
UCLA
UCLA Previously Published Works

Title
Distinct Features of Plasma Ultrashort Single-Stranded Cell-Free DNA as Biomarkers for 
Lung Cancer Detection

Permalink
https://escholarship.org/uc/item/1gx3v4cz

Authors
Cheng, Jordan C
Swarup, Neeti
Li, Feng
et al.

Publication Date
2023-09-19

Data Availability
The data associated with this publication are available at: 
https://dataview.ncbi.nlm.nih.gov/object/PRJNA978642
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1gx3v4cz
https://escholarship.org/uc/item/1gx3v4cz#author
https://dataview.ncbi.nlm.nih.gov/object/PRJNA978642
https://escholarship.org
http://www.cdlib.org/


Accepted Manuscript

Distinct Features of Plasma Ultrashort Single-Stranded 
Cell-Free DNA as Biomarkers for Lung Cancer Detection 

Jordan Cheng ,a,† Neeti Swarup,a,† Feng Li,a,† Misagh Kordi,a Chien-Chung Lin,b Szu-Chun Yang,b 

Wei-Lun Huang,c Mohammad Aziz,a Yong Kim,a David Chia,d Yu-Min Yeh,c,e Fang Wei,a David Zheng ,f 

Liying Zhang ,d Matteo Pellegrini,f Wu-Chou Su,c,e,* and David T.W. Wonga,* 

BACKGROUND: Using broad range cell-free DNA sequen-
cing (BRcfDNA-Seq), a nontargeted next-generation se-
quencing (NGS) methodology, we previously identified 
a novel class of approximately 50 nt ultrashort single- 
stranded cell-free DNA (uscfDNA) in plasma that is dis-
tinctly different from 167 bp mononucleosomal cell-free 
DNA (mncfDNA). We hypothesize that uscfDNA pos-
sesses characteristics that are useful for disease detection. 

METHODS: Using BRcfDNA-Seq, we examined both 
cfDNA populations in the plasma of 18 noncancer con-
trols and 14 patients with late-stage nonsmall cell lung 
carcinoma (NSCLC). In comparison to mncfDNA, we 
assessed whether functional element (FE) peaks, frag-
mentomics, end-motifs, and G-Quadruplex (G-Quad) 
signatures could be useful features of uscfDNA for 
NSCLC determination. 

RESULTS: In noncancer participants, compared to 
mncfDNA, uscfDNA fragments showed a 45.2-fold in-
creased tendency to form FE peaks (enriched in pro-
moter, intronic, and exonic regions), demonstrated a 
distinct end-motif-frequency profile, and presented 
with a 4.9-fold increase in G-Quad signatures. Within 
NSCLC participants, only the uscfDNA population 
had discoverable FE peak candidates. Additionally, 
uscfDNA showcased different end-motif-frequency can-
didates distinct from mncfDNA. Although both cfDNA 
populations showed increased fragmentation in 
NSCLC, the G-Quad signatures were more discrimin-
atory in uscfDNA. Compilation of cfDNA features 
using principal component analysis revealed that the first 
5 principal components of both cfDNA subtypes had a 
cumulative explained variance of >80%. 

CONCLUSIONS: These observations indicate that the dis-
tinct biological processes of uscfDNA and that FE peaks, 
fragmentomics, end-motifs, and G-Quad signatures are 
uscfDNA features with promising biomarker potential. 
These findings further justify its exploration as a distinct 
class of biomarker to augment pre-existing liquid biopsy 
approaches.  

Introduction 

Globally, cancer continues to be associated with exten-
sive morbidity and mortality (1). For many cancers, 
early cancer detection is associated with improved pa-
tient prognosis and treatment opportunities (2). Early 
detection involves the identification of physiological ab-
normalities within tissue or blood indicative of precan-
cerous activity. In blood, cell-free DNA (cfDNA) is 
derived from cell death or secretion (3) that mirrors 
the genetic and epigenetic characteristics of their cell 
of origin (4). Liquid biopsy leverages the observation 
that if a tumor is present, the circulating cfDNA may 
contain a proportion of mutated sequences (5). 
Certain cancer types, however, are not associated with 
any pathognomonic driver mutations, while a subset 
of cancers present with low concentrations of circulating 
tumor DNA (ctDNA) (6). Therefore, a nonsomatic mu-
tation approach is ultimately required to improve liquid 
biopsy sensitivity. 

Alternatively, low-depth nontargeted sequencing 
(whole-genome sequencing of cfDNA) can yield useful 
information. This hinges on the hypothesis that the 
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tumor microenvironment and other changes in the body 
(such as cancer-induced inflammatory states) may affect 
cfDNA presentation (7). DNA fragmentation is ob-
served to be altered in cancer patients, which potentially 
reflects both dysregulation within tumor cells or a re-
sponse from the host environment (8). Several features 
of cfDNA fragmentation being actively explored to aug-
ment ctDNA detection include analysis of fragment size 
distributions (8), end-motif sequences (9), jagged-ends 
(10), and fragment entropy (11). 

The perceived size distribution of cfDNA is influ-
enced by the next-generation sequencing (NGS) proto-
col used. We previously developed a nontargeted 
cfDNA NGS pipeline, broad range cell-free DNA se-
quencing (BRcfDNA-Seq), which uses increased isopro-
panol during extraction with single-stranded library 
preparation to incorporate previously discarded low mo-
lecular weight DNA into the final library preparation 
(Fig. 1A). Plasma processed through BRcfDNA-Seq re-
vealed the presence of ultrashort single-stranded cfDNA 
(uscfDNA) with an approximately 50-bp length along 
with approximately 167-bp mononucleosomal cfDNA 
(mncfDNA) (12). Since it appears to be single-stranded, 
a conventional double-stranded library methodology is 
unable to incorporate uscfDNA (12). This observation 
was also reported by other groups (13–15). 

By applying the concept of peak calling from chro-
matin immunoprecipitation with sequencing analysis 
(16), we previously observed that aligned uscfDNA frag-
ments demonstrated a different functional peak element 
composition as compared to mncfDNA (12, 14). Other 
reports also indicate that uscfDNA harbors sequences 
prone to forming G-Quadruplex (G-Quad) secondary 
structures (13, 14). Thus, we hypothesize that 
uscfDNA possesses unique characteristics distinct from 
mncfDNA and that these unique features of uscfDNA 
could be used for cancer detection with low-depth non-
targeted sequencing. 

As a proof of concept, we used BRcfDNA-Seq on 
cfDNA extracted from plasma from a cohort of late- 
stage nonsmall cell lung carcinoma (NSCLC) patients 
and noncancer control participants. Our goal was to de-
termine whether this uscfDNA-based analysis could re-
veal significant differences in patterns in relation to 
functional element (FE) peaks, fragmentomics, end- 
motif sequences, or G-Quad sequences between the 
cfDNA of these 2 cohorts (Fig. 1B). 

Materials and Methods 

SAMPLE COLLECTION AND STUDY DESIGN 

This study was performed at the University of 
California, Los Angeles, with approval from the institu-
tional review board (UCLA IRB#17-000997, 

A-ER-107-019, and B-ER-109-154_IRB). NSCLC 
study participants were recruited from National Cheng 
Kung University Hospital (14 NSCLC, 4 noncancer) 
and additional samples were purchased commercially 
(Innovative Research, 14 noncancer). US- and 
Taiwan-derived cohorts showed no substantial differ-
ences in fragmentomics, end-motifs, G-Quad percent-
age, and function element peaks (Supplemental Fig. 1). 
The cancer staging criteria used were those from the 
American Joint Committee on Cancer TNM system 
(17). Detailed demographic information can be found 
in Supplemental Tables 1 and 2. 

BRcfDNA-Seq plasma DNA extraction and library prepar-
ation. Plasma (1 mL) was extracted using the QIAmp 
Circulating Nucleic Acid Kit (Qiagen) using the 
microRNA Plasma (QiaM) protocol. Proteinase-K di-
gestion was carried out as instructed. Carrier RNA was 
not used. The ATL Lysis buffer (Qiagen) was used as in-
dicated in the microRNA protocol. The final elution 
volume was 20 µL. Single-stranded DNA library prepar-
ation was performed using the SRSLYTM PicoPlus DNA 
NGS Library Preparation Base Kit with the SRSLY 12 
UMI-UDI Primer Set, UMI Add-on Reagents, and 
purified with Clarefy Purification Beads (Claret 
Bioscience). Since there is currently no optimized meth-
od to measure uscfDNA, 18 µL of extracted cfDNA was 
used as input and heat-denatured. The low molecular 
weight retention protocol was followed for all bead-clean 
up steps. The index reaction PCR was run for 11 cycles. 
Library quantity and quality were evaluated using the 
Qubit dsDNA HS assay kit (ThermoFisher) and 
TapeStation HSDD1000 (Agilent) tape. 

Sequencing. BRcfDNA-Seq libraries were sequenced 
150 bp × 2 on either Nova-Seq SP 300 or Nova-Seq 
S1 lanes to reach 40 million reads per sample. 

Bioinformatic processing. Initial experiments for mer-
ging paired reads into single-end reads were performed 
using BBMerge (18). Then single-end .fastq files were 
trimmed with fastp (19), using adapter sequence 
AGATCGGAAGAGCACACGTCTGAACTCCAGT-
CA (r1) and AGATCGGAAGAGCGTCGTG 
TAGGGAAAGAGTGT (r2) and filtered for a Phred 
score of >15. Sequenced reads were demultiplexed using 
the SRSLYumi (SRSLYumi v.0.4, Claret Bioscience) py-
thon package. The duplicated reads were removed using 
Picard Toolkit (http://broadinstitute.github.io/picard/) 
after sorting, filtering, and removal of soft and hard 
clipped reads with samtools (samtools v.1.9). 
Problematic regions of the genome were filtered out ac-
cording to Duke’s Blacklisted regions (20). Quality con-
trol was performed with Qualimap v.2.2.2c (21). The 
fragment lengths from .bam files generated by the  
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Accepted ManuscriptFig. 1. Characteristics of uscfDNA differentiate it from mncfDNA. (A), BRcfDNA-Seq schematic; (B), 
Bioinformatics workflow; (C), Karyograms of normalized coverage plots show differences in mapping 
for uscfDNA and mncfDNA populations along every 1 million bp bin across the genome; (D), 941 genomic 
bins had significantly different coverage between cfDNA populations; (E), The ratio of functional peaks 
per total reads reveals that uscfDNA reads have more peaks than mncfDNA; (F), Proportion of FEs cat-
egories of the peaks are different between uscfDNA and mncfDNA; (G), 211 5′-end-motifs demonstrated 
significant differences in frequency between uscfDNA and mncfDNA populations; (H), G-Quad signatures 
are enriched in the uscfDNA population. Error bars represent mean and SE of the mean. Stars indicate 
P values with ****P < 0.0001.   
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BRcfDNA-Seq bioinformatic pipeline were first binned 
in silico into 3 categories: 40–70 bp, 120–250 bp, or 
20–350 bp using alignmentsieve (Deeptools v.3.5) 
(22). Aligned mitochondrial DNA was filtered out using 
samtools (v.1.9) (23). 

Genome-wide ideogram. The .bam files were split into 
genomic bins of 1 million reads along the genome 
(e.g., Chr1:1–1 000 000) for 2 in silico categories: 
uscfDNA (40–70 bp) and mncfDNA (120–250 bp). 
Karyograms are self-normalized so that the legend re-
flects the intrasample dynamic range. Ideograms were 
constructed from .bam files that were 1 million bp using 
rideogram R package (24). 

Functional element analysis. Functional peaks were de-
tected using macs2 (v.2.2.7.1) (16) and then analyzed 
with HOMERannotatePeaks (v.4.11.1) to determine 
which FE category each peak is associated with. Only 
3′ untranslated region (UTR), transcription termination 
site (TTS), exon, intron, intergenic, promoter, and 5′ 
UTR categories were used based on the UCSC HG38 
annotations database (25). Protein-coding and ncRNA 
gene types were used. For each category, the top 10 
peaks were used to generate a list of the top 20 most 
common peaks between both noncancer and NSCLC. 
The chord diagram indicating the common peaks for 
promoter, introns, or exonic regions of both cohorts 
was assembled using Flourish (https://flourish.studio) 
(accessed April 2023). Individual peaks were defined as 
the percentage contribution (peak score/summed peak 
score of the select 20 per category). For example, if the 
peak score for Snx16 was 433, it was divided by the total 
peak score of the top 20 (2400) to arrive at a score of 
0.18. 

Fragment curve profiles. Nonnormalized fragment 
curve profiles were calculated using samtools (23) by 
plotting a histogram of the percentage reads of each 
length in the 20–350 bp bin. 

Fragmentomics. The bam files were split into genomic 
bins of 1 million bp along the genome (e.g., Chr1: 
1–1 000 000) for 2 in silico categories: uscfDNA (40– 
70 bp) and mncfDNA (120–250 bp). For each genomic 
bin, we calculated the fragment scores by totaling the 
read count of those from 40–53 bp (A) and 54–70 bp 
(B) for uscfDNA and 120–167 bp (A) and 168–
250 bp (B) for mncfDNA and by using the following
equation (A/(A + B))/(B/(A + B)). The scores bin was
plotted in sequence to form the genome fragment score
curves (Supplemental Fig. 5).

End-motif score. The first 4 base pairs from the 5′ end 
were extracted and compiled using a custom python 

script. The end-motif diversity score (Shannon entropy) 
was calculated by analyzing the distribution of frequen-
cies of motifs (total of 256 motifs) and compared be-
tween different sample populations. As per (26), the 
normalized Shannon entropy mathematical equation 
was used, which incorporates the contribution of all 
256 motifs, with Pi being the frequency of a particular 
motif (e.g., CCCA). 

Motif Score = Σ256
i=1 − Pi ∗ log(Pi)/log(256)  

G-Quadruplex (G-QUAD) percentage. The G-Quad 
percentage was calculated by first converting 
binned .bam files to .bed and then to .fasta using bam-
tobed (bedtools v.2.18) and getfasta (bedtools v.2.18) 
(27). G-Quad signatures were detected using 
fastaRegexFinder.py to analyze the sequences in the 
reads (https://github.com/dariober/bioinformatics-cafe/ 
tree/master/fastaRegexFinder). This python pipeline ex-
amines whether the sequences contain this pattern in 
this equation, ([gG]{3, }\w{1,7}){3, }[gG]{3, }. This 
translates to the identification of 3 or more G nucleo-
tides followed by 1 to 7 of any other bases and must 
be repeated 3 or more times and end with 3 or more 
Gs. Only primary fragments that contained G-Quad se-
quences were counted (e.g., complementary sequences 
that contained G-Quads were excluded). The counts 
were then divided by the total read counts to identify 
the G-Quad percentage and normalized by the average 
bp of the fragments of each bin (uscfDNA: 50 bp | 
mncfDNA: 167 bp). 

STATISTICAL ANALYSIS 

For fragmentomics, FEs, and end-motifs, we calculated 
significant regions of interest by performing paired or 
nonpaired multiple t-tests with a false discovery rate of 
1% using a two-stage step-up method described by 
Benjamini, Krieger, and Yekutieli (28). For <10 
comparisons (FE peak % and G-Quad) nonpaired 
multiple t-tests with the Holm–Šidák correction were 
used (29). For single comparisons, a Student t-test was 
performed with Welch correction (after ANOVA 
if necessary). Using significant candidates, we 
performed multivariable analysis using the online princi-
pal component analysis tool (https://biit.cs.ut.ee/ 
clustvis/) (30). Error bars represent SE of the mean. 
Stars indicate adjusted P values and are presented as 
*P < 0.05, **P < 0.01, ***P < 0.001, and ****P <
0.0001.

DATA AND CODE AVAILABILITY 

The sequencing data are deposited in the National 
Institute of Health Sequence Read Archive under the  
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accession number PRJNA978642. Codes can be found 
at: https://github.com/WlabUCLA/BRcfDNA-Seq. 

Results 

CHARACTERISTICS OF UCFDNA ARE DISTINCT FROM 

MNCFDNA 

Building on previous observations (12), we examined 
the differences between the uscfDNA and mncfDNA 
populations in noncancer participants using the 
BRcfDNA-Seq NGS pipeline (Fig. 1A and B). 
Karyograms of the normalized coverage of uscfDNA 
and mncfDNA populations showed significantly differ-
ent coverage patterns in 941 genomic bins (Fig. 1C and 
D) (q = 0.0004 to 0.01) (bins with increased coverage 
density are redder while lower coverage density is bluer). 
UscfDNA was mapped to more hotspots within the 
body of chromosomes and telomeres compared to the 
mncfDNA (Fig. 1C). Analysis of the ratio of mapped 
peaks to total reads using MACS2 (16) revealed that 
uscfDNA reads form 45.2-fold more aligned peaks 
than mncfDNA (Fig. 1E). Determination of the cat-
egories of genomic loci associated with the peaks indi-
cated that uscfDNA was highly enriched in the 
promoters, introns, and exons (Fig. 1F). 

We examined the first 4 nucleotides at the 5′ end of 
reads and measured motif-frequency differences between 
uscfDNA and mncfDNA of the 256 possible combina-
tions (26). Multiple paired t-test comparisons revealed 
that 211/256 end-motifs had significantly different fre-
quencies (0.000001 to 0.009) between uscfDNA and 
mncfDNA populations (Fig. 1G). For mncfDNA, we 
observed 4 out of the top 6 matched the top 6 most 
prevalent motifs reported in the literature (31) 
[CCCA, CCTG, CCAG, and CCTC (Supplemental 
Table 3)]. For the uscfDNA population, only 2 out of 
the top 6 (CCCA and CCAG) matched the top 6 motifs 
previously reported. 

Last, we examined the prevalence of G-Quad signatures 
and observed that uscfDNA fragments had a 4.9-fold greater 
abundance compared to mncfDNA (Fig. 1H). 

USCFDNA AND MNCFDNA FRAGMENTS MAP TO DIFFERENT 

POSITIONS IN NSCLC 

To test whether these unique characteristics of uscfDNA 
could be useful as biomarkers for cancer detection, we 
analyzed NSCLC samples using the same bioinformatic 
pipeline (Fig. 1B). In comparison to noncancer, the 
NSCLC uscfDNA population presented a coverage pat-
tern with a greater number of hotspots (Fig. 2A) result-
ing in 1764 significantly enriched bins (Supplemental 
Fig. 2A). For the mncfDNA bins, no significantly differ-
ent bins were found (Fig. 2B and Supplemental Fig. 2B). 

FUNCTIONAL ELEMENT PEAK PROFILES OF USCFDNA ARE 

ALTERED IN NSCLC 

Since uscfDNA was associated with a high peak abun-
dance in the noncancer plasma (Fig. 1E), we examined 
whether this observation was consistent in NSCLC sam-
ples. Again, uscfDNA fragments were associated with a 
greater abundance of peaks compared to mncfDNA 
(Fig. 2C). Interestingly, for uscfDNA, the NSCLC sam-
ples trended toward a decrease in total peaks. 

We categorized the peaks into select genomic re-
gions to observe whether the expected peak profiles 
changed in NSCLC participants (Fig. 2D). For 
uscfDNA, there was a significant decrease in observed/ 
expected peak count for TTS, exons, introns, intergenic, 
promoters, and 5′ UTR peaks. By contrast, for 
mncfDNA, there was only a decrease in expected peaks 
in promoters. We also observed that uscfDNA bins 
showed greater changes in the percentage contribution 
of FE peak categories in NSCLC participants compared 
to mncfDNA (Supplemental Fig. 3). 

Considering uscfDNA FE peak profiles were altered 
in NSCLC samples (Fig. 2D), we further examined 
which specific sequences were changing in the promo-
ters, introns, and exons categories. The top 20 most 
prevalent sequences between noncancer and NSCLC co-
horts were documented (Fig. 2E–G). We developed a 
“Peak Score” to assign a relative contribution score for 
each peak and assembled a panel of peaks that demon-
strated significant differentiation in scores between co-
horts (Fig. 2H–J). From the total list (Supplemental 
Fig. 4), the top functional peaks were derived from all 
3 categories (Fig. 2I). We observed that compared to 
noncancer, NSCLC was associated with 13 candidate 
uscfDNA FEs (q < 0.000001 to 0.01, nonpaired t-test) 
that collectively increased or decreased [e.g., HAR1B, 
SMYD3, NKX6−2 (Fig. 2J)]. A similar analysis was per-
formed for the mncfDNA bin, but no significant peaks 
were discovered (Supplemental Fig. 5). 

NSCLC CFDNA HAS INCREASED FRAGMENTATION 

Next, we analyzed whether the size-distribution profiles 
of cfDNA appeared different between the noncancer 
and NSCLC cohorts (Fig. 3A and Supplemental Fig. 
6). The uscfDNA peak (approximately 50 bp) appeared 
elevated in NSCLC compared to noncancer. For the 
mncfDNA region, the distribution between the 2 co-
horts was more distinct, with the NSCLC samples having 
a lower “shoulder” at 175 bp. The ratio between uscfDNA 
reads (40–70 bp) and mncfDNA reads (120–250 bp) was 
elevated in NSCLC samples (Fig. 3B). 

Fragmentation scores (method shown in  
Supplemental Fig. 7) revealed that in NSCLC partici-
pants, the cfDNA is more fragmented (Fig. 3C and 
D). Next, binning by genomic location for every 1 million 
reads showed that all positions were more fragmented in  
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Fig. 2. FE peaks of uscfDNA can differentiate noncancer and NSCLC cohorts. Karyograms of normalized 
coverage plots showing mapping positions for 1 million bp-sized bins across the genome between the co-
horts for the uscfDNA (A) and mncfDNA (B) populations. (C), The ratio of functional peaks per total reads 
shows that for uscfDNA, there is an observable decrease in peaks in NSCLC subjects; (D), The log2 ratio of 
observed vs expected number of peaks of various functional peak categories for uscfDNA and mncfDNA 
show alterations in NSCLC. Top genomic peak identities between cohorts for promoter (E), intronic (F), 
and exonic (G) elements. (H), Heatmap of top differentiating functional peak candidates (rows: genomic 
identities, columns: subjects, color gradient: peak score value; (I), Individual peak score of top differenti-
ating functional peaks between cohorts (all represent q < 0.01, P: promoter | I: Intron | E: exon); (J), 
Differential changes in peak score of the cohorts. Error bars represent mean and SE of the mean. Stars 
indicate adjusted P values with *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001.   
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the NSCLC samples considering both uscfDNA (Fig. 3E) 
and mncfDNA (Fig. 3F). There were specific bins where 
both uscfDNA and mncfDNA demonstrate highly signifi-
cant differences in fragmentation (2784/2874 uscfDNA 
candidates | q = 0.00005 to 0.00041 and 2784/2784 
mncfDNA candidates | q = 0.00057 to 0.0077, nonpaired 
multiple t-test) (Fig. 3G and H). 

END-MOTIF PROFILES DIFFER BETWEEN USCFDNA AND 

MNCFDNA 

Previous reports have suggested that plasma end-motif 
diversity becomes more random due to the dysregulation 

of nucleases (26). For both uscfDNA and mncfDNA 
populations, compared to noncancer, NSCLC samples 
trended toward an increased Motif Diversity Score 
(more random), although only mncfDNA was signifi-
cant (Supplemental Fig. 8A and B). 

Next, we interrogated which 4 base pair end-motifs 
were most differentiable between noncancer and 
NSCLC samples. For the uscfDNA population, 127/ 
256 (q < 0.000001 to 0.0099) end-motifs demonstrated 
significant distinction between the 2 cohorts (Fig. 4A) 
compared with only 119/256 (q < 0.000003 to 0.0095) 
end-motifs candidates for mncfDNA (Fig. 4C). 
Interestingly, the top 6 differentiating end-motifs were 

Fig. 3. Fragmentomic analysis of uscfDNA and mncfDNA differentiates noncancer from NSCLC plasma 
samples. (A), Nontargeted sequencing fragment size-distribution profiles between cohorts; (B), Ratio 
of reads/fragments within the cfDNA populations demonstrates NSCLC samples are associated with an 
increase in uscfDNA fragment count. A higher global fragment score indicates that both uscfDNA (C) 
and mncfDNA (D) demonstrate increased fragmentation in NSCLC samples. Fragment scores for one 
million-sized bins across the genome show that NSCLC cfDNA is more fragmented (E and F). Significant 
genomic bins in uscfDNA and mncfDNA populations (G and H). Error bars and vertical section lines re-
present mean and SE of the mean. Stars indicate P values with ***P < 0.001 and ****P < 0.0001.   
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different from the most prevalent end-motifs previously 
reported (31) and were distinct between the 2 cfDNA 
populations (Fig. 4B and D). For samples analyzed in 
this study, the most common top 6 end-motif between 
uscfDNA or mncfDNA of noncancer and NSCLC 
was CCCT (Supplemental Table 3). 

G-QUAD SIGNATURES ARE DECREASED IN NSCLC SAMPLES 

We identified the presence of G-Quad containing signa-
tures in both uscfDNA and mncfDNA populations that 
aligned to exons, introns, and promoter regions in the 
genome (Fig. 5). Within samples, we observed that the 
total count of predicted G-Quad fragments was equal 
for both the primary sequence and its theoretical reverse 
complementary sequences and thus, we only considered 
the primary sequence G-Quad counts (Supplemental 
Fig. 9). Compared to noncancer samples, all introns, 
exons, and promoter regions had a significant decrease 
in G-Quad signatures. 

INTEGRATION OF MULTIPLE CFDNA BIOMARKERS PROVIDES 

DIFFERENTIATION BETWEEN NONCANCER AND NSCLC 

We then incorporated all previously statistically signifi-
cant cfDNA biomarker features from each category 
(Fragmentomics, Functional Element, End-Motif, and 
G-Quad signature) into a principal component analysis 
analysis, which showed that principal component 1 and 
2 (PCA1 and PCA2) could clearly separate noncancer 
and NSCLC samples using both uscfDNA (Fig. 6A) 
and mncfDNA (Fig. 6B). An unsupervised clustering 
heatmap showed the best performing cfDNA features 
that differentiate noncancer and NSCLC plasma sam-
ples (Fig. 6C and D). The compressed significant bio-
markers into separate principal component analysis 
components revealed that the first 5 principal compo-
nents of both uscfDNA and mncfDNA had a cumula-
tive explained variance of >80% (Fig. 6E and F). For 
both uscfDNA and mncfDNA, PCA1 values from non-
cancer and NSCLC cohorts were significantly different 
(P < 0.0001). 

Discussion 

In this report, using BRcfDNA-Seq, we illustrated that 
functional peak formation, G-Quad signature preva-
lence, and end-motif frequencies are significantly differ-
ent between plasma uscfDNA and mncfDNA (Fig. 1). 
Furthermore, we showcase features of plasma 
uscfDNA that have the potential to be used as new bio-
markers for cancer detection. As a proof of concept, we 
examined and compared features in both uscfDNA and 
mncfDNA for their ability to differentiate noncancer 
from late-stage NSCLC participants. Of the 4 features 
of cfDNA that we analyzed, we observed that FE peaks 

(Fig. 2) and G-Quad signatures (Fig. 5) were unique 
characteristics of uscfDNA not strongly represented in 
mncfDNA. The top 6 differentiating end-motif 
uscfDNA candidates also differed from mncfDNA 
(Fig. 4). These features reflect different biological pro-
cesses (e.g., nuclease activity, nuclease-dependent reigns, 
secondary structures of regulatory regions), suggesting 
uscfDNA’s biogenesis differs from mncfDNA justifying 
its classification as an independent biomarker type. 

It is unclear why uscfDNA fragments inherently co-
alesce into specific peaks at a higher prevalence than 
mncfDNA (Fig. 2C). The enriched presence in pro-
moter, exon, and intronic peaks may reflect nucleosome 
positioning in regions of the genome involved in high 
transcriptional activity (32). Dependent on the nucleo-
some and DNA interplay, cell states regulate the suscep-
tibility of specific regions to nucleases. Regarding 
specific element identity, several of the most distinct 
peaks that exhibit changes in proportion between non-
cancer and NSCLC have previously been described to 
be associated with cancer states. The HAR1B promoter 
regulates a long noncoding RNA used as a biomarker 
in bone and soft-tissue sarcomas (33). The CFAP410 
gene (also known as C21orf2) encodes a ciliary protein 
involved in cilia formation and DNA repair (34, 35). 
SNX16 has been described with both pro and antitumor 
activity (36, 37). Therefore, the identification of specific 
uscfDNA peaks can be intriguing biomarkers. 

The observed enrichment in the G-Quad signature 
of uscfDNA suggests an additional mechanism. During 
transcription, nucleic acid structures composed of 
RNA–DNA hybrids accompanying displaced single- 
stranded DNA (38) are formed as R-loops. Within the 
R-loop complex, the transient single-stranded DNA 
can configure into G-Quad secondary structures to aid 
in strand separation. Within cells, RNA–DNA hybrids 
have been reported to accumulate in the cytoplasm after 
R-loop processing (39). Unscheduled or aberrant R-loop 
homeostasis can contribute to cancer phenotypes. 
Interestingly, we observed an equal proportion of pri-
mary fragments that contain G-Quad sequences to the-
oretical complementary fragments that contain G-Quad 
sequences (Supplemental Fig. 9). This suggests that if 
uscfDNA is derived from an R-loop complex, it could 
either originate from the displaced strand or the DNA 
of the RNA–DNA hybrid. In the plasma, instead of en-
richment, we observed a decrease in G-Quad signatures 
in the cfDNA (in particular, promoter sequences match-
ing a previous report) (Fig. 5) (13). The absence of 
G-Quad structures in circulation could reflect impaired 
R-loop processing and compromised G-Quad ejection 
resulting in the accumulation of G-Quad signatures in 
the cytoplasm of tumor cells (38). 

Additionally, the global analysis of uscfDNA 
fragmentomics (Fig. 3) and end-motifs (Fig. 4) could  
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Fig. 4. End-motifs differ between noncancer and NSCLC samples. Significantly different end-motifs be-
tween noncancer and NSCLC for uscfDNA (A) (127/256) and mncfDNA (C) (119/256) (q < 0.01). Six of 
the most differentiable end-motifs (all are q < 0.01) for uscfDNA (B) and mncfDNA (D) demonstrate sig-
nificant motif-frequency percentage changes between noncancer and NSCLC. Data represent means and 
SE of the mean.  

Fig. 5. G-Quad signatures in the sequences of uscfDNA and mncfDNA populations are decreased in 
NSCLC compared to noncancer individuals. Presence of G-Quad signature normalized percentage (frag-
ments with G-Quad presence/total fragments) was calculated for uscfDNA and mncfDNA fragments 
aligned to promoters, introns, or exons. Error bars represent mean and SE of the mean. Stars indicate 
P values with **P < 0.01, ***P < 0.001, and ****P < 0.0001.   
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Accepted Manuscriptdifferentiate the 2 cohorts. The visual size-distribution 
changes in the proportion of uscfDNA in the fragment 
profile of NSCLC samples (Fig. 3A) were reflected in the 
quantification by the uscfDNA: mncfDNA reads ana-
lysis (Fig. 2B). This result contrasted with a previous re-
port that uscfDNA abundance decreases in samples with 
greater ctDNA burden (13). The apparent direction of 
uscfDNA changes may be influenced by cancer types 
or preprocessing techniques and warrants further explor-
ation. Mirroring previous literature, our fragment score 

analysis showed that both populations of cfDNA dis-
played increased fragmentation in NSCLC samples 
(Fig. 3C and D) (8). Binned comparisons suggested that 
certain genomic coordinates display more distinct fragment 
scores (Fig. 3E and F) and are candidate locations for fur-
ther study. Bins of 1 million bp, however, will not provide 
enough granularity for specific sequence discovery. Other 
investigators have used targeted capture to report that in 
mncfDNA, the fragment pattern of active promoters of 
cfDNA shows greater randomness of fragmentation 

Fig. 6. Integration of significant biomarkers (fragmentomics, functional elements, end-motif, and 
G-Quad) separate noncancer and NSCLC. Principal component analysis for the most significant biomar-
kers for uscfDNA (A) and mncfDNA (B) (prediction ellipses = 95%). Unsupervised clustering heatmap of 
uscfDNA (C) and mncfDNA (D) discriminatory markers. Plots of individual vs cumulative explained vari-
ance shows the contribution of individual categories for uscfDNA (E) and mncfDNA (F).   
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compared to inactive genes (11). Using a targeted panel or 
greater depth of sequencing would be useful to observe 
whether uscfDNA demonstrates a similar behavior. 

DNA fragment end-motif profiles reflect a non-
random process of orchestrated nuclease activity (26). 
Strikingly, the ranking of the top 6 end-motifs was 
dissimilar between uscfDNA and mncfDNA 
(Supplemental Table 3), and is not only suggestive of 
biological differences but also suggests that the popula-
tions should be interrogated separately. Although not 
significant, similar to previous reports, the observed 
trend in decreased Motif Diversity/Shannon Entropy 
cfDNA end-motif proportion could indicate a dysregu-
lation in nuclease activity (Fig. 4) (31). Previous re-
ports have indicated that the “CCCA, CCAG, 
CCTG” have the C-motif significantly decreased in he-
patocellular carcinoma (associated with downregula-
tion of DNASE1L3 to create CNNN patterns). 
Although “CCAG” and “CCTG” appeared (CCCA 
was absent) differently in uscfDNA (all 3 were absent 
for mncfDNA), they ranked no. 54 and 97 in terms 
of q values. This may suggest that end-motifs of 
uscfDNA may reflect activity not only from 
DNase1L3 but also the involvement of other unex-
plored nucleases such as DNase2 or T1REX1 (40). 

In conclusion, uscfDNA is an exciting new cfDNA 
biomarker class with characteristics distinct from 
mncfDNA. We show that in addition to fragmentomics 
and end-motif analysis, FE peaks and enrichment in 
G-Quad signatures are inherent features that can potentially 
address cases where pathognomonic somatic mutations are 
absent (6). However, it should be noted that to establish 
specific signal profiles or thresholds, a sufficiently sized co-
hort with case controls will be needed to reach appropriate 
statistical power. This exploration of alternative cfDNA 
features can produce biomarker candidates that can eventu-
ally be integrated with conventional ctDNA liquid biopsy 
for higher sensitivity for cancer detection. 

Supplemental Material 

Supplemental material is available at Clinical Chemistry 
online.  

Nonstandard Abbreviations: BRcfDNA-Seq, broad range cell-free 
DNA sequencing; NGS, next-generation sequencing; uscfDNA, ultra-
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culating tumor DNA; UTR, untranslated region; TTS, transcription 
termination site.  
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CFAP410, cilia and flagella associated protein 410; SNX16, Sorting 
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