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Abstract

How do children’s visual concepts change across childhood,
and how might these changes be reflected in their drawings?
Here we investigate developmental changes in children’s abil-
ity to emphasize the relevant visual distinctions between object
categories in their drawings. We collected over 13K drawings
from children aged 2-10 years via a free-standing drawing sta-
tion in a children’s museum. We hypothesized that older chil-
dren would produce more recognizable drawings, and that this
gain in recognizability would not be entirely explained by con-
current development in visuomotor control. To measure recog-
nizability, we applied a pretrained deep convolutional neural
network model to extract a high-level feature representation of
all drawings, and then trained a multi-way linear classifier on
these features. To measure visuomotor control, we developed
an automated procedure to measure their ability to accurately
trace complex shapes. We found consistent gains in the recog-
nizability of drawings across ages that were not fully explained
by children’s ability to accurately trace complex shapes. Fur-
thermore, these gains were accompanied by an increase in how
distinct different object categories were in feature space. Over-
all, these results demonstrate that children’s drawings include
more distinctive visual features as they grow older.
Keywords: object representations; child development; visual
production; deep neural networks

Introduction
Children draw prolifically, providing a rich source of poten-
tial insight into their emerging understanding of the world
(Kellogg, 1969). Accordingly, drawings have been used to
probe developmental change in a wide variety of domains
(Fury, Carlson, & Sroufe, 1997; Karmiloff-Smith, 1990; e.g.,
Piaget, 1929). In particular, drawings have long provided in-
spiration for scientists investigating how children represent
visual concepts (Minsky & Papert, 1972). For example, even
when drawing from observation, children tend to include fea-
tures that are not visible from their vantage point, yet are di-
agnostic of category membership (e.g., a handle on a mug)
(Barrett & Light, 1976; Bremner & Moore, 1984).

As children learn the diagnostic properties of objects and
how to recognize them, they may express this knowledge
in their drawings of these categories. Indeed, children’s
visual recognition abilities have a protracted developmen-
tal trajectory: configural visual processing—the ability to
process relationships between object parts (Juttner, Muller,
& Rentschler, 2006; Juttner, Wakui, Petters, & Davidoff,
2016)—may mature slowly throughout childhood, as does the
ability to recognize objects under unusual poses or lighting
(Bova et al., 2007).

Inspired by this prior work, our goal is to understand the
relationship between developmental changes in how children
draw visual concepts and their representations of these visual
concepts. In particular, we hypothesize that children’s draw-
ings become more recognizable in part because children learn
the distinctive features of categories that set them apart from
other similar categories (Figure 1). If so, we would expect an
increase in the distinctiveness of children’s drawings across
childhood that is not explained by improvements in children’s
visuomotor ability. However, this goal poses several method-
ological challenges to overcome.

First, it requires a principled and generalizable approach
to encoding the high-level visual properties of drawings that
expose the extent to which they contain category-diagnostic
information (Fan, Yamins, & Turk-Browne, 2018). This ap-
proach stands in contrast to previous approaches, which have
relied upon provisional criteria specific to each study (e.g.,
handles for mugs) (e.g., Barrett & Light, 1976; Goodenough,
1963), which limited their ability to make detailed predictions
on new tasks or datasets. Recently, deep convolutional neural
network (DCNN) models that have been trained on challeng-
ing object recognition tasks have been shown to extract high-
level visual information from images (Yamins et al., 2014).
As these models have been directly optimized to recognize
objects in photographs, features in higher layers of these net-
works represent high-level visual information that is impor-
tant for distinguishing between object categories. We thus
meet this challenge by capitalizing on prior work validating
the use of these higher-layer features to analyze the high-level
visual information in drawings (Fan et al., 2018; Long, Fan,
& Frank, 2018). In particular, we investigate the extent to
which children include distinctive features in their drawings
by assessing how well these visual features can be used to
identify the category (e.g., dog, bird) that children were in-
tending to draw.

Second, it requires a large sample of drawings collected
under consistent conditions from a wide range of participants
to identify robust developmental patterns (e.g., M. Frank et
al., 2017). This is in contrast to the relatively small samples
that have characterized classic studies in this domain (Brem-
ner & Moore, 1984; Karmiloff-Smith, 1990). To meet this
challenge, we installed a free-standing drawing station in a
local science museum, allowing us to collect a large sample
of drawings (N = 13205 drawings) of 23 object categories
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Figure 1: Examples of drawings that have increasingly more distinctive visual features of their categories, making them more
easily recognizable. These examples are generated from the results of the classification process outlined below.

over a wide developmental age range (i.e., 2-10 years) under
consistent task conditions.

Third, it requires simultaneous and detailed measurement
of developmental changes in other cognitive and motor abil-
ities that may influence children’s ability to include rele-
vant information in their drawing (Freeman, 1987; Rehrig
& Stromswold, 2018). For example, children’s developing
visuomotor abilities may limit their ability to include the di-
agnostic visual features in their drawings. In this paper, we
focus on visuomotor control, operationalized as performance
on shape tracing tasks, because they share many of the same
demands on controlled, visually-guided movement with our
primary object drawing task. Critically, because we col-
lected both tracings and drawings from every participant in
our dataset, we are able to model the contribution of both in-
dividual and age-related variation in tracing task performance
for explaining how well children produce recognizable draw-
ings.

In sum, our paper provides an advance over our prior
work investigating developmental change in drawing behav-
ior (Long et al., 2018) in three ways: first, we build a free-
standing drawing station to continually crowdsource chil-
dren’s drawings under consistent conditions, enabling the col-
lection of a substantially larger dataset; second, we exploit
this larger dataset to characterize the category-level distinc-
tiveness inherent to children’s drawings across a wide range
of ages; and third, we develop an automated procedure for
analyzing concurrent changes in visuomotor control using a
tracing task.

Methods
Dataset
Drawing Station We installed a drawing station that fea-
tured a tablet-based drawing game in a local science museum.
Each participant sat in front of a table-mounted touchscreen
tablet and drew by moving the tip of their finger across the

display. Participants gave consent and indicated their age (in
years 2-10 or adult) via checkboxes and no other identifying
information was collected; our assumption was that parents
would navigate this initial screen for children. To measure
fine visuomotor control, each session began with two trac-
ing trials, followed by a copying trial. On each tracing trial,
participants were presented with a shape in the center of the
display. The first shape was a simple square, and the sec-
ond was a more complex star-like shape (Figure 2). On the
subsequent copying trial, participants were presented with a
simple shape (square or circle) in the center of the display for
2s, which then disappeared. They then were asked to copy
the shape in the same location it had initially appeared. Next,
participants completed up to eight object drawing trials. On
each of these trials, participants were verbally cued to draw a
particular object category by a video recording of an experi-
menter (e.g., “What about a dog? Can you draw a dog?”). On
all trials, participants had up to 30 seconds to complete their
tracing, copy, or drawing. There are 23 common object cate-
gories represented in our dataset, which were collected across
three bouts of data collection focused on 8 of these objects at
a time. These categories were chosen to be familiar to chil-
dren, to cover a wide range of superordinate categories (e.g.,
animals, vehicles, manipulable objects), and to vary in the
degree to which they are commonly drawn by young children
(e.g., trees vs. keys).

Dataset Filtering & Descriptives Given that we could not
easily monitor all environmental variables at the drawing sta-
tion that could impact task engagement (e.g., ambient noise,
distraction from other museum visitors), we anticipated the
need to develop robust and consistent procedures for data
quality assurance. We thus adopted strict screening proce-
dures to ensure that any age-related trends we observed were
not due to differences in task compliance across age. Early
on, we noticed an unusual degree of sophistication in 2-year-
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old participants’ drawings and suspected that adult caregivers
accompanying these children may not have complied with
task instructions to let children draw on their own. Thus, in
later versions of the drawing game, we surveyed participants
to find out whether another child or an adult had also drawn
during the session; all drawings where interference was re-
ported were excluded from analyses. Out of these 2685 par-
ticipants, 700 filled out the survey, and 156 reported interfer-
ence from another child or adult (5.81%). Raw drawing data
(N = 15594 drawings) were then screened for task compliance
using a combination of manual and automated procedures
(i.e., excluding blank drawings, pure scribbles, and drawings
containing words), resulting in the exclusion of 15.3% of all
drawings (N = 13205 drawings after exclusions). After fil-
tering, we analyzed data from 2443 children who were on
average 5.28 years of age (range 2-10 years).

Measuring Tracing Accuracy

Figure 2: Measurement of tracing task performance reflects
both spatial and shape error components. Left: The grey
shape is the target; the black shape is the raw tracing. Af-
ter applying affine image registration, the spatial error reflects
the extent of translation, rotation, and scaling transformation
required to minimize shape error. Right: Shape error reflects
how closely the contour of the transformed tracing aligns with
the target.

We developed an automated procedure for evaluating how
accurately participants performed the tracing task, validated
against empirical judgments of tracing quality. We decom-
pose tracing accuracy into two components: a shape error
component and a spatial error component. Shape error re-
flects how closely the participant’s tracing matched the con-
tours of the target shape; the spatial error reflects how closely
the location, size, and orientation of the participant’s tracing
matched the target shape (Figure 2).

To compute these error components, we applied an image
registration algorithm, AirLab (Sandkhler, Jud, Andermatt, &
Cattin, 2018), to align each tracing to the target shape, yield-

ing an affine transformation matrix that minimized the pixel-
wise correlation distance between the aligned tracing, T , and
the target shape, S: LossNCC =−∑S·T−∑E(S)E(T )

N ∑Var(S)Var(T ) , where N is
the number of pixels in both images.

The shape error was defined by the final correlation dis-
tance between the aligned tracing and the target shape. The
spatial error was defined by the magnitude of three distinct er-
ror terms: location, orientation, and size error, derived by de-
composing the affine transformation matrix above into trans-
lation, rotation, and scaling components, respectively. In
sum, this procedure yielded four error values for each trac-
ing: one value representing the shape error (i.e., the pixel-
wise correlation distance) and three values representing the
spatial error (i.e., magnitude of translation, rotation, scaling
components).

Although we assumed that both shape and spatial error
terms should contribute to our measure of tracing task per-
formance, we did not know how much weight to assign to
each component to best predict empirical judgments of trac-
ing quality. In order to estimate these weights, we collected
quality ratings from adult observers (N=70) for 1325 tracings
(i.e., 50-80 tracings per shape per age), each of which was
rated 1-5 times. Raters were instructed to evaluate “how well
the tracing matches the target shape and is aligned to the po-
sition of the target shape” on a 5-point scale.

We fit an ordinal regression mixed-effects model to pre-
dict these 5-point ratings, which contained correlation dis-
tance, translation, rotation, scaling, and shape identity (square
vs. star) as predictors, with random intercepts for rater. This
model yielded parameter estimates that could then be used to
score each tracing in the remainder of the dataset (N=3242
tracings from 1886 children). We averaged scores within ses-
sion to yield a single tracing score for each participant (2245
children completed at least one tracing trial).

Measuring Object Drawing Recognizability

We also developed an automated procedure for evaluating
how well participants included category-diagnostic informa-
tion in their drawings by examining classification perfor-
mance on the features extracted by a deep convolutional neu-
ral network model.

Visual Encoder To encode the high-level visual features of
each sketch, we used the VGG-19 architecture (Simonyan &
Zisserman, 2014), a deep convolutional neural network pre-
trained on Imagenet classification. We used model activa-
tions in the second-to-last layer of this network, which con-
tain more explicit representations of object identity than ear-
lier layers (Fan et al., 2018; Long et al., 2018; Yamins et al.,
2014). Raw feature representations in this layer consist of flat
4096-dimensional vectors, to which we applied channel-wise
normalization.

Logistic Regression Classifier Next, we used these fea-
tures to train an object category decoder. To avoid any bias
due to imbalance in the distribution of drawings over cate-
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Figure 3: (A) Leave-one-out classification accuracy (grey dotted line indicates chance) (B) the amount of time spent drawing in
seconds, (C) the amount of ink used (i.e., mean intensity of the drawings), (D) the number of strokes used, and (E) the average
estimated tracing scores are plotted as a function of childrens age.

gories (since groups of categories ran at the station for differ-
ent times), we sampled such that there were an equal num-
ber of drawings of each of the 23 categories (N=8694 draw-
ings total). We then trained a 23-way logistic classifier with
L2 regularization under leave-one-out cross-validation to es-
timate the recognizability of every drawing in our dataset.

Predicting Object Drawing Recognizability If children’s
drawings contain more features that are diagnostic of the
drawn categories, then these visual features (estimated via
VGG-19) should lead to greater classification accuracy. How-
ever, we anticipated that classification accuracy may also vary
with children’s tracing abilities as well how much time and ef-
fort children invested in their drawings; we thus recorded how
much time was taken to produce each drawing, how many
strokes were drawn, and the proportion of the drawing canvas
that was filled. Our main statistical model was then a gener-
alized linear mixed-effects model predicting classification ac-
curacy from the category decoder, with scaled age (in years),
tracing score (averaged over both trials), and effort cost vari-
ables (i.e., time, strokes, ink) modeled as fixed effects, and
with random intercepts for each child and object category.

Measuring Category Distinctiveness To investigate
changes in the underlying feature representation of children’s
drawings that may help explain variation in classification
accuracy, we computed a measure of pairwise category
distinctiveness Di j for each pair of categories i, j within each
age. This metric is a higher-dimensional analog of d-prime
that incorporates both the distance between each pair of
categories as well as the dispersion within each category. We
first computed the category centers as the mean feature vector
for each category,~ri and~r j. The distance between each pair
of categories i, j was then taken as the Euclidean distance
between their category centers, ‖~ri −~r j‖2. The dispersion
for each category was computed as the root-mean-squared
Euclidean distance of each individual drawing vector from
the category center vector~r and is expressed as s. By direct
analogy with d-prime, we compute the distinctiveness Di j of
each pair of categories i, j by dividing the Euclidean distance

between category centers by the quadratic mean of the two
category dispersions, Di j =

‖~ri−~r j‖2√
1
2 (s

2
i +s2

j )
.

Results
Overall, drawing classification accuracy increased with age
(Figure 3A), validating our basic expectation that older chil-
dren’s drawings would be more recognizable. Our mixed-
effects model on drawing classification revealed that this age-
related gain held when accounting for task covariates—the
amount of time spent drawing, the number of strokes, and to-
tal ink used (Figure 3B,C,D)—and for variation across object
categories and individual children. All model coefficients can
be found in Table 1.

Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.714 0.274 -2.606 0.009

Tracing 0.311 0.034 9.141 0.000
Age 0.282 0.033 8.499 0.000

Draw Duration 0.136 0.034 3.976 0.000
Avg Intensity -0.064 0.033 -1.910 0.056
Num. Strokes -0.034 0.034 -1.009 0.313
Tracing*Age 0.011 0.029 0.357 0.721

Table 1: Model coefficients of a GLMM predicting the
recognziability of each drawing

We next examined the relationship between children’s abil-
ity to trace complex shapes and the subsequent recognizabil-
ity of their drawings. Tracing abilities increased with age
(Figure 3E) and individual’s tracing abilities were good pre-
dictors of the recognizability of the drawings they produced.
This main effect of tracing ability also held when accounting
for effort covariates (number of strokes, time spent drawing,
ink used). However, children’s tracing abilities did not inter-
act with the age-related gains in classification we observed
(Figure 4) and we observed age-related classification gains at
each level of tracing ability.

To examine the contributions of age and tracing ability to
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Figure 4: Data are divided into four quantiles based on the distribution of tracing scores in the entire dataset; these divisions
represent the data in each panel. In each panel, the average classification accuracy is plotted as a function of childrens age. Error
bars represent 95% CIs bootstrapped within each age group and subset of tracing scores; grey dotted lines indicate chance.

recognizability, we also fit reduced versions of the full model
and examined the marginal R2 (Nakagawa & Schielzeth,
2013). The fixed effects in a null model without tracing or
age (which mainly captures drawing effort) accounted for
very little variance (marginal R2 = 0.004). Adding only chil-
dren’s age to the model increased R2 (marginal R2 = 0.037)
as did only adding tracing (marginal R2 = 0.039). Adding
both factors without their interaction (marginal R2 = 0.05)
had a similar effect to adding both factors and their interac-
tion (marginal R2 = 0.05). Attesting to the immense vari-
ability between individuals and categories, adding random
effects (and many more parameters) accounted for a much
larger amount of variance (conditional R2 for full model =
0.403). Finally, as we had many more younger participants in
our dataset, we also repeated these analyses with a subset of
the dataset that was balanced across both children’s age and
category (N=2691 drawings), and found the same pattern of
results.

These age-related changes in classification accuracy show
that the underlying feature representations of older children’s
drawings were more linearly discriminable. This finding led
us to investigate a potential source of this enhanced discrim-
inability: that drawings from different categories were spread
further apart in feature space, while drawings within a cat-
egory were clustered closer together. To evaluate this pos-
sibility, we used a measure of pairwise category distinctive-
ness Di j that accounts for both the distance between each pair
of categories, as well as the dispersion within each category.
We found that category distinctiveness increased consistently
with age (Figure 5).

Taken together, these results reveal developmental changes
in how well children are able to emphasize the relevant dis-
tinctions between object categories in their drawings that
thereby support recognition. Moreover, they show that these
age-related gains in classification are not entirely explained
by concurrent development in visuomotor control.

General Discussion
How do children represent different object categories
throughout childhood? Drawings are a rich potential source
of information about how visual representations change over
development. One possibility is that older children’s draw-
ings are more recognizable because children are better able
to include the diagnostic features of particular categories that
distinguish them from other similar objects. Supporting this
hypothesis, the high-level visual features present in children’s
drawings could be used to estimate the category children were
intending to draw, and these classifications became more ac-
curate as children became older. These age-related gains in
classification were not entirely explainable by either low-
level effort covariates (e.g., amount of time spent drawing,
average intensity, or number of strokes) or children’s trac-
ing abilities. In addition, these gains in classification were
paralleled by an increase in the distinctiveness between the
categories that children drew (Figure 5).

Taken together, these results suggest that children’s draw-
ings contain more distinctive features as they grow older, per-
haps reflecting a change in their internal representations of
these categories. While children could simply be learning
routines to draw certain categories—perhaps from direct in-
struction or observation, our results held even when restricted
to a subset of very rarely drawn categories (e.g., couch, scis-
sors, key) arguing against a simple version of this idea.

Nonetheless, there are limitations on the generalizability
of these findings due to the nature of our dataset. First, while
this dataset is large and samples a heterogenous population,
all drawings were collected at a single geographical location,
limiting the generalizability of these results to children from
other diverse cultural or socioeconomic backgrounds. Sec-
ond, while we imposed strong filtering requirements on the
dataset, we were not present while the children were drawing
and thus cannot be sure that we’ve eliminated all sources of
noise or interference. At the same time, additional interfer-
ence would only generate extra noise in our data rather than
the observed age-related trends. In any case, these correla-
tional results call for validation in more carefully controlled
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Figure 5: Pairwise category distinctiveness for drawings made by 3-, 5-, 7-,and 9-year-olds; darker (vs. lighter) values represent
pairs of categories that have more overlapping (vs. distinctive) representations.

contexts and across more diverse populations.
Furthermore, they open the door for future empirical work

to establish causal links between children’s drawing behavior
and their changing internal representation of visual concepts.
For example, it would be valuable to explore the extent to
which a child’s ability to include the most distinctive visual
features in their drawings of object categories predicts their
ability to perceptually discriminate those object categories.
Another promising direction would be to investigate the re-
lationship between children’s general ability to retrieve rele-
vant information from semantic memory (e.g., that a rabbit
has long ears and whiskers), and their ability to produce rec-
ognizable drawings of those categories. Insofar as such re-
trieval mechanisms are engaged during drawing production,
developmental changes in semantic memory systems may
also explain an important portion of the age-related variation
in drawing behavior.

Overall, we suggest that children’s drawings change sys-
tematically across development, and that they contain rich in-
formation about children’s underlying representations of the
categories in the world around them. A full understanding
of how children’s drawings reflect their emerging perceptual
and conceptual knowledge will allow a unique and novel per-
spective on the both the development and the nature of visual
concepts—the representations that allow us to easily derive
meaning from what we see.
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