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Abstract

Preclinical evidence suggests that inter-individual variation in the structure of the

hypothalamus at birth is associated with variation in the intrauterine environment,

with downstream implications for future disease susceptibility. However, scientific

advancement in humans is limited by a lack of validated methods for the automatic

segmentation of the newborn hypothalamus. N = 215 healthy full-term infants with

paired T1-/T2-weighted MR images across four sites were considered for primary

analyses (mean postmenstrual age = 44.3 ± 3.5 weeks, nmale/nfemale = 110/106). The

outputs of FreeSurfer's hypothalamic subunit segmentation tools designed for adults

Abbreviations: ANTs, advanced normalization tools; BCP, baby connectome project; DSC, dice similarity coefficient; HTH, hypothalamus; ICV, intracranial volume; MNI, Montreal Neurological

Institute; ROI, region of interest; SD, standard deviation; segATLAS, atlas-based segmentation; segFS, FreeSurfer segmentation; segMAN, manual-edit segmentation; segMAS, multi-atlas

segmentation; TE, echo time; TR, repetition time.
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(segFS) were compared against those of a novel registration-based pipeline devel-

oped here (segATLAS) and against manually edited segmentations (segMAN) as refer-

ence. Comparisons were made using Dice Similarity Coefficients (DSCs) and through

expected associations with postmenstrual age at scan. In addition, we aimed to dem-

onstrate the validity of the segATLAS pipeline by testing for the stability of inter-

individual variation in hypothalamic volume across the first year of life (n = 41 longi-

tudinal datasets available). SegFS and segATLAS segmentations demonstrated a wide

spread in agreement (mean DSC = 0.65 ± 0.14 SD; range = {0.03–0.80}). SegATLAS

volumes were more highly correlated with postmenstrual age at scan than segFS vol-

umes (n = 215 infants; RsegATLAS
2 = 65% vs. RsegFS

2 = 40%), and segATLAS volumes

demonstrated a higher degree of agreement with segMAN reference segmentations

at the whole hypothalamus (segATLAS DSC = 0.89 ± 0.06 SD; segFS DSC = 0.68

± 0.14 SD) and subunit levels (segATLAS DSC = 0.80 ± 0.16 SD; segFS DSC = 0.40

± 0.26 SD). In addition, segATLAS (but not segFS) volumes demonstrated stability

from near birth to �1 years age (n = 41; R2 = 25%; p < 10�3). These findings high-

light segATLAS as a valid and publicly available (https://github.com/jerodras/

neonate_hypothalamus_seg) pipeline for the segmentation of hypothalamic subunits

using human newborn MRI up to 3 months of age collected at resolutions on the

order of 1 mm isotropic. Because the hypothalamus is traditionally understudied due

to a lack of high-quality segmentation tools during the early life period, and because

the hypothalamus is of high biological relevance to human growth and development,

this tool may stimulate developmental and clinical research by providing new insight

into the unique role of the hypothalamus and its subunits in shaping trajectories of

early life health and disease.

K E YWORD S

growth, hypothalamus, infant, MRI, newborn, segmentation, subunit

Practitioner Points

• Registration-based segmentation outperforms current adult-oriented tools.

• Hypothalamic volume is associated with age, independent of intracranial volume.

• Hypothalamic volume stability from 0 to 1 years supports reliability.

1 | INTRODUCTION

Despite making up less than 1% of the brain by volume (Bethlehem

et al., 2022; Kijonka et al., 2020; Spindler & Thiel, 2022), the human

hypothalamus is critical in the control of several physiological func-

tions necessary for survival, including breathing (Fukushi et al., 2019),

sleeping (Mignot et al., 2002), thermoregulation (Van Tienhoven

et al., 1979), and energy balance (Timper & Brüning, 2017). The hypo-

thalamus acts by sensing internal bodily states through direct connec-

tions to the periphery (i.e., circumventricular organs), and in turn, by

responding through the production of hormones responsible for

human behaviors including those involving diet (Coll et al., 2007),

stress (O'Connor et al., 2000), and mood (Bao & Swaab, 2019). The

assertion that the hypothalamus is broadly important to human health

is further supported by an accumulating body of evidence that inter-

individual variation in the structure and function of the hypothalamus

is related to several complex disorders and diseases including Prader–

Willi (Brown et al., 2022), obesity (Thomas et al., 2019), schizophrenia

(Koolschijn et al., 2008), autism (Caria et al., 2020; Kurth et al., 2011),

and dementia (Bocchetta et al., 2015).

The importance of the hypothalamus to early life growth (Sutton

et al., 2021) and nutrient partitioning (Lam et al., 2021) is well-

established. In addition, recent evidence across biological scales

(e.g., from cells [Bouret, 2009] to brain circuits [Bouret &

Simerly, 2006]) and species (e.g., rodents; Dearden & Ozanne, 2015;

Lippert & Brüning, 2021; and humans Rasmussen et al., 2021;

Rasmussen et al., 2022) suggests that the origins of complex disorders

can be traced, in part, back to developmental processes occurring dur-

ing the intrauterine period of life. In this context, the developing

hypothalamus may respond to “suboptimal” conditions by producing
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structural and functional changes that persist across the life span

(i.e., the concept of fetal, or developmental, programming of health

and disease risk). As recently argued (Rasmussen et al., 2021), this

supports the importance of characterizing the structure and function

of the hypothalamus at birth, a developmental period that reflects the

cumulative sum of influences by in utero exposures during fetal brain

development, yet precedes influence by the postnatal environment

under which the hypothalamus further adapts. However, despite the

abundant preclinical evidence supporting the role of the hypothala-

mus in the intergenerational transfer of disease risk (Balsevich

et al., 2016; Bouret, 2009; Dearden & Ozanne, 2015; Rivet

et al., 2022), very little in vivo newborn human hypothalamus data are

currently available. One key hurdle in this respect is the relative pau-

city of methods available for the automatic segmentation of the new-

born hypothalamus in modalities capable of in vivo characterization

(e.g., MRI). This work aims to precisely address this through the identi-

fication of an automated newborn hypothalamus segmentation

pipeline.

Even in adults, until very recently, the hypothalamus has not been

included in most MRI segmentation software packages. Instead, pack-

ages often include a region-of-interest (ROI) that covers the ventral

diencephalon (Lebedeva et al., 2017) at a scale that is far more inclu-

sive than the hypothalamus, let alone the nuclei that constitute its cel-

lular and functional heterogeneity (Neudorfer et al., 2020). In

recognition of this knowledge gap, FreeSurfer recently introduced a

validated deep-learning based method for the reliable segmentation

of the adult hypothalamus and its five regional subunits (anterior infe-

rior, anterior superior, posterior, inferior tubular, and superior tubular)

(Billot et al., 2020). One example of the potential impact of hypothala-

mus subunit segmentation lies in the context of obesity where it is

well-established that highly specific nuclei/subunits like the arcuate

nucleus/inferior tubular region regulate appetite (Jais &

Brüning, 2021). The importance of acknowledging the heterogeneity

of the hypothalamus through subunit segmentation also generalizes

well to the study of other complex disorders, for example, those

dependent on the hypothalamic–pituitary–adrenal axis

(e.g., schizophrenia [Goldstein et al., 2007], mood disorders [Bao &

Swaab, 2019], anxiety [Fischer, 2021], and dementia [Bocchetta

et al., 2015]) wherein the paraventricular nucleus/superior tubular

region plays a dominant role in neuroendocrine processes. While

FreeSurfer have now taken steps to address this shortcoming in hypo-

thalamus segmentation for adults, it is unknown if these tools are

applicable to the early life period when accurate segmentation is chal-

lenged by reversed MR image contrast due to myelination dynamics.

The aim of the current work was to identify a hypothalamus seg-

mentation pipeline for use in neonatal structural MRI. Towards this,

and in addition to be accurate and precise, we considered the follow-

ing four design criteria. First, the subunit segmentation should be con-

sistent with that found in adults (i.e., FreeSurfer) to facilitate the

longitudinal characterization of hypothalamic growth and develop-

ment. Second, we aimed to focus on reliability through full automation

to address inter-rater subjectivity in voxel assignment and reduce the

labor involved with manual segmentation. Third, the pipeline ought to

be simple, open, and robust to the image acquisition strategy to

promote its adoption by the research community. And fourth, we con-

sidered the validity of the pipeline outputs by demonstrating inter-

individual stability over time.

We undertook a study leveraging four cohorts with paired new-

born T1- and T2-weighted MR images. We began via the “naïve”
application of adult-trained FreeSurfer deep-learning networks

(referred to as segFS from here on out) to newborn brain images.

Here, we use the term naïve to acknowledge that the application of a

neural network (segFS) trained on adults is unlikely to succeed in the

context of neonatal MRI due to profound differences in morphology

and image contrast. We then compared the segFS pipeline to a sepa-

rate automatic registration-based approach (segATLAS) designed to

be more robust to infant image characteristics, yet compatible with

the FreeSurfer output (e.g., consistent in indexing convention and

boundary definition). Based on an observed disagreement between

segFS and segATLAS segmentations, and in the absence of a “ground
truth,” we then performed semi-automatic segmentation via manual

correction to build out a reference segmentation (segMAN). Finally,

having identified a candidate pipeline, we then tested the stability of

the derived phenotype (hypothalamus volume, n = 41 longitudinal

pairs, single cohort) across the first year of life. Collectively, based on

the provided evidence, we introduce a novel, validated, and publicly

available (https://github.com/jerodras/neonate_hypothalamus_seg)

pipeline for the segmentation of hypothalamic subunits using

newborn MRI.

2 | MATERIALS AND METHODS

2.1 | Study population

Data from four sites (N = 215) were used for primary analyses

(e.g., establishing and testing segmentation pipelines), while data from

two additional sites (N = 59) were visually confirmed for accuracy, as

a supplementary analysis. The four primary sites contributed an initial

set of 219 total T1/T2-weighted image pairs drawn from a possible of

365 pairs (n = 48 removed due to missing T2-weighted image, n = 43

removed due to missing T1-weighted image, and n = 55 removed for

poor image quality as determined by the contributing sites). After

receiving the initial set of 219 images, four additional pairs were

removed based on the image quality (see Supplementary Section S1:

Quality Control Rejected Participants Were Clear Outliers, for example

images), resulting in a final sample size of N = 215 T1-/T2-weighted

image pairs available for evaluation. Basic demographics (age and sex)

relevant to the analyses are provided below (Table 1). Site-specific

study exclusion criteria are outlined below.

2.1.1 | Site 1 specifics

Mother–child dyads were part of a prospective cohort study at the

University of California, Irvine's Development, Health and Disease
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Research Program (subsequently referred to as “Site 1”). The Site

1 study was designed to investigate the association between maternal

conditions during pregnancy and offspring development. Pregnant

women attending antenatal care at clinics affiliated with the UCI Med-

ical Center in Orange County, California, were enrolled in the study.

The present analysis considered n = 101 offspring of mothers

enrolled between March 2011 and December 2013 whose children

underwent a brain MRI scan shortly after birth and at 12 months of

age (n = 41 longitudinal pairs). Exclusion criteria were as follows:

mother less than 18 years of age; non-singleton/intrauterine preg-

nancy; diabetes; maternal use of psychotropic medications or sys-

temic corticosteroids during pregnancy; infant birth before 34 weeks

of gestation; and infant congenital, genetic, or neurologic disorder.

The Institutional Review Board of the University of California, Irvine,

approved all study procedures, and all parents provided written,

informed consent (UCI IRB: #2009-7251).

2.1.2 | Site 2 specifics

Mother–child dyads were part of a prospective cohort study at the

University of Pittsburgh Medical Center (UPMC, subsequently

referred to as “Site 2”) that is part of the Environmental Influences

on Child Health Outcomes (ECHO) Program. The study enrolled

pregnant women attending antenatal care at clinics were affiliated

with the UPMC Magee-Women's Hospital in the Pittsburgh metro-

politan area. The present analysis included n = 39 offspring of

mothers enrolled between November 2019 and May 2021 whose

children underwent a brain MRI scan shortly after birth. Inclusion cri-

teria were women self-reporting as Black, White, or bi-racial (with an

endorsement of black or white); ≤16 weeks gestation at recruitment;

and fluency in English. Exclusion criteria were as follows: mother less

than 18 years of age; non-singleton/intrauterine pregnancy; infant

birth before 34 weeks of gestation; presence of any conditions that

may dysregulate endocrine, immune, or oxidative state or systemic

inflammation, such as autoimmune disorders requiring chronic sys-

temic steroid or immunomodulator use; and presence of congenital

malformations or fetal chromosomal abnormalities. The Institutional

Review Board of the University of Pittsburgh approved all study

procedures, and all parents provided written, informed consent (IRB:

#19080274).

2.1.3 | Site 3 specifics

Mother–child dyads were part of a prospective cohort study at the

University of Rochester Medical Center (subsequently referred to as

“Site 3”) that is part of the Environmental Influences on Child Health

Outcomes (ECHO) Project. The study enrolled pregnant women

attending antenatal care at clinics affiliated with the Medical Center in

Rochester, New York. The present analysis included n = 50 offspring

of mothers enrolled between December 2015 and December 2020

whose children underwent a brain MRI scan shortly after birth. Exclu-

sion criteria were as follows: mother less than 18 years of age; non-

singleton/intrauterine pregnancy; Type 1 diabetes; maternal use of

psychotropic medications or hormonal medications during pregnancy;

infant birth before 37 weeks of gestation; and infant congenital,

genetic, or neurologic disorder. The Institutional Review Board of the

University of Rochester approved all study procedures, and all parents

provided written, informed consent (RSRB: #00058456).

2.1.4 | Site 4 specifics

Mother–child dyads were part of a prospective cohort study at the

New York State Psychiatric Institute (subsequently referred to as

“Site 4”). Site 4 research activities were conducted in the context of

the Boricua Youth Study—Environmental Influences on Child Health

Outcomes (BYS-ECHO) Project. The study enrolled pregnant women

who themselves were part of the original BYS (Bird et al., 2006) or

whose partner was enrolled in the BYS. The present analysis

included n = 25 offspring of mothers who underwent a brain MRI

scan shortly after birth. Of these, n = 4 were missing gestational age

at birth and postnatal age at scan in the available database but were

included for analysis as postmenstrual age at scan was available.

Infants were excluded from the study for MRI contraindications or

significant medical concerns as determined by a study physician. The

Institutional Review Board of the New York State Psychiatric

TABLE 1 Basic infant demographics.

Site 1 (n = 101) Site 2 (n = 39) Site 3 (n = 50) Site 4 (n = 25)

Infant sex (nM/F) 53/48 20/19 25/25 12/13

Gestational age at birth (weeks [SD])a 39.2 (1.5) 39.0 (1.2) 39.7 (1.1) 38.6 (2.1)

Postnatal age at scan (weeks [SD])b 3.7 (1.8) 4.0 (2.0) 6.8 (2.4) 9.2 (5.1)

Postmenstrual age at scan (weeks [SD])c 42.9 (2.0) 43.0 (2.6) 46.5 (2.7) 47.8 (5.5)

Note: Infants were born to mothers recruited for the study of pregnancy conditions in a normative sample representative of the local population

demographic (i.e., healthy pregnancies).
aGestational age at birth at site 3 was larger on average than those at sites 2 and 4 (p < .05).
bSites differed in postnatal age at scan as follows: site 1 = site 2 < site 3 < site 4 (p < .05).
cInfants from sites 3 and 4 were older on average than infants from sites 1 and 2 (p < .05).
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Institute approved all study procedures, and all parents provided

written, informed consent (IRB: #7377).

2.2 | Data collection procedures

2.2.1 | Demographics

Demographic data required for analyses (gestational age at birth and

infant sex) were collected via a combination of medical record

abstraction, questionnaire, and participant interview. Postmenstrual

age at scan was defined as the sum of gestational age at birth and

chronological age at scan. Gestational age at birth was determined by

the best obstetric estimate with a combination of the last menstrual

period and early uterine size and was confirmed by obstetric ultraso-

nographic biometry before 15 weeks using standard clinical criteria at

all sites. Infant sex was abstracted from the medical record, and infant

scan age was recorded on the day of scan.

2.2.2 | MRI data collection

All MRI scans (including serial scans at 1 year of age at Site 1) were

acquired during natural sleep after feeding and soothing. MRI data

collection procedures broadly overlapped across sites, in that they

were performed at a common field strength (3 Tesla) but differed in

the vendor and acquisition strategy, as described below (Table 2).

2.3 | Hypothalamus segmentation approaches

2.3.1 | Naïve application of FreeSurfer
hypothalamus segmentation (segFS)

The segFS pipeline (https://surfer.nmr.mgh.harvard.edu/fswiki/

HypothalamicSubunits) (Billot et al., 2020) was applied to the new-

born T1-weighted images despite the tools having been previously

designed for, and validated in, adults. Sites not natively collected at

1 mm isotropic spatial resolution were resampled to 1 mm isotropic

spatial resolution in accordance with standard segFS procedures in

order to match the resolution at which the networks were trained.

Input images were not prospectively corrected for signal intensity het-

erogeneity as segFS was designed to handle image intensity

heterogeneity via data augmentation in training. Output segmenta-

tions were stored in the FreeSurfer compatible indexing schema con-

sisting of the five lateralized (10 total) subunits previously validated at

high resolution (Makris et al., 2013). In all analyses, subunits were

bilaterally averaged for increased statistical power and the absence of

well-founded a priori hypotheses about lateralization.

2.3.2 | Atlas-based registration for hypothalamus
segmentation (segATLAS)

In order to assess the accuracy of the segFS approach naïvely applied

to infants, we aimed to register a segFS atlas created in adult Mon-

treal Neurological Institute (MNI) template-space to the individual

native T1-weighted space (Figure 1) via a novel pipeline that lever-

aged recently published high-quality age-appropriate templates (Baby

Connectome Project, BCP) (Chen et al., 2022) and robust infant brain

extraction methods (ANTsPyNet, https://github.com/ANTsX/

ANTsPyNet) (Tustison et al., 2021). First, the segFS pipeline described

above was applied to the widely used 1-mm isotropic MNI template

and visually confirmed to be accurate. Next, native T1-weighted

images were brain-extracted using ANTsPyNet using T1-weighted/

T2-weighted imaging pairs, consistent with the BCP age-specific tem-

plates. Having confirmed an accurate segmentation of the hypothala-

mus in MNI-space and robust brain extraction, we non-linearly

registered the MNI template to the native T1-weighted space via an

age-appropriate middle registration point (Baby Connectome Project,

BCP) using Advanced Normalization Tools' (ANTs, http://stnava.

github.io/ANTs/) antsRegistrationSyN.sh function. Following visual

confirmation of accurate registration with an emphasis on the region

surrounding the hypothalamus, the non-linear transforms were

concatenated and applied to the segFS-derived atlas using the “Gen-
ericLabel[Linear]” option in ANTs' antsApplyTransforms function to

result in a native space segFS-compatible hypothalamic subunit

segmentation.

2.3.3 | Semi-automatic hypothalamus segmentation
via manual correction (segMAN)

Ground-truth segmentations using a semi-automatic approach were

created to further assess segmentation performance. Specifically,

manual corrections to binary hypothalamus assignment were made on

TABLE 2 Study acquisition
parameters.

Site Sample (n) Vendor Resolution (mm) TR (ms) TE (ms) TI (ms) Flip angle (�)

1 101 Siemens 1.0 iso 2400 3.16 1200 8

2 39 Siemens 0.8 iso 2400 2.22 1000 8

3 50 Siemens 0.8 iso 2400 2.22 1000 8

4 25 GE 0.9 iso 8.24 3.25 400 13

Note: T1-weighted imaging parameters are described.

Abbreviations: TE, echo time; TR, repetition time.
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top of the intersection between segATLAS segmentation and an alter-

native multi-atlas-based registration approach (segMAS, see Supple-

mentary Section S2, Multi-Atlas-based Registration for Hypothalamus

Segmentation). The rationale for including a second registration

approach (segMAS) was to reduce bias toward the segATLAS defini-

tion of the hypothalamus in the starting/initialization point for manual

corrections. In brief, for each individual, segMAS identifies five other

individuals matched for postmenstrual age and site with “successful”
segFS segmentations, non-linearly registers (antsRegistrationSyN.sh)

the set of five and their respective segFS segmentations to the indi-

vidual, and then uses a majority vote algorithm to provide a hypothal-

amus segmentation largely independent of the segATLAS definition.

Notably, because segMAS requires a two-stage process to identify

candidate segmentations for atlas construction, it was not considered

a viable method for widespread use. The segATLAS and segMAS seg-

mentations were then combined into an intersection (segATLAS and

segMAS) and union (segATLAS or segMAS) set as an underlay for

manual correction. Manual corrections were made in accordance with

the pre-defined borders used by Billot et al. (2020) to define segFS

regions and further outlined in Makris et al. (2013). All n = 215 data-

sets in the primary analyses were manually corrected in this manner.

A more complete description of the segMAS pipeline and manual cor-

rection validation and protocol is provided as Supplementary Material

(Section S3: Validating Manual and Registration-based Segmentation

Protocol).

2.4 | Hypothalamus segmentation output
assessment overview

The three main segmentation approaches (segFS, segATLAS, and seg-

MAN) were assessed in a systematic manner reflecting the study

design aimed at identifying a FreeSurfer consistent segmentation that

is fully automated, robust, and accurate. We began by comparing the

segFS versus segATLAS segmentations to determine the suitability of

adult-trained networks applied to newborn data. This comparison was

done qualitatively (visual inspection) and quantitatively via the Dice

Similarity Coefficient (DSC, MATLAB's dice function) and the distance

measures average distance (dA, average minimum distance between

surfaces) and the Hausdorff distance (dH, maximum distance between

surfaces). The DSC characterizes the amount of overlap between seg-

mentations and is formally defined as twice the number of elements

in intersection divided by the sum of the number of elements in each

set. A DSC of 0 indicates no overlap, while a DSC of 1 indicates per-

fect overlap. Previous reports of median DSCs in the context of the

adult hypothalamus range from values of 0.42 (expert inter-rater

DSCs for small subunits) to 0.89 (expert intra-rater DSC for the whole

hypothalamus) (Billot et al., 2020). After observing disagreement

between segFS and segATLAS segmentation approaches, we chose to

further interrogate these differences by regressing the DSCs against

postmenstrual age at scan to check for age-associations (i.e., assess

whether disagreement decreases as the brain matures) and quantify-

ing differences at the voxel level by the percentage of participants in

which voxels were identified in one set but not the other (segATLAS

but not segFS, and vice versa). Finally, both (segATLAS and segFS)

approaches were compared against the manually corrected segmenta-

tion (segMAN) definitions using DSCs and by extracting hypothalamus

volume to compare differences.

2.5 | Applied validation: Longitudinal stability
analysis

Longitudinal stability of the inter-individual variation in derived vol-

umes was assessed to help establish the validity and reliability of the

segmentation. Longitudinal stability validation was performed via

registration-based segmentation done precisely as above (segATLAS)

using the BCP 12-month template as the middle registration point.

Volumes were then residualized for postmenstrual age at scan. Finally,

newborn and 1-year-old derived volumes (adjusted for postmenstrual

F IGURE 1 Atlas-based
registration pipeline (segATLAS).
A registration pipeline was
designed to leverage high quality
age-appropriate atlases in
combination with a robust brain
extraction procedure. Collectively,
the proposed pipeline uses an
age-appropriate middle

registration point to warp a
FreeSurfer compatible definition
of hypothalamic subunits into
native infant space for
segmentation. BCP, Baby
Connectome Project; MNI,
Montreal Neurological Institute.
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age at scan) were regressed against one another, and stability was

reported as the coefficient of determination (R2). Similar procedures

were performed for segFS defined volumes, and previously validated

measures of semi-automatically segmented intracranial volume (ICV)

and amygdala (Graham et al., 2017) were reported for contextual

comparison. Of note, while we do not assert that these measures are

directly comparable due to differences in measurement and growth

and make no a priori hypotheses regarding the degree of relative sta-

bility between these structures, we do believe that their comparison

provides some context as to the relative reliability/stability of the

hypothalamic segmentations performed here.

2.6 | Code and data sharing plans

In accordance with the Material Design Analysis Reporting (MDAR)

guidelines promoting access to underlying data and code, de-identified

and unprocessed MRI data are available where applicable. Specifically,

Site 1 data are publicly accessible through the National Institute of

Mental Health Data Archive Collection #1890 (https://nda.nih.gov/

edit_collection.html?id=1890). Unprocessed data from sites 2, 3, and

4 are available through investigator approval and the execution of the

necessary Data Use Agreements (DUAs). The code and pipeline

described here are fully available and supported via a GitHub repository

(https://github.com/jerodras/neonate_hypothalamus_seg).

3 | RESULTS

3.1 | Comparison between Naïve FreeSurfer
(segFS) and atlas-based registration (segATLAS)
approaches

SegFS and segATLAS were compared qualitatively (visual inspection)

and quantitatively using DSCs as measures of agreement. Under visual

inspection, whole hypothalamus segmentations were often consistent

with one another (see example segmentations, Figure 2a), with the

exception of several cases presenting as gross underestimation of

the hypothalamus. In a supplementary analysis, visual inspection of

two additional external holdout cohorts with differing acquisition

approaches (vendor, resolution, and head coil) demonstrated no gross

errors in segmentation and were consistent with segmentations con-

tained in the primary dataset used here (see Supplementary Section-

S4: SegATLAS Pipeline Generalizes to Novel Cohorts). In line with visual

inspection, DSCs comparing segFS to segATLAS had a wide spread of

agreement ranging from virtually no agreement to good agreement

(mean DSC = 0.65 ± 0.14 SD; range = {0.03–0.80}). Whole hypothal-

amus volume determined by segATLAS was more strongly associated

with postmenstrual age at scan (Figure 2b; R2 = 65%; p < 10�5) than

segFS (R2 = 40%; p < 10�5), including when controlling for intracranial

volume (R2partial = 7.6% and 6.2% respectively; both p < 10�5). A main

effect of sex was present (male 4.2% larger than female; p < 10�3)

F IGURE 2 Summary of comparison between Naïve FreeSurfer (segFS) and atlas-based registration (segATLAS) approaches to segmentation.
Segmentation approaches (segFS and segATLAS) varied in their degree of agreement (example of good agreement, a). SegFS had several instances
of gross underestimation (e.g., data points below 200mm3, b), and segATLAS volume was more strongly associated with postmenstrual age at
scan than segFS (b). Segmentations in disagreement (segFS vs. segATLAS) tended to be younger (c) and underestimated by segFS (d, white border
indicates whole-hypothalamus border in template space).
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using the segATLAS derived volumes but not the segFS derived vol-

umes (p > 0.1); however, the main effect of sex was no longer present

(p > 0.1) after adjusting for intracranial volume. On average, those

hypothalamic segmentations that were in disagreement (low DSC)

between segmentation methods were also younger (Figure 2c;

p < 10�5) and underestimated by segFS (Figure 2d).

3.2 | Comparison between manual edits (segMAN)
and automatic segmentation (segATLAS and segFS)
approaches

Manually edited segmentations (segMAN) were quantitatively (DSCs,

volumetrics) compared with the two automatic segmentation

approaches used here (segFS and segATLAS). SegATLAS had higher

agreement than segFS (Figure 3, lower right). SegATLAS demon-

strated acceptable (defined here as median DSC > 0.7) DSCs in whole

and subunit hypothalamus segmentations, with the exception of the

two small anterior subunits (anterior–inferior and anterior–superior

hypothalamus). SegFS agreement with segMAN was acceptable

(median DSC = 0.72) at the whole hypothalamus level on aggregate

but with a relatively high failure rate (defined here as greater than

15% of the sample at a DSC < 0.6 threshold). At the segFS subunit

level, the failure rates ranged from as low as 54% in the larger

inferior-tubular region to 100% in the two small anterior subunits. In

contrast, the segATLAS segmentations had low failure rates (<5%) in

the three larger subunits (superior-tubular, inferior-tubular, and poste-

rior hypothalamus). However, in the two small anterior regions, segA-

TLAS had failure rates of 56% (anterior-superior hypothalamus) and

65% (anterior-inferior hypothalamus). Average (dA) and Hausdorff

(dH) distance measures support surface agreement with segATLAS

over segFS, relative to the manually corrected segMAN set (Table 3).

With respect to volumetrics, the segFS approach demonstrated a rela-

tively high degree of variability compared to segATLAS and segMAN

(Figure 3). On average, segMAN was significantly lower in volume and

consistent with the manual editing approach whose basis was the

intersection set of segATLAS and segMAS segmentations.

3.3 | Validation of atlas-based registration
(segATLAS) approach using longitudinal stability

Based on the above considerations demonstrating that the segATLAS

approach proposed here is accurate and robust while also satisfying

the first three of the initial design criteria (FreeSurfer compatible, fully

automated, open source), we sought to demonstrate the validity of

the segATLAS segmentations in the context of longitudinal stability.

SegATLAS, but not segFS (p > 0.1), hypothalamic volume was lon-

gitudinally stable across the first year of life (n = 41; R2 = 25%;

p < 10�3, Supplementary Figure S10) in a subset of the above data

F IGURE 3 Comparison between manual corrections (segMAN) and automatic approaches to segmentation (segFS and segATLAS).
Segmentation approaches were compared against manually edited standards. Example segmentations are shown in the top row (note the fornix is
properly excluded from the segmentation, white arrow). Bottom left depicts whole hypothalamic volume across methods. SegFS volumes had a
relatively widespread encompassing some implausibly small volumes. SegMAN volumes were smaller on average as they were biased (the
intersection of segATLAS and segMAS as the initialization point). Bottom right depicts the DSC values from each of the three segmentation
approaches in reference to segMAN segmentations.
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with repeated measures in the first year of life. This suggests that the

segATLAS approach can quantify early life phenotypic inter-individual

variation that is sufficiently larger than measurement noise for detection.

For additional context, we found the stability of the derived volume to

be comparable to that of amygdala volume (RAmygdala
2 = 23%, see also

Supplementary Section S5: Early Life Hypothalamic Volume Stability is

Comparable to Amygdala Volume for further details). With respect to sub-

unit volumetrics, stability measures across the first year of life were low

in the two smaller anterior subunits (anterior-inferior = 3%; anterior-

superior = 3%) but comparable to the whole hypothalamus in the three

larger subunits (posterior = 36%, inferior tubular = 18%, and superior

tubular = 19%). While the hypothalamic volume stability effect sizes are

smaller when compared to stability in intracranial volume (R2 = 55%),

the stability of hypothalamus volume was significant (n = 41; t = 4.2;

p < 10�3) over and above that of intracranial volume (i.e., after also

adjusting for newborn and 1-year old ICV).

4 | DISCUSSION

We report on a novel registration-based pipeline for segmentation of

the newborn human hypothalamus. The identified pipeline (segA-

TLAS) satisfies the initial design criteria by being compatible with

existing tools (i.e., FreeSurfer), fully automated, simple to use and

open-sourced, and valid. Specifically, we demonstrate that the segA-

TLAS pipeline is currently superior to existing tools (segFS, FreeSurfer

neural networks trained on adults) when applied to infant MRI data

and consistent with manually edited segmentations of the newborn

hypothalamus (segMAN). In addition, segATLAS segmentations dem-

onstrate validity in that they are associated with postmenstrual age at

scan, and relatively stable across the first year of life.

The performance of the segATLAS pipeline can be characterized

by its overlap with manually edited segmentations (segMAN). In

adults, agreement measures (DSC) between manual expert intra- and

inter-rated whole hypothalamus segmentations have been reported as

0.89 and 0.75, respectively (Billot et al., 2020). In this context, the

agreement between the atlas-based approach and manually edited

segmentations (DSC = 0.89) was comparable to expert intra-rater

agreement. Thus, these findings support the assertion that segATLAS

segmentations recapitulate manually defined hypothalamus segmen-

tations to a relatively sufficient degree.

We considered the strength of associations with postmenstrual

age at scan and the stability of the phenotype across the first year of

life as additional measures of segATLAS performance. Compared to

segFS, segATLAS volumes were more strongly associated with post-

menstrual age at scan (RsegATLAS
2 = 65% vs. RsegFS

2 = 40%). While

the magnitude of this effect size is not particularly surprising as the

infant brain is rapidly growing on a global scale, it is worth noting

that the effect of postmenstrual age was significant

(RsegATLAS
2 = 7.6%), even when adjusting for intracranial volume,

suggesting that there are growth dynamics in the hypothalamus that

are independent of global growth and detectable using the proposed

segmentation approach. This point is particularly salient when con-

sidering that the hypothalamus is known to be a highly relevant

structure to early life growth (Lam et al., 2021; Sutton et al., 2021)

and that, to our knowledge, no validated tools exist to properly auto-

matically segment this important structure in the newborn brain. In

addition to age effects, segATLAS hypothalamic volume demon-

strated a relatively high degree of stability across the first year of

life. Specifically, its degree of stability (RHypothalamus
2 = 25%) was

comparable to that of amygdala volume (RAmygdala
2 = 23%, see Sup-

plementary Section S5: Early Life Hypothalamic Volume Stability is

Comparable to Amygdala Volume), a brain phenotype/structure

whose volume quantification has been well-validated (Morey

et al., 2009) and shown to be of high biological relevance (Graham

et al., 2017; Ramirez et al., 2020). Based on these considerations, we

assert that the current pipeline holds considerable promise for clini-

cal research on intra- and inter-individual differences in the hypo-

thalamus and its role in health and development from birth.

It is worth noting that DSC and surface distance measures

between segATLAS versus segMAN were likely biased. Because seg-

MAN initialization was the joint set between segATLAS and segMAS,

there is likely to be a bias toward each of these segmentation proce-

dures. We assert that this was necessary in order to begin with Free-

Surfer as a prior while also allowing manual intervention under a

rigorous protocol to correct segmentations in accordance with previ-

ously published procedures (Goldstein et al., 2007) in an efficient and

feasible manner. However, because lateral subunit borders are chal-

lenging to define in infant MR images, and because manual interven-

tions were a priori decided to be conservative, it is likely that the

smaller subunit segATLAS vs. segMAN DSCs and surface-based mea-

sures are especially inflated due to this bias and should not be inter-

preted as accurate. Indeed, consistent with recent literature (Billot

et al., 2020; Ruzok et al., 2022), this work found the two smaller ante-

rior subunit segmentations to be unreliable and volumetric measures

should be used with caution. Future efforts aimed at improved

TABLE 3 Distance measures of hypothalamus segmentations.

Whole Ant-sup Ant-inf Posterior Inf. tubular Sup. tubular

dA(segFS) 0.61 ± 0.44 1.55 ± 0.93 1.46 ± 0.67 1.45 ± 0.76 1.24 ± 0.34 1.16 ± 0.32

dA(segATLAS) 0.13 ± 0.04 0.01 ± 0.01 0.02 ± 0.06 0.17 ± 0.07 0.07 ± 0.04 0.05 ± 0.02

dH(segFS) 2.25 ± 1.06 2.15 ± 1.52 2.39 ± 1.42 3.86 ± 2.15 2.86 ± 1.28 2.23 ± 0.97

dH(segATLAS) 1.13 ± 0.22 0.01 ± 0.10 0.21 ± 0.44 1.77 ± 1.69 1.25 ± 0.74 1.06 ± 0.23

Note: Distance measures reflect the average minimum distance between surfaces (dA) and maximum distance (dH). Semi-automatic segmentations serve as

the reference surface for distance measure calculation. Units provided are in mm.
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imaging methods (e.g., resolution/contrast) will help ensure more reli-

able discrimination of such structures.

The current manuscript describes a well-established registration-

based approach to image segmentation, applied here to the newborn

hypothalamus. While emerging neural network techniques show

promise for improving speed and accuracy, their performance often

diminishes when the neural network, generally trained on a limited

dataset with labels, is applied to a new dataset. This challenge is fur-

ther complicated in the context of infant MRI due to domain shifts

including varied data collection strategies and rapid changes in infant

brain size and signal contrast. Although transfer learning, a supervised

domain adaptation method, can mitigate the issue of domain shift, it

still requires expertise in brain annotation, which limits its widespread

adoption. It is notable that several research groups are now advancing

unsupervised domain adaptation methods (Shang et al., 2022; Zhang

et al., 2023), which obviate the need for expert annotation of local

data and, while not yet supported, are a promising avenue for fast,

accurate, and generalizable segmentation of the newborn hypothala-

mus. Toward this, the segmentation protocols detailed in this study

offer a framework for defining the newborn hypothalamus in a man-

ner that is consistent with a definition commonly used in adolescents

and adults. Thus, this work provides a reference point for establishing

manual annotations that are relevant for training neural networks

capable of segmenting the newborn hypothalamus while also being

applicable to the longitudinal study of its development. Furthermore,

the performance metrics reported here may provide critical perfor-

mance benchmarks to guide the development of unsupervised domain

adaptation methods capable of enhancing the efficiency and general-

izability of hypothalamic segmentation in infants.

Limitations of this pipeline include the relatively large FreeSurfer

subunit definitions, limited age-range, and algorithm speeds. First, the

hypothalamic subunits used here, despite validation at higher resolu-

tions (Makris et al., 2013), are limited in their biological application as

they are large with respect to the size of specific neuronal popula-

tions. However, we aimed to remain consistent with the FreeSurfer

definitions as we believe the benefit of being able to perform longitu-

dinal measures more readily across the lifespan outweighs the benefit

of specificity at current standard image resolution. In addition, it was

observed here that the two smaller anterior subunits were not reliably

segmented, further justifying the use of relatively large subunits. It is

also worth noting that the pipeline designed here is highly adaptable

in the sense that any hypothalamic parcellation scheme (e.g., a more

finely parcellated hypothalamus; Neudorfer et al., 2020) can be

substituted in place of the FreeSurfer scheme by simply replacing the

source atlas in MNI space. While the smaller ROIs provided by high-

quality delineation of the hypothalamus may not be large enough to

provide reliable estimates of volume, they are likely to be of high

value as individualized ROIs that can then be propagated into associ-

ated functional or diffusion data as seeds or ROIs. Second, in this

work, we focused entirely on the infant hypothalamus segmentation

as this was internally identified as a current limitation of the available

software. While we did perform stability analyses using this pipeline

at 12 months, we have not fully validated the pipeline segmentations

at 12 months. However, based on the stability of the phenotype, the

generalizability of registration-based approaches, and qualitative in-

house assessment of the segmentations at 1 year of age, we expect

that this pipeline would be readily applicable beyond the newborn

time point, particularly in cases where segFS does not provide accu-

rate segmentations. Lastly, the registration approaches used here took

approximately 45 min in duration per subject on a 2.4 GHz 8-Core

Intel Core i9 processor. Thus, this pipeline is not currently a strong

candidate for extremely large datasets without the use of high-

performance clusters. Therefore, future efforts aimed at using deep-

learning approaches to segmentation that can provide outputs on the

order of seconds would be warranted, particularly as large-scale

efforts at phenotyping the developing brain are currently underway.

In the following, we provide the user with specific recommenda-

tions and considerations for utilizing segATLAS to its highest poten-

tial. First, we recommend that segATLAS be used in infants less than

3 months of postnatal age. After this early life period, we observed

increasingly converging segmentations between segATLAS and segFS

out to roughly 6 months of age. Second, we recommend that both

T1-weighted and T2-weighted inputs be provided when available in

order to have the best possible starting point for registration to infant

atlases. However, if necessary, T1-only data inputs can be used with

apparently minimal impact on segmentation outputs (see Supplemen-

tary Section S6: SegATLAS Segmentation Using Only T1-weighted Input

For Masking for details). Lastly, we recommend using the highest

input resolution possible. Due to the hypothalamus' relatively small

size, any degradation in resolution will result in meaningful quantiza-

tion error (see Supplementary Section S7: Input Image Resolution and

the SegATLAS Pipeline for details). However, because we expect a user

base with a diverse set of use cases (e.g., volumetrics

vs. individualized seeds for connectivity measures) and expected

effect sizes (e.g., nuanced measures of shape vs. high impact clinical

endpoints), the user may be best positioned to determine what is suf-

ficient for their research question of interest.

5 | CONCLUSION

In conclusion, the findings from the current study support a hypothal-

amus segmentation pipeline that is capable of accurately and reliably

phenotyping biologically relevant subunits within the human newborn

hypothalamus using anatomical (T1- and T2-weighted) MR images col-

lected at resolutions on the order of 1 mm isotropic. Further, we

assert that this tool holds great promise in providing further insight

into the unique role of the hypothalamus and its subunits in shaping

trajectories of early life health and disease.
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