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EPIGRAPH

Systems are to algorithms what soil to seed.
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ABSTRACT OF THE THESIS

Efficient Systems for Advanced Data Analytics

by

Liangde Li

Master of Science in Computer Science

University of California San Diego, 2022

Professor Arun Kumar, Chair

Many algorithms have evolved in the past decade. Genetic analysis and deep learning

are two representative groups of them. With the progress in the big data era and decreasing cost

of data collection, these algorithms are being applied to a larger volume of data, leading to the

new development of efficient systems in these domain areas. We evaluate the performance of

some new emerging salable genetic analysis tools to provide practitioners with some guidelines.

We also propose a new paradigm that we call intermittent human-in-the-loop model selection to

mitigate pains in deep learning model selection.

xiii



Chapter 1

Introduction

Data analytics algorithms are being applied to boosting volume of data. People observe

and identify many efficiency issues during their work, which attracts the computer systems com-

munity to develop many scalable and efficient systems trying to solve them. Two representative

types are scalable genetic analysis tools in the bioinformatics area and distributed model training

in the machine learning community.

Genetic analysis is a popular topic in the 21st century, with many efforts have been made

to develop tools for it. However, with the exploding of genetic data because of the drop in

DNA sequencing price in Moore’s Law, scalability issues arise. Some efforts have been made to

address it, but there is a lack of unified comparative evaluation of these systems. We take a major

step towards filling this gap. We introduce a suite of Genome-Wide Association Study (GWAS)

specific tests based on our experience with GWAS workloads. We evaluate a few popular or

emerging genetic analysis systems using our tests: PLINK, Hail, and Sgkit. Our study has

revealed some sub-optimal features and bottlenecks in these systems. Our findings have already

led to improvements in Sgkit.

Deep learning (DL) is revolutionizing many fields. However, there is a major bottleneck

to the broad adoption of DL: the pain of model selection, which requires exploring a large config

space of model architecture and training hyper-parameters before picking the best model. The

two popular paradigms for exploring this config space pose a false dichotomy. AutoML-based
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model selection explores configs with high throughput but uses human intuition minimally.

Alternatively, interactive human-in-the-loop model selection entirely relies on the human instinct

to explore the config space but often has extremely low throughput. To mitigate the above

drawbacks, we propose a new paradigm for model selection that we call intermittent human-in-

the-loop model selection.
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Chapter 2

Benchmark of Genetic Analysis Tools

2.1 Introduction

A deep understanding of Human DNA is vital for Disease Prediction and Precision

Medicine. Therefore, tools have been developed in the last two decades for genetic analysis

to explore hidden information in DNA. Human Genome DNA sequence was first determined

in 2003 in Human Genome Project [5], which took nearly 3 billion dollars. This cost dropped

dramatically at the rate near Moore’s Law to around 1000 dollars nowadays. If only some of

the markers are wanted, there are services online to complete them at a price of fewer than one

hundred dollars. This cost reduction makes it possible to determine a larger population’s DNA

sequence. Thus, genetic analysis tools must support large-scale population genome data and

potential scale-out for a growing volume of data.

This situation has led to the development of scalable distributed Genetic Analysis systems

in recent years, which provide genetics-specific built-in functions and allow users to scale their

analysis pipelines to distributed computing and storage systems without manually handling data

distribution and communication. These systems provide API embedded in Python as their front

end and aim to scale complex statistical genetic analysis, such as the GWAS pipeline.

While the recent activity on scalable genetic analysis systems has led to many new

tools and evaluation of their performance, two fundamental practical questions remain largely

unanswered: From a comparative standpoint, how effective and efficient are such systems for
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scalable genetic analysis? By effectiveness, we mean how “easy” they are to use in terms

of coding amount and setup logistics. We mean how “fast” they run in different settings by

efficiency. Is it worth going distributed for a given data scale? By worthy, we mean when these

distributed systems would have an advantage against mature single-machine systems. Existing

work [12] on such systems focuses on one system and explores its performance in different

settings. This lack of a unified comparative understanding of these systems may bring extra

work and cost to users, especially in the commercial, public cloud environment.

We take a step towards filling this gap by introducing a suite of performance evaluation

tests for genetic analysis systems and performing an empirical comparison of several popular and

emerging genetic systems using our tests. We delineate five orthogonal axes: task complexity,

Data Scale, Computational Scale , Data Shape and Task Hyperparameter. We include five joint

GWAS operations with different computation behaviors and purposes for task complexity. We

focus on commodity CPU clusters for computational scale, varying the number of CPU cores in

single-node mode and cluster nodes in distributed mode.

We compare the following systems: PLINK [21], Hail [25] and Sgkit [7]. They are

selected due to their popularity and representativeness. PLINK is a widely used mature single

node system. Hail is built on Spark’s mature distributed computing engine, providing APIs and

Expressions. Sgkit is built on top of the Dask engine, providing data scientists friendly syntax

and environment.

Based on our empirical study, we recognize and summarize the strengths and weaknesses

of each system to give a guideline for practitioners to decide which one fits their needs most. We

also identify some gaps and propose some open research questions. Overall, this work makes the

following contributions.

• To the best of our knowledge, this is the first work to create a unified framework for

evaluating popular genetic analysis systems.

• Using our tests, we perform an extensive empirical study comparing PLINK, Hail, and
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Sgkit on a single node and analyzing Hail and Sgkit on distributed clusters.

• We analyze and distill our experience into guidelines for practitioners and propose some

open research questions for future work.

• Our findings have already resulted in bug fixes for Sgkit.

2.2 Background

2.2.1 GWAS and Genetic Analysis

Genome-Wide Association Study (GWAS) is an approach in the bioinformatics field,

genetic analysis to find the association between disease or trait (Phenotype) and DNA (Genotype).

Human DNA has different coding in specific locations of DNA sequence, where this collection

of multiple versions of coding is a set of alleles. Capital letters like “A” often represent the

dominant allele and little letters like “a” for the recessive allele. Genotype is the occurrence of

these alleles in an individual, and there are three genotypes in this biallelic case: ”AA”, “Aa”,

and “aa”. Among them, “AA” and “aa” are called homozygous, and “Aa” is called heterozygous.

The meaning of symbols is shown in Table 2.1. Many people’s genomes and phenotypic data

are required for GWAS, which uses a series of algorithms to reveal hidden information. This

information may include that environment has pressure on individuals, causing the diminishing

of a specific allele. Or a phenotype has a strong correlation with some genotypes. The goal is the

ability to use DNA to predict disease with statistical confidence.

Table 2.1. Notations of Genetics Symbols

Symbol Notation
m Number of variants in dataset
n Number of samples in dataset
i Index of variants
j Index of samples

A, B Dominant allele
a, b Recessive allele

nAA,nAa Number of genotype call AA, Aa
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Genetic analysis systems aim to provide users with a canned roster of algorithms and

APIs to perform data analytics on users’ data. At times, data transformation is necessary before

the analysis pipelines. These systems encapsulate the most prevalent genetic analysis algorithms

and abstract away low-level systems issues like parallel/distributed computation. Our goal is not

to design a new genetic analysis system but to provide a systematic and quantitative comparison

of popular and representative systems using our carefully designed suite of tests and, hopefully,

provide a reference for practitioners to choose between these systems.

2.2.2 Overview of Compared System

PLINK [21] is an open-source command-line program written in C/C++ and focuses

on the phenotype/genotype datasets. It is easy to start using, and the users can do the data

analysis by just opening a terminal and running the commands with corresponding arguments.

The datasets are represented by two tabular-format plain text files, PED and MAP. PED file

contains the information of samples, and MAP comprises the information of Single-nucleotide

polymorphism (SNP) of each Chromosome position. While PED is in plain text format, PLINK

also provides BED, a binary version of PED. PLINK supports the data management operations,

such as recoding, updating data, and merging the datasets. In addition, PLINK has a robust library

of advanced analytic tools on genotype datasets. The users can do advanced analysis, such as

association testing, population stratification, and LD estimation, by calling the PLINK command

corresponding arguments. PLINK also supports parallel computation using multi-cores for some

tasks, especially those heavy computation tasks. However, PLINK does not offer distributed

implementation, so we skip it for the distributed settings.

Hail [25] is an open-source Python library for data analysis tools specialized in genetic

datasets. The input dataset can be imported from many sources, such as CSV and JSON,

and then read as a single tabular dataset called Table, like SQL table, Pandas DataFrame, or

Spark DataFrame. Hail provides the basic operations over Table, such as aggregation, filtering,

grouping, and joining. Moreover, a datatype called MatrixTable, a distributed extension of Table,
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specializes in the genetic datasets. The Matrix Table can be imported from VCF, BGEN, and

BED file formats and the data formats supported by the Table above. Since the genetic datasets

are sparse, the Matrix Table is stored in “coordinate form”, so the storage we need is much lower

than that for the Table. MatrixTable supports some high-level functions on the genetic dataset,

such as linear regression, PCA, normalization, and all the functions for the Table. Operations on

MatrixTable can be distributed computing by Spark.

SgKit is an open-source Python package to offer data analysis on genetic datasets. It

can read from various population genomic variants file formats, such as VCF, BGEN, and BED,

and store the data in Zarr format. Sgkit represents the data in a unique structure of Xarray, a

dataset that supports the data in a multi-dimensional tensor. A significant advantage is that the

Sgkit implements many classical GWAS calculations on the data, such as association testing,

LD pruning, and relatedness estimation, and it is easy to apply these functions to the genetic

dataset. Sgkit scales the tasks in parallel by Dask [23], a popular python environment scalable

computation framework. However, the scalability for some functions, such as PCA and LD

estimation, is in the bottleneck.

2.3 Data Preparation

The data used in the experiment are from Phase 3 of the 1000 Genome Project, collected

from 2504 people (samples). We select the data from Chromosome 1 to Chromosome 22 for

most experiments and Chromosome 21 solely to perform the drilled-down tests on Sgkit and

Hail in eager mode experiments to expose more details.

The 1000 Genome (1KG) Phase 3 data are publicly available online for each chromosome

in compressed Variant Call Format(VCF), vcf.bgz. By using Bcftools [24], we concatenate them

into 1 vcf.bgz file, which has 14 GB in size. As VCF is in plain text format, the uncompressed

version would be much larger. For example, the compressed Chromosome 1 data have 1.1 GB

but 61 GB after decompressing. In the uncompressed version VCF file, the first few dozen lines
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are header to describe the metadata of this file. The central part of the data is separated into lines,

where each line corresponds to one variant and expresses all samples’ genotype calls. Thus, a

VCF file can be considered a plain text matrix, where each row is a variant and each column is a

sample and, of course, has metadata in the header.

Because Sgkit cannot directly create a dataset by reading from a VCF file, it always needs

to read from Zarr storage. We convert these VCF data to each tool’s native data format, Zarr for

Sgkit, MatrixTable for Hail, and BED for PLINK, to make it a fair comparison. In addition, they

are all binary formats. The 1000 Genome data have 23GB in Zarr, 15GB in MatrixTable, and 48

GB in BED. Zarr is a format to store N-dimensional arrays and can be chunked into small pieces

for distributed operations on these arrays. Sgkit loads Zarr stored data into memory as Xarray’s

Dataset objects, as shown in figure 2.1. The central part of the data is an n-dimensional array

with three standard axes, Variant, Sample and Ploidy. Ploidy is two in the case of 1000 Genome

data because humans are diploid; that is, a person usually has 23 pairs of chromosomes, and each

pair has two homologous copies from the father and mother. Variant Data is metadata for each

variant-row in the figure and stored globally. Similarly, Sample Data for each sample-column in

the figure. MatrixTable is a format introduced by Hail developers, a Matrix, like what appeared

in Sgkit, with metadata for each row and column. BED is a primary format of genotype calls

for PLINK and should be distinguished from the other well-known ’BED’ (Browser Extensible

Data) format in genetics. The BED file should be used with BIM and FAM files also outcomes

when converting VCF to BED.

There are no public phenotype data for 2504 people for privacy reasons. So, we create

some synthetic numeric phenotype data, a numeric number for each person, to complete the

association study. These phenotype data are stored as plain text files. PLINK can read it directly.

Sgkit must assign it as a field to the dataset, and Hail must read it into native Table format and

then annotate the MatrixTable with this phenotype data Table.

8



Figure 2.1. Xarray Dataset of Genetic Data in Sgkit [6]

Algorithm 1. Creating Synthetic Phenotype Data

Data Genotype Call X(m,n,2)

1: XL = sum(X ,axis =−1)
2: AL = random(size = m)
3: Y = XLT AL+ random(size = n)
4: return Y

9



2.4 Description of Tests

We delineate our experiment suites along five orthogonal axes. We explain the settings

and list parameters to vary to test these tools thoroughly for each axis.

Axis 1: Task Complexity. We have three groups of tasks. The first group is basic

statistical methods and is usually performed for each variant. The second involves operations

on the original dataset based on some computation results. The last group is Linear Algebra

methods in genetics.

Axis 2: Data Scale Factors. In the single-node experiment, we use chromosome 21

and the whole genome chromosomes data, so they vary in several variants. In the distributed

experiment, we use synthetic varying in the number of samples because it is more likely to

collect DNA sequence data from more people instead of finding more variants in genomes.

Axis 3: Computational Scale Factors. We have two sets of experiments to address the

computational scale factors. In the single-node experiment, we vary the number of cores used,

and in the multi-node experiment, we vary the number of machines while using all cores.

Axis 4: Data Shape Factors. We have two types of shardings of data for Sgkit, tile

sharding and row sharding. We vary the sharding types in the distributed experiments.

Axis 5: Task Hyperparameter Factors. Some tasks in our experiment contain hyperpa-

rameters, and we examine how these hyperparameters affect the runtime.

2.4.1 Task Complexity

We tested each system by the operations in three groups Task Complexity and Difficulty.

The difference between each level is the complexity of the tasks. The first level is EASY. The

operations will only do some statistical summary, linear, and easy to scale up at this level. The

second level is MEDIUM. The procedures in this level will do some calculations across the

datasets, such as HWE exact test and LD-prune. The third level is HARD. The operations have a

considerable time complexity (more than quadratic), such as dimensional reduction technique
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PCA, SVD, or Ordinary Least Square Linear Regression (OLS) model. These algorithms are

summarized in Table 2.2.

Table 2.2. Algorithms for Axis 1 (task complexity).

Algorithm Input Output Complexity Purpose
Allele Frequency (AF) X(m,n,2) AF(m,2) O(mn) Basic Statistical Summary.

Hardy-Weinberg Equilibrium (HWE) X(m,n,2) p(m) O(mn)
Finding variants that are not
evolving in the population.

Linkage Disequilibrium Prune (LD-Prune) X(m,n,2) Depends O(mw)
Finding a subset of
uncorrelated variants.

Principal Component Analysis (PCA) X(m,n,2) PCs(m,nPC) O(m3 +m2n)
Finding ancestry relationship
in data population.

Ordinary Least Square Linear Regression (OLS) X(m,n,2), y(n) Beta(m) O(m3 +m2n)
Identifying correlation between
variants and traits.

Statistical Summary

Doing some basic statistical summary is essential and always the first thing to do after

collecting data. We choose the Allele Frequency as our goal in this group to represent tools’

performance on those statistic work. An allele is one version of a gene at a specific location(locus),

for example, in genotype Aa, where A and a are both alleles. Allele frequency is to calculate A’s

frequency and a’s frequency in the population of data collection. Allele Frequency is one of the

most frequently used statistic numbers in genetics.

Algorithm 2. Allele Frequency

Data Genotype Call X(m,n,2)

1: for each variant i do
2: Define nAa as the number of heterozygous Aa;
3: nAa← sum(x[i, :] == [1,1])
4: Define nAA and naa as the number of homozygous AA and aa;
5: nAA← sum(x[i, :] == [2,0])
6: naa← sum(x[i, :] == [0,2])
7: n← nAA +nAa +naa
8: AF [i,0]← 2∗nAA+nAa

2∗n
9: AF [i,1]← 2∗naa+nAa

2∗n
10: end for
11: return AF

Genetic Computation and Operation

The tasks in this group are more complex than simple statistical summary as it involves

some genetic calculation and can potentially do some operation on the original dataset based on

11



these calculated values. The two representations we choose are Hardy-Weinberg Equilibrium

exact test and Linkage Disequilibrium Prune.

Hardy-Weinberg Equilibrium means, without migration, mutation, and natural selection,

that a random mating large size population’s genotype frequency should be able to get directly

from allele frequency. For example, if allele A’s frequency is p and allele a’s frequency is q

and we have p+q = 1. Then genotypes AA, Aa, and aa should have frequency p2,2pq and q2

respectively. This was first raised in the early 20th century [8] [27]. However, there can be a

deviation from the observed genotypes call, and the expected genotypes call calculated from

allele frequency. So, Chi-squared test can be used to tell its statistical significance. After getting

the Chi-square value and referring to the Chi-square distribution table, we can get the p-value for

each variant. However, genetic analysis tools usually implement it by an improved method [28].

Algorithm 3. Hardy-Weinberg Equilibrium p-value
1: for each variant do
2: Define nAa as the number of heterozygous Aa;
3: Define nAA and naa as the number of homozygous AA and aa;
4: Define nA as the number of allele A: 2∗nAA +nAa;
5: n← nAA +nAa +naa
6: Calculate the mid point: mid = ⌊nA ∗ (2∗n−nA)/(2∗n)⌋ ;
7: If mid has different odevity from nA Then mid = mid +1;
8: Set p( mid ) = 1;
9: x← mid

10: while x≥ 0 do
11: p(x−2) = p(x) nAa(nAa−1)

4(nAA+1)(naa+1)

12: x← x−2
13: end while
14: x← mid
15: while ≤ nA do
16: p(x+2) = p(x) 4nAA(naa)

(nAa+2)(nAa+1)

17: x← x+2
18: end while
19: end for

Figure2.2 shows the difference between Linkage Equilibrium and Linkage Disequilibrium.

Linkage Disequilibrium means the nearby alleles on the same chromosome are usually associated.

For example, genotype AB has abnormal high frequency, as 49% in B) as opposed to 25% in

A). So Linkage Disequilibrium Prune is usually used to get a set of uncorrelated variants. The

correlation coefficient r2 [9] is usually used to measure it, and users set a threshold for it. The

pruning process is considered a window at a time. For each pair of variants, if their pairwise r2
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Figure 2.2. A) Linkage Equilibrium. B) Linkage Disequilibrium. [20]

is under the threshold, drop the variant with a smaller Minor Allele Frequency.

Algorithm 4. Linkage Disequilibrium prune
1: Input r2,W,step
2: for each variant i do
3: for each j ≤ i+W ∧ j > i do
4: Define variant i has Alleles A and a
5: Define variant j has Alleles B and b
6: D = P(AB)−AF (A)∗AF (B)
7: r2 = D2

AF(A)AF(a)AF(B)AF(b)

8: if r2 < r2 then
9: Prune the variant that min(AF (A) , AF (a) , AF (B) , AF (b)) belongs to

10: end if
11: end for
12: i← i+ step
13: end for

Linear Algebra

The tasks in this group are some linear algebra algorithms applied in the genetic analysis.

We choose the Principal Component Analysis (PCA) and Ordinary Least Square Linear Regres-

sion (OLS). PCA is used to eliminate the confounders in the dataset, the stratified distribution of

phenotype because of relationships on ancestry. The OLS is used to find the gene most related to

the traits.
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Algorithm 5. Principal Component Analysis
1: Z is zero mean standard normalized of X
2: Then the covariance matrix C = ZT Z =UΣV T ▷ For eigenvector method, eigenvectors of Z are principal components. For Singular Value

Decomposition method, columns of V are principal components.

Algorithm 6. Ordinary Least Square Linear Regression
1: Define C as the covariance matrix
2: XL = X−ProjC(X)
3: YL = Y −ProjC(Y )
4: The coefficient of X can be calculated as:
5: β̂ =

(
XT

L XL
)−1 XT

L YL

2.4.2 Data Scale Factors.

Use data generators like msprime [11] to generate different scales of synthetic data,

varying the number of samples because it is more likely to collect data from more people instead

of finding more variants in the human genome.

2.4.3 Computational Scale Factors.

We vary the number of cores used in single node experiments and the number of nodes

in the distributed experiments to show how these tools scale in different methods. In single-node

mode, we run experiments with 1, 2, 4, 8, and 16 cores, respectively, and we make sure these

cores are all physical cores on the chips. In multi-node mode, we run experiments with 1, 2, 4,

and 8 machines, respectively, and each machine has 40 logical cores.

2.4.4 Data Shape Factors.

We vary the sharding of data in multi-node experiments for Hail and Sgkit to show how

these systems perform on different shapes of data. For Hail’s data, we have partitions of 960,

8128, and 20318. For Sgkit’s data, we have chunks of 10000x1000, 4000x2504 and 10000x2504.

2.4.5 Task Hyperparameter Factors.

The value of parameters in the tasks above can also affect the runtime. We vary the

number of Principal Components in PCA, the thresholds in LD-Prune, and the window size in
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LD-Prune to experiment with how different values affect the time taken.

2.5 Experimental Comparison

Experimental Environment. We executed our experiments in CloudLab “Wisconsin”

site using the c220g2 instance type[22]. Each physical node has the following hardware specifi-

cations: two Intel E5-2660 v3 10-core CPUs at 2.60 GHz, 160GB ECC Memory, One Intel DC

S3500 480 GB 6G SATA SSDs, Two 1.2 TB 10K RPM 6G SAS SFF HDDs and Dual-port Intel

X520 10Gb NIC (PCIe v3.0, 8 lanes) network adapter. Thus, each node has 20 physical cores

and hyper-threading to 40 virtual/logical cores. We run a program reading OS information to find

the actual physical cores among 40 logical cores and ensure each core used in the single node

experiments corresponds to a different physical core. For example, 16 cores used in single node

experiments are 16 logical cores on 16 different physical cores. The operating system we used is

Ubuntu 18.04. All software is installed in this vanilla Ubuntu OS, and in distributed experiments,

we use virtual environments to isolate packages used between Hail and Sgkit environments.

Spark and Dask clusters run in standalone mode. Table 2.3 describes the versions of key software

packages we used.

Table 2.3. Software Packages and version

Name Version Name Version
Python 3.8.12 Spark 3.1.2
Sgkit 0.4.0 Hadoop 3.2.2
Hail 0.2.85 Dask 2021.12.0

PLINK 1.9

Methodology. In the single node setting, all runs are repeated three times to report their

average, and we find that each set of these three runtimes is close enough. Because every PLINK

command is invoked from the command line and always starts with reading the dataset and ends

with writing results to files, there is no clear boundary between IO and computation. Thus, we

also include IO times of Hail and Sgkit programs compared with PLINK. As Spark and Dask do
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not conduct computation unless necessary, which is called lazy execution, the computation in

Hail and Sgkit is triggered by force writing results to files. To further explore the time distribution

of loading, execution, and writing, we also complete eager mode experiments of Hail and Sgkit

on a single node. That is persisting dataset into memory before executing each algorithm and

forcing count on Spark in Hail before writing output to the file system. In Sgkit, we persist

the results of each algorithm into memory in distributed Dask memory. We do not use Dask’s

compute because it collects data into NumPy or panda’s objects in python program memory

space, which involves extra unnecessary work. This eager mode single node experiments use

Chromosome 21 (Chr21) data to be able to fit into memory.

In a multi-node setting, all warm cache runs are repeated ten times and discard the first

five runs because, in practice, we find that runtime can keep decreasing in four contiguous runs.

We also discard the maximum and minimum times run in the rest five runs and use the average

of the remaining three runs. We also conduct cold cache runs for some algorithms, which clear

page cache, dentries, inodes in-memory cache, and buffers. These cold cache runs are repeated

five times, and we discard maximum and minimum same as in warm cache runs. In a multi-node

setting, HDFS is used to store datasets distributively. Data files are put to HDFS through a simple

command-line utility, whose time is not considered in the benchmark and, in practice, takes a

few hours depending on sharding sizes of data and the number of distributed nodes.

System Configuration Tuning. Although it was mentioned in SLAB[26] that tuning

configuration parameters for Spark are non-trivial, that was the case for Spark version 2.2.0. We

found those configuration parameters are not killing problems for Spark version 3.1.2 anymore,

at least for Hail built on top of it. The only parameter matter is the number of partitions

of the dataset, and it can be easily adjusted at the data transformation stage. However, we

found that the performance of Sgkit is sensitive to the configurations of the Dask Distributed

module, and tuning them is non-trivial and time-consuming, especially for new users of Dask.

We adopted a policy of “reasonable best effort” for tuning and made Sgkit able to complete

the experiments. The following suggestions are based on our experience in our hardware
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environment. scheduler.allowed-failures defaulted 3 is too low. scheduler.work-stealing defaulted

True can causing the systems hanging occasionally. worker.memory.rebalance.measure defaulted

“optimistic” may be outperformed by “process”. worker.memory.spill/pause/terminate defaulted

to 0.7/0.8/0.95 can increase a bit or turning them off to get better performance, especially for

memory intense workload. comm.timeouts.connect, comm.timeouts.tcp defaulted 30s is too low,

and a number more than 60s may sounds reasonable.

2.5.1 Results for Single Node

The runtime of single node experiments in seconds, using 16 cores running in lazy mode,

are summarized in Table 2.4. Three of them use 1000 Genome data, and the other two use

Chromosome 21 data because of running out of time.

Table 2.4. Single node 16 cores lazy mode results in seconds on 1KG or Chr21

Task Sgkit Hail PLINK
Allele Frequency 715.6 406.5 61.33

HWE 1496.77 383.4 117.7
LD Prune (Chr21) 1662 7639 216.7

PCA (Chr21) 387.1 337.9 146.0
OLS 2171.7 1764 11937

Single-Node - Allele Frequency Allele Frequency is typically calculated as part of

Quality Control process at the beginning of GWAS. Hail and Sgkit implement it in a single

function call as well as other Quality Control calculations, while they are usually light weight.

However, because of the lazy execution model of Spark and Dask as a nature, we can try our best

to only trigger Allele Frequency computation, specifically invoking writing or persisting Allele

Frequency results array alone, in lazy or eager mode, respectively. We vary the number of cores

on a single node to study multicore speedup behaviors. Figure 2.3 presents the A) results of total

wall time of three tools in lazy mode on 1KG dataset and B) execution(AF) wall time of two

tools in eager mode on chr21 dataset. The y axis is time in seconds in log scale. Hail and Sgkit

present close to linear speedup as the benefit of additional cores. We note that Hail’s runtimes
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Figure 2.3. A) User perspective of allele frequency total wall time on 1000 Genome data. B)
Computing time of Sgkit and Hail on allele frequency in eager loading mode on Chromosome 21

data.

are faster than Sgkit but comparable, that is no more than 100% faster in all cases. PLINK does

not implement parallel computing in the Allele Frequency algorithm but presents extraordinary

runtimes.

Single-Node - HWE Hardy-Weinberg Equilibrium p-value results are usually used with

Allele Frequency results together to filter out variants. The naive way of calling the selection

function based on AF and HWE in Sgkit caused the Dask engine two rounds of passing the

genotype data to calculate AF and HWE. The optimal method provided by developers uses

the method chaining[1], which creates a pipeline completing computation and selection in one

pass over of data. Under the same setup of a single node as in Allele Frequency, figure 2.4

presents the A) results of total wall time of three tools in lazy mode on the 1KG dataset and

B) execution(HWE+Filtering) wall time of two tools in eager mode on chr21 dataset. We note

that Hail and Sgkit present almost linear speedup in both lazy modes, the whole workload on

1KG and eager mode execution workload on Chr21. PLINK is still non-parallel for HWE but

outperforms significantly the other two.

Single-Node - LD Prune In single-node LD Prune experiments, because of the wide

range of timeout in Sgkit and Hail on 1000 Genome data in lazy mode, we used Chromosome 21

data in lazy mode instead. Figure 2.5 presents the results. PLINK still outperforms the other
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Figure 2.4. A) User perspective of HWE total wall time using 1000 Genome data. B)
Computing time of Sgkit and Hail on HWE in eager loading mode using Chromosome 21 data.
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Figure 2.5. A) User perspective of LD-Prune total wall time using Chromosome 21 data. B)
Computing time of Sgkit and Hail on LD Prune in eager loading mode using Chromosome 21

data.

two in all numbers of cores settings. Sgkit has linear speed up in this LD Prune task. But Hail

presents badly, and its developers confirmed in their forum that LD Prune might be the most

problematic method in their system.

Single-Node - PCA Same as LD Prune above, Chromosome 21 data is used for PCA

in lazy mode experiment because of timeout issue on 1000 Genome data. Figure 2.6 presents

the results. Hail and Sgkit achieve almost linear speedup in the range from 1 core to 4 cores but

become sub-linear speedup if they add more cores. Also, Hail and Sgkit have similar whole-

workload runtimes on Chromosome 21 data. PLINK implements multicore parallel computing

for PCA to achieve almost linear speedup at core range from 1 to 4, but its runtimes on 16 cores
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Figure 2.6. A) User perspective of PCA total wall time using Chromosome 21 data. B)
Computing time of Sgkit and Hail on PCA in eager loading mode using Chromosome 21 data.
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Figure 2.7. A) User perspective of OLS total wall time using 1000 Genome data. B) Computing
time of Sgkit and Hail on OLS in eager loading mode using Chromosome 21 data.

are even higher than on 8 cores, and runtimes on 8 cores have little improvements on 4 cores.

Single-Node - OLS Figure 2.7 presents OLS results. PLINK implements multicore

parallel computing but performs terribly. Hail has an almost linear speedup and outperforms

Sgkit using 16 cores but is significantly slower using a single core.

2.5.2 Results for Multi-Node

Multi-Node - Sgkit-Dask - Vary Numbers of Workers We found that given a fixed

number of cores on each node, the number of workers and the number of cores per worker affect

the runtimes of Dask clusters. The default value is 1 Dask worker on each node and assigns all

resources to it, including cores and memory. However, we found the program would run slow.
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Figure 2.8. Sgkit Allele Frequency on 1000 Genome Data in Distributed Mode with 8 Workers
on Each Node and Warm Cache.

Thus, we tried the “auto” value for the number of workers, which asks Dask program to decide

the number of workers and cores per worker. For a node that comes with c cores, the number

of workers would be found by the formula min( f actor(c)) ≥
√

c, that is the minimum factor

of c just greater than or equal to the square root of c. In our case, the square root of 40 logical

cores is around 6.3, and the minimum factor of 40 that is no less than 6.3 is 8, so in “auto” mode,

8 workers would be created on each node, and each has 5 cores/threads. We also examine the

40 workers; each has one core set to compare with the auto mode. Figures 2.8, 2.9 present the

results of these two settings. Generally, 40 workers set has an advantage when running with 1 or

2 nodes, but 8 workers setting has better performance using 8 nodes. This can be explained by

the effect of Python Global Interpreter Lock (GIL). We found that GIL-holding functions often

happen on Dask workers in our task, causing the 5 cores Dask workers only to utilize 1 core

while running them. Thus 40 workers settings have advantages until using 8 nodes, which results

in 320 workers leading to a significant communication load.
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Figure 2.9. Sgkit Allele Frequency on 1000 Genome Data in Distributed Mode with 40 Workers
on Each Node and Warm Cache.

Multi-Node - Sgkit-Dask - Warm/Cold Cache The differences between figures 2.8,

2.9 and figures 2.10, 2.11 present the effect of warm or cold cache in Allele Frequency method.

We found this difference when we observed consistent decay of runtimes in the first a few runs of

all sets of experiments, and it was especially significant when we used more nodes. The buffers,

and cache of OS cache the data files, reducing file reading time significantly. Because the other

algorithms usually run after Allele Frequency, we would only execute warm cache experiments

for them.

Multi-Node - Vary Sharding Sgkit and its underlying dataset library Xarray provide an

easy way to chunk the dataset to any size in any data dimension. Because variants and samples

are two main dimensions in our dataset, we use variants x samples to represent the result of

each small piece of data after chunking. The default chunking size of the 1000 Genome dataset

in Sgkit is 10000x1000, which means the dataset is chunked into tiles. We propose two other

prototypes of chunking, 4000x2504 and 10000x2504, which are all row sharding of data, which
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Figure 2.10. Sgkit Allele Frequency on 1000 Genome Data in Distributed Mode with 8 Workers
on Each Node and Cold Cache.
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Figure 2.11. Sgkit Allele Frequency on 1000 Genome Data in Distributed Mode with 40
Workers on Each Node and Cold Cache.
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Figure 2.12. Sgkit Allele Frequency on 1000 Genome Data in Distributed Mode with 8 Workers
on Each Node and Cold Cache on Different Sharding of Data.

means the complete information of any specific variant exists in only one chunk. 4000x2504

was chosen because it is roughly the same size as the default 10000x1000 chunk. 10000x2504

was chosen to explore the effect of the size of chunks on runtimes. We did not add a chunk-size

smaller than 4000x2504 because it would trap into HDFS’s well-known “small files issue”, which

causes a significant overhead when reading data from HDFS. Figures 2.12, 2.13 present cold and

warm cache comparison between shardings respectively. From these Allele Frequency results,

we found that 4000x2504 is better than 10000x1000, and slightly increasing the row sharding

size to 10000x2504 has more improvements in our experiment environment. This conclusion is

independent of the number of workers on each node and cache status. That can explain this in

row sharding; each chunk has all information needed to calculate Allele Frequency. So it reduces

communication and unnecessary dependency in the computation graph built by Dask. In HWE

experiments, 1 node and 2 nodes experiments timeout. We observe superlinear scale-out when

expanding the cluster from 4 nodes to 8 nodes in all settings, as shown in Table 2.5.
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Figure 2.13. Sgkit Allele Frequency on 1000 Genome Data in Distributed Mode with 8 Workers
on Each Node and Warm Cache on Different Sharding of Data.

Table 2.5. Resulting Runtimes in seconds of HWE using Distributed Sgkit with 8 Workers on
Each Node.

Warm Cache Cold Cache
4 nodes 8 nodes 4 nodes 8 nodes

10000x1000 4714.1 549.6 4757.9 618.5
4000x2504 4683.3 445.9 4740.1 1172.5
10000x2504 3237.5 276.7 3791.9 347.9
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Figure 2.14. Hail Allele Frequency on 1000 Genome Data in Distributed Mode.

Hail only provides row shardings, and this number is controlled by a configurable

parameter, the number of partitions. It is suggested by developers of Hail to have at least 2-4

partitions per core, so we chose number 3 and re-partitioned the dataset into 960 partitions as the

suggested value because we have 320 logical cores using 8 nodes. To make a fair comparison

with Sgkit, we partitioned Hail’s dataset into 4000x2504 and 10000x2504 shardings, which

correspond to 20318 and 8128 partitions. Figures 2.14, 2.15 present the results of distributed

Hail on Allele Frequency and HWE respectively. We found Hail scales out almost linearly,

independent of the number of partitions, as Hail performs the same on different partitions if this

partition number is greater than the minimum requirement.

2.6 Analysis and Discussion

We first guide practitioners on the strengths and weaknesses of these systems. We then

give a summary of the key takeaways from our empirical analysis. Finally, we propose some

open research questions.
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Figure 2.15. Hail HWE on 1000 Genome Data in Distributed Mode.

2.6.1 Guidelines for Practitioners

We now summarize each tool’s strengths and weaknesses.

PLINK. We found PLINK to be the fastest in most of the single node experiments. This

has several reasons, including its implementation language C/C++. The next is its native data

format that the genotype data are stored how exists in memory, so no interpreting or converting

is needed when loading it. As it is the first tool being developed among the three tools, people

have well-tuned it in the past decade. One drawback is its closed ecosystem, as it only provides a

roster of functionalities and lacks support for customized analysis. And users cannot analyze the

data interactively as the nature of being a command-line tool. Another drawback is its lack of

distributed support. So, PLINK is recommended if practitioners have a clear goal about what

routine analysis is needed, and these functionalities are provided by PLINK; also, the data must

be fit in one node.

Hail. Hail has excellent paralleled/distributed features and well-documented instructions

and tutorials. It also provides a helpful and popular forum to help users. A lot of the time,
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when we met problems, issues, or bugs using Hail, we found there were already discussions

and solutions in its forum. However, Hail uses fewer open-source libraries than Sgkit, so it will

benefit less from the evolution of other popular libraries in the Python ecosystem but has better

control over its quality if its developers put in enough effort. And we do see its developer devote

to it as they do new releases biweekly. Finally, compared to PLINK, it has a steeper learning

curve at the beginning for people who are not familiar with programming.

Sgkit. We found Sgkit to be the one most friendly to practitioners familiar with the

Python ecosystem, especially Numpy and Pandas. This is because it uses many popular third-

party libraries, from representing the dataset to storing the data. Thus, we reckon Sgkit is

more potent for performing customized analysis and operations on the data. However, the Dask

cluster is hard to tune, especially customizing its configurations to users’ hardware. Thus, we

suggest developers of Sgkit provide more instructions on tuning the Dask config for Sgkit users

or implementing auto-tuning. As Sgkit is the newest among these three and is being actively

developed and fixed, more tuning of code details can potentially improve its performance.

2.6.2 Open Research Questions

We identify a few key gaps that require more research from the data systems community.

Auto-tuning Data Shape and System Configuration Parameters. The two distributed

systems we examined provide the functionality to change the data shape and size of sharding,

which means leaving this responsibility to users to find the optimal shape. Also, the default

values they provide are far from optimal. Thus, more work is needed to find a good enough data

shape for users automatically. More importantly, auto-tuning for Dask configuration parameters

is requested more urgently. Extending the lessons of auto-tuning in Spark from version 2 to

version 3 to Dask is another avenue for new research.

Fault Tolerance of Dask Distributed. We experienced Dask cluster hanging many

times, although we finally found it is mostly related to work-stealing. We argue that improving

the fault tolerance property of Dask Distributed would be beneficial.
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Chapter 2 is currently being prepared for submission for publication of the material. Li,

Liangde; Kumar, Arun. The thesis author was the co-author of this material.
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Chapter 3

Intermittent Human-in-the-Loop Model
Selection

3.1 Introduction

Deep learning (DL) is revolutionizing many fields. It is now being used in various

domains including e-commerce, web, and even in critical applications such as in healthcare.

However, there is a major bottleneck for the wide adoption of DL: the pain of model selection.

The accuracy of a trained model heavily depends on the model architecture and hyper-parameter

values used during training. Thus, practitioners often have to perform a search over the potential

config space, in order to pick the best model.

Paradigms for Searching the Config Space From our conversations with DL practition-

ers and our own experience building large-scale DL applications we find two main paradigms:

1) AutoML and 2) interactive human-in-the-loop. In the AutoML paradigm, the user will ini-

tiate a model selection workload by specifying a config search space and a canned AutoML

procedure. AutoML procedures implement a search heuristic such as Bayesian optimization

(e.g., HyperOpt [2]), evolutionary search (e.g., PBT [10]), and random search (e.g., ASHA [16]).

It then uses the parallelism available in a cluster (or a single machine) to explore configs with

high throughput. As model selection progresses, the user will receive the results of the explored

configs. Figure 3.1(A) presents an illustration of this paradigm. While there are advanced

AutoML procedure implementations of the above-mentioned heuristics, recent surveys [3] have
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Figure 3.1. A) AutoML-based model selection. B) Interactive human-in-the-loop model
selection. C) Our paradigm of intermittent human-in-the-loop model selection. D) Qualitative

comparison of different paradigms.

shown that an overwhelming majority of ML researchers and practitioners often use simple

techniques like grid (explore all configs) or random (randomly sample configs) search.

In interactive human-in-the-loop model selection [30, 4], the user retains full control over

the search process. They will explicitly specify a config (or few configs) to explore and wait until

it finishes. Based on the results of the explored configs and human intuition about the search

space, they will specify the next config (or set of configs) to explore. Figure 3.1(B) illustrates

this paradigm.

False Dichotomy of Existing Paradigms We contrast the above paradigms on two

dimensions: 1) exploration throughput and 2) the ability to use human intuition. As shown in

Figure 3.1(D), AutoML-based model selection explores configs with high throughput. But the

only time it relies on human intuition is during the initial search space specification. Thus, it

may inefficiently explore the config space and incur significant resource costs, which could have

been avoided by a human intervention. The human-in-the-loop model selection primarily relies

on human intuition but operates at very-low throughput levels due to the inherent limitations

of human interactivity. Also, many DL configs are so long-running that false promises of

“interactivity” become a prison for DL practitioners that wastes their time. Overall, we see a

major gap between AutoML-based and human-in-the-loop model selection paradigms.

This Work To overcome the above-mentioned drawbacks, we propose a new paradigm

we call intermittent human-in-the-loop model selection. It is a hybrid of both AutoML-based and

interactive human-in-the-loop model selection. However, unlike the latter, human exploration
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is not mandatory in our approach. As an analogy, the interactive exploration is akin to instant

messaging (IM), whereas our paradigm is akin to email threads or Slack channels. Without

interactivity, the former becomes not usable. But our approach is more flexible due to asyn-

chronous, spread-out-over-time yet stateful exchanges that can still subsume full interactivity.

We implement our paradigm in CEREBRO, a new platform for resource-efficient deep learning

model selection [18]. We extend CEREBRO with a graphical user interface, a REST API, and

change existing components to support our new paradigm. In this demonstration, we will allow

the audience to use CEREBRO to perform intermittent human-in-the-loop model selection using

5 real-world DL model selection workloads. Our paradigm is an ideal fit for DL model selection

workloads due to their long-running nature, and thus, we focus on DL for now. But it is readily

applicable to any other ML model family too.

3.2 Technical Contributions

3.2.1 New Paradigm for Model Selection

Our intermittent human-in-the-loop paradigm breaks the false dichotomy of AutoML-

based and interactive human-in-the-loop model selection. It is motivated by both observations

about model selection practice [13] and our experience in training DL models for public health

applications [14]. It starts similar to the AutoML-based paradigm where the user specifies the

search space and picks a canned AutoML procedure like Grid, Random, or even a more advanced

one like HyperOpt. However, instead of passively waiting by just consuming the results of

explored configs, we enable the user to steer the model selection process. User can now create

new individual configs or batch of configs using a refined search space, stop running configs,

and resume stopped configs.

Creating new configs outside the control of the AutoML procedure enables the user to

inject human intuition into the overall model selection process. New configs can also be created

by first cloning an existing config along with its trained parameters and then by tweaking only

32



(A)

(B)

(C)

(E)

(D)

Figure 3.2. User interface for intermittent human-in-the-loop model selection. (A) UI to either
pick a canned ML model (e.g., ResNet50) or upload a script file defining a custom model. (B)

UI to specify experiment metadata, training data information, and config search space. (C)
Visualizing the learning curves using embedded TensorBoard. (D) UI listing all configs and
controls to add/stop/resume configs. (E) UI to create a drill-down model selection workload.

some of the hyper-parameters like learning rate or batch size. Users can use this feature to make

the model training adaptable based on human intuition. They can also dynamically reprioritize

the training of some configs over the others by using the stop and resume feature. Thus, as

shown in Figure 3.1(D) our paradigm can seamlessly navigate the exploration throughput and

human intuition usage tradeoff space based on the available user interaction level. In a sense our

approach fulfils the desire for “dialogue with the algorithms” we have heard from many ML/DL

practitioners, except neither party is forced to respond promptly.

3.2.2 UIs for Intermittent Specification

System UI provides graphical controls that enable the user to perform intermittent human-

in-the-loop model selection. It is implemented using Python Dash visualization library and runs

in a web browser which makes it portable. It is integrated with a backend REST API to perform

the user-requested actions.

The user will start interacting by either picking a canned ML model from a roster or by
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uploading a Python script defining a custom ML model using the UI shown in Figure 3.2(A).

We currently support 4 popular DL models in our roster: ResNet50, MobileNet, BERT-base,

and DistilBert. New models can be easily added to the roster. Also, the custom script option

can support arbitrary Keras models. After picking a model, the user will be then prompted

with the UI shown in Figure 3.2(B) to specify a name, description, AutoML search procedure,

names of features and label columns, the path to the training data, and the maximum number of

training epochs for any model. If a custom script is uploaded, the user is required to specify the

entry point function name in that script. This entry point function should take a dictionary of

config values as input and return a compiled Keras model as output. The user is also required

to specify the search spaces for the available configs. The list of available configs is fixed

for a canned model. For a custom model, it can be defined manually. After specifying these

values, the user can launch the model selection workload. The user can visualize model training

and validation metrics, such as loss and accuracy, through an embedded TensorBoard UI as

shown in Figure 3.2(C). User can also add/stop/resume configs using the controls shown in

Figure 3.2(D) or create a new drill-down workload on a refined search space using the UI shown

in Figure 3.2(E).

3.2.3 Decoupled System Architecture

Our paradigm translates to two key system design decisions: (1) decoupling the specifi-

cation of what configs to explore from scheduling their training and (2) being able to multiplex

the training of many configs on the fly on the same cluster. Otherwise, it is simply not possible

to run multiple model selection workloads at the same time or even increase the model selection

throughput of a single workload without provisioning more resources. While resource provision-

ing has become easy with cloud computing, cloud users also often need to limit their resource

usages due to cost concerns. For others like domain science users, it may be simply not possible

to provision more resources such as in fixed-sized campus clusters.

We implement our paradigm in CEREBRO. CEREBRO uses a novel parallel execution
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additions to support our intermittent human-in-the-loop model selection paradigm.

strategy for stochastic gradient descent (SGD)-based training (e.g., like in DL) called model

hopper parallelism (MOP) that ensures SGD properties. SGD reads training data sequentially

and repeats it for several iterations. A single iteration is also called an epoch of training. MOP

breaks a single epoch of training on partitioned data into multiple sub-units called sub-epochs;

a sub-epoch operates on a single data partition. Given a set of configs, MOP schedules them

using an epoch-level scheduling template where all configs are trained for the current epoch

before training the next epoch for any config. Also, it multiplexes the training of the configs by

asynchronously scheduling sub-epochs on workers. The scheduler ensures that both a config

is trained sequentially and on all partitions. Overall, MOP significantly increases the model

selection throughput without provisioning more resources. Originally, CEREBRO was designed

to execute a single AutoML-based model selection workload at a time. Figure 3.3 presents

CEREBRO system architecture. More details about the CEREBRO system can be found in our

VLDB 2020 paper [18].

We leverage the epoch-level scheduling template of CEREBRO to support our new

35



paradigm. We also add a new graphical user interface (UI), a REST API and update CEREBRO’s

model selection APIs and scheduler to achieve our requirements. UI sends user requests to

the model selection APIs through the REST API. We changed the model selection APIs such

that they now write the configs to an SQLite database instead of directly interacting with the

scheduler. User-created configs are also directly added to this database. The scheduler will read

all the configs to be trained from this database and train them for one epoch. After completing

training for one epoch it will update the training metrics of the config in the database. And this

process will continue. Whenever the user wants to stop (resp. resume) a config, it will be marked

as such in the database and will be ignored (resp. considered back) by the scheduler. Figure 3.3

presents the modified CEREBRO system architecture.

3.3 Related Work

While a few commercial software products including Sagemaker Autopilot, Azure

Automated ML, and Determined AI have attempted to streamline AutoML-based model selection,

unlike our paradigm, none of these products enable the user to steer a model selection process

while it is running. Several other works [13, 31, 15] have also emphasized the importance of more

human control in AutoML-based model selection. However, to the best of our knowledge, ours is

the first system prototype that enables the user to intervene and steer the model selection process

on par with the meta-heuristic while it is running. We also provide details of a system architecture

to realize this new paradigm. Ideas similar to our stop and resume-based model training

reprioritization approach have been explored in relational query processing settings [19, 29].

Our work was inspired in part by such ideas but ours is the first to apply them in the context of

ML model selection workloads, with the main novelty here being our focus on iterative training

procedures such as SGD and intervention by observing evolving learning curves.

Chapter 3 contains material from “Intermittent Human-in-the-Loop Model Selection

Using Cerebro: A Demonstration”, which appears in Proceedings of VLDB Endowment, Volume
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14, Issue 12, Pages 2687-2690. Li, Liangde; Nakandala, Supun; Kumar, Arun. The thesis author

was the co-author of this paper and contributed to the design and implementation of the system.
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Chapter 4

Conclusion and Future Work

In this thesis, we complete two pieces of work for efficient systems for advanced data

analytics. We take the first step to fill the gap of lacking a comparative evaluation of genetic

analysis systems. We show some interesting findings from our experiment suite. In the new

paradigm of model selection, we demonstrate its improvements in terms of throughput and using

human intuition.

4.1 Future Work Related to Benchmark of Genetic Analysis
Tools

The first piece of work to be done is to finish all distributed experiments of the remaining

three algorithms, LD-Prune, PCA, and OLS. Also, experiments related to the Data Scale Factors

(Axis 2) and the Task Hyperparameter Factors (Axis 5) are left to be done. Finally, the auto-tuning

of Dask configurations and improving fault tolerance of Dask Distributed are two topics worth

putting more effort into because they may enable Sgkit to execute more powerful operations on

data reliably.
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4.2 Future Work Related to Intermittent Human-in-the-
Loop Model Selection

First, much work is needed to formalize this new paradigm and develop new AutoML

procedures that explicitly take advantage of human input. Almost all AutoML procedures

today are developed without any human interactivity in mind. Some even make assumptions

that prohibit human interaction [17]. Second, it would be appealing to add elastic scaling and

cloud-native scheduling support to CEREBROto reduce runtimes subject to monetary constraints.

Finally, CEREBRO’s decoupled architecture can be generalized to support multi-tenancy to run

concurrent model selection workloads on the same infrastructure.
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