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Low-dissipation self-assembly protocols of active sticky 
particles

Stephen Whitelam1,*, Jeremy D. Schmit2,†

1Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 
94720, USA

2Department of Physics, Kansas State University, Manhattan, KS, 66506, USA

Abstract

We use neuroevolutionary learning to identify time-dependent protocols for low-dissipation 

self-assembly in a model of generic active particles with interactions. When the time allotted 

for assembly is sufficiently long, low-dissipation protocols use only interparticle attractions, 

producing an amount of entropy that scales as the number of particles. When time is too short 

to allow assembly to proceed via diffusive motion, low-dissipation assembly protocols instead 

require particle self-propulsion, producing an amount of entropy that scales with the number of 

particles and the swim length required to cause assembly. Self-propulsion therefore provides an 

expensive but necessary mechanism for inducing assembly when time is of the essence.

I. INTRODUCTION

Biological processes depend on the assembly of molecular complexes in the face of many 

constraints [1]. Molecular self-assembly is most effective when it occurs in a short time, 

with reproducible high yield, and exerts minimal metabolic demands on the cell, but often 

these constraints are not mutually reconcilable. For instance, the most energy-efficient mode 

of self-assembly is to allow molecular complexes to find each other through diffusion, but 

diffusion is slow, requiring timescales that grow as the square of characteristic interparticle 

separations. Thus while a nanometer protein can diffuse across a micronsized prokaryotic 

cell in milliseconds, eukaryotic cells, which have sizes on the order of 10 microns, must be 

subdivided by membrane-bound organelles so that diffusion within them can be efficient. 

When such subdivision is not possible, such as for transport of neurotransmitters along 

neuronal axons, cells use active transport by molecular motors to obtain acceptable transit 

times. However motors require ATP as fuel and so consume energy [1].

In this paper we explore the competing requirements of speed and energy efficiency within 

a statistical mechanical model of self-assembly. Motivated by the example of intracellular 

self-assembly we consider a model that represents in a schematic way some of the key 

features of intracellular complexes, but is not intended to represent a specific biological 

example. In the model, complexes are represented as particles on a lattice. Particles can 
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diffuse and bind to each other. They can also be active, able to move persistently in a 

particular direction [2–5]. We set them the task of self-assembling in a fixed time, and use 

evolutionary methods to identify the time-dependent protocols associated with directional 

motion and binding that achieve this goal with as little entropy production as possible. 

A corresponding physical scenario relates to the control of activity via the modulation of 

ATP, combined with the modulation of binding affinities. Examples of the latter include the 

GTP-dependent stabilization of microtubules [6], turnover of active chaperones [7], and the 

cyclical progression of molecular motors [8]. We choose entropy production as a convenient 

measure of the distance from equilibrium of a dynamical trajectory [9, 10], without concern 

for whether or not its minimization is an organizing principle of biology.

We find that the nature of low-entropy production (or low-dissipation) self-assembly 

protocols within the model depends on the time allowed for assembly. When there is 

sufficient time for diffusion to achieve mass transport on the required scales, assembly 

relies only on energetic interactions. However, when the time allowed for assembly drops 

below a certain threshold, the combination of diffusion and energetic binding cannot achieve 

assembly. In this case, particles must undergo self-propulsion, which comes with a large 

energetic cost. These results, interpreted in the context of cellular assembly, suggest a strong 

incentive to maintain the system size small enough for diffusion-driven assembly to occur on 

the required timescales.

In more detail, we encode the time-dependent protocol of the model using a neural network, 

and use neuroevolutionary methods [11–17] to learn the protocols that achieve a specified 

degree of self-assembly with the least entropy production (in the medium) possible. There 

is no guarantee that a given learning scheme will identify the optimum protocol for a given 

objective, which even in simple systems can involve abrupt changes of control parameters 

[18–20] (although neural networks of sufficient size can express arbitrary smooth functions, 

including rapidly-changing ones, and so constitute a good starting point for such a search). 

To test the learning algorithm we make contact with previous work by learning protocols 

for low-dissipation magnetization reversal in the Ising model; the protocols learned by 

the present method are consistent with those learned by path-sampling methods [21, 22], 

and are essentially equivalent to the least-dissipation pathways for that model. For the 

active model on which we focus, we find low-dissipation pathways of two kinds, involving 

self-propulsion or diffusion alone, according to how much time is allotted for assembly. The 

two mechanisms produce amounts of entropy that differ considerably. We argue that this 

competition should be present generically, suggesting a principle that natural systems must 

observe in order to effect a change of phase with least energy expenditure.

In Section II we test the evolutionary framework by making contact with previous work. 

In Section III we apply it to a model of active particles with interactions. We conclude in 

Section IV.
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II. LOW-DISSIPATION MAGNETIZATION REVERSAL PROTOCOLS IN THE 

ISING MODEL

We start with the 2D Ising model on a square lattice [23, 24]. The lattice has N = 502 sites, 

with periodic boundary conditions in both directions. On each site i is a binary spin Si = ± 1, 

and the lattice possesses an energy function

E = − J∑
ij

SiSj − ℎ ∑
i = 1

N
Si . (1)

Here J (which we set to 1) is the Ising coupling and h is the magnetic field. The first sum 

in (1) runs over all nearest-neighbor bonds, while the second runs over all lattice sites. We 

begin with all spins up, giving magnetization m = N−1∑i = 1
N Si = 1, and carry out a Glauber 

Monte Carlo simulation. At each step of the algorithm a lattice site i is chosen at random, 

and a proposed change Si − Si made. The change is accepted with probability

p(ΔE) = (1 + exp(βΔE))−1, (2)

where ΔE is the energy change under the proposed move, and is β the reciprocal temperature 

in units such that kB = 1. If the move is rejected, the original spin state is adopted. 

We start with ℎ = 1 and β = 1, and so are below the Ising model critical temperature, 

β > βc = (2J)−1ln(1 + 2) ≈ 0.44 [23], in the two-phase region of the phase diagram.

Our goal is to find a time-dependent protocol β(t), ℎ(t) that will reverse the magnetization 

of the model with as little entropy produced as possible (i.e. as can be found by the search 

algorithm). To do so we encode the protocol using a fully connected single-layer neural 

network, as shown in Fig. 1(a). The network has one input neuron, which takes the value 

t/t0 ≤ 1, where t is the current number of Monte Carlo steps performed and t0 = 100N the 

length of the simulation. The neural network has K = 1000 hidden neurons, with hyperbolic 

tangent activation functions, and two output neurons, which return the values Δβθ(t), Δℎθ(t) , 

where

Δβθ(t) = K−1/2 ∑
i = 1

K − 1
θ3itanh θ3i + 1t/t0 + θ3i + 2 , (3)

and

Δℎθ(t) = K−1/2 ∑
i = K

2K − 1
θ3itanh θ3i + 1t/t0 + θ3i + 2 . (4)

Eqns. (3) and (4) specify the neural network. Here θ = θ1, …, θi, …, θ6K  is a 6K-dimensional 

vector of parameters (weights and biases), where K is the number of hidden neurons. Eqns. 

(3) and (4) can, for large enough K, approximate any smooth functions Δβ(t) and Δℎ(t) [25]. 

Our goal will be to adjust the parameters θ until the functions Δβθ(t) and Δℎθ(t) expressed by 
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the neural network achieve our goal of magnetization reversal with as little entropy produced 

as possible.

The neural network acts at 1000 evenly-spaced time increments, as sketched in Fig. 1(b). 

Each time it acts,the control parameters are adjusted as

β(t) max 0, β(t) + Δβθ(t) , and (5)

ℎ(t) ℎ(t) + Δℎθ(t) . (6)

We quantify the outcome of the simulation using the order parameter

ϕ ≡ −m t0 − c1 m t0 > − 1
−c2σ t0 m t0 = − 1 . (7)

Here m t0  is magnetization at the end of the simulation, c1 = 2 and c2 = 1/t0 are constants, and 

σ t0  is the entropy produced during the simulation. There are a number of ways of defining 

entropy production for a stochastic trajectory [10]; here we consider the entropy change of 

the medium [9, 26], a sum of terms ln w/w′  for each process that occurs in the trajectory, 

where w is the rate for the process and w′ the rate for its reverse. In equilibrium, the mean 

value of this sum is zero.

For the Ising model, the entropy production of the medium for each move is

Δσ = ln p(ΔE)
p( − ΔE) = − βΔE, (8)

using (2), and we define σ t0  as the sum of terms (8) for each move made (note that both β
and the value of h appearing in ΔE are time dependent). The order parameter (7) imposes 

two objectives: it is maximal for a simulation whose final value of magnetization is −1, and 

for which as little entropy as possible was produced. The constants c1 and c2 ensure that the 

value of ϕ for any simulation for which m t0 = − 1 exceeds that for which m t0 ≠ − 1, and 

the former simulations are then distinguished by their entropy produced.

To determine a protocol that maximizes (7), i.e. that results in magnetization reversal with 

as little entropy produced as possible, we use evolutionary learning on the parameters θ
of the protocol-encoding neural networks (sometimes called neuroevolution) [11–17]. This 

protocol is sketched in Fig. 1(c). We begin with Generation 0, a population of P = 100
independent simulations each controlled by a distinct neural network. Each neural network’s 

parameters θi are independently and randomly initialized as Gaussian random numbers with 

zero mean and variance δ1
2, i.e. θi ∼ N 0, δ1

2 . The variance δ1
2 is also a random number, 

with δ1 ∼ N 0, δ0
2 , drawn once for each neural network. The parameter δ0 = 10−3. Thus each 

network enacts a different, random protocol. Generation 0 is run for Monte Carlo time t0, 

and the 10 neural networks resulting in the 10 simulations with the largest values of ϕ, 

Eq. (7), are chosen to be the parents of Generation 1. To construct the 100 members of 
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Generation 1, we pick 100 times randomly with replacement from the set of 10 parents, and 

mutate the chosen neural networks by the addition of Gaussian random numbers

θi θi + N 0, δ1
2

(9)

to each of their parameters. The 100 simulations of Generation 1 are run for Monte Carlo 

time t0, ranked by their values of ϕ, and the 10 highest-ranking neural networks become 

the parents of Generation 2. As this process continues over evolutionary time, the features 

of the time-dependent protocols that result in increasingly large values of ϕ are passed to 

subsequent generations and refined.

In Fig. 2 we show the outcome of this evolutionary learning procedure. Panel (a) shows 

−ϕ for the highest-ranking protocol of each generation as a function of the number ngen

of generations of evolutionary learning. After about 10 generations the best protocol has 

succeeded in reversing the magnetization of the Ising model, and ϕ jumps between the first 

and second clauses in (7). Thereafter, protocols evolve so as to minimize entropy production 

while achieving magnetization reversal.

In Fig. 2(b) we show parametric plots of protocols (β(t), ℎ(t)) for the best protocols from 5 

different generations. Protocols start at the point (1,1). The Ising model (infinite system size) 

critical point and first-order phase transition line are shown as a black dot and black dashed 

line, respectively. Comparison with panel (a) shows that the first protocols that achieve 

magnetization reversal pass through the phase transition line. As their entropy production 

is progressively reduced, protocols move toward the critical point and then pass around it, 

avoiding the phase transition line and the vicinity of the critical point. To provide context 

for the scale of Fig. 2(a), note that the entropy produced by flipping all spins following an 

instantaneous change from (β, ℎ) = (1, 1) to (1, −1) (near where the evolved protocols end) 

is 2N, corresponding to a value of ϕ = 2N /t0 = 2N /(100N) = 0.02, or about the value of the 

plateau immediately following the jump. The final values of entropy production identified by 

evolutionary learning are about an order of magnitude smaller.

The evolved low-dissipation magnetization-reversal protocols agree with those obtain by 

path-sampling techniques [21, 22], showing that the way to reverse magnetization with least 

dissipation is to heat, reverse the field, and then cool, avoiding the large energy changes that 

result from the presence of finite surface tension or the large fluctuations near the critical 

point. The inset to panel (a) emphasizes an additional result of Ref. [22], that several slightly 

different protocols result in similar entropy production. There may be one optimal protocol, 

but there are many low-lying protocols that are essentially as good (the number of nature 

of such protocols can be analyzed to provide insight about the structure of the trajectory 

ensemble [22, 27]).

In panel (c) we show magnetization and protocol as a function of time, together with 

time-ordered snapshots, from the simulation with the lowest dissipation obtained by the 

learning procedure. Below that we show a protocol from a second set of evolutionary 

learning simulations that were instructed to find magnetization-reversal trajectories with the 

greatest possible entropy production. In this case the strategy is to drive the system through 
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the phase-transition line and reverse the field only when the temperature is as low as can be 

achieved on the allotted timescale. The resulting dynamics is a nucleation-like mechanism 

in the presence of large surface tension and large thermodynamic driving force for phase 

change.

Results in this section used the Glauber acceptance probability, Eq. (2). Replacing this 

with the Metropolis acceptance probability p(ΔE) = min(1, exp[ − βΔE])) changes the precise 

dynamics of evolution of the model but not the underlying thermodynamic landscape. In Fig. 

3 we show that evolutionary learning of low-dissipation protocols for Metropolis dynamics 

is qualitatively similar to that for Glauber dynamics.

III. LOW-DISSIPATION SELF-ASSEMBLY PROTOCOLS FOR INTERACTING 

ACTIVE PARTICLES

Having established that the neuroevolution framework can identify protocols similar to those 

obtained by other methods, we now consider self-assembly in a model of active particles 

with interactions. The model is that of Ref. [28] with pairwise nearest-neighbor interactions 

added, and is summarized in Fig. 4. On a square lattice of size N = 502 with periodic 

boundaries we consider M = 750 particles, a packing fraction of 0.3. Particles may not 

overlap. Each particle bears an orientation vector (shown white in the figure) that points 

toward one of the 4 neighboring sites, and rotates right or left with rate D = 0.1. Isolated 

particles move forward (in the direction of the orientation vector) with rate v+, and in 

each of the other 3 directions with rate v0 = 1. For these parameters the Péclet number, 

the dimensionless number quantifying the relative scale of self-propulsion and diffusion, is 

Pe = v+ − v0 /(2D) = 5 v+ − 1 . Two nearest-neighbor particles possess an interaction energy 

−ϵ, where ϵ > 0 indicates an attraction and ϵ < 0 a repulsion. Interactions modify the rates 

for motion via a multiplicative term min 1, e−ΔE , ΔE being the energy change for the move. 

This model can self-assemble via motility-induced phase separation [29], for sufficiently 

large Pe, or via conventional phase separation, for sufficiently large ϵ. Our goal is to 

determine which combinations of these mechanisms are required to promote low-dissipation 

assembly.

The system advances via a continuous-time Monte Carlo algorithm (also known as kinetic 

Monte Carlo or the Gillespie algorithm). If ri is the rate for process i then at each step of the 

algorithm the process i is chosen with probability ri/∑iri, the sum running over all possible 

processes. There are 6M possible processes (translations or rotations of each particle in the 

simulation box), with the rate for translations that result in an overlap being zero. Upon 

enacting the chosen process, time is advanced by an amount −ln η/∑ir, where η is a random 

number uniformly distributed on (0,1]. Simulations are run for time t0, which we varied from 

of order 100 to of order 105; for the chosen parameters, the characteristic time taken for an 

isolated particle to diffuse its own length is 1.

At the end of the simulation we evaluate the order parameter
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ϕ ≡
f4 t0 f4 t0 ≤ 0.7
c1 − c2σ t0 f4 t0 > 0.7 (10)

Here f4 is the fraction of particles with 4 particles as neighbors, our chosen measure of 

assembly. σ t0  is the entropy produced over the course of the simulation. We consider 

the entropy production of the medium [26], where the entropy produced by each move is 

Δσ = ln r/r′ . Here r is the rate for the enacted process and r′ the rate for its reverse, which for 

the various move types is

Δσ =

0 (rotation)
−βΔE (sideways)
lnv+ − βΔE (forward)
−lnv+ − βΔE (backward)

(11)

We define σ t0  as the sum of values of (11) for each move made during the simulation. 

Finally, the constants c1 = ϕ0 = 103 and c2 = 1/(100N) ensure a separation of scales [30] 

between the two clauses of (10), and enforce the following dual objective: the instruction 

to maximize Eq. (10) is the instruction to have the system self-assemble so that 70% of its 

particles are in a solid-like environment, and, if so, have assembly happen with the least 

dissipation possible.

We use neuroevolutionary learning to find a time-dependent protocol to maximize ϕ, as 

in Section II. We start each simulation with parameters (Pe, ϵ) = (0, 0), and encode the time-

dependent protocol (Pe(t), ϵ(t)) using a neural network. Similar to before, the input to the 

neural network is the scaled time t/t0, it acts 1000 times within the simulation, and its output 

each time it acts is ΔPeθ(t), Δϵθ(t) . After every action the simulation protocol is updated as

ϵ(t + Δt) ϵ(t) + Δϵθ(t), and (12)

Pe(t + Δt) max 0, Pe(t) + ΔPeθ(t) . (13)

The evolutionary search on the parameter set θ proceeds as in the previous section, except 

that we use 50 individuals in each generation and choose the best 5 to propagate to the next 

generation.

In Fig. 5 we show the results of 5 sets of evolutionary learning simulations, each of which 

used a different physical time t0 for the simulations (not all results are shown in each 

panel). In panel (a) we show the order parameter (10) as a function of evolutionary time 

for simulations using three values of t0; in each panel, the arrow denotes the direction of 

increasing t0. Each ϕ attains a value consistent with the second clause in (10), showing that at 

least 70% of particles have self-assembled into a solid-like environment. (This jump happens 

after fewer evolutionary steps for larger values of t0, because for longer simulation times the 

numerical values of the control parameters (Pe, ϵ) need to be less large in order to induce 

assembly, and so the neural network needs fewer evolutionary generations in order to attain 
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those values.) The largest value of ϕ for the largest value of t0 is larger than those for the 

other two values of t0, showing that assembly in the former case produces less entropy. We 

will discuss soon why this is.

In Fig. 5(b) we show parametric plots of the protocols (Pe(t), ϵ(t)) learned after several 

evolutionary generations (250 in the case of the two smaller times shown, 100 in the 

other case). For the longer time, the Péclet number remains zero, and only the interparticle 

attraction is used. In the other two cases the Péclet number is increased to values that 

promote motility-induced phase separation (a steady-state value of Pe ≳ 100 is needed to 

produce a solid fraction of 0.7 for packing fraction 0.3 [28]), and then the interparticle 

attraction is made large. Panels (c) and (d) show the outcome of these and similar protocols, 

showing the fraction f4 of solid-like particles and the entropy σ produced within a trajectory. 

The latter panel shows two sets of distinctly different entropy production rates. As we shall 

describe, these result from the presence or absence of self-propulsion.

Fig. 6 confirms this behavior, showing the smallest values of entropy produced at the end 

of the simulation, σ t0 , after several generations of evolutionary learning using a range of 

values of t0. A crossover between two different types of behavior is evident.

These results reveal a change of low-dissipation assembly mechanism upon changing t0. 

When the simulation time t0 is sufficiently large, assembly of the required amount of 

material can proceed in the presence of diffusive motion and interparticle attractions. But 

diffusion alone cannot achieve assembly of the required amount of material when t0 is 

made too small, in which case self-propulsion is required. However, propulsion is a costly 

mechanism, and results in considerable entropy production.

To see this, and to understand the scale of Fig. 6, consider that interaction-driven diffusive 

assembly requires the gain of about fNz/2 interparticle bonds, where f = 0.7 is the required 

solid-like fraction, N = 750 is the number of particles, and z = 4 is the coordination number. 

Assuming that these bonds are formed in the presence of energy scales of order 1 (in units 

such that kBT = 1), the total entropy produced (the sum of bond-energy changes) is about 

103, consistent with the location of the lower plateau in Fig. 6. By contrast, self-propelled 

particles produce entropy of order lnPe per step. If N = 750 particles each swim of order 

the box length L = 50 at Pe = 100 they would produce an amount of entropy of order 105, 

consistent with the scale of the higher plateau in Fig. 6.

We expect such a tradeoff to be present in general. The entropy production for energy-driven 

diffusive assembly scales as N, the number of particles, while that for motility-induced 

assembly scales as N × ℓ the latter factor being the characteristic particle swim length. 

Combined with the fact that the second mechanism is faster than the first, protocols that 

achieve low-dissipation assembly will tend to favor diffusion when time is plentiful, and 

self-propulsion when it is not. Note that we have not considered the cost to change the 

protocol, which, for specific physical systems, may enhance or oppose this crossover.

The time at which the crossover occurs will be a function of particle concentration, which 

sets the characteristic interparticle separation. The timescale for diffusive encounters scales 
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as the square of this separation, while that for encounters mediated by self-propulsion scales 

linearly. As a result, we expect the crossover shown in Fig. 6 to shift to larger values of t0 as 

particle concentration is reduced.

Time-ordered snapshots of examples of low-dissipation assembly are shown in Fig. 7. There 

is no strong visual indication of the large difference in entropy production between these 

examples (self-propulsion would only be evident in a movie), but the example involving 

self-propulsion (top) assembles considerably faster than that involving only diffusion 

(bottom).

In Fig. 8 we show the outcome of three sets of evolutionary learning simulations under 

different constraints. All are done for simulation time t0 = 2000. In panel (a) the neural 

network can control both Pe(t) and ϵ(t), but in panels (b) and (c) it can control only 

Pe(t) or ϵ(t), respectively. The strategy in (a) is to drive Pe large in order to cause motility-

induced phase separation, and then drive ϵ large in order to freeze the system and prevent 

unnecessary motion. In panel (b) the freezing mechanism is unavailable, and so the increase 

of Pe is delayed as long as possible. Freezing is an efficient strategy: in the inset to (b) we 

show that case (b) produces more entropy than case (a). In case (c), diffusive motion cannot 

achieve the required amount of assembly.

Some protocols, particularly near the crossover in Fig. 6, achieve assembly using moderate 

values of and small values of Pe, of order 10, not large enough to induce motility-induced 

phase separation but enough to speed mass transport and enable assembly that could not 

have happened via diffusion alone. However, because entropy production scales linearly 

with time but only logarithmically with Pe, we find that the more usual strategy is to quickly 

drive Pe large, above 100, in order to cause motility-induced phase separation, then drive ϵ
large in order to freeze the system and stop excess entropy being produced.

IV. CONCLUSIONS

Motivated by the competition between speed and energy efficiency in the context of 

biological self-assembly, we have explored self-assembly in a generic model of active 

particles with interactions. We have used neuroevolutionary learning to find protocols 

that achieve assembly within a particular time limit, and that produce as little entropy as 

possible. Enhanced-sampling methods such as transition-path sampling sampling [31] and 

other forms of protocol learning such as gradient-based reinforcement learning approaches 

could be applied to this problem [32, 33]. In the context of reinforcement learning, 

evolutionary methods are relatively simple to implement (they do not require gradient 

computation through time) and are natural when asked to maximize an order parameter 

that is specified only at the final time point of a trajectory, a ‘sparse-reward problem’ in 

the language of reinforcement learning (evolutionary methods can also be used with larger 

numbers of parameters than we have considered here [15]).

We have found that when time is plentiful, protocols use only attractive interactions and 

diffusive motion. When time is restricted, self-propulsion is required in order to allow the 
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required degree of assembly to happen, but propulsion is expensive and results in more 

entropy being produced than in the diffusive case.

This competition is likely to exist generically, because it depends only on simple scaling 

arguments and not on specific molecular details. These results, interpreted in the context 

of cellular assembly, suggest a strong incentive to maintain the system size small enough 

for diffusion-driven assembly to occur on the required timescales. In specific systems the 

question of how costly it is to impose the required protocols is also relevant, and these costs 

may enhance or oppose the competition identified.
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FIG. 1. 
Schematic of the neuroevolutionary learning method. (a) A time-dependent protocol, which 

in Section II comprises (β(t), ℎ(t)), is encoded by a neural network whose input is scaled 

time t/t0 and whose output is the vector (β(t), ℎ(t)). (b) The protocol is imposed within 

a molecular simulation by the neural network, which acts at 1000 evenly-spaced time 

increments Δt = t0/1000. (c) An evolutionary algorithm searches for the neural network (and 

hence protocol) that maximizes a particular order parameter, ϕ, Eq. (7). A population of 

P randomly-initialized networks, each controlling one molecular simulation, results in P 
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outcomes ϕi, i ∈ [1, P ]. In this schematic the second outcome (“individual”) is the best, 

ϕ2 > ϕj ≠ 2, and so that neural network is cloned and mutated in order to build the second 

generation of the evolutionary scheme. In Section II we set P = 100, and the top 10 

individuals are retained from one generation to the next.
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FIG. 2. 
Evolutionary learning identifies low-dissipation magnetization-reversal protocols in the Ising 

model. (a) Order parameter (7) as a function of evolutionary time (inset: parametric 

protocols for generations 46–50). (b) Parametric protocols (β(t), ℎ(t)) for 5 different 

generations; the black dot and dashed line are the Ising model critical point and first-order 

phase transition line, respectively. (c) Contrasting low- and high-dissipation magnetization-

reversal protocols (from left to right: parametric protocols; time-dependent protocols; time-

ordered snapshots)
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FIG. 3. 
Protocol learning for the Ising model is qualitatively unchanged upon going from Glauber to 

Metropolis dynamics. (a) Reproduction of Fig. 2(a) (blue) together with similar results using 

Metropolis Monte Carlo dynamics (green). (b) Analog of Fig. 2(b) for Metropolis dynamics. 

Again, the learning algorithm identifies low-dissipation trajectories as those encircling the 

critical point (black dot) and avoiding the first-order transition line (black dashed line).
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FIG. 4. 
Schematic of the model of active particles with interactions. (a) Rates for motion of an 

isolated particle. (b) Example of a rate influenced by the pairwise interparticle interaction; 

ΔE is the energy change of the move.
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FIG. 5. 
Neuroevolutionary learning simulations instructed to identify a protocol (Pe(t), ϵ(t))
promoting assembly with least dissipation in the model of active particles with interactions. 

Various values of t0, the physical simulation time, are considered. (a) Order parameter (10) 

as a function of evolutionary time (here and in other panels the arrow points in the direction 

of increasing t0). (b) Parametric protocols (Pe(t), ϵ(t)) learned after several evolutionary 

generations. (c) Solid fraction f4 and (d) entropy produced as a function of simulation time, 

using protocols learned after several evolutionary generations.
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FIG. 6. 
Least entropy required to induce assembly, as a function of physical time t0, using protocols 

learned after several evolutionary generations. Two distinct mechanisms are evident.
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FIG. 7. 
Time-ordered snapshots of low-dissipation assembly involving self-propulsion (top) and 

diffusion only (bottom).
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FIG. 8. 
Constrained assembly protocols identified by neuroevolutionary learning. (a) A low-

dissipation protocol in which a neural network can control both Pe(t) and ϵ(t). (b) A low-

dissipation protocol in which the neural network controls only Pe(t); this produces more 

entropy than case (a) (inset). (c) When the neural network can control only ϵ(t), the required 

amount of material cannot assemble in the allotted time.
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