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Abstract A test of CP invariance in Higgs boson produc-
tion via vector-boson fusion using the method of the Opti-
mal Observable is presented. The analysis exploits the decay
mode of the Higgs boson into a pair of τ leptons and is
based on 20.3 fb−1 of proton–proton collision data at

√
s =

8 TeV collected by the ATLAS experiment at the LHC. Con-
tributions from CP-violating interactions between the Higgs
boson and electroweak gauge bosons are described in an
effective field theory framework, in which the strength of
CP violation is governed by a single parameter d̃ . The mean
values and distributions of CP-odd observables agree with
the expectation in the Standard Model and show no sign of
CP violation. The CP-mixing parameter d̃ is constrained to
the interval (−0.11, 0.05) at 68% confidence level, consis-
tent with the Standard Model expectation of d̃ = 0.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . 1
2 Effective Lagrangian framework . . . . . . . . . . . 2
3 Test of CP invariance and Optimal Observable . . . 3
4 The ATLAS detector . . . . . . . . . . . . . . . . . 4
5 Simulated samples . . . . . . . . . . . . . . . . . . 4
6 Analysis . . . . . . . . . . . . . . . . . . . . . . . 6
7 Fitting procedure . . . . . . . . . . . . . . . . . . . 8
8 Results . . . . . . . . . . . . . . . . . . . . . . . . 9
9 Conclusions . . . . . . . . . . . . . . . . . . . . . 10
References . . . . . . . . . . . . . . . . . . . . . . . . 11

1 Introduction

The discovery of a Higgs boson by the ATLAS and CMS
experiments [1,2] at the LHC [3] offers a novel opportunity
to search for new sources of CP violation in the interaction of

� e-mail: atlas.publications@cern.ch

the Higgs boson with other Standard Model (SM) particles.
C and CP violation is one of the three Sakharov conditions [4–
6] needed to explain the observed baryon asymmetry of the
universe. In the SM with massless neutrinos the only source
of CP violation is the complex phase in the quark mixing
(CKM) matrix [7,8]. The measured size of the complex
phase and the derived magnitude of CP violation in the early
universe is insufficient to explain the observed value of the
baryon asymmetry [9] within the SM [10,11] and, most prob-
ably, new sources of CP violation beyond the SM need to be
introduced. No observable effect of CP violation is expected
in the production or decay of the SM Higgs boson. Hence
any observation of CP violation involving the observed Higgs
boson would be an unequivocal sign of physics beyond the
SM.

The measured Higgs boson production cross sections,
branching ratios and derived constraints on coupling-strength
modifiers, assuming the tensor structure of the SM, agree
with the SM predictions [12,13]. Investigations of spin and
CP quantum numbers in bosonic decay modes and measure-
ments of anomalous couplings including CP-violating ones
in the decay into a pair of massive electroweak gauge bosons
show no hints of deviations from the tensor structure of the
SM Higgs boson [14,15]. Differential cross-section measure-
ments in the decay H → γ γ have been used to set limits
on couplings including CP-violating ones in vector-boson
fusion production in an effective field theory [16]. However,
the observables, including absolute event rates, used in that
analysis were CP-even and hence not sensitive to the possible
interference between the SM and CP-odd couplings and did
not directly test CP invariance. The observables used in this
analysis are CP-odd and therefore sensitive to this interfer-
ence and the measurement is designed as a direct test of CP
invariance.

In this paper, a first direct test of CP invariance in Higgs
boson production via vector-boson fusion (VBF) is pre-
sented, based on proton–proton collision data corresponding
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to an integrated luminosity of 20.3 fb−1 collected with the
ATLAS detector at

√
s = 8 TeV in 2012. A CP-odd Opti-

mal Observable [17–19] is employed. The Optimal Observ-
able combines the information from the multi-dimensional
phase space in a single quantity calculated from leading-
order matrix elements for VBF production. Hence it does
not depend on the decay mode of the Higgs boson. A direct
test of CP invariance is possible measuring the mean value of
the CP-odd Optimal Observable. Moreover, as described in
Sect. 2, an ansatz in the framework of an effective field the-
ory is utilised, in which all CP-violating effects correspond-
ing to operators with dimensions up to six in the couplings
between a Higgs boson and an electroweak gauge boson can
be described in terms of a single parameter d̃. Limits on d̃
are derived by analysing the shape of spectra of the Optimal
Observable measured in H → ττ candidate events that also
have two jets tagging VBF production. The event selection,
estimation of background contributions and of systematic
uncertainties follows the analysis used to establish 4.5σ evi-
dence for the H → ττ decay [20]. Only events selected
in the VBF category are analysed, and only fully leptonic
τlepτlep or semileptonic τlepτhad decays of the τ -lepton pair
are considered.

The theoretical framework in the context of effective field
theories is discussed in Sect. 2 and the methodology of test-
ing CP invariance and the concept of the Optimal Observ-
able are introduced in Sect. 3. After a brief description of
the ATLAS detector in Sect. 4, the simulated samples used
are summarised in Sect. 5. The experimental analysis is pre-
sented in Sect. 6, followed by a description of the statisti-
cal method used to determine confidence intervals for d̃ in
Sect. 7. The results are discussed in Sect. 8, following which
conclusions are given.

2 Effective Lagrangian framework

The effective Lagrangian considered is the SM Lagrangian
augmented by CP-violating operators of mass dimension six,
which can be constructed from the Higgs doublet � and the
U(1)Y and SU(2)IW ,L electroweak gauge fields Bμ and Wa,μ

(a = 1, 2, 3), respectively. No CP-conserving dimension-six
operators built from these fields are taken into account. All
interactions between the Higgs boson and other SM particles
(fermions and gluons) are assumed to be as predicted in the
SM; i.e. the coupling structure in gluon fusion production
and in the decay into a pair of τ -leptons is considered to be
the same as in the SM.

The effective U(1)Y - and SU(2)IW ,L-invariant Lagrangian
is then given by (following Refs. [21,22]):

Leff = LSM + f B̃B

�2 OB̃ B + fW̃W

�2 OW̃W + f B̃
�2 OB̃ (1)

with the three dimension-six operators

OB̃ B = �+ ˆ̃Bμν B̂
μν�

OW̃W = �+ ˆ̃WμνŴ
μν�

OB̃ = (Dμ�)+ ˆ̃BμνDν�. (2)

and three dimensionless Wilson coefficients f B̃B , fW̃W and
f B̃ ; � is the scale of new physics.

Here Dμ denotes the covariant derivative
Dμ = ∂μ + i

2g
′Bμ + ig σa

2 Wa
μ, V̂μν (V = B,Wa) the

field-strength tensors and Ṽμν = 1
2εμνρσV ρσ the dual field-

strength tensors, with B̂μν + Ŵμν = i g
′

2 Bμν + i g2 σ aWa
μν .

The last operator OB̃ contributes to the CP-violating
charged triple gauge-boson couplings κ̃γ and κ̃Z via the

relation κ̃γ = − cot2 θW κ̃Z = m2
W

2�2 f B̃ . These CP-violating
charged triple gauge boson couplings are constrained by the
LEP experiments [23–25] and the contribution from OB̃ is
neglected in the following; i.e. only contributions from OB̃ B
and OW̃W are taken into account.

After electroweak symmetry breaking in the unitary gauge
the effective Lagrangian in the mass basis of Higgs boson H ,
photon A and weak gauge bosons Z and W± can be written,
e.g. as in Ref. [26]:

Leff = LSM + g̃H AAH Ãμν A
μν + g̃H AZ H Ãμν Z

μν

+g̃H Z Z H Z̃μν Z
μν + g̃HWW HW̃+

μνW
−μν. (3)

Only two of the four couplings g̃HV V (V = W±, Z , γ )
are independent due to constraints imposed by U(1)Y and
SU(2)IW ,L invariance. They can be expressed in terms of
two dimensionless couplings d̃ and d̃B as:

g̃H AA = g

2mW
(d̃ sin2 θW + d̃B cos2 θW )

g̃H AZ = g

2mW
sin 2θW (d̃ − d̃B) (4)

g̃H Z Z = g

2mW
(d̃ cos2 θW + d̃B sin2 θW )

g̃HWW = g

mW
d̃. (5)

Hence in general WW , Z Z , Zγ and γ γ fusion contribute to
VBF production. The relations between d̃ and fW̃W , and d̃B
and f B̃B are given by:

d̃ = −m2
W

�2 fW̃W d̃B = −m2
W

�2 tan2 θW fB̃B . (6)

As the different contributions from the various electroweak
gauge-boson fusion processes cannot be distinguished exper-
imentally with the current available dataset, the arbitrary
choice d̃ = d̃B is adopted. This yields the following rela-
tion for the g̃HV V :

g̃H AA = g̃H Z Z = 1

2
g̃HWW = g

2mW
d̃ and g̃H AZ = 0.

(7)
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The parameter d̃ is related to the parameter κ̂W =
κ̃W /κSM tan α used in the investigation of CP properties in
the decay H → WW [15] via d̃ = −κ̂W . The choice
d̃ = d̃B yields κ̂W = κ̂Z as assumed in the combination
of the H → WW and H → Z Z decay analyses [15].

The effective Lagrangian yields the following Lorentz
structure for each vertex in the Higgs bosons coupling
to two identical or charge-conjugated electroweak gauge
bosons HV (p1)V (p2) (V =W±, Z , γ ), with p1,2 denoting
the momenta of the gauge bosons:

Tμν(p1, p2) =
∑

V=W±,Z

2m2
V

v
gμν

+
∑

V=W±,Z ,γ

2g

mW
d̃ εμνρσ p1ρ p2σ . (8)

The first terms (∝ gμν) are CP-even and describe the SM cou-
pling structure, while the second terms (∝ εμνρσ p1ρ p2σ ) are
CP-odd and arise from the CP-odd dimension-six operators.
The choice d̃ = d̃B gives the same coefficients multiplying
the CP-odd structure for HW+W−, HZZ and Hγ γ vertices
and a vanishing coupling for the HZγ vertex.

The matrix element M for VBF production is the sum
of a CP-even contribution MSM from the SM and a CP-
odd contribution MCP-odd from the dimension-six operators
considered:

M = MSM + d̃ · MCP-odd. (9)

The differential cross section or squared matrix element has
three contributions:

|M|2 = |MSM|2 + d̃ · 2Re(M∗
SMMCP-odd)

+ d̃2 · |MCP-odd|2. (10)

The first term |MSM|2 and third term d̃2 · |MCP-odd|2 are
both CP-even and hence do not yield a source of CP vio-
lation. The second term d̃ · 2Re(M∗

SMMCP-odd), stemming
from the interference of the two contributions to the matrix
element, is CP-odd and is a possible new source of CP viola-
tion in the Higgs sector. The interference term integrated over
a CP-symmetric part of phase space vanishes and therefore
does not contribute to the total cross section and observed
event yield after applying CP-symmetric selection criteria.
The third term increases the total cross section by an amount
quadratic in d̃, but this is not exploited in the analysis pre-
sented here.

3 Test of CP invariance and Optimal Observable

Tests of CP invariance can be performed in a completely
model-independent way by measuring the mean value of a
CP-odd observable 〈OCP〉. If CP invariance holds, the mean

value has to vanish 〈OCP〉 = 0. An observation of a non-
vanishing mean value would be a clear sign of CP violation.
A simple CP-odd observable for Higgs boson production in
VBF, the “signed” difference in the azimuthal angle between
the two tagging jets �φ j j , was suggested in Ref. [22] and is
formally defined as:

εμνρσb
μ
+ pν+b

ρ
− pσ− = 2pT+ pT− sin(φ+ − φ−)

= 2pT+ pT− sin �φ j j . (11)

Here bμ
+ and bμ

− denote the normalised four-momenta
of the two proton beams, circulating clockwise and anti-
clockwise, and pμ

+ (φ+) and pμ
− (φ−) denote the four-

momenta (azimuthal angles) of the two tagging jets, where
p+ (p−) points into the same detector hemisphere as bμ

+ (bμ
−).

This ordering of the tagging jets by hemispheres removes the
sign ambiguity in the standard definition of �φ j j .

The final state consisting of the Higgs boson and the two
tagging jets can be characterised by seven phase-space vari-
ables while assuming the mass of the Higgs boson, neglect-
ing jet masses and exploiting momentum conservation in
the plane transverse to the beam line. The concept of the
Optimal Observable combines the information of the high-
dimensional phase space in a single observable, which can be
shown to have the highest sensitivity for small values of the
parameter of interest and neglects contributions proportional
to d̃2 in the matrix element. The method was first suggested
for the estimation of a single parameter using the mean value
only [17] and via a maximum-likelihood fit to the full distri-
bution [18] using the so-called Optimal Observable of first
order. The extension to several parameters and also exploiting
the matrix-element contributions quadratic in the parameters
by adding an Optimal Observable of second order was intro-
duced in Refs. [19,27,28]. The technique has been applied
in various experimental analyses, e.g. Refs. [15,29–39].

The analysis presented here uses only the first-order Opti-
mal Observable OO (calledOptimal Observable below) for
the measurement of d̃ via a maximum-likelihood fit to the full
distribution. It is defined as the ratio of the interference term
in the matrix element to the SM contribution:

OO = 2Re(M∗
SMMCP-odd)

|MSM|2 . (12)

Figure 1 shows the distribution of the Optimal Observable,
at parton level both for the SM case and for two non-zero d̃
values, which introduce an asymmetry into the distribution
and yield a non-vanishing mean value.

The values of the leading-order matrix elements needed
for the calculation of the Optimal Observable are extracted
from HAWK [41–43]. The evaluation requires the four-
momenta of the Higgs boson and the two tagging jets. The
momentum fraction x1 (x2) of the initial-state parton from the
proton moving in the positive (negative) z-direction can be
derived by exploiting energy–momentum conservation from
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Fig. 1 Distribution of the Optimal Observable at parton-level for
two arbitrary d̃ values. The SM sample was generated using Mad-

Graph5_aMC@NLO [40] (see Sect. 5) at leading order, and then
reweighted to different d̃ values. Events are chosen such that there are
at least two outgoing partons with pT > 25 GeV, |η| < 4.5, large
invariant mass (m(p1, p2) > 500 GeV) and large pseudorapidity gap
(�η(p1, p2) > 2.8 )

the Higgs boson and tagging jet four-momenta as:

x reco
1/2 = mH j j√

s
e±yH j j (13)

where mHjj (yHjj) is the invariant mass (rapidity) obtained
from the vectorially summed four-momenta of the tagging
jets and the Higgs boson. Since the flavour of the initial-
and final-state partons cannot be determined experimentally,
the sum over all possible flavour configurations i j → klH
weighted by the CT10 leading-order parton distribution func-
tions (PDFs) [44] is calculated separately for the matrix ele-
ments in the numerator and denominator:

2Re(M∗
SMMCP-odd) =

∑

i, j,k,l

fi (x1) f j (x2)

× 2Re((Mi j→klH
SM )∗Mi j→klH

CP-odd )

(14)

|MSM|2 =
∑

i, j,k,l

fi (x1) f j (x2)|Mi j→klH
SM |2. (15)

4 The ATLAS detector

The ATLAS detector [45] is a multi-purpose detector with
a cylindrical geometry.1 It comprises an inner detector
(ID) surrounded by a thin superconducting solenoid, a

1 ATLAS uses a right-handed coordinate system with its origin at the
nominal interaction point (IP) in the centre of the detector and the z-axis
along the beam pipe. The x-axis points from the IP to the centre of the
LHC ring, and the y-axis points upward. Cylindrical coordinates (r, φ)

are used in the transverse plane, φ being the azimuthal angle around the
z-axis. The pseudorapidity is defined in terms of the polar angle θ as
η = − ln tan(θ/2).

calorimeter system and an extensive muon spectrometer
in a toroidal magnetic field. The ID tracking system con-
sists of a silicon pixel detector, a silicon microstrip detec-
tor, and a transition radiation tracker. It provides precise
position and momentum measurements for charged parti-
cles and allows efficient identification of jets containing
b-hadrons (b-jets) in the pseudorapidity range |η| < 2.5.
The ID is immersed in a 2 T axial magnetic field and is
surrounded by high-granularity lead/liquid-argon sampling
electromagnetic calorimeters which cover the pseudorapidity
range |η| < 3.2. A steel/scintillator tile calorimeter provides
hadronic energy measurements in the central pseudorapidity
range (|η| < 1.7). In the forward regions (1.5 < |η| < 4.9),
the system is complemented by two end-cap calorimeters
using liquid argon as active material and copper or tungsten as
absorbers. The muon spectrometer surrounds the calorime-
ters and consists of three large superconducting eight-coil
toroids, a system of tracking chambers, and detectors for
triggering. The deflection of muons is measured in the region
|η| < 2.7 by three layers of precision drift tubes, and cathode
strip chambers in the innermost layer for |η| > 2.0. The trig-
ger chambers consist of resistive plate chambers in the barrel
(|η| < 1.05) and thin-gap chambers in the end-cap regions
(1.05 < |η| < 2.4).

A three-level trigger system [46] is used to select events.
A hardware-based Level-1 trigger uses a subset of detector
information to reduce the event rate to 75 kHz or less. The
rate of accepted events is then reduced to about 400 Hz by two
software-based trigger levels, named Level-2 and the Event
Filter.

5 Simulated samples

Background and signal events are simulated using vari-
ous Monte Carlo (MC) event generators, as summarised in
Table 1. The generators used for the simulation of the hard-
scattering process and the model used for the simulation of
the parton shower, hadronisation and underlying-event activ-
ity are listed. In addition, the cross-section values to which
the simulation is normalised and the perturbative order in
QCD of the respective calculations are provided.

All the background samples used in this analysis are
the same as those employed in Ref. [20], except the ones
used to simulate events with the Higgs boson produced
via gluon fusion and decaying into the ττ final state. The
Higgs-plus-one-jet process is simulated at NLO accuracy
in QCD with Powheg-Box [47–49,73], with the MINLO

feature [74] applied to include Higgs-plus-zero-jet events at
NLO accuracy. This sample is referred to as HJ MINLO. The
Powheg-Box event generator is interfaced to Pythia8 [51],
and the CT10 [44] parameterisation of the PDFs is used.
Higgs boson events produced via gluon fusion and decay-
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Table 1 MC event generators used to model the signal and the background processes at
√
s = 8 TeV

Signal MC generator σ × B [pb]√
s = 8 TeV

VBF, H → ττ Powheg- Box [47–50] Pythia8 [51] 0.100 (N)NLO [41,42,52–54]

VBF, H → WW same as for H → ττ signal 0.34 (N)NLO [41,42,52–54]

Background MC generator σ × B [pb]√
s = 8 TeV

W (→ �ν), (� = e, μ, τ) Alpgen [55] + Pythia8 36,800 NNLO [56,57]

Z/γ ∗(→ ��), Alpgen + Pythia8 3910 NNLO [56,57]

60 GeV < m�� < 2 TeV

Z/γ ∗(→ ��), Alpgen + Herwig [58] 13,000 NNLO [56,57]

10 GeV < m�� < 60 GeV

VBF Z/γ ∗(→ ��) Sherpa [59] 1.1 LO [59]

t t̄ Powheg-Box + Pythia8 253† NNLO + NNLL [60–65]

Single top : Wt Powheg-Box + Pythia8 22† NNLO [66]

Single top : s-channel Powheg-Box + Pythia8 5.6† NNLO [67]

Single top : t-channel AcerMC [68] + Pythia6 [69] 87.8† NNLO [70]

qq̄ → WW Alpgen + Herwig 54† NLO [71]

gg → WW gg2WW [72] + Herwig 1.4† NLO [72]

WZ , Z Z Herwig 30† NLO [71]

ggF, H → ττ HJ MINLO [73,74] + Pythia8 1.22 NNLO + NNLL [54,75–80]

ggF, H → WW Powheg-Box [81] + Pythia8 4.16 NNLO + NNLL [54,75–80]

All Higgs boson events are generated assuming mH = 125 GeV. The cross sections times branching fractions (σ × B) used for the normalisation
of some processes (many of these are subsequently normalised to data) are included in the last column together with the perturbative order of the
QCD calculation. For the signal processes the H → ττ and H → WW SM branching ratios are included, and for the W and Z/γ ∗ background
processes the branching ratios for leptonic decays (� = e, μ, τ ) of the bosons are included. For all other background processes, inclusive cross
sections are quoted (marked with a †)

ing into the W+W− final state, which are a small compo-
nent of the background, are simulated, as in Ref. [20], with
Powheg [47–49,81] interfaced to Pythia8 [51]. For these
simulated events, the shape of the generated pT distribution
is matched to a NNLO + NNLL calculation HRes2.1 [82,83]
in the inclusive phase space. Simultaneously, for events with
two or more jets, the Higgs boson pT spectrum is reweighted
to match the MINLO HJJ predictions [84]. The overall nor-
malisation of the gluon fusion process (ggF) is taken from
a calculation at next-to-next-to-leading order (NNLO) [75–
80] in QCD, including soft-gluon resummation up to next-
to-next-to-leading logarithm terms (NNLL) [85]. Next-to-
leading-order (NLO) electroweak (EW) corrections are also
included [86,87]. Higgs boson events produced via VBF,
with SM couplings, are also simulated with Powheg inter-
faced with Pythia8 (see Table 1 and Ref. [20]).

Production by VBF is normalised to a cross section cal-
culated with full NLO QCD and EW corrections [41,42,52]
with an approximate NNLO QCD correction applied [53].
The NLO EW corrections for VBF production depend on the
pT of the Higgs boson, and vary from a few percent at low
pT to ∼ 20% at pT = 300 GeV [88]. The pT spectrum of the
VBF-produced Higgs boson is therefore reweighted, based

on the difference between the Powheg-Box+Pythia cal-
culation and the Hawk [41–43] calculation which includes
these corrections.

In the case of VBF-produced Higgs boson events in the
presence of anomalous couplings in the HVV vertex, the
simulated samples are obtained by applying a matrix ele-
ment (ME) reweighting method to the VBF SM signal sam-
ple. The weight is defined as the ratio of the squared ME
value for the VBF process associated with a specific amount
of CP mixing (measured in terms of d̃) to the SM one. The
inputs needed for the ME evaluation are the flavour of the
incoming partons, the four-momenta and the flavour of the
two or three final-state partons and the four-momentum of
the Higgs boson. The Bjorken x values of the initial-state
partons can be calculated from energy–momentum conser-
vation. The leading-order ME from HAWK [41–43] is used
for the 2 → 2 + H or 2 → 3 + H process separately. This
reweighting procedure is validated against samples gener-
ated with MadGraph5_aMC@NLO [40]. As described in
Ref. [89],MadGraph5_aMC@NLO can simulate VBF pro-
duction with anomalous couplings at next-to-leading order.
The reweighting procedure proves to be a good approxima-
tion to a full next-to-Leading description of the BSM process.
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Fig. 2 Mean of the Optimal Observable as a function of the BDTscore
for the SM signal (black dots with error bars) and for the sum
of all background processes (filled red area), for the a τlepτlep

and b τlepτhad channel. The signal and background model is in
agreement with the hypothesis of no bias from the BDT score

In the case of the H → WW sample, if CP violation exists
in the HVV coupling, it would affect both the VBF produc-
tion and the HWW decay vertex. It was verified that the
shape of the Optimal Observable distribution is independent
of any possible CP violation in the H → WW decay vertex
and that it is identical for H → WW and H → ττ decays.
Hence the same reweighting is applied for VBF-produced
events with H → WW and H → ττ decays.

For all samples, a full simulation of the ATLAS detec-
tor response [90] using the Geant4 program [91] was per-
formed. In addition, multiple simultaneous minimum-bias
interactions are simulated using the AU2 [92] parameter tun-
ing of Pythia8. They are overlaid on the simulated signal
and background events according to the luminosity profile of
the recorded data. The contributions from these pile-up inter-
actions are simulated both within the same bunch crossing as
the hard-scattering process and in neighbouring bunch cross-
ings. Finally, the resulting simulated events are processed
through the same reconstruction programs as the data.

6 Analysis

After data quality requirements, the integrated luminosity of
the

√
s = 8 TeV dataset used is 20.3 fb−1. The triggers, event

selection, estimation of background contributions and sys-
tematic uncertainties closely follow the analysis in Ref. [20].
In the following a short description of the analysis strategy
is given; more details are given in that reference.

Depending on the reconstructed decay modes of the two
τ leptons (leptonic or hadronic), events are separated into
the dileptonic (τlepτlep) and semileptonic (τlepτhad) channels.
Following a channel-specific preselection, a VBF region is
selected by requiring at least two jets with p j1

T > 40 GeV

(50 GeV) and p j2
T > 30 GeV and a pseudorapidity separa-

tion �η( j1, j2) > 2.2 (3.0) in the τlepτlep (τlepτhad) channel.
Events with b-tagged jets are removed to suppress top-quark
backgrounds.

Inside the VBF region, boosted decision trees (BDT)2 are
utilised for separating Higgs boson events produced via VBF
from the background (including other Higgs boson produc-
tion modes). The final signal region in each channel is defined
by the events with a BDTscore value above a threshold of 0.68
for τlepτlep and 0.3 for τlepτhad. The efficiency of this selec-
tion, with respect to the full VBF region, is 49% (51%) for the
signal and 3.6% (2.1%) for the sum of background processes
for the τlepτlep (τlepτhad) channel. A non-negligible number
of events from VBF-produced H → WW events survive the
τlepτlep selection: they amount to 17% of the overall VBF
signal in the signal region. Their contribution is entirely neg-
ligible in the τlepτhad selection. Inside each signal region, the
Optimal Observable is then used as the variable with which
to probe for CP violation. The BDTscore does not affect the
mean of the Optimal Observable, as can be seen in Fig. 2.

The modelling of the Optimal Observable distribution for
various background processes is validated in dedicated con-
trol regions. The top-quark control regions are defined by the
same cuts as the corresponding signal region, but inverting
the veto on b-tagged jets and not applying the selection on the
BDTscore (in the τlepτhad channel a requirement of the trans-
verse mass3 mT > 40 GeV is also applied). In the τlepτlep

channel a Z → �� control region is obtained by requiring two
same-flavour opposite-charge leptons, the invariant mass of
the two leptons to be 80 < m�� < 100 GeV, and no BDTscore

2 The same BDTs trained in the context of the analysis in Ref. [20] are
used here, unchanged.
3 The transverse mass is defined as mT =

√
2p�

T Emiss
T · (1 − cos �φ),

where �φ is the azimuthal separation between the directions of the
lepton and the missing transverse momentum.
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Fig. 3 Distributions of the Optimal Observable for the τlepτlep chan-
nel in the a top-quark control region (CR), b Z → �� CR, and c low-
BDTscore CR. The CR definitions are given in the text. These figures

use background predictions before the global fit defined in Sect. 7. The
“Other” backgrounds include diboson and Z → ��. Only statistical
uncertainties are shown

requirement, but otherwise applying the same requirements
as for the signal region. These regions are also used to nor-
malise the respective background estimates using a global fit
described in the next section. Finally, an additional region
is defined for each channel, called the low-BDTscore control
region, where a background-dominated region orthogonal to
the signal region is selected by requiring the BDTscore to be
less than 0.05 for τlepτlep and less than 0.3 for τlepτhad. The
distribution of the Optimal Observable in these regions is
shown in Figs. 3 and 4, demonstrating the good description
of the data by the background estimates.

The effect of systematic uncertainties on the yields in sig-
nal region and on the shape of theOptimalObservable is eval-

uated following the procedures and prescriptions described
in Ref. [20]. An additional theoretical uncertainty in the
shape of the Optimal Observable is included to account for
the signal reweighting procedure described in Sect. 5. This
is obtained from the small difference between the Optimal
Observable distribution in reweighted samples, compared to
samples with anomalous couplings directly generated with
MadGraph5_aMC@NLO. While the analysis is statisti-
cally limited, the most important systematic uncertainties are
found to arise from effects on the jet, hadronically decaying
τ and electron energy scales; the most important theoretical
uncertainty is due to the description of the underlying event
and parton shower in the VBF signal sample.
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Fig. 4 Distributions of the Optimal Observable for the τlepτhad chan-
nel in the a top-quark control region (CR) and b low-BDTscore CR.
The CR definitions are given in the text. These figures use background

predictions before the global fit defined in Sect. 7. The “Other” back-
grounds include diboson and Z → ��. Only statistical uncertainties are
shown

7 Fitting procedure

The best estimate of d̃ is obtained using a maximum-
likelihood fit performed on the Optimal Observable distri-
bution in the signal region for each decay channel simul-
taneously, with information from different control regions
included to constrain background normalisations and nui-
sance parameters. The normalisation of the VBF H → ττ

and H → WW signal sample is left free in the fit, i.e. this
analysis only exploits the shape of the Optimal Observable
and does not depend on any possibly model-dependent infor-
mation about the cross section of CP-mixing scenarios. The
relative proportion of the two Higgs boson decay modes is
assumed to be as in the SM. All other Higgs boson production
modes are treated as background in this study and normalised
to their SM expectation, accounting for the corresponding
theoretical uncertainties.

A binned likelihood function L(x;μ, θ) is employed,
which is a function of the data x, the free-floating signal
strength μ, defined as the ratio of the measured cross sec-
tion times branching ratio to the Standard Model prediction,
and further nuisance parameters θ . It relies on an underly-
ing model of signal plus background, and it is defined as the
product of Poisson probability terms for each bin in the distri-
bution of the Optimal Observable. A set of signal templates
corresponding to different values of the CP-mixing parame-
ter d̃ is created by reweighting the SM VBF H → ττ and
H → WW signal samples, as described in Sect. 5. The
likelihood function is then evaluated for each d̃ hypothesis
using the corresponding signal template, while keeping the
same background model. The calculation profiles the nui-
sance parameters to the best-fit values θ̂ , including informa-
tion about systematic uncertainties and normalisation fac-

tors, both of which affect the expected numbers of signal and
background events.

After constructing the negative log-likelihood (NLL)
curve by calculating the NLL value for each d̃ hypothesis, the
approximate central confidence interval at 68% confidence

level (CL) is determined from the best estimator ˆ̃d, at which
the NLL curve has its minimum value, by reading off the
points at which �NLL=NLL−NLLmin = 0.5. The expected
sensitivity is determined using an Asimov dataset, i.e. a
pseudo-data distribution equal to the signal-plus-background
expectation for given values of d̃ and the parameters of the
fit, in particular the signal strength μ, and not including sta-
tistical fluctuations [93].

In both channels, a region of low BDTscore is obtained
as described in the preceding section. The distribution of
the BDTscore itself is fitted in this region, which has a
much larger number of background events than the signal
region, allowing the nuisance parameters to be constrained
by the data. This region provides the main constraint on the
Z → ττ normalisation, which is free to float in the fit. The
event yields from the top-quark (in τlepτlep and τlepτhad) and
Z → �� (in τlepτlep only) control regions defined in the pre-
vious section are also included in the fit, to constrain the
respective background normalisations, which are also left
free in the fit.

The distributions of theOptimal Observable in each chan-
nel are shown in Fig. 5, with the nuisance parameters, back-
ground and signal normalisation adjusted by the global fit
performed for the d̃ = 0 hypothesis. Table 2 provides the
fitted yields of signal and background events, split into the
various contributions, in each channel. The number of events
observed in data is also provided.
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Fig. 5 Distributions of the Optimal Observable in the signal region for
the a τlepτlep and b τlepτhad channel, after the global fit performed for
the d̃ = 0 hypothesis. The best-fit signal strength is μ = 1.55+0.87

−0.76. The

“Other” backgrounds include diboson and Z → ��. The error bands
include all uncertainties

Table 2 Event yields in the signal region, after the global fit performed
for the d̃ = 0 hypothesis. The errors include systematic uncertainties

Process τlepτlep τlepτhad

Data 54 68

VBF H → ττ /WW 9.8 ± 2.1 16.7 ± 4.1

Z → ττ 19.6 ± 1.0 19.1 ± 2.2

Fake lepton/τ 2.3 ± 0.3 24.1 ± 1.5

t t̄ +single-top 3.8 ± 1.0 4.8 ± 0.7

Others 11.5 ± 1.7 5.3 ± 1.6

ggH/V H , H → ττ/WW 1.6 ± 0.2 2.5 ± 0.7

Sum of backgrounds 38.9 ± 2.3 55.8 ± 3.3

8 Results

The mean value of the Optimal Observable for the signal is
expected to be zero for a CP-even case, while there may be
deviations in case of CP-violating effects. A mean value of
zero is also expected for the background, as has been demon-
strated. Hence, the mean value in data should also be con-
sistent with zero if there are no CP-violating effects within
the precision of this measurement. The observed values for
the mean value in data inside the signal regions are 0.3 ± 0.5
for τlepτlep and −0.3 ± 0.4 for τlepτhad, fully consistent with
zero within statistical uncertainties and thus showing no hint
of CP violation.

As described in the previous section, the observed limit
on CP-odd couplings is estimated using a global maximum-
likelihood fit to theOptimal Observable distributions in data.
The observed distribution of �NLL as a function of the
CP-mixing parameter d̃ for the individual channels sepa-
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Fig. 6 Observed and expected �NLL as a function of the d̃ values
defining the underlying signal hypothesis, for τlepτlep (green), τlepτhad
(red) and their combination (black). The best-fit values of all nuisance
parameters from the combined fit at each d̃ point were used in all cases.
An Asimov dataset with SM backgrounds plus pure CP-even VBF signal
(d̃ = 0), scaled to the best-fit signal-strength value, was used to calculate
the expected values, shown in blue. The markers indicate the points
where an evaluation was made – the lines are only meant to guide the
eye

rately, and for their combination, is shown in Fig. 6. The
τlepτlep and τlepτhad curves use the best-fit values of all nui-
sance parameters from the combined fit at each d̃ point. The
expected curve is calculated assuming no CP-odd coupling,
with the H → ττ signal scaled to the signal-strength value
(μ = 1.55+0.87

−0.76) determined from the fit for d̃ = 0. In the
absence of CP violation the curve is expected to have a mini-
mum at d̃ = 0. Since the first-orderOptimalObservable used
in the present analysis is only sensitive to small variations in
the considered variable, for large d̃ values there is no further
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plus pure CP-even VBF signal (d̃ = 0) scaled to the SM expectation
was used to calculate the expected values in both cases. The markers
indicate the points where an evaluation was made – the lines are only
meant to guide the eye

discrimination power and thus the �NLL curve is expected to
flatten out. The observed curve follows this behaviour and is
consistent with no CP violation. The regions d̃ < −0.11 and
d̃ > 0.05 are excluded at 68% CL. The expected confidence
intervals are [−0.08, 0.08] ([−0.18, 0.18]) for an assumed
signal strength of μ = 1.55 (1.0). The constraints on the CP-
mixing parameter d̃ based on VBF production can be directly
compared to those obtained by studying the Higgs boson
decays into vector bosons, as the same relation between the
HWW and HZZ couplings as in Refs. [14,15] is assumed.
The 68% CL interval presented in this work is a factor 10
better than the one obtained in Ref. [15].

As a comparison, the same procedure for extracting the
CP-mixing parameter d̃ was applied using the �φ

sign
j j observ-

able, previously proposed for this measurement and defined
in Eq. 11, rather than the Optimal Observable. The expected
�NLL curves for a SM Higgs boson signal from the combi-
nation of both channels for the two CP-odd observables are
shown in Fig. 7, allowing a direct comparison, and clearly
indicate the better sensitivity of theOptimal Observable. The
observed �NLL curve derived from the �φ

sign
j j distribution

is also consistent with d̃ = 0, as shown in Fig. 8, along with
the expectation for a signal with d̃ = 0 scaled to the best-fit
signal-strength value (μ = 2.02+0.87

−0.77).

9 Conclusions

A test of CP invariance in the Higgs boson coupling to vec-
tor bosons has been performed using the vector-boson fusion
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Fig. 8 Observed (black) and expected (red) �NLL for the combina-
tion of both channels as a function of the d̃ values defining the under-
lying signal hypothesis when using the �φ

sign
j j parameter as the final

discriminating variable. An Asimov dataset with SM backgrounds plus
pure CP-even VBF signal (d̃ = 0), scaled to the best-fit value of the
signal strength in the combined fit when using the �φ

sign
j j parameter

(μ = 2.02+0.87
−0.77) was used to calculate the expected values. The mark-

ers indicate the points where an evaluation was made – the lines are
only meant to guide the eye

production mode and the H → ττ decay. The dataset cor-
responds to 20.3 fb−1of

√
s = 8 TeV proton–proton colli-

sions recorded by the ATLAS detector at the LHC. Event
selection, background estimation and evaluation of system-
atic uncertainties are all very similar to the ATLAS analysis
that provided evidence of the H → ττ decay. An Opti-
mal Observable is constructed and utilised, and is shown to
provide a substantially better sensitivity than the variable tra-
ditionally proposed for this kind of study, �φ

sign
j j . No sign

of CP violation is observed. Using only the dileptonic and
semileptonic H → ττ channels, and under the assumption
d̃ = d̃B , values of d̃ less than −0.11 and greater than 0.05
are excluded at 68% CL.

This 68% CL interval is a factor of 10 better than the one
previously obtained by the ATLAS experiment from Higgs
boson decays into vector bosons. In contrast, the present anal-
ysis has no sensitivity to constrain a 95% CL interval with the
dataset currently available – however larger data samples in
the future and consideration of additional Higgs boson decay
channels should make this approach highly competitive.
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