs, we also consider the cost of maintaining and
operating an SHM system over the lifespan of the structure. A feasible SHM system is expected to yield
relative cost-savings over the lifespan of the structure as compared to making maintenance decisions not
backed by continuously updated data. An economically beneficial SHM system is the one that yields a greater
than or equal to unity expected-reward to investment-risk ratio. This paper propose an expected-reward to
investment-risk ratio as an alternative quantity to Expected Value of Information (EVoI) traditionally used
in pre-posterior decision analysis. Unlike EVoI that is defined as the difference between expected-reward
and investment-risk and hence a differential measure, an expected-reward to investment-risk ratio gives a
normalized benefit of an SHM system.

It is observed that the benefit of an SHM system depends on two key factors: its design and risk-profile
of the decision-maker or equivalently, the risk-intensity (just like a factor of safety) that an organization
wants to impose on their base cost estimates. The approach is exemplified in a case study involving structural
health monitoring and maintenance of a miter gate, part of a lock system enabling navigation of inland
waterways.
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