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1 Introduction

If the dark matter (DM) of our universe is a particle with a mass between the electroweak
and Planck scales, then it could be discovered via indirect detection of standard model
(SM) particles produced from its decay. Such decays can be initiated by an underlying
hard process where the DM decays to two SM states, χ → XX̄. The SM states, injected
with virtuality µ ∼ mχ, will shower and eventually hadronize, evolving down to on-shell
stable particles such as photons, neutrinos, positrons, and anti-protons.
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S = γ/νe (this work)
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Figure 1. The prompt electron neutrino and photon spectrum resulting from the decay of a 2EeV
DM particle to νeν̄e, as currently being searched for at IceCube [5]. Solid curves represent the
results of this work, and predict orders of magnitude more flux at certain energies than the dashed
results of Pythia 8.2, one of the only existing methods to generate spectra at these masses. In both
cases energy conservation is satisfied: there is a considerable contribution to a δ-function at x = 1,
associated with events where an initial W or Z was never emitted and thus no subsequent shower
developed. Large disagreements are generically observed at these masses for electroweak dominated
channels, while the agreement is better for colored initial SM states.

Calculation of the resulting prompt spectra is a central ingredient in testing the hy-
pothesis of heavy DM. At present, a common approach is to simulate these events using
Pythia [1–3], which accurately reproduces most of the relevant physics up to ∼TeV scales.
Pythia is not, however, at present designed to operate well above these scales, for example
it is missing interactions such as triple gauge couplings in the electroweak sector that can
become increasingly important. In this paper, we propose an alternative approach, which
in certain channels can produce spectra that differ significantly from existing results, as
demonstrated in figure 1. We make our full results publicly available [4].

Heavy decaying DM can be realized in a number of different scenarios, including Wim-
pzillas [6–11], glueballs [12–17], gravitinos [18–20], superstring relics [21–24], and more
recent proposals, see for example [25–31]. Independent of UV motivations, there is a clear
reason to consider searching for such DM: the robust experimental program to probe astro-
physical messengers at higher energies. Many instruments can probe heavy DM, including
HAWC [32], IceCube [5, 33–38], ANTARES [39, 40], Pierre Auger Observatory [41–44],
Telescope Array [45, 46], and in the future CTA [47, 48], LHAASO [49, 50], IceCube-
Gen2 [51], and KM3NET [52, 53]. Taken together, these experiments demonstrate that in
the coming years we will continue to probe the universe at higher energies and to greater
sensitivities. Prompt spectra with a full treatment of SM interactions are required to
discover DM with this data.

The remainder of this paper presents our approach to obtaining these. We begin by
describing how the calculation of DM spectra can be mapped onto fragmentation functions
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(FFs), which can be evolved from the UV scale, µ ∼ mχ, down to the IR, µ ∼ 0. The
computation can be performed in three stages: 1) evolution from mχ to the weak scale
qW ∼ 100GeV; 2) Matching through qW ; and 3) continued evolution down to 0. In the main
text we outline the methods used at each step, providing full technical details in related
appendices.

2 Framework

The flux of an observable particle S produced from DM decay depends centrally on the
prompt spectrum, defined as1

dNS

dx
= 1

Γ0

dΓ
dx

(χ→ S + . . .) . (2.1)

Here Γ is the inclusive decay rate of χ to S, Γ0 = 1/τ is the inverse lifetime, and we
use dimensionless variables x = 2E/mχ. If the decay is seeded by an underlying process
χ→ XX̄, for an arbitrary SM state X, the process begins with each particle at a virtuality
scale mχ/2. The problem is then to determine the probability that X and X̄ evolve to
produce S carrying a fraction x of the initial energy. This process is described by a
fragmentation function (FF) Db

a(x; µQ, µ0), which determines the probability of an initial
particle a at a scale µQ evolving to produce a particle b at µ0 carrying a momentum
fraction x; in the absence of any evolution we would have Db

a(x; µQ, µ0) = δbaδ(1 − x). In
this language, we can write the spectrum as2

dNS

dx
= DS

X(x; mχ/2, 0) +DS
X̄

(x; mχ/2, 0) . (2.2)

At this stage, we have simply rephrased the problem. The power of eq. (2.2) is that
it allows us to bring to bear the considerable formalism of FFs to the calculation of DM
spectra. In particular, the full evolution in virtuality can be decomposed into easier to
compute segments, and then convolved together. For the present work we will exploit this
result to break the calculation up as follows,

DS
X(x; mχ/2, 0) =

∑
M,N

∫ 1

x

dy

y

∫ 1

x/y

dz

z
DM
X (y; mχ/2, q+

W )︸ ︷︷ ︸
DGLAP

× DN
M (z; q+

W , q
−
W )︸ ︷︷ ︸

Matching

× DS
N (x/(yz); q−W , 0)︸ ︷︷ ︸

Pythia

. (2.3)

The three pieces to be calculated are as follows. Firstly we evolve from the scale of the
DM mass down to just above the weak scale, q+

W , using the DGLAP equations [59–61]
and in particular an implementation using all interactions in the unbroken SM, as well

1The discussion is couched in the language of DM decay due to the Kamionkowski-Griest bound [54]
providing a naive obstruction to DM annihilation at these masses. The bound can be evaded, see e.g. [55–58],
and our results can be readily ported to annihilation with the simple identification mdec.

χ = 2mann.
χ .

2Eq. (2.2) applies for a hard two-body decay. The formalism can be extended to (n > 2)-body decays,
as described in the appendix A.
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Figure 2. A cartoon of the three steps used to calculate the UV to IR evolution. An initial
2-body final state resulting from a hard interaction of χ → XX̄ is DGLAP evolved down to q+

W ,
just above the weak scale. At q+

W , states with masses above the electroweak scale are integrated
out. Finally, at q−W these results are matched onto Pythia which handles the subsequent evolution
and hadronization effects.

as a partial treatment of soft-coherence effects [62–66]. We next perform a matching by
evolving across a parametrically small region through the weak scale, removing all particles
with electroweak scale masses. Finally, these results are matched onto Pythia below qW ,
where it is used to calculate the subsequent showering, hadronization, and light particle
decays in a regime where it has been extensively vetted. A simplified depiction of the full
evolution is given in figure 2, and we next flesh out the details involved at each stage.

3 High scale evolution and soft coherence

The first step of our calculation is to take the two body spectrum at µ = mχ/2, and evolve
this down to just above the weak scale, µ = q+

W .3 To do so we include the dominant effects
associated with the leading collinear and collinear-soft divergences in the theory, both
of which are described by the unregulated Altarelli-Parisi splitting functions P̂ (z). The
evolution of the FFs under the 1 → 2 splitting interaction I encoded in P̂ (z) is described
by the DGLAP evolution equations, which take the schematic form (suppressing the fixed
high scale) [

µ
∂

∂µ
D(x; µ)

]
I

= −αI
π

∫ 1

0
dz P̂ (z)

[1
z
D(x/z; µ)−D(x; µ)

]
, (3.1)

3In practice, to improve numerical stability, the DGLAP equations are solved by evolving from qW to
mχ/2, rather than the other way around. See appendix B for details.
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where αI is the corresponding SM coupling. The distribution of momenta amongst the
particles, described by the FF D(x, µ), can only evolve in two ways: contributions are
received by particles with momentum fractions greater than x splitting to exactly that
value, and they are lost if a particle with fraction x splits at all. This describes the two
terms in square brackets above, and they are associated with real and virtual emissions
in the theory respectively. The evolution down to a desired scale is achieved by solving
eq. (3.1), accounting for all interactions in the unbroken SM: SU(3), SU(2)L, U(1)Y , and
Yukawa.

The actual problem is more complex. In the unbroken SM there are 58 states of
interest, implying eq. (3.1) is in truth 3364 coupled equations, where the P̂ (z) now account
for all interactions in the SM. Further, flavor changing interactions in the electroweak
sector can lead to an incomplete cancellation of the real and virtual contributions, and the
subsequent development of electroweak double logarithms [67]. To solve this problem, we
use the results of refs. [68–70], which included a treatment of polarization effects. These
polarization effects are critical. Even if in the UV we start with an unpolarized initial
state, the chiral nature of the electroweak interaction will generate a polarization, which
can be considerable over the evolution scales we consider here. As the spectra of particles
produced by decays of the electroweak states t, W , and Z depend on their polarizations,
we will need to keep track of this through to the matching step described below.

The DGLAP evolution can effectively be described as a semi-classical shower that
develops via consecutive 1 → 2 splittings, each occuring with probability determined by
the appropriate P̂ (z). Soft physics breaks this picture. As an example, consider a splitting
W → dū, and then the subsequent emission of a gluon off either the ū or d

ū

d

g
W

ū

d

g
W

If the gluon is emitted at a wide angle with respect to the dū pair, then in the soft limit,
its wavelength will be such that it cannot resolve the individual quarks. As they came
from an uncolored W , the gluon will now see 0 net color charge and cannot be emitted. In
particular, there is destructive interference between the two diagrams, and consequently a
large suppression of small-x states. The result is the well known angular-ordering effect,
and in the context of QCD Monte Carlo simulations, it is understood how to include this
effect [71, 72]. As a modification to the full SM DGLAP equations, it is not. A complete
treatment of the problem is beyond the scope of the present work, however, we introduce
an identity in order to capture the largest effect of soft coherence: the reduction of real
radiation at small-x. As we derive in the appendix B, the equation that describes the
leading effect of angular ordering, can be rewritten as a DGLAP equation, but evolved
from a scale x ×mχ/2, rather than mχ/2. This allows us to take our solution to the full
form of eq. (3.1), and augment them with the substitution mχ → xmχ.4

4Technically this substitution is only appropriate for the single logarithmic terms associated with the
isosinglet evolution. As such we need to factor out the non-cancelling electroweak double logs from this
change of variables. See appendix B for details.
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This substitution allows for a simple inclusion of the soft physics, but it is not perfect.
Soft-coherence not only reduces the real emission, it also increases the associated virtual no-
emission probability, and our result only accounts for the former. This deficiency manifests
itself as a failure of momentum conservation generally at the level of ∼ 1–3%, although
for particular states and masses it can be as large as 10%. Given the large impact of the
effect on the spectra at small-x, we choose to accept this shortcoming, leaving the complete
treatment as an open problem.

4 Weak matching

We now take our DGLAP evolved, soft-coherence corrected, FFs and evolve them across
the electroweak threshold. Formally we evolve across q±W = qW (1 ± ε), with ε � 1, a
parametrically small separation of scales, ensuring this step cannot generate large logs
from the evolution. Instead, the point of this step is a matching from the unbroken to
broken SM, where we integrate out the electroweak mass states t, W , Z, and h. For h we
let Pythia handle the decay. For t, W , and Z, we instead need to account for the fact
that our evolution at the first step can generate a significantly polarized spectrum for each
state. In order to ensure this physics persists into our final results, we decay each of these
states analytically, accounting for the polarization.

For our purposes, the details of the polarized decays are sufficiently described by the
differential spectra obtained from the tree level diagrams, such as depicted below

t

b ν`

¯̀
W+

The calculations are straightforward, although for the top slightly involved, and so we
postpone the full details to the appendices. In each case, we obtain an analytic or simple
parameterization for Df

W0,±
(x; q+

W , q
−
W ), where f represents the fermions that can be pro-

duced from aW decay, and the equivalent functions for Z0,± and t±, where 0,± correspond
to the longitudinal and ± transverse polarizations, respectively. Full details are given in
appendix C.

For states without m ∼ qW , other than the contribution they receive from decaying
particles, the threshold is uneventful. We remove polarization at this stage by, for example,
combining fL+fR = f , because its effects in evolution below the electroweak scale are small
and Pythia does not take account of them. This step also represents the first appearance
of electroweak masses, which are neglected in the initial evolution. For mχ ∼ qW , we will
accordingly underestimate the phase space suppression of electroweak states, and therefore
do not quote results for mχ < TeV. There are many options available at these scales,
including Pythia or PPPC4DMID [73, 74]. Another possibility would be to match our
results to fixed-order matrix elements without double counting, in the way proposed in
ref. [75].5

5For neutrino states and mχ ∼ TeV we observe O(1) differences between our results and PPPC4DMID.
In the absence of the fixed order corrections we take this as a theoretical uncertainty, although it will be
suppressed significantly as we increase in mass.
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5 Low scale evolution with Pythia

Our final step is to take each particle that resulted from the weak matching, and con-
tinue its evolution down to lower scales using Pythia, which will include the remaining
showering, soft coherence, light particle decays, and importantly the non-perturbative
hadronization. For each state, starting at a scale qW , the spectra of stable states, S ∈
{γ, e±, p±, νe,µ,τ , ν̄e,µ,τ}, are determined. When convolved with the earlier steps the full
DM result is obtained.

For our purposes there is one deficiency with a full Pythia treatment at this step.
Pythia models the final state radiation (FSR) emission of photons off charged particles,
f → fγ, only down to an isolation or pT cut. Photons that are highly collinear with the
parent charged particle cannot be separated in the environment of a collider like the LHC.
If they travel over galactic or cosmological distances, they certainly can however. As such,
we want to include the photons that Pythia deliberately excludes at small-x. To do so, we
turn photon FSR off in Pythia and instead include it analytically to first order using the
appropriate result given by,

[Dγ
N (x; qW , 0)]FSR = αe2

N

2π
1 + (1− x)2

x

[
ln
(

4q2
W (1− x)
m2
N

)
− 1

]
. (5.1)

Here eN is the charge of the emitter, and mN its mass. If N indexes a quark, we take
mq = max(mq,ΛQCD), as the evolution will stop at the higher of the two scales. This
treatment means we neglect processes like subsequent splitting of the FSR photons into
charged fermions but as these are formally higher order and not enhanced by large logs,
the above treatment is sufficient for our purposes.

In addition, we also need to account for the fact that turning off photon FSR in Pythia
means the charged particles that would have emitted photons now have a higher momen-
tum fraction. In other words, including only eq. (5.1) is inconsistent with momentum
conservation. However, it is straightforward to derive the required modifications to the
charged particle FFs, simply from momentum conservation, and these are applied. The
full expressions are provided in appendix D.

6 Discussion

Combining these three FFs, with the aid of eqs. (2.2), (2.3), we obtain the desired prompt
DM spectra.6 An example is shown in figure 1. The difference between our results and
those of Pythia is driven by the lack of the full electroweak interactions in the latter.
In Pythia, Z emission from the hard neutrino leads to an endpoint contribution to the
neutrino spectrum, whilst the low energy bumps are associated with QCD states. However,
a full electroweak shower cannot form in Pythia as it can in our results, and by mχ ∼ EeV,
the shower can involve a large number of electroweak bosons that produce significantly
more emission across the allowable energy fractions. For the same reason, in other channels

6We emphasize the qualifier prompt. The spectrum at Earth depends on additional propagation effects,
see e.g. [76–79].
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Figure 3. The photon spectrum resulting from χ → bb̄, shown across the entire mass range
considered in this work. A curve is shown for every decade in mass between a TeV and the Planck
scale.

where electroweak showers contribute significantly, such as χ→ e−e+, large disagreements
are also observed. Smaller differences occur for channels where QCD showers dominate.
Yet in all cases, for mχ well above the electroweak scale, running Pythia will eventually
become impractical given the size of the generated showers. Our approach encounters
no such obstacle, as exemplified in figure 3 where we show the photon spectrum from
χ → bb̄ for DM masses all the way to the Planck scale. The spectrum of hard photons
is seen to increase with mχ, whilst the lower energy peak associated predominantly with
neutral pion decays progressively softens. These are only a few representative examples.
In total we compute 638 FFs DS

X : X indexes the 58 states in the unbroken SM, and
S ∈ {γ, e±, p±, νe,µ,τ , ν̄e,µ,τ}. The full spectra are available [4].7 An exploration of the
impact these results have on searches for DM with neutrino final states is provided in
ref. [38].

Our results are not the final word on heavy DM spectra. There are a number of
directions in which our results can be systematically improved, including:

• A rigorous treatment of the relevant soft physics as part of a full next-to-leading-
logarithmic (NLL) calculation.

• Matching to fixed-order electroweak matrix elements using the method of ref. [75].

• Inclusion of estimated theoretical uncertainties associated with both the DGLAP and
parton shower evolution, for the latter see refs. [80–82].

• Polarized decays of the µ and τ .
7We release 56 rather than 58 values for X, and therefore only 616 FFs. We exclude the two states

associated with interference of B and W 3, although they are included in the evolution.
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• We assume no additional thresholds are crossed between mχ and qW . Results going
beyond this have been considered for supersymmetric QCD [83–85] and also the
minimal supersymmetric SM [86, 87].

At present, our spectra carry quantifiable theoretical uncertainties. Our calculation is
performed with double logarithmic accuracy, and therefore single logs are not resummed.
Accordingly, our results carry a global uncertainty of order exp[αIL]/(1 + αIL) with L =
ln(mχ/qW ) and I = 2, 3. At an EeV this corresponds to an O(10%) error, growing to
O(20%) by the Planck scale. For x . 10−3 there are even larger uncertainties associated
with an incomplete treatment of the soft physics associated with coherent emission of gauge
bosons. We can obtain an uncertainty estimate by comparing our default procedure of
implementing the mχ → xmχ substitution at the high scale to two alternative approaches:
1. an underestimate of soft-coherence, where no accounting for the effect is performed; and
2. an overestimate where we apply the substitution to the FFs combined across all three
scales, which will double count the soft-coherence already present in Pythia. Doing so,
we conclude that our treatment can produce O(1) errors at small-x values for an EeV,
although the effect at a given x decreases with mass. A fuller discussion of uncertainties is
given in appendix E.

Even with these uncertainties, our spectra represent a manifest improvement over
existing treatments: we include effects that are demonstrably important, and our formalism
extends all SM states to arbitrarily high masses. Combining these results with astrophysical
probes of the high energy universe, the heavy DM hypothesis will be put to the test in the
coming years. In the event of an excess, we may finally begin to unravel the particle nature
of DM.
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Appendix

As mentioned, we have postponed many of the technical aspects of our calculation to the
appendices, and we will organize that discussion as follows. In appendix A we begin by
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providing an expanded discussion of the connection between DM spectra and FFs, and
a comparison between the approach to the problem presented in this work with ideas
discussed previously. In appendices B, C, and D we provide an unabridged discussion of
the three steps of our evolution. Afterwards, in appendix E we provide an estimate of
the theoretical uncertainties associated with our spectra. Appendix F contains additional
results highlighting the physics inherent in our spectra, and finally appendix G outlines
the details of the public spectra and code.

A Dark matter spectra and fragmentation functions

This section expands upon the connection between DM spectra and FFs. In particular,
we detail the steps between eq. (2.1) and eq. (2.2), as well as outlining the corresponding
result for DM annihilation. In doing so, it will become clear what steps are needed to
modify our approach when the hard interactions is (n > 2)-body.

To begin with, let us establish our conventions for indirect detection. We follow ref. [88],
and refer there for additional details. The DM differential energy flux into an observable
state S for decay (dec.) annihilation (ann.), is given by8

dΦ
dE

=
{
dΦdec.

pp /dE ×D ,

dΦann.
pp /dE × J .

(A.1)

In both cases, dΦ/dE gives the number of S states, per detector area, per observation time,
per energy interval, carrying units [particles/cm2/s/TeV]. The D and J-factors dictate the
variation in flux across the celestial sphere for decay and annihilation, controlled by the
DM density or density squared, respectively. The focus of the present work is the result of
fundamental DM-SM interaction, and this enters into the particle physics (pp) factor. For
a single annihilation or decay channel (for multiple channels simply sum over each weighted
by the appropriate branching fractions), this can be written as

dΦdec.
pp
dE

= 1
4πmχτ

dNS

dE
,

dΦann.
pp
dE

= 〈σv〉
8πm2

χ

dNS

dE
.

(A.2)

These expressions expose the prompt spectrum per decay or annihilation, which repre-
sented our starting point in eq. (2.1). We note that this expression neglects propagation
effects such as oscillation, redshifting, and other interactions which will transform the spec-
trum from the point of production to detection. For details of how these effects can be
incorporated, see e.g. [76, 78, 79].

8The factorization of particle physics and astrophysics this expression is predicated upon is an assump-
tion. For instance, the annihilation cross-section could depend on the relative DM velocity, which varies
between astrophysical systems. In such a case, however, an effective factorization can still be achieved and
so the discussion of this sections ports over directly, although the velocity dependence of the cross-section
is now placed into the astrophysics factor, see e.g. [89].

– 10 –



J
H
E
P
0
6
(
2
0
2
1
)
1
2
1

Although eq. (A.2) is how the particle physics factor is usually represented, the spectra
should really be thought of as emerging from the differential decay width or annihilation
cross-section, so that instead we have

dΦdec.
pp
dE

= 1
4πmχ

dΓ
dE

(χ→ S + . . .) ,

dΦann.
pp
dE

= 1
8πm2

χ

d〈σv〉
dE

(χχ→ S + . . .) .
(A.3)

The spectra can then be defined as

dNS

dE
= 1

Γ0

dΓ
dE

(χ→ S + . . .) ,

dNS

dE
= 1
〈σv〉0

d〈σv〉
dE

(χχ→ S + . . .) ,
(A.4)

from which eq. (A.2) follows, with the identification of the lifetime and cross sections
appearing there as taking the tree-level or Born values, indicated by the 0 subscript. As we
will consider spectra over a wide range of masses, it is convenient to move to dimensionless
variables. Specializing to the case of decay from now on, we take x = 2E/mχ, and then the
above becomes exactly eq. (2.1). From now we will discuss the case of decay exclusively,
although results for annihilation follow by rescaling mχ → 2mχ.

To calculate the decay spectrum we need to determine dΓ/dx. The decay will be
initiated by a hard process occurring at a scale µ ∼ χ, where the DM decays to a set
of SM particles each denoted by I. We can then approximate each of these SM particles
evolving separately down in virtuality to a set of stable observable SM particles, labelled
by S, which is exactly described by a FF as described in the main body. Corrections to
this picture are described in the next subsection. For the moment, however, the spectrum
is given by the convolution of the hard process with each FF,

dΓ
dx

(χ→ S + . . .) =
∑
I

∫ 1

x

dz

z

dΓ(χ→ I)
dz

DS
I (x/z; mχ/2, 0) . (A.5)

In the particular case where the hard interaction is a simple two body decay χ→ XX̄, then

dΓ(χ→ XX̄)
dz

= Γ0 δ(1− z) , (A.6)

so that the convolution is trivial, and

dNS

dE
= DS

X(x/z; mχ/2, 0) +DS
X̄

(x/z; mχ/2, 0) , (A.7)

exactly as in eq. (2.2). If the initial hard process is more complicated than a two body
decay, then it can be incorporated with a simple modification. In detail, the appropriate
generalisation of eq. (A.6) should be substituted into eq. (A.5), and combined with the FFs
we provide [4]. We emphasize that the individual FFs are made available, and can be used
directly. As an additional example of how the FFs could be utilized, one signature of the
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formation of DM bound state formation could be the emission of a photon carrying away
the binding energy, see e.g. [90–92]. For heavy DM, this photon can be sufficiently energetic
that higher order processes become relevant, and a the photon should be replaced by the
appropriate FF, thereby modifying the observable signature. Further details are provided
in appendix G.

A.1 Comparison to existing approaches

At present, experimental collaborations are primarily using either Pythia or PPPC4DMID
to determine the DM decay spectra at masses above the electroweak scale. Nonetheless,
a number of approaches to calculating these results have been presented in the literature.
Having just expanded upon the basic underpinnings of our approach, here we summarise
several alternatives proposed in the literature, highlighting where we differ.

Our first comparison to existing results appeared already in figure 1. As emphasized
there, the dramatic difference observed between Pythia and our work is driven by the
absence of the full electroweak interactions in the former; in particular, Pythia includes
W and Z emission off fermions [94], but not the electroweak triple gauge couplings WWZ

and WWγ. These terms are central in the development of electroweak showers at higher
energies, and the spectra of particles they produce. Even at lower masses these differences
can be important. This is shown on the top left of figure 4: electroweak effects have
a visible impact for the hard photon spectrum. In particular, we see that Pythia does
not predict a hard photon contribution, which arises from polarization effects it does not
include. There we also compare our results to PPPC4DMID,9 which augmented an earlier
version of Pythia with leading order electroweak corrections, and still clear differences are
observed. There are several possible sources for this disagreement, although at present
we cannot isolate its exact origin. Primarily, at TeV-scales, finite electroweak masses
become important, and while these were not included in our results (see appendix E),
they were in PPPC4DMID. However, we note that the simple expectation would be that
including electroweak masses, would suppress the development of electroweak showers and
the emission they generate. This is not realized in figure 4, where instead the peak of the
PPPC4DMID spectrum is roughly a factor of two larger. We cannot resolve this difference
without augmenting our calculation with fixed order corrections, which is beyond the scope
of the present work. For this reason, at TeV-scale masses we do not claim our result is
the more accurate, and instead suggest that the difference between the two results can be
used to estimate the theoretical uncertainty on the spectra. The situation will ultimately
be resolved by the addition of fixed-order corrections to our calculation. In spite of the
pronounced differences visible in this figure, for non-neutrino channels we find agreement,
within the theoretical uncertainties on our spectra, with Pythia and PPPC4DMID at mass
scales below 10TeV, a single example of which is shown on the top right of figure 4.

In the bottom of figure 4, we contrast our results to an approach similar in spirit to that
taken in the present work. The idea is to take a FF measured experimentally at low energies
(rather than relying on Pythia), and DGLAP evolve this to the desired DM mass. This

9The version of PPPC4DMID we used was downloaded in August 2019.
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Figure 4. A comparison between the results of the present work and alternative approaches to
calculating heavy DM spectra. The top left figure is an analogue of figure 1 for the photon spectrum,
but for a DM mass of mχ = 2TeV. Even at this lower mass, the additional electroweak effects in
our calculation are producing clear differences with Pythia. We also demonstrate that our spectra
differ from those in PPPC4DMID, a point further discussed in the text. The disagreement is not
generic, however, and instead restricted to scenarios where the initial decay involves neutrinos. We
show a single example in the top right, showing significantly improved agreement, and in general for
these other channels the agreement is within the uncertainty we have ascribed to our results. On
the bottom we show photon spectra for GUT scale DM (mχ = 1016 GeV) decaying to light quarks,
q = (u+d+s)/3. Here our spectrum is compared to results obtained using pure QCD DGLAP of a
low energy fragmentation function, taken from figure 1 in ref. [93]. Even for this hadronic channel,
there is a clear difference in the hard photon contribution associated with electroweak evolution
effects.

approach was put forward in refs. [83–85, 95], where the DGLAP evolution used either pure
QCD or its supersymmetric analogue.10 These methods have been taken up more recently
by the authors of refs. [43, 93, 96–100] in order to set strong constraints on heavy DM.
For hadronic channels, those works disregard electroweak interactions in the evolution,

10Refs. [86, 87] went even further, producing results by evolving low energy FFs including not only QCD,
but also electroweak evolution, and further the full splittings in the minimal supersymmetric SM. The
additional SUSY splittings makes a detailed comparison impossible, although a number of features of their
results are qualitatively similar to ours.
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whereas our formalism includes these effects for all initial states. A comparison for light
quarks is shown in figure 4 to a spectrum taken from ref. [93]. The results are qualitatively
similar, although with clear differences. In particular, the pure QCD evolution misses the
hardest photons that result from the electroweak shower, and further there are differences
at lower-x likely associated with our inclusion of soft-coherence. A related approach was
taken in ref. [101], where the authors used a hybrid approach of evolving the hadron FFs
with QCD DGLAP, and decaying the particles with Pythia. As that work did not include
electroweak effects, the differences to our results are similar to those shown on the bottom
of figure 4.

B Details of the high-scale evolution

Here we expand upon the high-scale evolution from µ ∼ mχ to qW , describing both the full
DGLAP calculation, and our treatment of soft coherence.

B.1 Review of DGLAP evolution in the unbroken standard model

For the DM masses considered in the present work, the starting point for our evolution is a
scale far above electroweak symmetry breaking, µ� qW , where the SM can be accurately
described by an unbroken SU(3)×SU(2)L×U(1)Y gauge theory. One can therefore treat the
electroweak gauge bosons, as well as all fermions as massless degrees of freedom. DGLAP
evolution in this theory can therefore be used to evolve fragmentation functions

dki (x; Q,µ) = xDk
i (x; Q,µ) , (B.1)

where Dk
i (x; Q,µ) gives the distribution at the scale µ of the momentum fraction x for

particle species k in a shower initiated by a parton i (labeled by both type and helicity)
produced in a hard process at momentum scale Q, and dki (x; Q,µ) denotes the corre-
sponding momentum weighted fragmentation function. The DGLAP equations take the
standard form

Q
∂

∂Q
dki (x; Q,µ) =

∑
I

αI(Q)
π

P Vi,I(Q) dki (x; Q,µ)

+
∑
j

Cji,I

∫ zji,Imax(Q)

x
dz PRji,I(z) dkj (x/z; Q,µ)

 ,
(B.2)

where the two terms in brackets correspond to the virtual and real contributions. This
result can be viewed as the more complete version of the schematic form presented in
eq. (3.1). The details of how to solve these evolution equations was presented in ref. [69].
We repeat only the salient points and refer the reader to the original work for details.

The sum over I in eq. (B.2) runs over the different interactions in the SM, and we
denote by I = 1, 2, 3 the pure U(1)Y , SU(2)L and SU(3) gauge interactions, and by I = Y

the Yukawa interactions. Besides these contributions to the evolution, there is also a mixed
interaction, denoted by I = M . This originates from an interference contributions, where
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HH
HHHHi

k
f V H sum

f 42× 26 42× 11 42 42× 38
g± 2× 26 2× 11 2 2× 38
W±± 4× 26 4× 11 4 4× 38
X0
± 6× 26 6× 11 6 6× 38

H± 2× 26 2× 11 2 2× 38
H0 2× 26 2× 11 2 2× 38
sum 58× 26 58× 11 58 58× 38

Table 1. Total number of FFs, dki , required in our high scale evolution. Here i labels the states
required at the high scale Q ∼ mχ. As we work in the full unbroken standard model, i can
take 58 values: 42 fermions (2× 3× {eL, eR, νL, uL, uR, dL, dR} for particle/antiparticle and three
generations), 2 gluons (helicities), 4 charged electroweak bosons (two helicities and two charges), 6
neutral electroweak bosons (two helicities for each of B, W 3, and the mixture, collectively labeled
X0), and the four degrees of freedom of the SU(2)L Higgs doublet. For k at the weak scale, the
counting is similar although slightly rearranged. We now have 38 states as we only distinguish the
helicity of the electroweak states (as this information is used in the weak matching), so we now
have 26 fermions (2 × 3 × {e, ν, d} + 2 × {u, c} + 2 × {tL, tR}), 11 vectors ({g, γ} + 3 × {W±, Z}
including the three polarizations of the massive bosons), and 1 physical Higgs. Thus, in general
58× 38 = 2204 FFs are required.

the particle i originates from a U(1)Y gauge boson B in the amplitude and the W3 of the
SU(2)L gauge group in the complex conjugate amplitude (or vice versa). The coupling of
the mixed interaction is therefore proportional to

αM (Q) =
√
α1(Q)α2(Q) . (B.3)

The maximum cutoff on z in the integration of the real radiation is dependent upon both
the splitting and interaction type. We define

zji,Imax(Q) =

 1− mV
Q for I = 1, 2, and i, j /∈ V or i, j ∈ V ,

1 otherwise ,
(B.4)

where V is the set of vector bosons. This prescription ensures that an infrared cutoff mV ,
of the order of the electroweak scale, is applied when a B orW boson is emitted. To evolve
in the full (unbroken) SM, one needs to differentiate the two chiralities of the fermions, the
two transverse polarizations of the gauge bosons, the mixed B/W3 state, and include all
4 components of the complex Higgs field (instead of the longitudinal polarizations of the
heavy gauge bosons). The complete set of states required is summarized in table 1.

Contrary to FF evolution in the strong sector, where the DGLAP equations only give
rise to single logarithmic terms, the evolution in the full SM gives rise to double logarithmic
sensitivity as well. Double logarithmic contributions arise from the limit where radiated
particle are simultaneously soft and collinear relative to the particle they were emitted
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from. In the strong interaction, these simultaneously soft and collinear contributions cancel
between the virtual and real terms in the DGLAP equations. This occurs as an arbitrarily
soft emission of a gluon cannot be observed experimentally, so the divergence associated
with this emission must cancel against the virtual contribution. This is different from
the case of the soft emission of a W boson, which can always be observed through the
change of flavor (or SU(2) quantum numbers) of the emitting particle. Thus, as long as a
process is sensitive to the SU(2) quantum numbers of the external states, soft radiation of
W bosons from these particles leads to an incomplete cancellation of the soft and collinear
divergences, which gives rise to double logarithms. The form of the soft boson cutoff in
eq. (B.4) ensures that these double logarithms have the correct coefficients [67, 68].

As discussed in ref. [69], the set of evolution equations can be decoupled to some degree
by switching to a basis of well-defined isospin T and CP. The definition of all FFs in this
new basis was given in ref. [69]. To provide examples, for left-handed fermions one can
write in a basis dTCP

i ,

d0±
fL

= 1
4
[
(duL + ddL)±

(
dūL + dd̄L

)]
,

d1±
fL

= 1
4
[
(duL − ddL)±

(
dūL − dd̄L

)]
,

(B.5)

while for the SU(2) bosons we have

d0±
W = 1

3
[(
dW+

+
+ dW−+

+ dW 3
+

)
±
(
dW+
−

+ dW−−
+ dW 3

−

)]
,

d1±
W = 1

2
[(
dW+

+
− dW−+

)
∓
(
dW+
−
− dW−−

)]
,

d2±
W = 1

6
[(
dW+

+
+ dW−+

− 2dW 3
+

)
±
(
dW+
−

+ dW−−
− 2dW 3

−

)]
.

(B.6)

Using this isospin basis allows to isolate the double logarithmic dependence. In par-
ticular, for isosinglets (with T = 0) there cannot be any double logarithms generated,
since the emission of an isosinglet cannot change the isospin of the emitting particle. In
general, the double logarithmic term is given by a Sudakov factor, which depends on the
total isospin, and takes the form

∆(T)(Q) ∼ exp
[
−T(T + 1)α2

2π ln2
(
Q

qW

)]
. (B.7)

One can then show that the rescaled FF

d̃TCP
i (x; Q,µ) = dTCP

i (x; Q,µ)
∆(T)(Q)

, (B.8)

has only standard single logarithmic evolution.
As mentioned in the main body, rather than perform the DGLAP evolution from

µ ∼ Q = mχ/2 down to µ ∼ qW , we instead start at the electroweak scale and evolve
upwards.11 In detail we start with qW = 100GeV as the starting point for our evolution.

11This is done as the DGLAP equations have similar properties to the diffusion equation, where lnQ
plays the role of time. As with diffusion, the evolution can be solved with far greater stability if evolved
towards larger time, or here Q.
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For quarks and leptons (k = f), assuming that the helicity of the fragmentation product
is not detected, we take as input

dffL(x; qW , qW ) = dffR(x; qW , qW ) = δ(1− x) , (B.9)

setting all other initial FFs to zero. The only exception to this is the top quark, where
in order to correctly account for its decay at the electroweak scale, we evolve tL and tR
separately. Similarly, as neutrinos (k = ν) have no right-handed states, the non-zero initial
conditions becomes

dννL(x; qW , qW ) = δ(1− x) . (B.10)

For fragmentation into a gauge boson V we keep track of helicity (as we did for the top),
because for the electroweak scale vectors we will use this information in the matching.
Accordingly, the non-zero initial conditions are

dVV+(x; qW , qW ) = δ(1− x) , or dVV−(x; qW , qW ) = δ(1− x) . (B.11)

Ultimately, the DGLAP evolution will provide expressions for

Dk
i (x; Q, q+

W ) with Q > qW . (B.12)

Several example outputs at this stage are shown in figure 5 (including soft coherence), where
we have chosen to highlight the generation of polarization effects through the evolution.
In particular, due to the chiral nature of the SM, the chiral fermion states and boson
polarizations do not evolve identically. See ref. [70] for an extended discussion of this
effect. Because we are neglecting any SU(2) breaking effects in this evolution, one expects
a break down in this description for Q ∼ qW . We discuss this in more detail in appendix E.
To continue the evolution below qW we will first need to remove particles with masses
m ∼ qW , and we will describe how to do so in appendix C. Before doing so, however,
we next outline how to incorporate a partial treatment of soft coherence effects into the
DGLAP evolution.

B.2 Incorporating the soft-coherence of real radiation

At low energy fractions the simple DGLAP evolution described above is not reliable: there
are large double logarithms of x that need to be resummed. The physical origin of these
logarithms is the soft-coherence or angular-ordering effect described in the main body.
In this section we will demonstrate that taking the output of our DGLAP evolution and
applying the substitutionmχ → xmχ incorporates a partial treatment of these effects. This
treatment is manifestly incomplete: in particular no accounting for the virtual effects of
soft-coherence will be included. One manifestation of this shortcoming will be incomplete
momentum sums, which we discuss in appendix F. A full treatment of these effects is left
as an open problem.

To begin with, consider the soft coherence of gluons in the context of QCD, as reviewed
in ref. [66]. The resummation of the gluon-to-gluon FF at small x is given in leading-
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Figure 5. Example FFs obtained using the DGLAP evolution and soft-coherence correction out-
lined in appendix B. In this figure we have chosen to highlight the generation of polarization due
to the chiral nature of the SM. In particular, on the left we see that left and right handed electrons
evolve to produce a significantly different distribution of e = eL + eR. Similarly, on the right we see
that all three polarizations of the W evolve differently. In both cases the evolution is performed for
a Planck scale mass DM particle down to the weak scale.

logarithmic approximation (LLA) by eq. (5.21) of [66] as12

xDg(x; Q) = δ(1− x) +
∞∑
n=1

(CAα3/π)n
n!(n− 1)!

(
ln Q

2x2

Q2
0

)n (
ln 1
x

)n−1
. (B.13)

This result provides a FF with soft-coherence included, at least as far as it impacts real
radiation. As we will now show, this FF can be determined as the solution to the DGLAP
equation, but in q = xQ rather than Q.

In order to expose this, first we introduce xDg(x; Q) = xD̄g(x; q) ≡ dg(x; q) — we
will find that D̄g satisfies the unmodified DGLAP equations. Introducing this notation to
rewrite eq. (B.13), and the substitution Q = q/x, after differentiating with respect to ln q2,
we find

q2 ∂

∂q2dg(x; q) =
∞∑
n=1

(CAα3/π)n
[(n− 1)!]2

(
ln q2

Q2
0

)n−1 (
ln 1
x

)n−1

= CAα3
π

+
∞∑
n=1

(CAα3/π)n+1

[n!]2

(
ln q2

Q2
0

)n (
ln 1
x

)n
.

(B.14)

We can rewrite this using the identity

1
n!

(
ln 1
x

)n
= 1

(n− 1)!

∫ 1

x

dz

z

(
ln z
x

)n−1
, (B.15)

12We emphasize that the single scale appearing in the FF in eq. (B.13) is the high scale — the low scale,
qW , has been suppressed. This is not the same as eq. (3.1), where the single scale that appeared there, µ,
was instead the low scale.
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which holds for n > 0. Accordingly,

q2 ∂

∂q2dg(x; q) = CAα3
π

∫ 1

x

dz

z

[
δ(1− x/z) +

∞∑
n=1

(CAα3/π)n
n!(n− 1)!

(
ln q2

Q2
0

)n (
ln z
x

)n−1
]

= CAα3
π

∫ 1

x

dz

z
dg(x/z; q)

= α3
2π

∫ 1

x
dz Pgg(z) dg(x/z; q) .

(B.16)
In the second step we used eq. (B.13), and in the final step we used the fact that in the
small-x limit Pgg(x) = 2CA/x. Accordingly, dg(x; q) satisfies the DGLAP equation to LLA.
Therefore to obtain the correct small-x gluon FF we should solve the DGLAP equations for
evolution in q and then set q = xQ where Q is the hard process scale. At large x, and for
those terms in the evolution equations that do not give rise to extra small-x logarithms (i.e.
those without a 1/z singularity in the splitting function), this gives rise to unenhanced NLO
contributions, which are in any event beyond the precision of our treatment. Therefore
the same procedure can be applied to include the small-x suppression of all the QCD FFs.
Note for x < qW/Q the substitution samples Dg(x; Q) for Q < qW . As we begin our
evolution at qW , these results simply vanish, and thus at the high scale there is an artificial
cut in the distribution at small-x. This effect is washed out after convolution with weak
matching and Pythia, but is unphysical and a manifestation of our incomplete treatment
of soft coherence.

The same large double logarithms of x arise whenever a sequence of emissions with
1/z singularities in the splitting functions can occur, which is also the case for W boson
fragmentation in the unbroken SM. We expect a similar small-x behavior of the SU(2)
evolution equations, with α3 replaced by the appropriate gauge coupling α2. There is,
however, an additional complication in this case, namely the double-logarithmic evolution
of FFs with non-zero weak isospin. As discussed above, these FFs are suppressed by the
Sudakov factor in eq. (B.7), due to a mismatch of real and virtual contributions, which is
not relevant to small x. As such, the substitution q = xQ does not apply to the isospin
suppression factor, and the formula for small-x resummation becomes

DT(x,Q) = D̃T(x, xQ) ∆(T)(Q) = D̄T(x, xQ) ∆(T)(Q)
∆(T)(xQ)

. (B.17)

We apply this prescription to the FFs above the EW breaking scale, Dh′
h (x; q > q+

W ), before
the matching corrections discussed below. The boundary conditions for D and D̄ at q+

W

are identical, as they are proportional to δ(1−x). We do not apply the prescription to the
FFs at lower scales q < qW provided by Pythia, since these already take coherent emission
into account and are tuned to experimental data at such scales.

The above expands upon the mχ → xmχ substitution mentioned in the main text.
In practice, this effect generically suppresses small-x contributions to FFs, as the states
that the suppressed bosons would have split into are also removed. An example is given in
figure 6 for the example of a photon evolving to a tau neutrino.
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Figure 6. An example of the impact of the mχ → xmχ substitution on our high scale FFs. This
particular example shows the evolution of a Planck scale γ to an electroweak scale ντ with and
without the substitution.

C Matching at the electroweak scale

Evolution through the electroweak scale is handled analytically. As already emphasized,
the chiral nature of the SM ensures that quite generically the spectra of states resulting
from the high scale evolution will be significantly polarized. Through a matching procedure
outlined in this section, we ensure the polarization information of the electroweak states is
not discarded. In detail, we will compute FFs

dji (x; q+
W , q

−
W ) , (C.1)

where q±W = qW (1± ε), i.e. we evolve the states through a threshold of differential width at
the electroweak scale. We choose ε � 1 in order to ensure no large logarithms associated
with the evolution can be generated at this step.

For states that do not have electroweak masses, the threshold is uneventful. For
fermions, we combine chiralities at this stage. For example, we only track the evolution of
e below qW , whereas eL and eR are evolved separately at the high scale. For a fermion f
we take13

djfL/R(x; q+
W , q

−
W ) = δjf δ(1− x) . (C.2)

Similarly, the helicities of the photon and gluon are combined into a single unpolarized
state. Note this procedure washes out any remaining information about the polarization:
we explicitly assume that the experiments are searching for unpolarized states. Even then,
this assumption is associated with an imprecision in that muon and tau decays do depend
on helicity. Extending our formalism to evolve the polarization down to the scale of leptonic
decays is left to future work.

For the Higgs, Z, W , and top, qW marks the end of their evolution. In the following
subsections we outline how their momentum is redistributed amongst their decay products.
For each, the strategy is as follows. We begin by calculating the differential energy and,

13As xδ(1− x) = δ(1− x), an identical equation to eq. (C.2) holds with d(x)→ D(x).
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where relevant, angular spectrum of the decay products for all polarizations or spins in
the rest frame of the electroweak state. At this stage we account for all electroweak scale
masses, although particles that will continue their evolution below qW are left massless.
Then, in order to match these results onto the high scale distributions where all particles
were treated as massless, we perform an infinite boost, i.e. boosting the electroweak states
to an energy E � qW . At this stage angular differences in the rest frame are transformed
into energy differences in the boosted frame, indicating why this information was retained.
The distribution of the energy fractions amongst the boosted decay products then gives us
exactly D(x). We now implement this procedure case by case.

C.1 Higgs decays

As a scalar, the Higgs carries no polarization information: there are no initial polarizations
or spins to account for. For this reason, we can extract the D(x) simply by generating the
spectrum of boosted Higgs decay products in Pythia. To do so, we generate e+e− → HH

events at
√
s = 200TeV.14 We forbid initial and final state showering of any kind, and

turn off hadronization. The only states we allow to decay are the W and Z. The energy
distribution of leptons, neutrino, quarks, gluons, and photons associated with each Higgs
is collected, and used to form

djh(x; q+
W , q

−
W ) . (C.3)

C.2 Z decays

We begin by computing the differential decay spectrum of f in Z → ff̄ , working in the
Z rest frame. Here, and throughout, we work in unitary gauge. In order to establish our
conventions, the coupling between f and Z is determined by

L ⊃ Zµ
gW
cW

f̄γµ(cLPL + cRPR)f . (C.4)

Here cL = I3
W −Qs2

W and cR = −Qs2
W , with I3

W weak isospin and Q electric charge, whereas
cW and sW are the cosine and sine of the Weinberg angle, respectively. In the broken phase
of the SM, for each generation, ν and u carry I3

W = 1/2, whilst e and d have I3
W = −1/2.

The charges are, of course, Q = 0,−1, 2/3,−1/3 for ν, e, u, and d. For the moment, we
will perform the calculation for the case of a single f with arbitrary couplings, and then
we can ultimately weight this result by the appropriate branching fractions for the specific
states in the SM. Continuing with our conventions, we define our coordinates such that the
ff̄ are produced in the x–z plane, with f produced at an angle θ from the z-axis. When
we eventually boost the Z, we will do so in the z direction, and accordingly in the rest
frame we choose our polarization vectors as follows,

εµ± = 1√
2

(0, 1,±i, 0) , εµ0 = (0, 0, 0, 1) . (C.5)

14At this energy, the minimum energy fraction for two-body decay product is x ∼ m2
H/4E2

H . 10−6, and
therefore below the smallest values considered in this work.
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In terms of these quantities, we can now compute Γ(Z±0 → ff̄), and thereby determine
the following distribution of angles,

1
Γ

dΓ
d cos θ (Z+ → ff̄) = 3

8
c2
L(1− cos θ)2 + c2

R(1 + cos θ)2

c2
L + c2

R

,

1
Γ

dΓ
d cos θ (Z− → ff̄) = 3

8
c2
L(1 + cos θ)2 + c2

R(1− cos θ)2

c2
L + c2

R

,

1
Γ

dΓ
d cos θ (Z0 → ff̄) = 3

4(1− cos2 θ) .

(C.6)

Observe that each expression is a normalized probability distribution for cos θ, and thus we
will label each of these expressions as pZ±0(cos θ), denoting the distribution the f emission
angle is drawn from in the Z rest frame, for a given polarization. Note, these distributions
also contain the information on the emission angles of f̄ . Defining θ̄ to be the angle f̄
makes with the z-axis, we have p̄Z±0(cos θ̄) = pZ±0(− cos θ).

Armed with these results, we will now determine the energy distribution of f and f̄

in the boosted Z frame. We wish to boost the Z to energy EZ , propagating along the +z
direction, which we can achieve through the boost

γ = EZ

mZ

, βz = −
√

1− m2
Z

E2
Z

. (C.7)

After this boost, the energy of f , which was mZ/2 in the rest frame, is now

Ef = EZ

2

(
1 + cos θ

√
1− m2

Z

E2
Z

)
≈ EZ

2 (1 + cos θ) , (C.8)

where in the last step we implemented the large boost approximation. In this limit, the en-
ergy fraction carried by f is given by xf = Ef/EZ = (1+cos θ)/2 ∈ [0, 1], with cos θ drawn
from the appropriate distribution given in eq. (C.6). We then determine the distribution
of xf by the following change of variables,

p(xf ) =
∫ 1

−1
d(cos θ) pZ±0(cos θ) δ [xf − (1 + cos θ)/2] = 2pZ±0(2xf − 1) Θ [xf (1− xf )] ,

(C.9)
where Θ is the Heaviside step-function. Similarly,

p(xf̄ ) = 2pZ±0(1− 2xf̄ ) Θ
[
xf̄ (1− xf̄ )

]
. (C.10)

In terms of these expressions, we can calculate the expected energy fractions for an
arbitrary p(cos θ) as follows,

〈xf 〉 =
∫ 1

0
dxf xf p(xf ) = 1

2

∫ 1

−1
d(cos θ) (1 + cos θ)p(cos θ) = 1 + 〈cos θ〉

2 , (C.11)

and an identical calculation yields 〈xf̄ 〉 = (1 − 〈cos θ〉)/2. Accordingly, independent of
the exact form of p(cos θ), we have 〈xf 〉+ 〈xf̄ 〉 = 1, consistent with momentum conserva-
tion. This also indicates that the momentum weighted fragmentation functions should be
associated with x p(x), and so for the case of a single fermion we have

dfZ±0
(x; q+

W , q
−
W ) = 2x pZ±0(2x− 1) , df̄Z±0

(x; q+
W , q

−
W ) = 2x pZ±0(1− 2x) , (C.12)
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where again, the explicit pZ±0(cos θ) are given in eq. (C.6). In detail,

dfZ+
(x; q+

W , q
−
W ) = 3x

[
c2
L(1− x)2 + c2

Rx
2

c2
L + c2

R

]
,

dfZ−(x; q+
W , q

−
W ) = 3x

[
c2
Lx

2 + c2
R(1− x)2

c2
L + c2

R

]
,

dfZ0
(x; q+

W , q
−
W ) = 6(1− x)x2 .

(C.13)

The equivalent results for f̄ follow by taking cL ↔ cR in each case. Observe that for
each polarization, we have explicit momentum conservation independent of the values of
cL and cR, ∑

j=f,f̄

∫ 1

0
dx djZ±0

(x; q+
W , q

−
W ) = 1 . (C.14)

We can extend the result immediately to all the states in the SM by weighting these distri-
butions by the appropriate Z branching fractions, and in all cases inserting the appropriate
values of cL and cR.

C.3 W decays

Having determined in detail the spectrum for the Z decay products, the result forW decays
follows almost immediately. As theW couples only to left-handed fermions, we simply take
eq. (C.13) (and the analogous result for f̄) and set cL = 1 and cR = 0. Again weighting
the different final states by the appropriate branching fractions, this specifies all relevant
fragmentation functions.

C.4 Top decays

As the top decay is a three-body process, the distribution of energy fractions amongst the
decay products is a more involved calculation than for the states already considered. We
take |Vtb| = 1, considering only t→ bW , and to be explicit let us take the decay W → ff̄ ,
so that the full process is

t

b

f

f̄

W+

The translation of the final results to all relevant W -decay modes is straightforward, and
each channel can then be weighted by the appropriate W branching fraction.

Once again, we will begin the calculation in the top rest-frame. We measure the spin
of the top along the z-axis, denoting spin up and down by t±. Ultimately we will boost
the top in the z direction, so that in the infinite boost limit, spin up and down will be
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associated with positive and negative helicity, or right and left handed chirality. In that
sense, while the sign of t± will represent spin in the first part of the calculation, it will
later be translated directly to helicity.

Consider first the spectrum of b-quarks produced from t± → Wb (ignoring any con-
tribution from W decays at this stage). The intermediate W is produced on-shell, and
thus the calculation proceeds similarly to that of the Z. A key difference, however, is
that here and throughout we will retain both the top and W mass, defining the ratio
ρ = m2

W/m
2
t ∼ 0.2. All other fermions, including the b-quark, are left massless. Further,

we need to account for the three possible polarizations of the W . Due to the chiral nature
of the weak interaction, the resulting b-quark must be left handed. This implies in the limit
where mb = 0, only a longitudinal and negative helicity W can participate in the process.
The ratio of the branching fractions is

Br(t→W0 b)
Br(t→W− b)

= 1
2ρ ∼ 2 , (C.15)

so that the longitudinal polarized W s are produced twice as often. We can use this to
gain a rough intuition for the resulting spectrum of b-quarks. For a longitudinal W , the
left-handed b will be preferentially emitted in the opposite direction to the spin of the
top. After boosting, we then expect a softer spectrum for t+ than t−. Performing the
calculation, we find

dbt+(x; q+
W , q

−
W ) = 2x(1− ρ) + 2x2(2ρ− 1)

(1 + 2ρ)(1− ρ)2 Θ(1− ρ− x) ,

dbt−(x; q+
W , q

−
W ) = 4x(1− ρ)ρ− 2x2(2ρ− 1)

(1 + 2ρ)(1− ρ)2 Θ(1− ρ− x) .
(C.16)

The step-function enforces the condition xb ∈ [0, 1 − ρ] ∼ [0, 0.8]: the finite mW ensures
the b cannot carry away all the energy. The distribution of energy fractions is presented in
figure 7.

We now turn to the distribution of W decay products. As the W is produced on shell,
we can start in the W rest frame, where the energy spectrum is a two-body δ-function.
Yet, there will be a non-trivial angular dependence associated with the W polarization,
which will be converted into energy differences when we boost to the top rest frame, and
again when we boost the top itself, at which point we need to account for the angular
distribution of the W as a function of boson polarization and fermion spin. Further, we
must account for the fact that as the W is an intermediate state, we will have interference
between the different polarizations.

We begin by establishing our coordinates. In the W rest frame, we represent pf with
a general lightlike four-vector

pµf = 1
2mW (1, sin θ cosφ, sin θ sinφ, cos θ) . (C.17)

The equivalent expression for pf̄ can be obtained by sending θ → π− θ and φ→ π+ φ. In
the top rest frame, we choose coordinates such that the b and W are emitted in the x–z,
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Figure 7. The distribution of energy fractions carried by polarized top-decay products, as described
by eq. (C.16) and (C.23). Here ff̄ represent the particle and antiparticle that result from the decay
of the intermediate on-shell W .

with the W at an angle θ′ from the z-axis, i.e.

pµW = (EW , pW sin θ′, 0, pW cos θ′) , (C.18)

where EW = mt(1 + ρ)/2 and pW = mt(1− ρ)/2. In terms of this, to transform pf to the
top rest frame, we boost in the W direction by an amount

γ = EW

mW

= 1 + ρ

2√ρ , β = − pW
EW

= −1− ρ
1 + ρ

, (C.19)

after which eq. (C.17) becomes

pµf = 1
2mW

(
γ[1 + β cos θ], γ[β + cos θ] sin θ′ + cos θ′ sin θ cosφ,

sin θ sinφ, γ[β + cos θ] cos θ′ − sin θ′ sin θ cosφ
)
.

(C.20)

In terms of these coordinates, the fully differential spectrum in the top rest frame is

1
Γ

dΓ(t± → bf f̄)
dφ d cos θ d cos θ′ = 3

16π
1 + cos θ
1 + 2ρ

[
(1± cos θ′)(1− cos θ) + ρ(1∓ cos θ′)(1 + cos θ)

±2√ρ sin θ′ sin θ cosφ
]
.

(C.21)
For both spins this is a normalized probability distribution for the three relevant angles,
which we denote pt±(φ, cos θ, cos θ′). We can now use this to determine the energy fraction
carried by f in the boosted top frame. To determine this, we boost eq. (C.20) in the −z
direction by an amount γ = Et/mt and β ≈ 1, to obtain

xf = 1
4
(
[1 + cos θ′][1 + cos θ] + ρ[1− cos θ′][1− cos θ]− 2√ρ sin θ′ sin θ cosφ

)
. (C.22)

Note that xf ∈ [0, 1]. At this stage, we know the energy fraction as a function of the angles,
and the distribution from which the angles are drawn, so we can formally write down the
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Decay p a0 a1 a2 a3 a4 a5 b1 b2

t+ → f 2 5.278 −1.732 −2.231 0.571 — — 2.223 −0.253
t− → f 1 2.380 −1.786 11.450 −32.748 47.768 −27.897 −2.235 0.337
t+ → f̄ 2 6.943 −3.541 2.764 −4.717 — — −10.266 0.257
t− → f̄ 3 2.121 2.504 −3.135 4.063 — — 10.249 −0.192

Table 2. Parameters of the fitting function eq. (C.24) used to provide an adequate description of
the W -decay products resulting from polarized top decays. The spectra themselves are depicted in
figure 7.

relevant FF,

Df
t±(x; q+

W , q
−
W ) =

∫
dφ d(cos θ)d(cos θ′)pt±(φ, cos θ, cos θ′)

× δ
[
x− 1

4
(
[1 + cos θ′][1 + cos θ] + ρ[1− cos θ′][1− cos θ]

−2√ρ sin θ′ sin θ cosφ
)]
.

(C.23)

The equivalent expression for f̄ follows by sending θ → π−θ and φ→ π+φ in the argument
of the δ-function.

These expressions can be readily computed numerically, and are depicted in figure 7.
To facilitate rapid evaluation, we further determined piecewise polynomial fitting functions.
Recall that xb < 1− ρ. Momentum conservation then requires xf + xf̄ > ρ, and thus both
distributions display a discontinuous derivative at x = ρ. As such, we determine fitting
functions of the form

g(x) =
{

(1− x)p∑N
n=0 an(1− x)n x > ρ ,

(1− ρ)p∑N
n=0 an(1− ρ)n +∑N ′

n=1 bn(ρ− x)n x < ρ .
(C.24)

For each spectrum, p is fixed by the asymptotics as x→ 1, whereas N and N ′ were chosen
such that {an, bn}, determined by a least squares fit, provided a satisfactory description.
Explicit values are provided in table 2.

We do not need to repeat any calculations in order to obtain the equivalent spectra for
anti-top decays, instead we obtain the result by a CP transformation. In detail, CP flips
the helicity off all states, and also interchanges particles and antiparticles. Recalling that
helicity and chirality are identified for a massless particle, but opposite for anti-particles,
we have

dΓ(t± → bf f̄) = dΓ(t̄± → b̄f̄ f) . (C.25)

Consequently, the spectrum of b̄ is given directly by eq. (C.16). The distribution for f̄ is
given now by eq. (C.23), and that for f can be obtained by taking the same equation, but
with θ → π − θ and φ→ π + φ in the δ-function argument.
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D Low scale evolution with Pythia

The evolution of our FFs below qW is computed with Pythia v8.235 [1–3]. In this section we
expand upon this, outlining the options used in running Pythia, and also the modifications
we made for our purposes such as an improved treatment of FSR, and how we incorporate
the proton mass.

Firstly, let us outline the basic details of how we used the program. In order to calculate
dSX(x; qW , 0) appearing in eq. (2.3), we simulate events with a hard interaction e+e− → XX̄

at
√
s = 2qW , with initial state radiation switched off so that the e+e− operates as an energy

injection, starting the X at µ ∼ qW . We then determine dSX(x; qW , 0) from the spectrum of
stable S particles in the hemisphere of the initial X. This is all handled using a modified
version of the example script main07. All long lived particles that may not necessarily decay
on collider scales are forced to decay, in particular muons, pions, kaons, and neutrons. We
leave off all electroweak radiation effects, as these were in the higher steps of our evolution.
This means that neutrinos do not evolve at all at this lower stage, although their spectra
can still receive contributions from various decays. Finally, a number of details of photon
emission are modified; the choices and motivations here are discussed next.

D.1 Improved treatment of FSR for DM

Below the weak scale, charged fermions will contribute to the photon spectrum via FSR,
in the form χ→ ff̄γ. The expression for this contribution is known analytically, as given
in eq. (5.1). We can arrive at this result by, for example, calculating the photon spectrum
from a three-body decay of a vector, V , via the process V → ff̄γ. Giving the vector a
mass mV = 2qW , and defining ε = m2

f/m
2
V , we can extract the leading order result from

the analogous QCD calculation in ref. [102],

dN

dx
=
αe2

f

π

[
1 + (1− x)2 − 4ε(x+ 2ε)

x (1 + 2ε)
√

1− 4ε
ln
(

1 +
√

1− 4ε/(1− x)
1−

√
1− 4ε/(1− x)

)

−1 + (1− x)2 + 4ε(1− x)
x (1 + 2ε)

√
1− 4ε

√
1− 4ε

1− x

]
,

(D.1)

where ef is the charge of the fermion, and α = αEM. In the limit qW � mf , we have ε� 1
and we can expand the above result to arrive at twice the result in eq. (5.1) (the factor of
two arises as this is the spectrum of f + f̄).15 The first correction to eq. (5.1) is O(ε), and
so this is an excellent approximation for all remaining SM fermions below qW .

With the analytic expression in hand, we can compare this to the output of Pythia
for an example state, f = e. The result of doing so is shown in figure 8. At lower x values
Pythia is under-predicting the number of photons. The origin of this mismatch is that
Pythia imposes a pT cutoff on the QED shower: photons that would carry a pT < 1 keV
by default are not produced in the shower (this is controlled by TimeShower:pTminChgL).

15If we calculated the decay of a scalar instead of a vector, we obtain the same result after expanding in
the limit ε→ 0 [103].
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Figure 8. A comparison of the electron FSR spectrum to various analytic calculations. In solid
orange we show the expected analytic result from eq. (5.1), in dashed purple the corresponding
result from Pythia, and in dotted blue the analytic spectrum in eq. (D.2) with a pcut

T = 1 keV. The
deviation of Pythia from the expected analytic result to the pT spectrum motivated an alternative
treatment of this effect.

In order to validate this interpretation, note that the analogue of eq. (5.1) in the presence
of a pT cut is,

dN

dx
=
αe2

f

π

[
1 + (1− x)2

x
ln
(

4q2
Wx

2

(pcut
T )2(1− x)

)
− x

]
, (D.2)

after expanding in (pcut
T )2/q2

W � 1. This expression is also plotted in figure 8, and we see
the Pythia result trending towards it at low energy fractions.

As discussed, given concerns about the accuracy of our results at small-x, we do not
produce spectra below x = 10−6. Further, for most channels, due to showering into other
states that can produce photons through hadronic channels, FSR is often a subdominant
contribution to the photon spectrum at low-x, particularly as we move above qW and
the shower can develop. Nevertheless, at low masses certain states such as right handed
electrons still receive a large contribution from FSR and thus we outline a procedure we
used to correct this issue. We note this treatment may also be useful for studies of DM at
lower masses also.

Our approach is to turn off FSR in Pythia and instead deal with it analytically.
Showering for all fermions is switched off, although we leave on γ → ff̄ , as this is not
subject to the issue described above. The full photon spectrum for a given initial state can
then be determined using eq. (5.1) and,

Dγ
X(x; mχ/2, 0) = Dγ

X(x; mχ/2, qW )

+
∑
f

∫ 1

x

dz

z
Df
X(x/z; mχ/2, qW ) [Dγ

f (z; qW , 0)]FSR ,
(D.3)

so that the low scale FSR is handled analytically instead of with Pythia.
Adding eq. (D.3) alone is inconsistent with momentum conservation. The charged

particles that would have emitted photons also need to have their distributions corrected
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to ensure the momentum is correctly subtracted. In particular, there will be both real and
virtual corrections to the charged fermions’ FFs. For real emission, if we have a process
where the high scale evolution produced a charged fermion, f , from an initial particle X,
then we need to account for the fact the f would have lost momentum to radiated photons
via f → fγ in the evolution below qW , which we now exclude. In particular, if the fermion
has an initial momentum fraction z and the photon carries away a fraction 1− u, then the
fermion FF receives a correction,[
Df
X(x; mχ/2, qW )

]
Real

=
∫ 1

0
dz

∫ 1

0
duDf

X(z; mχ/2, qW ) [Dγ
f (1− u; qW , 0)]FSRδ(x− zu)

=
∫ 1

x

dz

z
DM
X (x/z; mχ/2, qW ) [Dγ

M (1− z; qW , 0)]FSR . (D.4)

This same fermion would also have received virtual corrections associated with the proba-
bility of no photon being emitted, which can be computed from one minus the probability
there was an emission, i.e.[
Df
X(x; mχ/2, qW )

]
Virtual

= Df
X(x; mχ/2, qW )

∫ 1

0
dz
(

1− [Dγ
f (z; qW , 0)]FSR

)
(D.5)

= Df
X(x; mχ/2, qW )−Df

X(x; mχ/2, qW )
∫ 1

0
dz [Dγ

f (1− z; qW , 0)]FSR .

From the combination of these two terms we can see the appropriate correction is given by,

∆Df
X(x; mχ/2, qW ) =

∫ 1

0
dz

[1
z
Df
X(x/z; mχ/2, qW )−Df

X(x; mχ/2, qW )
]

×[Dγ
f (1− z; qW , 0)]FSR .

(D.6)

Note D(z) = 0 for z > 1, explaining the difference in integration limits between this
expression and eq. (D.4).

In order to confirm the correctness of this result, we can explicitly confirm momentum
conservation. Firstly, the momentum partitioned into photons via eq. (D.3) is given by∫ 1

0
dxx

∑
f

∫ 1

x

dz

z
Df
X(x/z; mχ/2, qW ) [Dγ

f (z; qW , 0)]FSR

=
∑
f

∫ 1

0
dz [Dγ

f (z; qW , 0)]FSR

∫ z

0
dx

x

z
Df
X(x/z; mχ/2, qW )

=
∑
f

[∫ 1

0
dz z [Dγ

f (z; qW , 0)]FSR

] [∫ 1

0
duuDf

X(u; mχ/2, qW )
]
,

(D.7)

where in the final step we changed variables to u = x/z. This is then equal to the momen-
tum lost by the sum of all charged fermions. Looking at one in particular, we have∫ 1

0
dxx∆Df

X(x; mχ/2, qW )

=
∫ 1

0
dxx

∫ 1

0
dz

[1
z
Df
X(x/z; mχ/2, qW )−Df

X(x; mχ/2, qW )
]

[Dγ
f (1− z; qW , 0)]FSR
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=
∫ 1

0
dz z[Dγ

f (1− z; qW , 0)]FSR

∫ 1

0
duuDf

X(u; mχ/2, qW )

−
∫ 1

0
dz[Dγ

f (1− z; qW , 0)]FSR

∫ 1

0
duuDi

a(u; mχ/2, qW )

= −
[∫ 1

0
dz (1− z)[Dγ

f (1− z; qW , 0)]FSR

] [∫ 1

0
duuDf

X(u; mχ/2, qW )
]

= −
[∫ 1

0
dz z [Dγ

f (z; qW , 0)]FSR

] [∫ 1

0
duuDf

X(u; mχ/2, qW )
]
,

(D.8)

Summing over f , this is exactly the negative of eq. (D.7) as claimed, demonstrating using
both terms restores momentum conservation.

In summary, we implement the corrected FSR treatment with a combination of
eq. (D.3) and eq. (D.6). The latter needs to be computed carefully, as [Dγ

f (1−z; qW , 0)]FSR
diverges as z → 1, although that divergence is regulated by the vanishing of the two terms
in square brackets in the same limit.

D.2 Incorporating the proton mass

The finite proton mass provides a physical cutoff in the energy fraction the p/p̄ final states
can carry of x ≥ 2mp/mχ. In our calculation at the high scale, however, all states are
treated as massless, allowing for in principle arbitrarily small energy fractions. At the
low-scale, however, the evolution in Pythia explicitly includes mp 6= 0, and therefore will
have a sharp cut-off at x = mp/qW ∼ 10−2. In summary, the finite mass of the stable
hadrons we are interested in is not treated consistently throughout the calculation. By
default, this inconsistency will manifest in two ways. Firstly, as at the high scale we allow
arbitrarily small energy — or, as our particles are massless, equivalently momentum —
fractions, after convolving this with Pythia, by default we will have a non-zero spectrum
for x < 2mp/mχ. Secondly, as the proton mass is only treated in one part of our calculation,
a feature at x ∼ 10−2 can generically be expected to appear. This occurs because, if the
high scale spectrum has a sharp feature near x = 1, a residual bump at 10−2 can remain
after convolution with Pythia.

Both of these problems are on display in figure 9, focusing on the comparison between
the unweighted spectrum and Pythia for the moment. On the right, we see a clear feature
at 10−2. This results from the fact that for a relatively light DM mass of mχ = 2TeV,
the b-quarks will not always undergo significant evolution by qW , and there will still be
a large contribution to the fragmentation functions near x = 1. When convolved with
Pythia, the result is a clear bump. Fixing this particular problem in detail is left to future
work, however we note the feature rapidly becomes less pronounced as we increase in mass,
and for states that do not have a large colored component near x = 1, as is the case for
neutrinos viewed on the left, the issue is far less apparent.

The second issue, of a non-zero spectrum for unphysical energy fractions, we will re-
solve. Our default output at this stage is the “unweighted” dotted distributions, exhibiting
this exact behaviour. We will reweight these results as follows. To begin with, we treat all
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Figure 9. Spectrum of antiprotons for two different initial states, electron neutrinos (left) and
b-quarks (right), obtained for mχ = 2TeV. Our default results, labelled “unweighted”, continue to
unphysical x-values. In appendix D.2 we outline a weighting procedure to correct these to the solid
orange curves. Even then, residual features at x ∼ mp/qW remain, although they are washed out
for larger masses. This feature is a result of the incomplete treatment of the proton mass in this
work, see text for details.

x values as momentum fractions (these are interchangeable at the high scale as discussed).
So for a given x and DM mass mχ, a proton would have a momentum p = xpmχ/2, and
hence an energy fraction

xE =

√√√√x2
p +

4m2
p

m2
χ

. (D.9)

Importantly, as xp → 0, xE ≥ 2mp/mχ, as required. This allows us to transform to the
relevant energy fractions, and further the spectrum as

dN

dxE
= xE
xp

dN

dxp
. (D.10)

The above change of variables from xp → xE will ensure that the spectrum is cut-
off at the correct x value, however, it does not ensure the spectrum exhibits the correct
asymptotics as xp → 2mp/mχ. In general we expect there will be power corrections to our
result in this limit, which manifest here in the form of a threshold factor (xp/xE)k, so that

dN

dxE
=
(
xp
xE

)k−1 dN

dxp
. (D.11)

By comparing our results near the threshold with Pythia, we found good agreement for
k = 3. The combined result of the rescalings is depicted as the solid orange curves in
figure 9.

E Estimating the accuracy of our results

As discussed in the main text, there is considerable scope for systematic improvement of
the results presented in this work. In this section we will present a more quantitative
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discussion of this point, outlining the formal accuracy of our calculation and estimating
the size of neglected terms. As we will show, at high DM masses our spectra for x ∈
[10−3, 1] are accurate to O(10%). For x . 10−3, the uncertainty increases (particularly
due to an incomplete treatment of soft coherence) to the O(1) or even order-of-magnitude
level. Nevertheless, in light of the pronounced differences with existing results as shown
in figures 1 and 4, our results represent a significant improvement. Obtaining a full NLL
calculation with theoretical uncertainty bands and O(5%) errors at the level that has been
achieved for specific DM spectra, see e.g. [104], represents a clear target for future work.

Our treatment of fragmentation function evolution above the electroweak scale qW ∼
100GeV is according to the leading-order DGLAP evolution equations, with neglect of all
particle masses. The evolution code uses Heun’s method for direct solution of the integro-
differential equations, with typical precision of a few parts per mille. However, the evolution
equations only treat terms enhanced by logarithms of mχ/qW and therefore results are only
reliable well above the electroweak scale. While mass corrections are expected to be of order
q2
W/m

2
χ, other terms that are not logarithmically enhanced can be important for TeV-scale

DM masses. These could be included in future by matching to fixed-order matrix elements,
as discussed in ref. [75]. Meanwhile, for DM decay or annihilation at or below the TeV
scale, a direct parton shower simulation taking account of masses, such as Pythia, would
be more reliable for the majority of final states. The exception would be final states where
the spectra is dominated by electroweak showers, in particular neutrinos as highlighted in
the left of figure 4.

For all except the SU(2)L electroweak interaction, terms resummed by leading-loga-
rithmic (LL) DGLAP evolution from the electroweak scale to scale ∼ mχ are of order αnILn
where L = ln(mχ/qW ). However, our calculation fails to resum all αL terms related to soft
emissions. Nevertheless, αL remains less than 1 to the Planck scale, as shown in figure 10.
In detail α3L ∼ 0.75 and α2L ∼ 0.80, taking into account the running of both couplings.

In the case of SU(2)L, fragmentation functions in general have non-isosinglet contri-
butions of order αn2L2n. These, together with a class of terms down to order αn2Ln+1, sum
up to yield leading-logarithmic Sudakov factors, of the form exp[−Lg1(α2L)] where g1 is a
known function. The missing NLL terms are of order α2L, just as in QCD. As shown in
figure 10, these terms are smaller for masses up to mχ ∼ GUT scale, and at higher masses
remain comparable to α3L and crucially less than unity. Failure to fully resum these terms
induces an error of size O(10%) up to the EeV scale. A full NLL calculation would suppress
these effects by an additional αI ∼ 0.1, and reduce these errors further to the 1% scale.

All the above relates to evolution of fragmentation functions due to collinear enhance-
ments in the relevant matrix elements, giving rise to large logarithms of the energy scale
ratio mχ/qW . At small values of the energy fraction x there are also large (double) log-
arithms of x that need to be resummed. As discussed above, these have the effect of
strongly suppressing fragmentation at small x, essentially due to destructive interference
between different amplitudes involving soft gauge bosons. These soft coherence effects are
well understood at the leading-logarithmic level in QCD, but less so at NLL in QCD and
even at LL in the electroweak sector. Our treatment takes account of soft coherence at LL
level in QCD, with a plausible extension of the same effects to the full SM. However, it is
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Figure 10. Qualitative size of double and single logarithmic terms as a function of DM mass mχ.
Here L = ln[mχ/qW ], and results are shown for SU(3) and SU(2)L couplings. A LL calculation
resums the double logarithmic terms, whereas a full NLL result would resum also the single loga-
rithmic terms. Clearly the αL2 terms are rapidly larger than one, and thus must be resummed for
a reliable result for most of the mass range considered in this work, and our calculation achieves
this aim. The αL terms, which we do not fully resum, remain less than unity across the entire mass
range. In both cases we account for the running couplings.

difficult to estimate the quantitative uncertainty of this procedure. A qualitative estimate
of the uncertainties of this procedure is provided in figure 11. The figure depicts spectra
arising from χ→ bb̄ for three different treatments of the small-x physics. Firstly, we show
the result if you use pure DGLAP evolution with no treatment of soft-coherence. This is
certainly an overestimate of the true soft multiplicity. On the other extreme, we show a
result where we apply our mχ → xmχ correction to the final FF, i.e. the substitution is
applied to the left-hand side of eq. (2.3), rather than just to the high-scale or DGLAP FF,
as we do by default. This results in most likely an overly aggressive suppression. Pythia
already has a partial accounting for soft-coherence, so applying the substitution globally
we are double counting the effect at this stage. Further, as mentioned in appendix B.2
this substitution should not be applied to the electroweak double logs, however we can-
not factor out their contribution to the final FF. Finally, we show our default procedure
where the correction is only applied to the high-scale evolution. We see that our approach
sits in between the two extreme alternatives. For x & 10−3 the differences are not that
pronounced, but by x ∼ 10−6 there is now more than an order of magnitude separation
between the approaches. This can be taken as a rough estimate for the uncertainty we
have at these scales, although figure 11 also demonstrates that by the Planck scale the
differences are reduced to a factor of ∼ 2 (we emphasize that the difference between the
three approaches shown in the two plots is driven entirely by the mass scale). The results
also clarify that in order to reduce these uncertainties, a serious study of coherence effects
in the whole SM is required.

Turning to the matching at the electroweak scale, the calculation was performed at
leading order. Next-to-leading QCD corrections, of order α3 ∼ 10%, could be included
to improve precision, although this would require care to avoid double counting in the
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Figure 11. An estimate of the uncertainty associated with our treatment of the small-x physics.
We achieve this by showing results for three different treatments of soft coherence, for the spectra
resulting from χ→ bb̄ for two different masses and final states: the photon spectrum for mχ = 2EeV
(left), and the electron spectrum formχ = mP (right). In dotted blue, we show the result of applying
no corrections at all, a result which represents an undoubted overestimate of the small-x flux. In
solid orange we show our default procedure of applying a substitution mχ → xmχ in the high scale
FF, as outlined in appendix B.2. Finally, in dashed purple we show the result of applying that same
substitution to our full FF that results from the convolution of all three steps. This final result
will double-count soft-coherence from the low-scale evolution, and therefore sits below the other
approaches. We see that at an EeV, and for x ∼ 10−6 the uncertainty is at the order-of-magnitude
level. For x & 10−3 or at higher masses, the result reduces to a O(1) error.

subsequent Pythia shower. Electroweak corrections would contribute at the few percent
level. Finally, below the electroweak scale, the Pythia parton shower and hadronization
generator generally agrees with collider data at such energies at the 10% level. This would
be difficult to improve significantly without major advances in event generator technology

In summary, our predictions at high DM masses and moderate to high x values are
subject to uncertainties at the few times 10% level, which could be reduced somewhat by
inclusion of higher-order corrections at the evolution and matching stages. Uncertainties
increase markedly at lower energy fractions, due to a lack of precise understanding of soft
coherence effects in the full SM.

F Additional results

Having outlined the details of our calculation and discussed their accuracy, we now present
a number of additional outputs from our formalism. Firstly, we present a number of ad-
ditional spectra in the same spirit as figure 3, highlighting additional physics inherent in
our results. Afterwards we present a non-trivial cross-check on our results, demonstrating
the extent to which momentum is conserved as it is repartitioned among the various states
through our evolution. In a similar vein, we will then show how the momentum is dis-
tributed between the various states for selected processes, demonstrating how this varies
as the mass is increased.
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Figure 12. Analogs of figure 3 for four additional DM decay processes: higgs to positrons (top left),
transverse W -bosons to electron neutrinos (top right), electrons to muon neutrinos (bottom left),
and top-quarks to tau neutrinos (bottom right). Each figure shows the spectra for each decade of
DM mass between mχ = 1TeV and 1019 GeV. Further, initial helicities or polarizations are averaged
over, where relevant.

F.1 Additional spectra

Figure 12 and figure 13 furnish additional examples of the output of the formalism intro-
duced in this paper. In all cases, we show the spectrum of stable SM final states for DM
masses between 1TeV and mP ∼ 1019 GeV, with a spectrum shown at each decade in mass.

Quite generically, we see that when plotted in dimensionless variables, the spectra
vary most rapidly for scales around the TeV scale, often slowing as the mass approaches
the Planck scale. Just above the electroweak scale, new channels become kinematically
available through the emission of states with m ∼ qW , and as the evolution heads into the
full unbroken SM. This is clear in the case of the muon neutrino spectrum from χ→ e+e−

shown in figure 12, which can only arise from electroweak boson or hadronic decays, both of
which are primarily accessed through electroweak states. This can be contrasted with the
positron spectrum resulting from χ→ HH. The rich decay pattern of the SM Higgs already
involves many SM states, explaining the lack of significant evolution in the spectrum.
Nevertheless, the hardest emissions near x = 1 do evolve considerably, growing rapidly
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Figure 13. A further analog of figure 3, here for the electron neutrino spectrum from DM decay to
Z-bosons. In this case, instead of averaging over the three available initial polarizations, we depict
each polarization separately: left (top left) and right (top right) handed initial states (top left), and
longitudinally polarized bosons (bottom). Once more, a separate curve is shown for each decade in
DM mass between a TeV and the Planck scale.

as multiple electroweak emissions become available, and then softening again as the size
of electroweak showers develops. In all cases, the evolution eventually slows down as the
various channels become well mixed. This is perhaps unsurprising, given the connections
between the DGLAP equation and diffusion. We reiterate that our calculation assumes
that there are no new-physics thresholds crossed between qW and mP . If in fact there were,
rapid variations could again be observed as momenta is redistributed amongst the newly
available channels. For results in this direction, see e.g. [83–87].

As emphasized a number of times already, the chiral nature of the SM plays a central
role in the high-scale evolution. This point is further emphasized in figure 13, where
we depict the electron neutrino spectrum resulting from the three polarizations of the
massive Z-boson. In general the softest emissions, dominated by QCD hadron decays, is
comparable between all three states. The hard emissions, however, differ dramatically,
particularly when considering the spectrum of a purely chiral state.
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F.2 Confirming momentum sums

Conservation of momentum implies that the momentum weighted FFs must satisfy the
following consistency condition,

∑
b

∫ 1

0
dx dba(x; Q,µ0) = 1 . (F.1)

Starting with dba(x; Q,µQ) = δbaδ(1 − x), this equation is satisfied trivially. However, it
must also remain true as the momentum is repartitioned amongst different states through
the evolution in virtuality, and the result becomes an important check on the evolution.
In this section we discuss how well our results satisfy eq. (F.1), taking various values of Q,
and µ0 ∼ 0 appropriate for the end of our evolution.

The results are provided in table 3. The table shows a select set of values for a and Q
in eq. (F.1). In particular, it is clear that near the electroweak thresholds, the deviation
from perfect momentum conservation is O(5–20%), whereas by the highest scales consid-
ered in this work, they have shrunk to O(2–4%). These results represent an irrefutable
uncertainty in our results. Nevertheless, although there are a many steps in our calculation
where momentum is redistributed, each of which could contribute to the errors shown in
the table, the uncertainty is almost exclusively due to a single source: our procedure for
incorporating soft coherence described in appendix B.2. Indeed, when we do not imple-
ment the corrections described in that section, we find momentum conservation is obeyed
to better than 1% in all cases, limited by the numerical precision used in our calculation.

Our procedure for implementing soft-coherence removes the real-radiation associated
with destructive color-interference. However, we do not account for the associated virtual
corrections: the suppression of soft emission also increases the probability for a state to
not emit and thereby retain a larger fraction of its momentum. Accordingly, the presence
of an offset in table 3 is unsurprising, although also representative of a clear target for
improving the treatment of color-coherence in our results.

F.3 Momentum distributions amongst final states

In addition to checking the overall conservation of momentum, we can also consider how
that momentum is redistributed amongst the stable SM final states. In figure 14 we show
exactly that, plotting the momentum fractions for all final states, for two example spectra,
χ → νeν̄e and χ → bb̄. In both cases, particles represent the momentum carried by the
state and its conjugate (where applicable), so p represents the momentum carried by p+ p̄.

For the neutrino initial state, we see considerable variation as a function of mass. The
difference between the e and νe FFs, being an isovector quantity, evolves double logarith-
mically according to eq. (B.7), so that their fractions become almost equal at high enough
masses. At high enough masses, the fractions are identical for e and νe, as a result of
their connection in the unbroken SM. For the representative hadronic channel, the distri-
butions are highly stable as a function of mass. Of course, even if the total momentum
fraction deposited into a given SM state is constant, how that momentum is divided be-
tween individual states can still evolve considerably, as demonstrated in figure 3. The tight
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HH
HHHHa

Q TeV EeV mP

dL 0.890 0.932 0.963
dR 0.903 0.939 0.967
cL 0.890 0.932 0.963
cR 0.900 0.938 0.968
eL 0.953 0.973 0.979
eR 0.964 0.975 0.985
ντ 0.981 0.977 0.978
gL 0.811 0.918 0.961
gR 0.811 0.918 0.961
ZL 0.961 0.964 0.981
ZR 0.961 0.964 0.981
Z0 0.981 0.975 0.977
H 0.964 0.973 0.977

Table 3. Momentum sums determined from eq. (F.1) for a representative subset of initial states
and Q values. In all cases, disagreement from unity primarily results from our treatment of soft
coherence, outlined in appendix B.2.

correlation between the photon and muon neutrino can be understood as follows. Strong
isospin implies charged and neutral pions will be produced in these decays at a ratio of two
to one. The decays of π0 will produce two hard photons, each carrying a large momentum
fraction, whereas the π± decays will produce only a single hard muon neutrino (and a
softer one which will not generally carry a large momentum fraction).

G Details of the public code

The spectra generated in this work are publicly available at https://github.com/nickrodd/
HDMSpectra. Examples of how to generate spectra for arbitrary initial states or even
individual FFs is provided. For several cases, the code can also be used to extract the
coefficient of δ(1− x) in the spectrum, an example output is shown in figure 15. Further,
the repository contains the details of how to reproduce many of the figures in this work. In
this section we outline several additional details of how those results were computed, but
for details of how to use them we refer to the repository. We emphasize once more that all
spectra provided in the repository are prompt: no propagation effects are included.

With the exception of the weak matching, all details of our calculation are computed
numerically. For the high scale evolution, we solve the DGLAP equations using the pro-
cedure outlined in [69, 70]. We note that in this stage of the calculation we made use of
LHAPDF [105]. At the low scale, we evolve our results using Pythia. In each case, we de-
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Figure 14. Momentum fraction carried by all stable SM final states considered in this work for
two example decays, χ → νeν̄e (left) and χ → bb̄ (right). In both cases we show how the fractions
evolve as a function of DM mass. In the legend, particle labels are a proxy for the contribution of
both particles and antiparticles, so νµ labels the momentum fraction carried by both νµ and ν̄µ.

termine the FFs d(x) as ln(x) spaced histograms, and then perform the convolution using
the approach in appendix G.1.

At the end of the procedure, we have a collection of 616 FFs evaluated at a set of Q
values between 500 and 1019 GeV. We then implement a reduction algorithm to reduce this
to a minimal set of points necessary for retaining the details of the spectra at the level
of accuracy of our calculation for 500 GeV < Q < 1019 GeV and 10−6 < x < 1. In this
reduction of points we ensure that all spectra are unchanged to within 1% in the region
10−4 < x < 0.99, while we allow for larger deviations in regions where the precision of our
calculation is expected to be worse. To be precise, the accuracy as a function of x we use is

acc(x) =


10−4

√
10−4

x x < 10−4 ,

10−4 10−4 < x < 0.99 ,
10−4 0.99

1−x x > 0.99 .
(G.1)

We then discard as many points as possible, while maintaining this accuracy, in order to
compress the output dataset. This data is then packaged into a single file which is accessed
via the public code.

G.1 Computing the convolution of binned fragmentation function

A central tool in the present work was the use of the convolution expression satisfied by FFs,

dca(x; µ1, µ3) =
∑
b

∫ 1

x

dz

z
dba(z; µ1, µ2) dcb(x/z; µ2, µ3) . (G.2)

This result was exploited to simplify our calculation into steps as shown in eq. (2.3), and
appears frequently in our calculation of the DM spectra. A key ingredient in the final result
is the spectra obtained from Pythia, which are inherently binned. It is convenient to have
a form of eq. (G.2) appropriate for binned FFs. Such a result is presented in this section.

– 39 –



J
H
E
P
0
6
(
2
0
2
1
)
1
2
1

4 6 8 10 12 14 16 18
log10(mχ [GeV])

0.0

0.5

1.0

1.5

2.0

C
oe

ff
fic

ie
nt

δ-Function Coefficient
γ → γ

Z → γ

Figure 15. The coefficient of δ(1 − x) associated with dγi (x; mχ/2, 0) or i = γ and Z. More
generally, a number of δ-function coefficients can be accessed in the public code, in addition to the
continuum results.

Before doing so, let us briefly provide some intuition for eq. (G.2). The result quantifies
that the probability a particle a at a scale µ1 produces a particle c at µ3 carrying momentum
fraction x, is given by the combination of the probability of a→ b at an intermediate scale
µ2, and then b→ c, summing over the allowed states and momenta for b. One may worry
about only keeping track of a single state across the threshold µ2, rather than all details
of the evolution. For example, if b is quark or gluon, it will be color connected to other
objects, and this information is lost across the threshold. Here we invoke Amati-Veneziano
preconfinement [106]: as long as the various scales are sufficiently separated, what we color
connect b to is asymptotically irrelevant. As our non-matched evolution always satisfy
µ1/µ2 � 1, we are always in this regime. For this reason, when simulating our Pythia
results to compute the low scale FFs, we always initiate these at

√
s = 2qW for states

XX̄, with the X and X̄ color connected to form a singlet. There will be corrections to
this picture at higher order, although this is sufficient for the level of accuracy of the
present work.

In practice we evaluate the FFs over a wide dynamic range, and thus it is convenient
to change variables to lx = ln x, yielding

dca(lx; µ1, µ3) =
∑
b

∫ 0

lx

dz

z
dba(lx − l; µ1, µ2) dcb(l; µ2, µ3) . (G.3)

Now, our FFs will be a logarithmically binned histogram with N bins, and bin edges
l1, . . . , lN+1, where lN+1 = 0. Then we have

dba(l; µ1, µ2) =
N∑
n=1

d̃ba,nΘ(ln+1 − l)Θ(l − ln) ,

dcb(l; µ2, µ3) =
N∑
n=1

dcb,nΘ(ln+1 − l)Θ(l − ln) ,
(G.4)

i.e. the high-scale values are described by d̃, and the low scale by d.
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To determine the convolution for a given lx, it is convenient to define three additional
quantities. The first is simply the bin width ln+1−ln = ∆. The next two specify the location
of lx. We introduce an integer m defining the bin lx falls in, in detail lm < lx < lm+1.
From here, the fractional bin width to the point lx, is defined as δ = (lx − lm)/∆ ∈ [0, 1].
In terms of these auxiliary quantities, we can then evaluate eq. (G.3),

dca(lx; µ1, µ3) = ∆
∑
b

[
dcb,md̃

b
a,N (1− δ)

+
N−m∑
n=1

dcb,n+m

(
d̃ba,N+1−nδ + d̃ba,N−n(1− δ)

)]
,

(G.5)

which can be readily evaluated numerically. Note if m = N the summation within square
brackets above expression vanishes.

As a simple check, imagine µ2 = µ1, so that d̃ba,n = δbaδ
N
n . Then the above becomes,

dca(lx; µ1, µ3) = ∆
[
dca,m(1− δ) + dca,m+1δ

]
, (G.6)

which is an appropriately weighted sum.
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