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We use children’s noun learning as a probe into the nature of their syntactic prediction 
mechanism and the statistical knowledge on which that prediction mechanism is based. We 
focus on verb-based predictions, considering two possibilities: children’s syntactic predictions 
might rely on distributional knowledge about specific verbs—i.e. they might be lexicalized—
or they might rely on distributional knowledge that is general to all verbs. In an intermodal 
preferential looking experiment, we establish that, by as early as 19 months of age, verb-based 
predictions are lexicalized: children encode the syntactic distributions of particular verbs and 
use those distributions to make predictions, but they do not assume that these can be used for 
verbs in general.
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1 Introduction
There is now a wealth of evidence that adult language comprehenders’ parsing decisions are both 
predictive and guided, at least in part, by a language’s distributional properties (Gordon and 
Chafetz 1990; Trueswell et al. 1993; MacDonald et al. 1994; Garnsey et al. 1997; Altmann and 
Kamide 1999). A major question in this literature is how these distributions are encoded and how 
these encodings are deployed for prediction (McRae et al. 1998; Hale 2001; Elman et al. 2004; 
Levy 2008; Linzen and Jaeger 2016).

In this paper, we approach this question of encoding and deployment from a developmental 
perspective, asking how predictive parsing interacts with syntactic bootstrapping. By 4–5 years of 
age, children appear to use prediction in the course of online sentence comprehension (Trueswell 
et al. 1999; Snedeker and Trueswell 2004; Fernald and Marchman 2006; Lew-Williams and 
Fernald 2007; Omaki 2010; Mani and Huettig 2012; Borovsky et al. 2012; Huang et al. 2013; 
Omaki et al. 2014). The nature of this developing prediction mechanism can often be seen 
most clearly in cases where children display interpretive biases that disallow them either from 
accessing a particular adult-like interpretation of a sentence or from accessing an adult-like 
interpretation in the first place.

Recent work has demonstrated that children utilize such predictive parsing mechanisms for 
the purposes of both comprehension and learning as early as 19 months of age (Lidz et al. 2017). 
But it remains unclear whether this predictive parsing mechanism is based on knowledge about 
the distributional characteristics of particular verbs—i.e. whether distributional knowledge is 
lexicalized—or whether it is based on knowledge of the particular structures that are likely to 
occur, regardless of the lexical items that occur in those structures—i.e. whether distributional 
knowledge is generalized.

We investigate this question using an intermodal preferential looking experiment, showing 
that, by as early as 19 months of age, the predictive parsing mechanism children deploy is 
lexicalized. This experiment builds on a paradigm introduced by Lidz et al. (2017), which we 
review below.

2 Early predictive parsing and syntactic bootstrapping
Lidz et al. (2017) investigate 16- and 19-month-old children’s predictive parsing mechanisms 
through the lens of syntactic bootstrapping (Gleitman 1990). Beginning with Brown 1957, a 
broad literature has shown that children use aspects of syntax to drive inferences about word 
meaning (see Lidz 2022 for a review). For example, children as young as 12 months have been 
shown to treat a novel word presented as a noun as referring to an object kind (Waxman and 
Booth 2001), and children as young as 18 months have been shown to expect a novel verb to 
refer to a category of events (He and Lidz 2017; Carvalho et al. 2019). Moreover, toddlers draw 
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different inferences about verb meaning as a function of whether the novel verb occurs in a 
transitive or an intransitive clause (Naigles 1990; Yuan and Fisher 2009; Fisher et al. 2010).

Gertner and Fisher (2012) suggest that one way syntactic context is used in inferring verb 
meaning is through the distinct thematic relations associated with the subject and object position 
of a clause. The evidence they adduce for this claim is indirect, however, given that it is measured 
by the meanings children assign to entire clauses, rather than the noun phrases in those clauses. 
Lidz et al. (2017) test the link between syntactic position and thematic relation more directly by 
asking what meaning children assign to a novel noun as a function of its syntactic position. In 
their experiments, children are exposed to sentences like (1) and (2) along with a scene involving 
an agent acting on a patient using an instrument.

(1) She’s wiping the tiv.

(2) She’s wiping with the tiv.

Lidz et al. find that by 16 months of age, children are able to appropriately infer that the tiv 
refers to the patient in (1) and to the instrument in (2), suggesting that knowledge of the 
link between syntactic position and thematic relation is in place by this age. However, at 19 
months of age, children incorrectly infer that the tiv refers to the patient in both (1) and (2). 
The authors argue that 19-month-olds’ incorrect inferences are driven by a ballistic predictive 
parsing strategy that is based on the fact that all the verbs used in the study—and as we show 
below, most verbs in children’s input—are heavily biased toward at least taking a direct object 
and against only taking a prepositional phrase headed by with. This distributional bias, then, 
overshadows the contribution of the syntactic structure in children’s noun learning because 
it leads them to erroneously represent (2) as though it were a simple transitive clause and 
consequently treat the tiv as though it were the direct object and hence as referring to the 
patient of the event.

Lidz et al. bolster this argument by showing that when 19-month-olds receive sentences that 
satisfy the purported prediction of a direct object, as in (3) and (4), they are able to correctly 
infer that the tiv refers to the patient in (3) and to the instrument in (4).

(3) She’s wiping the tiv with that thing.

(4) She’s wiping that thing with the tiv.

Further supporting this predictive parsing account, they show in a post hoc analysis that 
19-month-old children with smaller verb vocabularies are better able to associate the tiv with 
the correct referent in (1) and (2) than are 19-month-old children with larger verb vocabularies. 
One possible explanation suggested by Lidz et al. is that 19-month-old children with smaller verb 
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vocabularies may not know the statistical distribution of known verbs well enough to use them 
for making predictions.

Figure 1: Ratio of [_ NP] count to [_ with NP] count by verb in child-directed speech. Blue line 
shows unweighted cumulative mean going from right to left. Add 1 smoothing has been applied 
to each verb’s subcategorization frame counts to avoid zeros in the denominator.

One implication of this account is that children must track distributional properties in the 
input. This implication raises the question of how those distributional properties are encoded: 
as properties of the particular verbs themselves (lexicalized encoding) or as properties of the 
category verb (generalized encoding).

The predictions of the generalized encoding hypothesis rely crucially on the distribution of 
verbs’ subcategorization frame distributions in children’s input. Nearly all verbs’ distributions, 
at least in child-directed speech, turn out to be heavily biased toward transitive frames relative 
to intransitive frames with a prepositional phrase. This can be seen in Figure 1, which shows 
the ratio of [__ NP] frames to [__ with NP] extracted from all CHILDES corpora (MacWhinney 
2014a; b) parsed using MEGRASP (Sagae et al. 2007). Each point in this figure is a verb, whose 
frequency is plotted on the x-axis. The blue line gives the unweighted cumulative mean ratio 
moving from right to left, with the idea that children are more likely to know higher frequency 
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verbs. We see that this cumulative mean never dips below 10:1, suggesting a very heavy bias 
toward transitive frames across the frequency spectrum.

Thus, both the lexicalized encoding hypothesis and the generalized encoding hypothesis 
are plausible descriptions of how children encode syntactic distributions for deployment during 
predictive parsing. We now describe an experiment aimed at pulling these two hypotheses apart.

3 Experiment
In this experiment, we examine how children use the syntactic context of a noun phrase (NP) 
to make inferences about its thematic relation. Using a word-learning task in the intermodal 
preferential looking paradigm (Spelke 1976; Hirsh-Pasek and Golinkoff 1999), we test children’s 
abilities to assign a meaning to a novel noun contained in a direct object NP as compared to a 
prepositional object NP. For instance, given a scenario in which someone is using one object to 
wipe another, adults interpret the NP containing the novel word (the tiv) to refer to the thing being 
wiped (the patient) in (5) but to the thing being used to do the wiping (the instrument) in (6).

(5) She’s meeking the tiv.

(6) She’s meeking with the tiv.

If children are similarly able to use this thematic role information to learn the meaning of a novel 
noun, in (5), we expect them to be able to link the tiv to the patient, and in (6), we expect them 
to be able to link the tiv to the instrument.

This experiment is identical to Lidz et al.’s Experiment 1 up to the linguistic stimuli: we 
replace the known verbs they use with novel verbs. The stimuli analogous to (5) and (6) in Lidz 
et al.’s experiment are (1) and (2), which use the known verb wipe.

We do this replacement in order to test two hypotheses about how children make predictions 
about upcoming arguments. On the one hand, children’s predictions might be lexicalized. In 
this case, children would use distributional information they have about a particular verb to 
make predictions. On the other hand, children’s predictions might be generalized, in which case 
children would use their knowledge of the distribution of subcategorization frames that occur in 
all clauses, regardless of the verb found in that clause.

In the case of generalized predictions, we would expect 19-month-old children to use the same 
predictive mechanism to parse (5) and (6) as they do to parse (1) and (2), which contain the real 
verb wipe. This would mean that 19-month-olds who hear (5) or (6) would always associate the tiv 
with the patient, as they did in Lidz et al.’s Experiment 1. In contrast, in the case of verb-specific or 
lexicalized predictions, we would instead expect 19-month-old children to use a distinct predictive 
mechanism—or no predictive mechanism at all—to parse (5) and (6), since children do not have 
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information about the distributional properties of the novel verb meek. This means that 19-month-
olds that hear (5) or (6) will associate the tiv with the correct referent, similar to 16-month-old 
children in Lidz et al.’s Experiment 1 and 19-month-old children in their Experiment 3.

One possibility that arises here is that vocabulary knowledge may condition the parsing 
mechanism that children deploy. This is plausible in light of Lidz et al.’s finding that 19-month-
old children with smaller verb vocabularies are better able to associate the tiv with the correct 
referent in (1) and (2) than are 19-month-old children with larger verb vocabularies. Here, we 
assess the possibility that a similar conditioning may be found in our paradigm by collecting 
information about children’s vocabulary knowledge.

3.1 Method
3.1.1 Apparatus and procedure
Each child arrived with his/her parent and was entertained by a researcher with toys while another 
researcher explained the experiment to the parent and obtained informed consent. The child and 
parent were then escorted into a sound proof room, where the child was either seated on the parent’s 
lap or in a high chair, centered six feet from a 51” television, where the stimuli were presented at 
the child’s eye-level. If the child was on the parent’s lap, the parent wore a visor to keep them from 
seeing what was on the screen. Each experiment lasted approximately 5 minutes, and the child was 
given a break if they were too restless or started crying. If the child did not complete the experiment 
or was extremely fussy over the entire course, this was noted for later exclusion from the sample.

The child was recorded during the entire experiment using a digital camcorder with a sample 
rate of 30 frames/second centered over the screen. A researcher watched the entire trial with 
the audio off on a monitor in an adjacent room and was able to control the camcorder’s pan 
and zoom in order to keep the child’s face in focus throughout the trial. Videos were then coded 
offline frame-by-frame for direction of look by a research assistant blind to the experimental 
condition and without audio using the SuperCoder program (Hollich 2005).

3.1.2 Design
Our design and stimuli were exactly the same as those used by Lidz et al. (2017) except for the 
audio stimuli. Participants were presented with eight trials, each involving a different verb and 
concomitant scene. Each of these trials was separated into two phases: the familiarization phase 
and the test phase. These phases are described below and Table 1 gives a sample script.

3.1.2.1 Familiarization Phase

During the familiarization phase, children were shown videos of 15 second dynamic scenes 
involving three objects: a human hand, an instrument manipulated by the hand, and a patient 
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causally affected via the instrument. A recorded linguistic stimulus of the form either she’s verbing 
the novel noun (V NP) or she’s verbing with the novel noun (V with NP) was associated with 
each scene. Each of these pairings constitutes a level in the between-subjects structure factor. 
verb and novel noun in these frames were replaced with a known verb and a novel noun. All 
linguistic stimuli were recorded by the same adult female that recorded the stimuli for Lidz et 
al.’s experiments. The linguistic stimulus was presented three times as the scene progressed with 
different lead-in words—e.g. Look!.

3.1.2.2 Test Phase

A blank screen was then shown for two seconds after each scene, during which the question 
where’s the novel noun? was asked once. The test video began at the offset of the novel noun 
in the first of these questions, when a screen with separate static images of both the instrument 
and the patient from the previous dynamic scene was displayed. One of these images took up 
approximately one third both by-width and by-height of the left portion of the screen and the 
other took up approximately one third by-width and by-height of the right portion, with an 
approximately one-third by-width separation in the middle of the screen. The side on which the 
instrument appeared was counterbalanced and pseudorandomized such that the instrument did 
not show up on the same side more than twice in a row.

Phase Length Video Audio

Pre-trial 2 seconds Blank screen Silence

5 seconds Smiling baby [Baby giggle]

Familiarization 15 seconds Camera being 
wiped by a cloth 

Hey, look at that!
She’s meeking (with) the tig!
Wow, do you see her meeking (with) 
the tig?
Yay, she’s meeking (with) the tig!

Test 2 seconds Blank screen Where’s the tig?

2 seconds Split screen: 
camera and cloth 
 

Silence

3 seconds Which one’s the tig?

Table 1: An example of a single test trial.

Two seconds after the two images were presented, the question—which one’s the novel 
noun?—was played. The split screen was presented for five seconds total, after which the 
screen went blank. After a two second blank screen, either the next learning phase started or an 
attention-getting phase involving a picture of a child and laughter was presented.
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3.1.3 Materials
Eight verbs contained in the MacArthur-Bates Communicative Development Inventory (MCDI) 
checklist were chosen with the criterion that their associated event concept must support the 
use of an instrument. Eight novel nouns were constructed—one for each verb. Table 1 gives a 
sample script summarizing the above description. In the V with NP conditions, children heard 
with during the familiarization, while those in the V NP conditions did not, represented in the 
table by the parentheses.

Table 2 shows each tuple of verb, novel noun, instrument object, and patient object. To 
control for possible order effects, we created two presentation orders for the trials by first building 
one pseudorandomized order according to the above sequencing criterion, then inverting it to 
create the second order. When crossed with the two linguistic structure levels (structure: V 
NP, V with NP), this yielded four stimulus sets.

3.2 Participants
We recruited 32 19-month-olds (16 females) with a median age of 19;15.5 (mean: 19;16.1, range: 
19;0 to 20;0).1 Six additional participants were tested but were excluded from the final sample 
prior to analysis for fussiness or inability to complete the experiment. Participants were recruited 
from the greater College Park, MD area and were acquiring English as a native language. All 
participants heard English at least 80% of the time. Participants within each age group and sex 
were distributed evenly across the four stimulus sets.

Action Instrument Patient Verb Noun

wipe cloth camera meek tig

throw cup ball doadge frap

hit ruler cone lonk tam

push bulldozer block tiz gop

touch pipe cleaner pumpkin rem pint

wash sponge toy car sloob pud

tickle feather mouse puppet chiff seb

pull fishing pole train stip wug

Table 2: The verbs and novel nouns used in the linguistic stimuli and the objects used in the 
visual stimuli for Exps. 1 and 2.

	 1	 Appendix A reports simulation-based post hoc power calculations for the crucial statistical test reported in Section 
3.4. Based on these calculations, the sample size reported above provides approximately 50% power for that test, and 
a sample size of 64 would be required for 80% power.
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Parents completed the MCDI checklist (Fenson 2007). By this index, participants’ median 
productive verb vocabulary was 5 verbs (mean: 16 verbs, IQR: 1–30 verbs), and their median 
productive total vocabulary was 63 words (mean: 139.5 words, IQR: 41–251 words). The parent 
of one participant in the V NP condition did not submit an MCDI checklist, and for the purposes 
of analysis, that participant’s verb vocabulary value was set to the mean across participants (but 
excluded from the above statistics).

3.3 Measures
Following Lidz et al., we compute two measures for each trial each child received. The first 
measure (familiarization proportion) is the proportion of the time each child was looking 
at the screen during the familiarization phase for a given trial. This measure provides a proxy for 
how well the child was paying attention to the pairing of the linguistic stimulus with the scene 
in the video. We expect that the less a child pays attention during a particular familiarization, 
the less likely it is that their behavior during the test phase associated with that familiarization 
provides evidence about the inferences they make based on the linguistic stimuli.

The second measure (object count) is the number of video frames on which each child 
was looking at the instrument (looks to instrument) paired with the number of frames on 
which they were looking at the patient (looks to patient) on each trial.2 This measure was 
calculated by converting the left-right coding of the test phase into an instrument-patient coding 
and then computing the relevant counts by trial for each child. Note that, unlike the first measure, 
this second measure is not a proportion, though we can compute a proportion from it. For the 
purposes of visualization and basic comparisons of means, we work with proportions computed 
from these counts; for the purposes of statistical analysis, we work with the counts themselves.

In addition to the measures used by Lidz et al, we also compute two measures of vocab based 
on verb vocabulary and total vocabulary in MCDI. Because verb vocabulary and total vocabulary 
are highly correlated (r = 0.92), they cannot be entered into our analyses in their raw forms 
without giving rise to issues of collinearity. As such, we first apply principal component analysis 
to the logged form of these two measures.

Figure 2 shows the biplot for this analysis. The first principal component (PC1), which 
explains over 96% of the variance in the logged vocabulary measures, loads positively on both 
verb vocabulary and total vocabulary. The fact that this component explains so much of the 
variance in the logged vocabulary measures is unsurprising in light of their extremely high 

	 2	 Note that, because children do not necessarily look at the screen during the entire test phase, the sum of looks to 
instrument and looks to patient will not necessarily be the number of frames in the test phase. This is in fact a 
feature of object count as a measure, since it retains information about the relative amount of data from which a 
probability is computed, where analyzing the proportion directly does not.
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correlation. The second principal component (PC2), which explains less than 4% of the variance 
in the logged vocabulary measures, loads positively on verb vocabulary but negatively on total 
vocabulary.

Figure 2: Biplot for principal component analysis of logged vocabulary. Each point shows the 
score for a child on each component and the red vectors show the loadings for each variable on 
each component.

This pattern might be taken to indicate that the first component provides a measure of overall 
vocabulary knowledge while the second component provides a measure of verb knowledge 
adjusted for this overall knowledge. But caution is warranted here in light of the fact that the 
first principal component explains over 96% of the variance in the logged vocabulary measures, 
likely indicating that it is not possible to distinguish any effects of verb knowledge from the effect 
of total vocabulary knowledge.3 Said another way, observing an effect of PC1 is consistent with 
observing an effect of verb knowledge, though it does not imply it. In the name of due diligence, 
however, we include both PC1 and PC2 in our statistical analyses with the caveat that PC2 is 
likely uninteresting because it explains so little variance—indeed, it may merely be capturing 
noise.

	 3	 An anonymous reviewer suggests that the effect of verb vocabulary knowledge and total vocabulary knowledge 
might be distinguished using a residualization strategy: residualize one vocabulary variable against the other then 
analyze the effects of the residualized variable and the raw variable it was residualized against. Unfortunately, this 
method does not help in this context exactly because the variables are so highly correlated. Residualizing either total 
vocabulary against verb vocabulary or vice versa will necessarily result in the unresidualized variable being highly 
correlated with the first principal component—log (verb vocabulary) has a 0.99 correlation with PC1 and log (total 
vocabulary) has a 0.96 correlation. The extent to which the residualized variable is correlated with PC2 will depend 
on the class of models selected for use in residualization. Thus, residualization not only introduces two additional 
researcher degree of freedom—the direction in which to residualize and the class of models to use—but also raises 
the likelihood of misinterpretation: seeing a reliable effect for the raw variable does not mean that that variable 
indeed has an effect to the exclusion of the other. See Wurm and Fisicaro 2014 for further discussion.
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For the purposes of reporting statistics, we use the continuous form of both variables. For 
the purpose of visualization, we discretize the first principal component at its median, referring 
to the group of children that have a vocabulary score above the median as the high vocab group 
and the group of children that have a vocabulary score below the median as the low vocab group, 
since scoring more positively on the first principal component implies having a larger total 
vocabulary and a larger verb vocabulary.

3.4 Results
Figure 3 plots the mean proportion of looks to instrument by structure and discretized 
PC1. The confidence intervals in Figure 3 are computed from a nonparametric bootstrap of 
the condition mean with 999 iterations. In this bootstrap, children’s mean proportion of looks 
to instrument across trials, weighted by familiarization proportion, was first computed 
and then these mean proportions were resampled. Qualitatively, this plot appears to support a 
hypothesis wherein children with larger vocabularies are able to correctly map direct objects to 
patients and prepositional objects to instruments, but children with smaller vocabularies are not.

Figure 3: Mean proportion looks to instrument by structure and discretized PC1. Error 
bars show 95% confidence intervals computed from nonparametric bootstrap on participant 
weighted means.
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To assess the reliability of this pattern, we follow Lidz et al. in using a logistic mixed 
effects model with object count as the dependent variable, random intercepts for child 
and item, by-item random slopes for structure, and a loss weighted by familiarization 
proportion. We first fit such a model with fixed effects for structure, PC1, and PC2 as well 
as the two-way interaction between structure and PC1 and the two-way interaction between 
structure and PC2. We test the reliability of these interactions using a log-likelihood ratio 
test. We find that the model that includes both interactions is reliably better than the one that 
does not include the interaction between structure and PC1 (χ2(1) = 3.98, p < 0.05) but 
a similar pattern is not observed for the interaction between structure and PC2 (χ2(1) = 
0.28, p = 0.60). Thus, the apparent interaction between structure and PC1 seen in Figure 
3 is reliable.

3.5 Discussion
In a novel verb variant of Lidz et al.’s Experiment 1, we found a pattern of results opposite 
to what they found with real verbs: 19-month-olds with smaller vocabularies fail to map 
NPs to the correct referent based on the structure they are found in, while 19-month-olds 
with larger vocabularies succeed, mapping the NP in the V NP condition to the patient and 
the NP in the V with NP condition to the instrument. Why might we find such an opposite 
pattern?

Lidz et al. argue that 19-month-olds with larger vocabularies fail in the real verb 
experiment due to a predictive parsing strategy in combination with an inability to revise 
predictions. But the pattern they observe is consistent with this predictive parsing strategy 
being based on either a lexicalized encoding or a generalized encoding, since 19-month-
olds with smaller vocabularies likely do not have sufficient evidence for either type of 
encoding while 19-month-olds with larger vocabularies likely have sufficient evidence for 
both. In our novel verb experiment, regardless of vocabulary size, children could not have 
enough distributional knowledge about the particular verb to deploy it in prediction, since 
they could not have distributional knowledge about the particular verb at all. We have in 
effect put all 19-month-olds into the same position 16-month-olds were in in Lidz et al.’s  
experiments.

The success of 19-month-olds with large vocabularies in this context thus provides evidence 
that these children’s parsing predictions are based on a lexicalized encoding, not a generalized 
one. If these children’s predictions were based on a generalized encoding, they should always 
predict a direct object and thus fail in the same way 19-month-olds with large vocabularies failed 
in Lidz et al.’s Experiment 1.
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What the failure of 19-month-olds with smaller vocabularies implies is less clear. We suggest 
two possibilities.4 The first is that the failure of 19-month-olds with smaller vocabularies in 
our experiment is not indicative of the predictive parsing strategy these children use at all. It 
may simply be that having to process two novel words at once—both a verb and a noun—is 
particularly burdensome for children with smaller vocabularies for whatever reason it is that 
they have smaller vocabularies in the first place. Depending on what this reason is, this account 
might predict either that all 16-month-olds would similarly fail in our experiment—e.g. if the 
failure is simply about amount of vocabulary knowledge—or that, similar to the results of our 
experiment, 16-month-olds with larger vocabularies would succeed but those with smaller 
vocabularies would fail—e.g. because differences in vocabulary knowledge at a particular age 
index cognitive resources relevant to processing two novel words at once.

The second possibility is that 19-month-olds with smaller vocabularies—unlike those with 
larger vocabularies—make predictions in our experiment based on verb-general knowledge—
plausibly because they are less certain about those specific verbs’ distributional properties. 
This uncertainty might arise in two different ways: (i) children who know fewer verbs tend to 
have less experience with the verbs they do know—e.g. because less vocabulary knowledge is 
indicative that the verbs that they do know were more recently learned; or (ii) children who 
know fewer verbs need additional evidence about a specific verb to become certain enough 
about its distribution to use that distribution in predictive parsing. This second version might be 
plausible insofar as knowledge of verbs’ distributional properties is hierarchical (Perfors et al. 
2010) and thus children who know more verbs require less evidence to acquire the distributional 
properties of a verb whose distribution is prototypical relative to the verbs they already know.

	 4	 An anonymous reviewer suggests a third: that 19-month-olds with smaller vocabularies are more likely to replace 
the novel verbs in our experiment with known verbs and then rely on distributional knowledge about those known 
verbs for prediction. Because the known verbs corresponding to the actions in our experiment are biased to be found 
with direct objects, this account makes the same predictions as an account (discussed below) wherein these children 
use generalized encodings for prediction, while keeping constant that all 19-month-olds’ predictions are based on 
lexicalized encodings.

		   While this account has the welcome consequence of keeping constant the knowledge on which children’s predictive 
parsing is based, we suspect it will not turn out to be correct for two reasons. First, it is not clear why 19-month-olds 
with smaller vocabularies would be more likely than 19-month-olds with larger vocabularies to replace novel verbs 
with known verbs. And even if they did so, it is not clear why they would be able to use these verbs’ distributional 
knowledge in our experiment when they were not able to in Lidz et al.’s Experiment 1. Second, the literature on fast 
mapping suggests that children do not assume that novel verbs are aliases for known verbs: as early as two years old, 
children tend to map novel verbs to novel actions (Merriman et al. 1996; Golinkoff et al. 1996). It is possible that 
their assumptions differ when it comes to predictive parsing, but we know of no evidence to this effect.
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A major hurdle faced by either version of this account is that, if 19-month-olds with smaller 
vocabularies make predictive parsing decisions based on generalized encodings and thus fail 
in our experiment, it is unclear why they do not similarly do so in Lidz et al.’s Experiment 
1. Why should they not fail in that experiment as well? To overcome this hurdle, such an 
account would likely need to posit that 19-month-olds with smaller vocabularies are unable to 
deploy predictive parsing for known verbs—e.g. because they attempt to make predictions on 
the basis of lexicalized encodings but fail to do so in the face of the uncertainty inherent to that 
knowledge.

One way to test this account might be to turn novel verbs in our experiment into “known” verbs 
by exposing children to dialogues containing the novel verb and then testing their noun learning 
using the same stimuli we use here (Yuan and Fisher 2009; Arunachalam and Waxman 2010; Yuan 
et al. 2011). If the sentences in which these novel verbs are found in these dialogues are heavily 
biased toward having transitive structures, 19-month-olds may gain a lexicalized encoding for 
those novel verbs that they can then deploy in predictive parsing, therefore causing them to fail in 
the same way 19-month-olds with larger vocabularies did in Lidz et al.’s Experiment 1.

The first version of the account predicts that, insofar as the dialogues contain a sufficient 
number of examples of the novel verb for children to form a lexicalized encoding, they will fail 
regardless of vocabulary knowledge. In contrast, the second version of the account predicts that, 
insofar as the dialogues contain a sufficient number of examples of the novel verb for children 
with larger vocabularies (but not smaller vocabularies) to form a lexicalized encoding, children 
should behave as they did in Lidz et al.’s Experiment 1: those with larger vocabularies should now 
fail—because, like their counterparts in Lidz et al.’s Experiment 1, they have formed a lexicalized 
encoding that they now deploy in predictive parsing—but those with smaller vocabularies 
should succeed—because, like their counterparts in Lidz et al.’s Experiment 1, they will not make 
predictions for the newly “known” verbs due to remaining uncertainty about their distributional 
properties.

A crucial component of designing such an experiment is determining the correct number 
of items to include in the dialogues. This choice is important for both accounts, but it is 
particularly important for the second version: there must be enough examples for children with 
larger vocabularies to form a lexicalized encoding but not so many that children with smaller 
vocabularies can similarly do so. Thus, insofar as an account is to be pursued wherein the kind 
of distributional information children deploy in predictive parsing is modulated by vocabulary 
knowledge, a crucial next step is to develop finer-grained predictions about the amount of 
evidence children at different stages of development require to construct lexicalized encodings 
with high certainty. Combining hierarchical models of argument structure knowledge with 
probabilistic parsers may be a fruitful next step.
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4 Conclusion
The study just reported adds support to the view that 19-month-olds have knowledge of the link 
between syntactic position and thematic relation. The fact that they can use the syntactic position 
of an NP to assign it an interpretation supports theories of word learning that treat syntactic 
structure as informative (Gleitman 1990), and more indirectly, theories of verb-learning that use 
the thematic relations of the NPs in a clause as evidence about the meaning of the verb (Gertner 
and Fisher 2012; Perkins 2019). However, 19-month-olds’ ability to deploy the link between 
syntactic position and thematic relation can be disrupted during sentence comprehension by 
lexicalized knowledge of verb-argument structure. Whereas prior work showed that 16-month-
olds, but not 19-month-olds, successfully map a novel noun phrase to different referents depending 
on its syntactic position, the current work shows that 19-month-olds’ failure in previous work 
resulted from their knowledge of specific verb distributions. In the current study, 19-month-olds 
with larger vocabularies were able to correctly identify the referent of a novel noun phrase as 
a function of syntactic position even with novel verbs. The fact that having a larger vocabulary 
helped these children to avoid a parsing error with novel verbs suggests that their prior failures 
derive from knowledge of specific verb distributions and not from a general knowledge that 
transitive clauses are more likely than intransitive clauses.

The finding that 19-month-olds’ syntactic predictions are driven by lexicalized 
subcategorization frequencies comports well with work from older children and adults (Trueswell 
et al. 1993; Trueswell and Kim 1998; Snedeker and Trueswell 2004; Altmann and Kamide 2007; 
Borovsky et al. 2012). It further adds to this literature by showing that lexically driven syntactic 
predictions occur from the earliest stages of language development. As soon as children have 
acquired lexical statistics, they appear to use that information to drive parsing predictions.

Our data also informs a debate concerning the origins of children’s early syntactic knowledge. 
To what degree is early syntactic knowledge associated with specific lexical items (Tomasello 
and Kruger 1992; Theakston et al. 2015; Lieven 2016) and to what degree does syntactic 
knowledge abstract away from specific lexical items (Gertner et al. 2006; Naigles 2002; Fisher et 
al. 2010; Viau and Lidz 2011)? Our data suggests that syntactic knowledge begins with abstract 
categories and that lexically specific distributional information informs the development of 
parsing strategies, but not the knowledge itself. That knowledge is revealed when we take away 
children’s ability to rely on lexically specific knowledge, as in the current study.
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Appendix A Simulation-based post hoc power analysis
In order to guide future experiments, we conduct a post hoc power analysis for the log-likelihood 
ratio test of the interaction between structure and PC1 reported in Section 3.4. Because we 
cannot compute power for this test analytically, we take a simulation-based approach. The 
simulation closely follows the assumptions of the underlying mixed effects model within which 
the interaction is tested: in addition to simulating independent variables—e.g. total vocabulary 
and verb vocabulary—based on distributions observed in our sample, we also simulate the random 
effects associated with participants and items based on the (co)variance estimates obtained for 
the random effects in the full model fits reported in Section 3.4.

A.1 Simulating participants
Simulating participants requires randomly assigning each simulated participant to a condition 
and sampling three quantities for each simulated participant: total vocabulary, verb vocabulary, 
and the participant random intercept–i.e. the participant’s bias to look more toward patients or 
instruments, irrespective of the linguistic stimulus.

A.1.1 Simulating vocabulary knowledge
To simulate vocabulary knowledge, we first fit a negative binomial distribution to the total 
vocabulary counts for the 32 children in our original experiment, and we regress verb 
vocabulary on logged total vocabulary in a zero-inflated negative-binomial regression. For 
each simulated participant, we then (i) sample a total vocabulary count from the negative 
binomial distribution fit to total vocabulary; and (ii) sample a verb vocabulary count given 
a total vocabulary count by using the zero-inflated negative-binomial regression to compute 
a distribution over verb vocabulary counts from the logged total vocabulary count and then 
sampling the verb vocabulary count from that distribution. We convert these vocabulary 
measures into principal component scores by first logging them, then applying the principal 
component analysis fit in Section 3.3.

A.1.2 Simulating participant looking biases
To simulate underlying looking biases, we sample from a normal distribution with 0 mean 
and standard deviation equal to the standard deviation of by-participant random intercepts 
(σ̂part-inter = 0.20) in the full model described in Section 3.4.

A.2 Simulating items
Simulating items requires sampling two quantities: the item random intercept and the item 
random slope for structure. To simulate these two quantities, we sample from a multivariate 
normal distribution with [0, 0] mean and covariance equal to the covariance of by-item random 
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effects 
0.11 0.08ˆ( )0.079 0.18
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 estimated in the full model described in Section 3.4, with V NP 

as the reference level in a dummy coding of structure. This estimated covariance implies an 
estimated standard deviation for the random intercept of σ̂item-inter = 0.33, an estimated standard 
deviation for the random slopes of σ̂item-slope = 0.42 and a correlation between the two of –0.56.

A.3 Simulating looks
To simulate the looks each simulated participant gives in a trial containing each simulated item, 
we use the estimates of the fixed effect coefficients from the full model fit in Section 3.4 in 
conjunction with the simulated random effects estimates to compute a log-odds of looking to 
instrument v. looking to patient for each participant in each trial. We then sample 150 looks 
given the probability of looking to instrument computed from those log-odds. 150 was chosen 
based on the length of the test phase in each trial—5 seconds, excluding the 2 seconds of blank 
screen—and the sample rate of the camera used: 30 samples per second. Not all children look 
at the split screen during the entire test phase, and so not all trials have 150 observations. We 
do not attempt to simulate looks away from the split screen or differential attention in the 
familiarization phase.

Figure 4: Estimated power for the log-likelihood ratio test of the interaction between 
structure and PC1 reported in Section 3.4, varying the number of participants but keeping 
the number of items constant at 8. Estimates are based on 100 simulated datasets, and 
confidence intervals are computed using the Clopper-Pearson method.
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A.4 Calculating power
We calculate power varying the number of simulated participants but keeping the number of 
simulated items constant at 8 (the number of items in the actual experiment). We consider 
simulations with 32 participants (the number in the actual experiment), 64 participants, and 
96 participants. For each number of participants, we simulate 100 datasets using the procedure 
described above and fit to each simulated dataset (a) the full model described in Section 3.4; 
and (b) the full model without the interaction between structure and PC1. We compute the 
p-value from the log-likelihood ratio test comparing these two models. Figure 4 shows the power 
estimates, assuming α=0.05. We see that to achieve 80% power, future studies would need 
approximately 64 participants.


