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Poisson Diagnostic
Classification Models:
A Framework and an
Exploratory Example

Ren Liu1 , Haiyan Liu1, Dexin Shi2 and Zhehan Jiang3

Abstract

Assessments with a large amount of small, similar, or often repetitive tasks are being
used in educational, neurocognitive, and psychological contexts. For example, respon-
dents are asked to recognize numbers or letters from a large pool of those and the
number of correct answers is a count variable. In 1960, George Rasch developed the
Rasch Poisson counts model (RPCM) to handle that type of assessment. This article
extends the RPCM into the world of diagnostic classification models (DCMs) where a
Poisson distribution is applied to traditional DCMs. A framework of Poisson DCMs is
proposed and demonstrated through an operational dataset. This study aims to be
exploratory with recommendations for future research given in the end.
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Diagnostic classification models (DCMs) classify examinees into groups of posses-

sing or not possessing a set of attributes based on their item responses. New DCMs

are burgeoning every day to handle complex and/or unique needs of assessments in
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educational and behavioral sciences. In this article, we consider situations where test

scores are count variables (e.g., Doebler et al., 2014; Jansen, 1997; Spray, 1990). For

example, examinees are asked to circle correctly spelled words in a 200-word test,

and their scores are the number of words they correctly pick out. Another example is

that examinees read aloud a passage and the number of errors is counted (Rasch,

1960). It could also be that examinees are asked to check yes/no from 50 simple con-

ditions regarding stress and anxiety such as blush, nightmare, diarrhea, and sweat,

and their scores are the number of conditions that they select (Taylor, 1953). A shared

feature of the aforementioned situations is that the number of items is large, and items

are either the same or very similar.

Current DCMs are item-based models where the unit of analysis is each exami-

nee’s response on each item, just like most item response theory (IRT) models. As a

result, each item is associated with at least two parameters under a DCM. This hap-

pens when the item only measures one attribute, is modeled under the simplest DCM,

and is scored in a binary fashion. When an item measures more attributes, is modeled

under a more complex DCM, or scored in a polytomous fashion, the item could be

associated with 10, 20, or even more parameters. Using existing DCMs to model the

example situations above brings in an enormously large amount of and unnecessary

parameters. Under those situations, it may be more appropriate to model the counts

of total successes rather than the responses on each individual item. Counts are often

modeled as coming from a Poisson distribution. The purpose of this article is to

develop a family of Poisson DCMs (PDCMs) where counts of successes or errors on

a set of tasks is modeled. The family of PDCMs closely mirrors the Rasch Poisson

counts model (RPCM; Rasch, 1960) in IRT and extends its basic structure into the

DCMs. Before introducing the PDCMs, we first review the basics of the Poisson dis-

tribution and the RPCM in the next section.

Model Development

Poisson Distribution

In 1830, Siméon-Denis Poisson, a French mathematician, developed a function to

describe the number of times an event could happen in a fixed time period when you

know how often the event has happened. That function is known as the Poisson distribu-

tion. The Poisson distribution defines the probability that the event happens s times as

P sð Þ= lsexp�l

s!
, ð1Þ

where l is the expected number of times that an event would happen in the fixed

time period. The l parameter, known as the rate parameter in a Poisson distribution,

is often a multiplicative function of both the number of tries (n) and the probability

of events happening (p): l = np: The Poisson distribution assumes that each event is

independent and distributed with a mean and variance of l.
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Rasch Poisson Counts Model

In 1960, George Rasch applied the Poisson distribution to model the number of errors

students make during oral reading tasks and thus developed the RPCM. Although it

is one of the earliest models that Rasch has developed, the RPCM has received less

attention than other binary or polytomous Rasch models. Suppose we ask students to

read 200 words in 10 blocks where each block has 20 words, and we record the num-

ber of successes in each block. In the RPCM, the unit of analysis is no longer stu-

dents’ correct/incorrect responses on each word; instead, an item i is defined as a

block, and a student’s score s on item i is the total number of successes in that block.

In other words, we could think of an item in the RPCM as a subtest or a collection of

tasks. The RPCM defines the probability of obtaining a score of s on item i given a

unidimensional latent trait u for examinee e as

P Xei = sjueð Þ = ls
eiexp�lei

s!
, ð2Þ

where lei = uebi, and bi represents the easiness of an item (i.e., easier items are asso-

ciated with larger bi values). Comparing Equations 2 to 1, we should be able to see

that the RPCM is a direct multivariate application of the Poisson distribution. One

problem with the current lei construction is that the person parameter (ue) and item

parameter (bi) are tied together using the multiplication. We are often interested in

obtaining separate person and item parameter estimates, and most IRT models esti-

mate those two types of parameters separately through an addition such as: ue + bi. In

addition, the lei represents the expected score that must be nonnegative, but both ue

and bi do not have boundaries. To solve those two problems, Haberman (1978) used

a natural log as a link with an additive specification to replace the multiplicative spe-

cification such that:

lei = exp ~lei

� �
= exp ln uebið Þ½ �= exp ln ueð Þ+ ln bið Þ½ �= exp ~ue + ~bi

� �
: ð3Þ

We can obtain the original ue and bi parameters by applying the exponential function

such that ue = exp(~ue) and bi = exp ~bi

� �
:

The Poisson Diagnostic Classification Model Framework

In essence, DCMs are confirmatory latent class models with different parameteriza-

tions of the measurement component. The basic structure a DCM can be written as

P X e = xeð Þ=
XC

c = 1

jc

YI

i = 1

pi, e, ð4Þ

where c = 1, . . . , C indexes predefined latent classes, jc represents the proportion of

examinees in class c, and pi, e denotes the probability of examinee e’s response on

item i. For example, existing DCMs for binary items parameterize pi, e into
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P Xi = 1jacð Þ based on different theories. To develop the family of PDCMs to account

for count data, we parameterize pi, e using the Poisson distribution. In this article, we

use k = 1, . . . , K to index binary latent traits (aka attributes) and ac = a1, . . . , aKf g
to index attribute profiles for latent class c. The information about item–attribute

relationship is contained in an item-by-attribute incidence matrix, commonly referred

to as the Q-matrix (Tatsuoka, 1983), where an entry qik = 1 when item i measures

attribute k, and qik = 0 otherwise. The general form of the PDCM defines the prob-

ability of examinees in attribute profile c obtaining a score of s on item i as

P Xi = sjacð Þ= ls
ciexp�lci

s!
, ð5Þ

lci = vT
i h ac, qið Þv0, i, ð6Þ

vT
i h ac, qið Þ=

XK

k = 1

v1, i, k ac, kqi, kð Þ +
XK�1

k = 1

XK

k0 = k + 1

v2, i, k, k0 ac, kac, k0qi, kqi, k0ð Þ+ � � � ð7Þ

lci = exp ln vT
i h ac, qið Þv0, i

� �� �
= exp ln vT

i h ac, qið Þ
� �

+ ln v0, ið Þ
� �

= exp fvT
i ac, qið Þ+ ~v0, i

h i
: ð8Þ

Let us explain each equation. Equation 5 is the item response function, which takes

on a form similar to the RPCM in Equation 2. Equation 6 describes the parameteriza-

tion of the lci, where we use v0, i to denote the baseline easiness of item i for exami-

nees that do not master the attribute(s) item i measures, and vT
i h ac, qið Þ is defined in

Equation 7 as all the possible main and interaction effects that examinees in ac could

impose on item i. The definition of lci is obtained by replacing ue in the RPCM by

vT
i h ac, qið Þ, and bi by v0, i: Similar to the approach that the multiplication is dealt

with in the RPCM, we use the additive log-linear function to separate the two compo-

nents of the lci as shown in Equation 8. We can obtain the original form of para-

meters by exp fvT
i ac, qið Þ

h i
=vT

i ac, qið Þ, and exp ~v0, ið Þ= v0, i:

This additive specification in Equation 8 allows us to connect the PDCM to other

DCMs that are based on generalized linear mixed models such as the log-linear cog-

nitive diagnosis model (LCDM; Henson et al., 2009). The LCDM is the most general

DCM for binary items that subsumes most earlier DCMs such as the ‘‘deterministic

inputs, noisy, and gate’’ (DINA) model (Haertel, 1989; Junker & Sijtsma, 2001) and

the linear logistic model (LiLM; Maris, 1999). The LCDM defines the probability of

examinees in attribute profile c correctly answering item i as

P Xi = 1jacð Þ=
exp v0, i + vT

i h ac, qið Þ
� �

1 + exp v0, i + vT
i h ac, qið Þ½ � : ð9Þ

Comparing Equations 9 to 8, we should be able to see the same set up of the

v0, i + vT
i h ac, qið Þ between the LCDM and the PDCM.
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To estimate parameters in the PDCM, we impose two types of constraint, one for

identifiability where some estimation approaches need and the other one for combat-

ing label switching. For identifiability, we could adapt the approach developed in

Jansen and van Duijn (1992) and impose

XI

i

v0, i = 1,

XI

i

v1, i, k = 18k,

XI

i

v2, i, k, k0 = 18k, k0,

and for all higher order interactions. Alternatively, one could put constraints on the

parameter distributions, which will be demonstrated in the operational study. To com-

bat label switching, we force v1, i, k � 08i, k so that mastering more attributes does

not decrease the mean of the Poisson distribution (i.e., lci). In other words, this con-

straint ensures that the average number of successes should increase or at least remain

the same if an examinee masters more attributes.

Models Under the PDCM Framework

The PDCM provides a modeling framework that could accommodate item response

functions that reflect specific theories. The family of PDCMs share the same struc-

ture in Equation 5 but with different parameterizations of the lci parameter. For

example, the PDCM-DINA model is based on the DINA model and reflects the the-

ory that not mastering an attribute cannot be compensated for by mastering another

attribute regarding the total score. In the PDCM-DINA model,

lci = v1, i

YK
k = 1

a
qi, k

c, k

 !
v0, i, ð10Þ

lci = exp ln v1, i

YK
k = 1

a
qi, k

c, k

 !
v0, i

" #( )
= exp ~v1, i

YK
k = 1

a
qi, k

c, k + ~v0, i

 !
: ð11Þ

We can see that the lci in the PDCM-DINA contains only two parameters per item

v1, i and v0, i regardless of how many attributes an item measures. This could help

reduce estimation burdens comparing to the general PDCM when an item measures

many attributes. Similarly, the PDCM-LLM, based on the LLM, reduces estimation

burdens through removing all the interaction effects between attributes. In the

PDCM-LLM,
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lci =
XK

k = 1

v1, i, k ac, kqi, kð Þ
" #

v0, i, ð12Þ

lci = exp ln
XK

k = 1

v1, i, k ac, kqi, kð Þ
" #

v0, i

" #( )
= exp

XK

k = 1

~v1, i, k ac, kqi, kð Þ+ ~v0, i

 !
:

ð13Þ

We can see that the lci contains ki + 1 parameters (i.e., ki v1, i, k parameters and one

v0, i) for item i. In addition to the two examples here, most traditional DCMs could

be applied to the PDCM with lci specifications. In applications, both theory and

model fitting results could provide information the selection of models in the PDCM

family.

Operational Study

To demonstrate how to use the PDCM in operational settings, we obtained data from

808 kindergarten students in China on an English Recognition Assessment. The

assessment measures their abilities to recognize basic English in three domains: num-

bers, colors, and objects. Each domain has eight blocks, each containing 10 English

words. Students need to drag the numbers/colors/objects into the blanks that match

the English words shown on the screen. An example block is given in Figure 1. In

this example, we can see that it may not be adequate to model each word as an item

because they are so simple and similar. Instead, we could count the total number of

correct or incorrect answers in each block (which is treated as an item) and fit the

proposed PDCM. Figure 2 shows the frequencies of examinees’ incorrect counts in

each block under each domain. Because most examinees have got most English

words correct in each block, we chose to count the number of incorrect answers in

each block as the input for the s parameter in Equation 5. When interpreting the

results, we flipped the binary definitions of each attribute where ak = 0 represents

mastery of ak and ak = 1 represents nonmastery of ak .

Figure 1. An example block in the operational study.
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We estimated the PDCM parameters using Hamiltonian Monte Carlo (HMC)

algorithms in Stan (Carpenter et al., 2017). The Stan syntax can be found in the

Supplemental Material. Specifically, we estimated a vector of class membership

probabilities: jc, 24 transformed intercept parameters: ~v0, i, and 24 transformed main

effect parameters: ~v1, i. The prior distributions, similar to those used in de la Torre

and Douglas (2004) and Liu and Liu (2020), were specified as

jc;Dirichlet 2ð Þ,

~v0, i;Normal 0, 2ð Þ,

~v1, i;Normal 0, 2ð Þ:

Different priors may be selected based on theories and properties of the dataset,

which may influence parameter estimates. Four Markov chains were specified with

each a length of 20,000, where the first 10,000 draws were discarded and the rest

10,000 were used for inference. Gelman-Rubin’s R̂ values (Gelman & Rubin, 1992)

Figure 2. Distributions of the counts of examinees’ incorrect answers in each block.
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for each parameter were smaller than 1.00, suggesting convergence. Posterior predic-

tive p-values (PPPs; Gelman et al., 2013) was 0.55, suggesting good model-data fit.

Table 1 lists the mean and standard deviation of the posterior distribution for each

item parameter. We also computed the lci in Equation 8 using the mean values of

~v0, i and ~v1, i. Using the estimated lci, we could compute the probability of getting

different incorrect counts in each block. Take Block 1 (i.e., i = 1) as an example;

Block 1 is measuring a1: ‘‘numbers,’’ and we could compute the probability of get-

ting 0 incorrect answer, 1 incorrect answer, and 2 incorrect answers using Equation

5, P Xi = sjacð Þ= ls
ciexp�lci

s! , that is,

P Xi = 1 = 0ja1 = 0ð Þ = 0:3730exp�0:373

0! = exp�0:373

1
= 0:689 for masters,

P Xi = 1 = 0ja1 = 1ð Þ = 0:7310exp�0:731

0! = exp�0:731

1
= 0:481 for non-masters,

P Xi = 1 = 1ja1 = 0ð Þ = 0:3731exp�0:373

1! = 0:373exp�0:373

1
= 0:257 for masters,

P Xi = 1 = 1ja1 = 1ð Þ = 0:7311exp�0:731

1! = 0:731exp�0:731

1
= 0:352 for non-masters,

P Xi = 1 = 2ja1 = 0ð Þ = 0:3732exp�0:373

2! = 0:139exp�0:373

1
= 0:010 for masters,

Table 1. Mean and Standard Deviation of the Posterior Distribution for Each Item
Parameter in the Operational Study.

Item

Mean Standard deviation Transformed l parameters

~v0, i ~v1, i ~v0, i ~v1, i la = 0, i la = 1, i

a1: numbers 1 20.987 0.674 20.987 0.674 0.373 0.731
2 20.930 0.689 20.930 0.689 0.395 0.786
3 20.929 0.658 20.929 0.658 0.395 0.763
4 21.012 0.693 21.012 0.693 0.364 0.727
5 21.056 0.660 21.056 0.660 0.348 0.673
6 20.845 0.659 20.845 0.659 0.429 0.830
7 20.912 0.659 20.912 0.659 0.402 0.776
8 21.082 0.655 21.082 0.655 0.339 0.652

a2: colors 9 20.333 0.801 20.333 0.801 0.717 1.598
10 20.341 0.812 20.341 0.812 0.711 1.602
11 20.351 0.805 20.351 0.805 0.704 1.575
12 20.364 0.773 20.364 0.773 0.695 1.506
13 20.302 0.780 20.302 0.780 0.739 1.613
14 20.382 0.823 20.382 0.823 0.682 1.554
15 20.331 0.825 20.331 0.825 0.718 1.639
16 20.323 0.819 20.323 0.819 0.724 1.642

a3: objects 17 20.598 0.745 20.598 0.745 0.550 1.158
18 20.500 0.757 20.500 0.757 0.606 1.293
19 20.576 0.741 20.576 0.741 0.562 1.178
20 20.465 0.749 20.465 0.749 0.628 1.329
21 20.454 0.765 20.454 0.765 0.635 1.365
22 20.469 0.757 20.469 0.757 0.626 1.334
23 20.516 0.763 20.516 0.763 0.597 1.280
24 20.496 0.730 20.496 0.730 0.609 1.263
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and

P Xi = 1 = 2ja1 = 1ð Þ = 0:7312exp�0:731

2! = 0:534exp�0:731

1
= 0:257 for non-masters.

Similarly, we computed those values for each block and displayed the results in

Figure 3. Figure 3 only showed the probabilities of up to six incorrect answers

because the probabilities for more than six incorrect answers became too small.

However, one could compute the probabilities of getting any numbers of incorrect

answers up to the total number of blocks. The overall trend in Figure 3 is that for

masters, the probability of getting more incorrect answers was constantly decreasing

for items that measure any of the three attributes. For non-masters, the probability of

getting more incorrect answers was decreasing for items that measure a1: ‘‘num-

bers,’’ but the peak for a2: ‘‘colors’’ and a3: ‘‘objects’’ was at one incorrect answer.

Comparing across the three attributes, the probabilities of getting incorrect answers

tell us that a1 was easier than a2, which was easier than a3.

Discussion

This article provided a framework for modeling count data under the DCM frame-

work and demonstrated its uses and interpretations with an operational dataset. The

PDCM framework can be especially useful for assessments with many small and

repetitive units. For example, in education, teachers give out words or numbers to

Figure 3. Model predicted probabilities of the counts of examinees’ incorrect answers in
each block.
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test whether students have mastered them; in psychology, simple recognition tasks

are used to test respondents’ attention, memory, or thinking skills. Integrating the

Poisson distribution into the DCMs offers tools for teachers to decide student mas-

tery on specific knowledge and for psychologists to classify respondents with mental

disorders.

The current study aims to be an exploratory piece of work that taps into DCM with

count data. Future work is needed on at least the following aspects. First, although it

is expected that the PDCM holds similar characteristics as other psychometric models

where larger sample sizes and/or longer test length and Q-matrices with fewer cross

loadings produce more accurate results, simulation studies could be conducted to ver-

ify that. Second, some operational assessments of this type may have time limits on

each task. Extending the current PDCM to include time factor could be studied.

Specifically, one could consider lci = tiv
T
i h ac, qið Þv0, i, where ti represents the time

limit for item i. Third, beyond the current HMC estimation method, other estimation

methods such as the maximum likelihood estimation could be studied. Fourth, opera-

tional psychometric topics such as differential item functioning could be studied with

respect to the PDCM. Ultimately, much more work is needed as the PDCM becomes

more useful with respect to its specific type of assessment.
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