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RESEARCH ARTICLE APPLIED MATHEMATICS

Fluid dynamics alters liquid–liquid phase separation in confined
aqueous two-phase systems
Eric W. Hestera,b ID , Sean Carneya,b , Vishwesh Shahc , Alyssa Arnheimc , Bena Patelc , Dino Di Carlob,c,d ID , and Andrea L. Bertozzia,b,d,1 ID

Contributed by Andrea L. Bertozzi; received April 20, 2023; accepted August 28, 2023; reviewed by Michael P. Brenner and Karl Glasner

Liquid–liquid phase separation is key to understanding aqueous two-phase systems
(ATPS) arising throughout cell biology, medical science, and the pharmaceutical
industry. Controlling the detailed morphology of phase-separating compound droplets
leads to new technologies for efficient single-cell analysis, targeted drug delivery,
and effective cell scaffolds for wound healing. We present a computational model of
liquid–liquid phase separation relevant to recent laboratory experiments with gelatin–
polyethylene glycol mixtures. We include buoyancy and surface-tension-driven finite
viscosity fluid dynamics with thermally induced phase separation. We show that the
fluid dynamics greatly alters the evolution and equilibria of the phase separation
problem. Notably, buoyancy plays a critical role in driving the ATPS to energy-
minimizing crescent-shaped morphologies, and shear flows can generate a tenfold
speedup in particle formation. Neglecting fluid dynamics produces incorrect minimum-
energy droplet shapes. The model allows for optimization of current manufacturing
procedures for structured microparticles and improves understanding of ATPS
evolution in confined and flowing settings important in biology and biotechnology.

fluid dynamics | liquid–liquid phase separation | aqueous two-phase systems

Liquid–liquid phase separation (LLPS) powers versatile techniques for creating complex
microstructures useful throughout the medical, agricultural, and pharmaceutical in-
dustries (1, 2). LLPS also explains membraneless organelles (biocondensates) arising
in cell biology (3–5) as well as several indicators and causes of cell dysfunction
(6, 7). Recent work has sought to design morphologies of many-component phase-
separating liquids by controlling surface energies and volume fractions of each phase
(8–11). Here, we demonstrate the critical role of fluid dynamics in liquid–liquid phase
separation. Specifically, we present a combined experimental, theoretical, and numerical
investigation of an aqueous two-phase system (ATPS) consisting of a spherical drop
of gelatin–polyethylene glycol (PEG) polymer solution suspended in a surrounding
continuous phase that undergoes temperature-induced phase separation at 4 ◦C (similar
to ref. 12). Morphology design for this system also has direct relevance to high-throughput
manufacture of microparticles (13–15) used for scalable single-cell analysis (16–21),
where LLPS obviates the need for complex flow-focusing microfluidics devices when
constructing Janus microparticles (22–26).

In Section 1, we introduce a hierarchical suite of models of LLPS. We begin with
surface-energy minimization (Section 1A), add spinodal decomposition with a ternary
extension of Cahn–Hilliard/Model B (27), and finally incorporate surface tension– and
buoyancy-driven incompressible viscous fluid dynamics with the Cahn–Hilliard–Stokes–
Boussinesq model, an extension of Model H (27) (Section 1B). In Section 2, we illustrate
the predictions of the surface-energy minimizing model (Section 2A), demonstrate the
failure of Cahn–Hilliard to reproduce experiments (Section 2B) and then explore the
effects of fluid dynamics on liquid–liquid phase separation in Section 2C. In particular,
we show that

1. Cahn–Hilliard/Model B dynamics starting from mixed initial conditions evolves to a
core–shell morphology, rather than energy minimizing crescents.

2. Cahn–Hilliard–Stokes–Boussinesq/Model H dynamics incorporating fluid forces
evolves to the experimentally observed minimal-energy crescent shapes (Fig. 1).

3. Shear-induced recirculation, e.g., arising from pressure-driven channel flows, can drive
a tenfold acceleration in crescent formation, speeding microparticle manufacture.

We finally conclude with future directions for modeling fluid dynamics in liquid–liquid
phase separation in Section 3. We expect our model to help optimize the speed of
microparticle manufacture (13, 15) as well as the design of new classes of structured
microparticles for drug delivery and tissue engineering. More broadly, our work bolsters
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A B

Fig. 1. (A): The first row shows microscopic images of thermally induced phase separation in a gelatin–PEG mixture at 4 ◦C with increasing time. Each
droplet measures 50 microns in diameter. Experimental details are provided in Appendix A. The second row plots a volume rendering of a three-dimensional
simulation of liquid–liquid phase separation using the Cahn–Hilliard–Stokes–Boussinesq model developed in Section 1B (corresponding to model CHSB x in
Fig. 8). Simulation parameters are detailed in Tables 1–3. The simulation time t is nondimensional and must be rescaled to correspond to the physical time T of
the experimental snapshots, as we use an artificially large interfacial thickness parameter " (detailed in SI Appendix). The patterns of phase separation evolving
over time are in qualitative agreement. (B): Schematic of minimal-energy crescent-shaped particle at equilibrium for given surface tensions (red, green, blue)
and contact angles (purple, orange, gray) of gelatin-rich (c1), PEG-rich (c2), and surrounding oil (c3) phases.

the emerging importance of fluid dynamics (28, 29) in industrial
(30–34), biological (5, 35), and mathematical (8–10) LLPS
problems.

1. Theory
A. Surface Energy Minimization. The simplest model of ternary
fluids predicts each phase will arrange itself to minimize the total
interfacial energy. This isoperimetric problem leads to interfaces
that are either flat, or a portion of a sphere (36). At triple contact
points, the angle spanned by each phase satisfies a force balance
given by the Young condition

�1,2

sin �3
=

�1,3

sin �2
=

�2,3

sin �1
, �1 + �2 + �3 = 2�, [1]

where �i,j is the surface tension across the i, j interface. Triple
contact points are unstable if any surface tension �i,j dominates
the sum of the remaining two or equivalently if any wetting
parameter �i = �i,i+1 + �i,i+2 − �i+1,i+2 is negative (with
indices modulo {1, 2, 3}). SI Appendix solves this minimization
problem to give explicit formulae for minimal energy shapes in
ATPS droplets as a function of volume ratio and surface tensions.

B. Nonequilibrium Models: Cahn–Hilliard–Stokes–Boussinesq.
The surface energy minimization model only predicts equilib-
rium shapes. But droplet formation is inherently nonequilibrium,
involving both thermally induced phase separation and fluid
flow. To model dynamic phase separation from an initially
mixed model, we begin with a ternary Cahn–Hilliard model
from ref. 37, which generalizes several earlier advective Cahn–
Hilliard models (38–42). After transforming to dimensionless
quantities (SI Appendix), we neglect inertia and apply the
Boussinesq approximation (ignoring density variation aside from
the buoyancy term) at constant viscosity to derive the Cahn–
Hilliard–Stokes–Boussinesq (CHSB) equations

∂t ci + u · ∇ci −
3∑

j=1
mij∇

2�j = 0, [2]

∇p− Ca∇2u− Bo � ĝ =
3
√

2
1
"

3∑
i=1

�i∇ci, [3]

∇ · u = 0, [4]

for the concentrations ci (constrained by
∑3

i=1 ci = 1), the
fluid velocity u and pressure p. The chemical potentials �i,
perturbation density �, and mobility tensor mij are given by

�i = 2�ici(1− ci)(1− 2ci) + "2
3∑

j=1
�i,jΔcj, [5]

� =
3∑

i=1
�ici, mij =

{
2 i = j,
−1 i 6= j.

[6]

The key dimensionless parameters are the interface thickness ",
the capillary number Ca, Bond number Bo, and Weber number
We, which compare viscosity, buoyancy, and inertia with surface
tension forces, respectively:

" =
"̄
L
, Ca =

�0�0L
�0T

, Bo =
Δ� gL2

�0
, We =

�0L3

�0T 2 , [7]

where "̄ is the dimensional interface thickness between phases,
L a characteristic droplet length scale, �0 the average density,
Δ� the density variation scale, �0 the average viscosity, �0 the
sum of dimensional surface tensions, g the acceleration due to
gravity, ĝ the gravitational unit vector, and T the characteristic
separation time scale. Droplet formation dynamics depends on
the relative sizes of these dimensionless numbers. We note that the
equilibrium of the Cahn–Hilliard model reduces to the surface-
energy minimization model in the limit of vanishing interface
thickness " → 0 (43). Our goal is to investigate the role of
buoyancy forces in the CHSB equations and to contrast this
behavior with the ternary Cahn–Hilliard (CH) model, which
simply sets the fluid velocity to zero u = 0.

2. Results and Discussion
A. Minimal Energy Configurations. Four possible minimal
energy regimes arise depending on the relative surface tensions.
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Scaling dimensionless surface tensions such that �1,2 + �1,3 +
�2,3 = 1 allows convenient representation on a ternary diagram.
We summarize these regimes in Fig. 2 A and B. There are three
separate wetting regimes, in which �1,2, �1,3, or �2,3 dominates
the sum of the other two tensions. These correspond to separated
drops, 1-in-2 shells, or 2-in-1 shells (the Left, Top, and Right
regions of Fig. 2A, respectively). Between these regions, we
can achieve stable triple points and non-trivial droplet shapes
(Fig. 2B). These crescent shapes vary with two independent
surface tension parameters as well as the relative concentration
of c1 to c2. Configurations close to the edges of the inner region
give a single small angle (e.g., large �1,3 gives small �2). Explicit
formulae for these shapes are provided in SI Appendix. We note
that in the case of 1-in-2 or 2-in-1 shells, the energy minimizer
is not unique. That is, the total energy does not depend on the
location of the inner droplet (provided it does not intersect the
outer shell). However, a near-crescent configuration is neither
topologically or energetically equivalent to the actual crescents
observed in experiments.

We now focus on the experimental parameter regimes in
Tables 1 and 2. Our laboratory experiments exhibit crescents with
a contact angle �2 of approximately 20◦ (13). This constrains the
possible surface tensions to lie close to the edge �1,3 = 0.5. We
illustrate seven different possible contact angles in Fig. 2B, that
vary from small�1,2 (where �3 ≈ 180◦) to small�2,3 (where �1 ≈
180◦). Physically, we expect a lower surface tension between the
aqueous polymer mixtures than between each mixture with the
surrounding third phase. As such, we focus on the case with largest
�3 (corresponding to �1,2 = 0.064, �1,3 = 0.498, �2,3 = 0.438)
for which we plot the free energy surface in (Fig. 2C ). The range
of surface tensions leading to small contact angles is exceedingly
narrow. Surface tensions must therefore be precisely tuned to
achieve crescent particles that surround a significant volume.
Finally, while this model is useful for understanding possible
equilibrium shapes, and inferring necessary surface tensions for a
desired shape, it does not capture the dynamics of LLPS.

B. The Failure of Ternary Cahn–Hilliard Dynamics. A sensible
start for a model of dynamic LLPS is a three-phase extension

Table 1. Dimensional parameters for simulations
Name Symbol Value

Time scale T 1× 10−2 s
Length scale L 1× 10−4 m
Surface tension scale �0 1× 10−2 kg s−2

Mass density scale �0 1× 103 kg m−3

Mass density variation scale Δ�0 1× 103 kg m−3

Kinematic viscosity �0 1× 10−6 m2 s−1

Gravity g 1× 102 m s−2

of the canonical Cahn–Hilliard equation (27, 44). The Cahn–
Hilliard model tends to a Mullins–Sekerka problem as the
interface thickness " tends to zero (43). Equilibria of the former
should thus recover the same energy-minimizing equilibria of the
latter—equivalent to the energy minimizing model of Section
1A. However, we show that this model does not always attain
the global minimal surface energy configuration from Section
2A and that the final state instead depends on the choice
of initial conditions. In Fig. 3A, we simulate the CH model
for experimental parameters in Tables 1 and 2 and numerical
parameters in Table 3 and compare the evolution of a compound
droplet with equal c1, c2 concentrations starting from mixed (Top
row) and separated (Bottom row) initial conditions. While the
initially separated particle evolves to the minimal energy crescent,
the initially mixed droplet (corresponding to the experiment
in Fig. 1) evolves to a stable core–shell droplet shape after
undergoing spinodal decomposition. Fig. 3B hints at why the
CH model fails to attain the minimal-energy crescent shape
when evolving from mixed initial conditions: The small value
of �1,2 means that the 1-in-2 shell is very close in energy to
the crescent configuration. Similar patterns have been observed
in earlier three-phase simulations of membrane manufacture in
Cartesian geometries (31). These solutions do not evolve to an
asymmetric crescent shape from well-mixed initial conditions,
in contrast to our experiment. We must incorporate additional
relevant physics. An obvious choice is fluid dynamics, either

A B C

Fig. 2. (A) Possible contact angles as a function of relative surface tensions �i,j . Wetting occurs if any surface tension dominates the other two (the Top, Left, and
Right subtriangles of ternary diagram). (B) Example minimal energy configurations for varying surface tensions �i,j (horizontal axis) and relative concentrations
c1/c2 (vertical axis). Surface tensions are chosen so that �2 = 20◦. The surface tensions of each column are indicated in the ternary plot with stars shifting from
green (�1,2 ≈ 0.5) to red (�2,3 ≈ 0.5). (C) The free energy used in simulations of experiments. The maximum is located at the black circle. The energy is more
sensitive to c3 than c1 or c2.
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Table 2. Nondimensional parameters for simulations
Name Symbol Value

Interface thickness " 1× 10−2

Bond number Bo 1× 10−3

Capillary number Ca 1× 10−3

Weber number We 1× 10−3

Surface tensions �1,2, �1,3, �2,3 0.0636,0.4983,0.4381
Density perturbations d�1, d�2, d�3 0.05,−0.01,0.6
Initial concentrations c1,0, c2,0 0.3,0.4, . . . ,0.8

through buoyancy forces, viscous shear instabilities, or other
destabilizing phenomena.

C. Evolution Simulations. Using the parameters inferred from
experimental contact angles, we compare four different models:

1. (CH): the ternary Cahn–Hilliard model,
2. (CHS): the Cahn–Hilliard–Stokes model incorporating fluid

dynamics but without buoyancy,
3. (CHSB z): the Cahn–Hilliard–Stokes–Boussinesq model

including phase separation, fluid flow, and buoyancy forcing
normal to a no-slip channel, and

4. (CHSB x): the Cahn–Hilliard–Stokes–Boussinesq model
with buoyancy forcing parallel to a no-slip channel,

and six different initial concentrations (Fig. 4).
We estimate physical scales in Table 1, from which we

derive the nondimensional parameters in Table 2. Precise
dimensional parameters are difficult to measure. In particular, the
interfacial length scale "̄ and the mobility (indirectly determined
through the time scale T ) are not directly measurable. They
are instead constrained by computational resources. Here, we
choose "̄ = 1× 10−6 m andT = 1×10−2 s to balance accuracy
(smaller "̄ and larger T ) with efficiency (larger "̄ and smaller T ).
SI Appendix has additional simulations at varying " to validate
our choice of model and parameters.

A

B

Fig. 3. (A) Evolution of ternary Cahn–Hilliard model from different initial
conditions (mixed vs separate). For equal concentration ratio c1 : c2 = 0.5,
mixed initial conditions lead to shells, while initially separated drops form
minimal-energy crescents. (B) Energy–volume curve for the shell (red) and
crescent (green) configurations of figure (A) with surface tensions of Fig. 2C.

Table 3. Numerical parameters for simulations
Quantity Value

Spatial modes nx , ny , nz 192,192,384
Dealias factor 3/2
Time step dt 2× 10−4

Time step scheme SBDF2

The numerical parameters for the simulations are provided
in Table 3, with more details provided in SI Appendix. We
examine higher-resolution simulations in both two-dimensional
and three-dimensional simulations to fully capture the role of
fluid dynamics.
C.1. Concentration dependent coarsening. The initial coarsening
in Fig. 4 (also Movie S1) for t ≤ 5 × 10−1 reveals a strong
dependence on initial concentration ratios, moderate influence
of fluid dynamics, and weak influence of fluid perturbations due
to buoyancy. At least five regimes can be discerned. 1) The first,
at low initial c1,0 concentrations (c1,0 < 0.3), leads to complete
dissipation of c1 throughout the domain (omitted from Fig. 4).
No area forms a critical mass sufficient to nucleate a c1 droplet,
and the droplet concentration becomes homogeneous. 2) For
intermediate c2-dominated concentrations (0.3 ≤ c1,0 < 0.5),
the initial separation dynamics generate coarsening c1 droplets
embedded in a connected c2 phase. Some c1 droplets form
sufficiently close to the boundary to create a triple point. 3)
For balanced initial conditions c1,0 = 0.5, the initial coarsening
generates a mixture of two continuous phases, rather than one
phase of small separated droplets. This leads to much faster
coarsening; the CHS and CHSB systems settle to a 1-in-2 shell
by T = 0.5, whereas multiple droplets remain at T = 10
for lower initial c1,0 concentrations. We also observe the most
pronounced differences between the CH model and the models
incorporating fluid dynamics. By t = 0.1, the CHS and CHSB
systems have coarse and rounded features similar to experiments,
while the CH model still demonstrates labyrinthine patterns of
large aspect ratio. The evolution of the CH model is also much
delayed compared to models incorporating fluid dynamics, as has
been observed in other two-phase fluid studies (45, 46). 4) For
intermediate c1-dominated concentrations (0.5 < c1,0 ≤ 0.7),
the initial evolution of the system leads to coarsening c2 droplets
within a continuous c1 phase, which is itself enveloped by a thin c2
shell (unlike the small c1,0 case). The discrepancy between the CH
and remaining models is also much reduced, almost disappearing
for concentration ratio 0.8. 5) Finally, for sufficiently high con-
centrations of c1, complete dissipation of c2 droplets occurs and a
thin c2 skin layer forms surrounding a homogeneous c1 droplet.

We quantify these coarsening observations in Fig. 5, where
we plot the number of c1 droplets over time for concentration
ratios c1,0 = 0.3, 0.4, 0.5, and the number of c2 droplets over
time for c1,0 = 0.5, 0.6, 0.7, for each of the four models. Very
little difference is apparent between the four models in droplet
counts. For low c1,0 < 0.5 or high c1,0 > 0.5 concentrations, the
particle counts are reasonably approximated by a t−1/2 coarsening
law. This corresponds to an area per droplet scaling with t1/2

and a droplet length scale proportional to t1/4. This agreement
worsens near equal concentration ratios, where the system quickly
evolves to two interpenetrating phases. The rate t1/4 is slower
than the standard diffusion-limited coarsening scaling exponent
n = 1/3 (5).

While coarsening does not immediately demonstrate the
importance of fluid dynamics for LLPS, this changes when
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Fig. 4. Comparison of CH, CHS, and CHSB (x, z) models in two dimensions for concentration ratios c1 = 0.3, . . . ,0.8, for six time snapshots, under parameters
given in Tables 1–3. Several regimes are apparent for different choices of initial concentration in each model. The final shape and time to equilibrium are
strongly dependent on the presence and type of perturbations due to asymmetric fluid forces.

considering the long-time behavior of each system. Over longer
time scales (t ≈ 102), the system settles into a stable equilibrium
given by either a shell or crescent configuration. The long-
time behavior now differs between the CH, CHS, CHSB x,
and CHSB z models. We quantify the final shape of each
simulation and the time it took to reach this shape in Fig. 6.
As observed in Section 2B, the CH model consistently selects a
1-in-2 core–shell morphology, despite the temporary formation
of triple points for low initial concentration ratios (c1,0 < 0.5).
The CHS model similarly fails to attain the minimal energy
crescent for c1,0 > 0.4, though it does form crescents at
c1,0 = 0.3, 0.4. It is somewhat unintuitive that reducing the
initial c2,0 concentration has improved the robustness of the c2
shell. A detailed perturbation analysis may resolve this finding,
but is out of scope for this work.

In contrast, the CHSB models are sufficiently perturbed by
buoyancy and shear flows to attain the minimal energy crescent.
We observe a tenfold difference in time to equilibrium shape
between the CHSB z and CHSB x models. The large fluid flows
generated by pressure gradients in the CHSB x model destabilize
the 1-in-2 droplet configuration, leading to early formation of
a crescent at t = 10. The CHSB z model takes until at least
t = 100 to achieve the minimal energy crescent for intermediate
concentration ratios 0.2 < c1,0 < 0.8.

We provide an example snapshot of the velocity field in Fig. 7.
We note that the CHSB x figure actually plots the deviation
of the velocity from the x-averaged velocity profile. This is
because an O(1) Poiseuille-type flow is set up by the pressure
gradient, obscuring the smaller relative motion of the fluid within
the droplet. The overall magnitude of the recirculation velocity
within the CHSB z droplet is an order of magnitude weaker
than that in the CHSB x droplet. Once the CHSB z droplet
has reached the top of the constraining box, only much weaker
relative buoyancies between the c1 and c2 phase can drive the flow.
This contrasts with the large shear-induced recirculation within
the CHSB x droplet. This difference of flows within the droplets
is the origin of the reduced interval to droplet formation in the
CHSB x model. This suggests that crescent particle manufacture
may be accelerated by pressure-driven shear flow through small
confined channels.

In summary, the initial phase separation may dissipate c1,
generate droplets of c1 or c2, or form c2 shells, depending on
the initial concentration ratio c1,0. The long-time behavior will
then either lead to a uniform c2 droplet, a 1-in-2 shell, or a
minimal energy crescent. The time to equilibrium depends on
both the initial concentrations, as well as the strength of the fluid
perturbations. If particles move due to pressure gradients, leading
to shear flows, one observes recirculating flows within the droplet.
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Fig. 5. Plot of number of c1 droplets (Left column) and c2 droplets (Right
column) over time, for different concentration ratios c1 : c2, for CH (gray), CHS
(red), CHSB z (green), and CHSB x models (blue). A t−1/2 line (dashed black)
fits some coalescence regimes well. The CHS, CHSB z, and CHSB x models
show very little difference in particle counts. The CH model is similar for
concentration ratios c1 : c2 of 3 : 7 and 7 : 3 but becomes increasingly distinct
as the concentration ratio approaches 5 : 5. Droplet counts are omitted for
other choices of droplet and concentration ratio because at most one drop
ever forms.

This recirculating flow accelerates transport of the first phase to
the droplet exterior, aiding crescent formation. If instead particles
are constrained by a bounding box, the buoyancy-induced flows
are weaker, causing much longer coalescence times. Without
density variations between phase 1 and 2, the shell configuration
remains stable, preventing crescent formation. We provide a side-
by-side video of these simulations in SI Appendix.
C.2. Three-dimensional drop evolution. We present three-dimen-
sional simulations with initial droplet concentration ratio c1,0 :
c2,0 = 0.3 : 0.7 in Fig. 8 (and Movie S2). Our aim is
to delineate agreement and disagreement between the three-
dimensional (3D) simulations, the two-dimensional simulations,
and experimental data. For the 3D models, we see agreement
at early times t < 0.5. Differences in time to form a single c1

Fig. 6. Equilibrium shape (Crescent 4, shell ©, and c2 droplet •) and
dimensionless time to equilibrium for CH (gray), CHS (red), CHSB z (green),
and CHSB x (blue) models. Asymmetric buoyancy forces destabilize shell
configurations, causing crescent formation. Pressure-driven pipe flow causes
stronger recirculation, accelerating crescent formation by up to two orders
of magnitude. Low c1 concentrations instead diffuse out of the drop, leading
to c2-only drops.

Fig. 7. Example snapshots of the velocity field for the 2D CHSB z (Left) and
CHSB x (Right) models. Both simulations have an initial concentration ratio c1
: c2 = 0:5. The phases are illustrated in color (c1, c2, c3 are purple/orange/gray)
and the velocities indicated with arrows (colored by speed). The time of
each snapshot is provided on the left of each axis, and the maximum
speed indicated on the Bottom. The CHSB x model has been shifted into
the droplet frame, and we have subtracted off the x-averaged velocity profile
to visualize the deviation from Poiseuille-type shear flow. The length scales of
the velocities in each figure are different; however, both are colored according
to the same velocity scale (Right).

bubble occur between t = 0.5 to t = 2, where stronger fluid
perturbations temporarily inhibit coarsening (the CHS model
coarsens to a single droplet by time t = 0.7, in comparison
to t = 1.0 for the CHSB z model and t = 2.0 for the
CHSB x model). The CH and CHS models tend to a core-
in-shell configuration, whereas the CHSB x forms a crescent.
CHSB z should also reach an equilibrium crescent shape, though
over a longer time period than our simulation. We provide
a side-by-side video of the three-dimensional simulations in
SI Appendix.

The patterns of shell vs. crescent formation in two and three
dimensions are in agreement—stronger recirculating flows in the
CHSB x model accelerate crescent formation compared to the
CHSB z model, and the CH and CHS models settle into a shell
equilibrium. We also notice that the CH model forms elongated
droplets compared to the spherical droplets of the CHS models
and that the CH model evolves over a slower time scale, much as
in the 2D case for concentration ratios near c1 : c2 = 0.5 : 0.5.
However, the time to equilibrium for the 3D model is reduced
when compared to the 2D model at the same concentration ratio
c1 : c2 = 3 : 7 (7 s for CHSB x in 3D, vs. 47 s in 2D).
This difference may partially be explained by simple geometry.
In dimension d , if the volume fraction of a c1 droplet is given by
 = c1/(c1 + c2), then the relative radius of the inner droplet
r1 to the whole r is given by r1/r = 1/d . That is to say, in
three dimensions, an inner c1 droplet is closer to the edge of the
droplet than in two dimensions. We thus expect it to take less
time to form a crescent in three dimensions. A fairer comparison
between two and three dimensions may instead be that for which
the radius ratio is equal, not the volume ratio. In this case, a 2D
concentration ratio of (0.3)2/3

≈ 0.45 is seen to take less time
to form a crescent (between 6 s and 35 s for c1 : c2 = 0.4 : 0.6
and 0.5 : 0.5 respectively).

Fig. 1 demonstrates the qualitative correspondence between
the 3D simulations and experiments of LLPS in a gelatin–
PEG mixture. We also provide videos of the experiments in
SI Appendix. The coarsening behavior, and final shapes of the
particles, are in agreement. There is a discrepancy in time scales.
The physical times suggested by the parameters in Table 1 suggest
much faster evolution of the simulation than the experiment.
A time rescaling reconciles this difference and is presented in
SI Appendix.
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Fig. 8. Evolution of CHS, CHSB z, and CHSB x simulations in three dimensions using parameters in Tables 1-3, for the initial concentration ratio c1 : c2 = 0:3 : 0:7.
Overall coarsening times are accelerated compared to two-dimensional simulations. Only the CHSB x model develops an energy minimizing crescent
configuration.

3. Conclusions and Future Directions
We provide several mathematical models of liquid–liquid phase
separation in aqueous two-phase systems. The simplest surface
energy minimization model is able to concisely describe equi-
librium droplet shapes using just three experimentally testable
parameters, the surface tensions between each phase, and the
relative concentration of the PEG and gelatin phases. However,
this simple model does not account for the dynamics of the
system during phase separation and coarsening. To understand
these dynamics, we have developed a hierarchy of three models,
a ternary Cahn–Hilliard model (CH), a Cahn–Hilliard–Stokes
model (CHS) to incorporate surface tension–driven fluid flow,
and a Cahn–Hilliard–Stokes–Boussinesq model (CHSB) to also
consider buoyancy forcing. While all models agree with the
minimal energy shape and contact angles predicted by the energy
minimization model, we find that they give different predictions
for the same initial conditions. For surface tension regimes
corresponding to experiment (�1,2 ≈ 0 and �1,3 ≈ �2,3), both
the CH and CHS models equilibrate to radially symmetric shell
configurations. This contrasts with experiment, where crescents
can reliably be produced. Buoyancy forcing in the CHSB model
resolves this disagreement. It breaks the symmetry of the shell
configuration and encourages the heavier gelatin phase to sink
to the Bottom of the shell. Different flow profiles for different
containers can also further accelerate the phase separation
process.

Several promising research directions follow. The first would
be to investigate the behavior of the system for increasing
separation time scalesT . This places more emphasis on the role of
fluid dynamics but comes at steep computational cost, possibly
requiring specialized time integrators (47, 48) to allow greater
time steps than the current Implicit-Explicit scheme.

The consistent failure of the CH and CHS models to achieve
energy minimization is also of mathematical and physical interest.
How strongly must mixed initial conditions be perturbed to
observe the emergence of minimal energy triple points? How
does the size of the necessary perturbation depend on the relative
surface tensions? Analysis inspired by ref. 49 could inform how
precise the manufacturing process can be as well as connect
to findings of skin layers in models of membrane manufacture
(31, 33). We also observe that different fluid flows strongly affect
the time to crescent formation; this process may be optimized for
design manufacture.

It would be scientifically valuable to explore reduced asymp-
totic models of phase-separated low Reynolds number fluid
dynamics. The reduced equations, derived using multiple-
scales matched-asymptotics as " → 0 (50–55), may provide
a much more computationally efficient model of liquid–liquid
phase separation, allowing comprehensive investigation of fluid
dynamic effects on phase-separating polymer solutions.

Scientific advances could come from more general ther-
modynamic models. Non-constant mobilities (56, 57) and
Flory-Huggins type free energies (58, 59) might extend the
model to more widely varying temperature regimes, and
further reduce free parameters of the model. Accounting
for surfactants and Marangoni stresses would also be nec-
essary for considering droplet interactions. Significant pro-
cess on modeling cell-cell interactions has been made un-
der a similar framework (60). However, quantitative accuracy
would necessitate much more comprehensive experimental data
(12, 61–63).

We emphasize the wide applicability of our key observations.
Microparticle manufacture, colloid engineering, and condensates
in biological systems all combine fluid dynamics and phase
separation. We show that in such systems, fluid flows and forces
can greatly alter the evolution and equilibria of liquid–liquid
phase separation.

4. Materials and Methods
A. Experimental Determination of Densities. To determine the densities
of mixed homogeneous and individual phases post phase separation, we first
prepared stock solutions of 4-arm PEG Acrylate (5 kDa, Advanced BioChemicals)
at 20% w/v in phosphate-buffered saline (PBS) and cold water fish skin gelatin
(sigma) at 10% w/v in deionized (DI) water. We mixed these in a PEG:gelatin ratio
of 1.32:1 and added enough extra DI water until we observed a homogeneous
solution. We weighed 50 μL aliquots on a mass balance in triplicate of this
single-phase solution. The solution was then incubated at 4 ◦C for 15 min and
centrifuged to obtain separate phases. Each individual phase was weighed in 50
μL aliquots. Density was calculated by dividing the measured mass by volume
of measurement and reported in g/ml units.

B. Experimental Temperature-Induced Phase Separation (13). We pre-
pared stock solutions of cold water fish skin gelatin (Sigma) at 10% (w/v) in
DI water and 4-arm PEG Acrylate (5 kDa, Advanced BioChemicals) at 20% (w/v)
in PBS. We then mixed these at the following PEG:gelatin ratios 3:2,1:1,1:2
and diluted each solution with DI water until we achieved a homogenous
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mixture. We then flowed this aqueous phase through a step emulsification
microfluidic droplet generator at 5 μL/min as the dispersed phase. Novec
7500 (3M) supplemented with 2% (v/v) PicoSurf (Sphere Fluidics) at 10 μL/min
was used as the continuous phase. This produced monodisperse droplets. We
immersed these droplets in a reservoir placed in a cold water bath at 4 ◦C.
We imaged the droplets by acquiring a brightfield image every 30 s using a
Photometrics Prime sCMOS camera at 10x magnification (Nikon) for 15 to 90
min to monitor phase separation until completion.

C. Numerical Methods. We implement the Cahn–Hilliard–Stokes model in
the Dedalus spectral code (64). Dedalus automatically parses text descriptions
of partial differential equations into efficient numerical solvers. The framework
is written in Python but uses compiled libraries for performance, enabling
rapid prototyping and model comparisons, as well as efficient high-performance
simulations. We simulate in two and three dimensions, using Fourier projections
in the horizontal directions and Chebyshev polynomials in the vertical direction,
to represent no-slip, non-wetting walls. Using basis recombination and the tau
method (64) to enforce boundary conditions, the linear part of the system is
discretized into sparse banded matrices that are parallelized over each Fourier
mode using the MPI library. A second-order semi-implicit backward difference
time stepping method iterates the linear part implicitly and the nonlinear part
explicitly. In contrast to earlier methods involving iterative nonlinear implicit

solves (65–68), constant coefficient preconditioning alleviates equation stiffness
constraints with single matrix solves (similar to refs. 37, 69–73). This affords an
efficient solution routine with complexity approximately linear in the degrees
of freedom. Further details are provided in SI Appendix, and the Mathematica
derivation and simulation code are provided online (74).

Data,Materials, and SoftwareAvailability. All code used for data generation
and analysis is available at https://github.com/ericwhester/multiphase-fluids-
code (74). The simulation data is too large to host online, but will be made
available upon request.
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