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ABSTRACT OF THE DISSERTATION
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Professor Anthony John Nowatzki, Chair

The once exponential general purpose processors’ (e.g. CPUs) growth of speedup driven by

transistor scaling is fading, which urges both industry and academia to find more energy-

efficient and performant architecture organization. Therefore, research on accelerators spe-

cialized for applications of interest emerges because of their promising speedup and energy

saving while retaining flexibility. To design and implement specialized accelerators, intensive

human effort is required to study the target applications and determine tradeoffs between

performance and cost. In addition, these newly proposed hardware often implies lagging

compilation techniques, which hinders the programming productivity. All these facts signif-

icantly limits the programmable accelerator adoption.

Moreover, all the prior development effort can hardly be reused in other applicable do-

mains, because the current software/hardware co-designed innovations seldom consider mod-

ularity for future integration. Therefore, research projects presented in this dissertation aim

at significantly reforming the full-stack reconfigurable accelerator design paradigm: Ideally,

each software/hardware co-design feature can be comprised in a universal design space for
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further accelerator composition so that people no longer build accelerators from scratch.

Further, an accelerator can be automatically generated based on the given applications of

interest written in a unified high-level programming interface.

To achieve this goal, this dissertation develops the framework, DSAGEN, including an

accelerator design space with rich software/hardware co-design features, a compiler targets

to accelerators with arbitrary design points within this space, and a design automation

algorithm that efficiently searches this space. According to our evaluation, the compiler can

robustly target multiple application suites on hardware with arbitrary feature combinations.

The framework-generated accelerators can have comparable perf/mm2 compared with prior

handcrafted domain-specific accelerators.

In addition, to demonstrate the wide applicability of our approach, the insights and

principles learned along with this goal are also applied to applicable research questions: By

deploying the DSAGEN-generated accelerator as a reconfigurable overlay on FPGA, it saves

orders-of-magnitude time on compilation and reconfiguration compared with conventional

high-level synthesis, while retaining flexibility. This approach suggests that a deeply spe-

cialized programmable overlay accelerator can potentially supplement the existing FPGA’s

high-level programming paradigm. Also, the compilation techniques for spatial architectures

developed in DSAGEN can be applied to compiling an emerging instruction paradigm spe-

cialized for tensor operations — a productive and extensible compilation framework, UNIT,

is presented for these instructions. The extensibility of this framework allows developers to

easily integrate new instructions by describing the instruction semantics. High-performance

code, that outperforms vendor provided libraries up to 2.2×, for end-to-end inferences can

be generated by tensorized rewriting, accompanied with our automated tuning strategies.
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CHAPTER 1

Introduction

The free ride of transistor scaling that drives the speedup of general-purpose processors

(GPP) for decades is approaching its end. Therefore, hardware specialization has attracted

significant attention from both academia and industry because of their promising perfor-

mance and energy efficiency over general purpose processors.

Developing a specialized accelerator as well as its associated software stack requires non-

trivial engineering effort to design and implement. Moreover, prior effort on having such

a full-stack implementation can hardly be reused when shifting to a new accelerator. To

solve this issue fundamentally, this dissertation presents a new accelerator design and imple-

mentation paradigm to not only unify the programmable accelerator design space, but also

automate the accelerator design process.

1.1 Motivation

In this section, we first overview the inefficiency of general-purpose processors to motivate

specialized accelerators, and explain the issues among the current specialized accelerator

design and implementation.

Understanding the Inefficiency of GPP General-purpose processors adopt an imper-

ative execution model. Each application is represented as a sequence of instructions (a.k.a.

thread). To execute the application, each instruction undergoes a lengthy pipeline, fetching
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the instructions, decoding the semantics to prepare operands, executing the computation,

accessing memory if needed, and writing the results back. This pipeline maintains generality,

but it also suffers from high overhead — only a small portions of the energy and time are

consumed by computation itself [66]. In reaction to the increasing demands to performance,

mechanisms like scoreboard, Tomasulo, super scalar, speculative execution and out-of-order

issue were invented to improve the instruction concurrency by aggressively seeking opportu-

nities of issuing more instructions concurrently to the execution pipeline. These mechanisms

not only improve the performance, but also intensify the energy consumption and the chip

design complexity to enforce the inter-dependent semantics among the instructions.

Designing and Implementing Specialized Accelerators Because of the inefficiency

of the general-purpose pipeline, developers seek to break and reform the software/hardware

interfaces and the execution model, so that hardware mechanisms specialized for program

behaviors of interest (which will later be referred as “idioms”) can be built to achieve orders-

of-magnitude speedup and energy saving over GPPs.

In academia, specialized accelerators surge in many application domains which span

AI/ML [55, 57, 113, 267, 283, 115, 201, 22, 217, 231, 56, 258, 132, 163, 183, 129, 96],

databases [144, 278, 133, 74], system [86, 87], genomics [45, 252, 94, 253], and graph pro-

cessing [111, 74, 241, 290, 77, 128, 196, 269, 287, 51, 50, 20, 300]. In industry, accelerators

are widely adopted in data centers, like Microsoft Brainwave [3], Amazon Inferentia [2], and

AQUA [1], and Google TPU [131]. Both Apple and QualComm have kept increasing the

number of specialized blocks on their SoCs for image, audio, and signal processing in the

past decades.

Widely adopted accelerators not only indicate the popularity of specialization hardware,

but also cast a question: do we really need so many accelerators? Specialized accelerators

all require a lengthy process to study the program idioms, design specialized mechanisms,

balance the tradeoffs between performance and cost, and finally implement the hardware.
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Besides designing and implementing the hardware itself, the programming interfaces should

also be carefully considered when targeting a programmable design. The software/hardware

interface is aggressively reformed to encode the program behaviors of interest, so reinventing

the software stack always involves non-trivial effort. When the target domain shifts, this

engineering-intensive process is likely to be repeated from scratch.

Therefore, instead of proposing yet another accelerator for another important application

domain, the core projects presented in this dissertation rethinks the current accelerator de-

sign paradigm, and develops a design automation flow to fundamentally save the accelerator

design and implementation effort. Ideally, all the software/hardware co-designed innovations

should be unified in a universal design space, and programmed from a stable, domain-neutral,

and high-level language. Building a new full-stack programmable accelerators no longer has

to start from scratch, and can even be automated. The software stack design and imple-

mentation will be elaborated in Chapter 4, and the design automation will be discussed in

Chapter 6 and Chapter 7 [273, 166].

General-Purpose Extensions Because of the promise of hardware specialization, and in

reaction to the increasing demands on computing power, general-purpose hardware vendors

also extend their instruction set architecture, from vectorized extensions (e.g. X86 AVX, and

ARM SVE) to tensorized instructions1 (Intel VNNI [9] and NVIDIA TensorCore [6], to their

chips. These instruction extensions can achieve significant speedup on the applications they

are designed for, but the compilation techniques for these extended instructions are often

lagging, which hinders their adoptions. Application developers have to either call vendor-

provided libraries, which lacks flexibility when programming new applications, or program in

low-level interfaces, which is unproductive to manage low-level interfaces, when using these

newly emerging instructions.

1We first coined this word “tensorization” for instructions specialized for tensor operations in work, UNIT:
Unifying Tensorized Instruction Compilation [274].

3



7: DSAGEN

Fixed 
Function

M
an

ua
l 

De
sig

n

Programmable

Au
to

m
at

ed
 

De
sig

n

EIE: SpMV

PipeZK: 
ZK-proof

DIMMining:
Graph Mining

AutoESL

Stream 
Dataflow

SPU: 
Irregularity

CPU

Graphicionado

1

Application-Specific 
Accelerators
- Manually design a dedicated 
accelerator.

4

2

Reconfigurable 
Accelerators
- Specialized for app domain
- Program in low-level interf 3

General-Purpose 
Processors
- Lack of deep specialization
- High programmability

GPU
DSP

High-Level Synthesis
- High-level programming interf
- Limited design space
- Dedicated design

Our Approach: DSAGEN
- Unified high-level programming interf
- Generates specialized accelerators automatically
- A knob to programmability/specialization

6 GPP Chip Generator
- Lack of deep specialization
- Tune template arch by params

Tensilica
MESCALRigel: ISP

AutoSA
5 TAPA

HLS-Based DSA
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In this dissertation, we also develop a productive and extensible compilation flow for

these tensorized instructions, which will also be discussed in Chapter 8.

1.2 Goal: Automating Specialized Accelerator Design

Specialized accelerator design has long been monopolized by big companies, because of its

lengthy design process and intensive human efforts. Multiple teams of people have to iterate

over different specialized accelerators at each generation, and the effort spent on accelera-

tors can hardly be reused in other applicable domains, because of the ad-hoc design style

and lack of considerations on modularity. As it is shown in Figure 1.1, a spectrum graph

for prior specialized hardware design paradigms, many handcrafted prior accelerators, no

matter application specific 1 [113, 292, 78] or programmable 2 [111, 193, 74] all involve

intensive and repeated engineering efforts: Many common program behaviors of interest
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widely exists in many different applications and application domains; once such a behavior

is studied to derive a specialized mechanism, it can potentially be reused for all these appli-

cations involved. For example, sparse memory access (e.g. a[b[i]]) widely exists in many

application domains, including graph processing [74, 111], sparse tensor operation [113], and

encryption algorithms [292], but few prior works seek to take advantage of this opportunity

to save excessive design effort. Based on this observation, a key insight is that many com-

mon hardware/software co-designed features can be extracted and modularized from prior

accelerators, and further, a specialized accelerator can be built by composing these features.

In reaction to the high design effort, high-level synthesis (HLS) 4 [65, 137] and 5 [59,

268, 34, 238] tries to automate the design of application-specific or domain-specific accelera-

tors by encoding the accelerator design demands in a high-level abstraction. These conven-

tional HLS tools are often application-specific and adopt a very complicated pragma system

to expose some excessive low-level details, including memory banking, pipelining, and even

some parallelism that is not supposed to be exploited in an imperative and sequential pro-

gramming interface (e.g. dataflow across multiple loop nests). On the other hand, multiple

applications can be captured by domain-specific HLS tools, but their design spaces are lim-

ited to the target domain. Another approach to accelerator design automation 6 [254, 213]

is to tune a set of design parameters of a template hardware (e.g. #cores, and LLC capacity)

so that the generated accelerator can be better customized for the target application domain.

This approach minimizes the accelerator design effort, but adopts a relatively limited design

space.

A key goal of this dissertation is to present a fundamentally new accelerator design

paradigm to save the excessive design effort of a full stack implementation. By giving the

target domain of applications written in high-level programming languages, our framework,

DSAGEN 7 [273], generates a deeply specialized reconfigurable accelerator within a rich

design space. Besides design automation itself, this approach also offers a knob to explore the

tradeoff between the accelerator performance and the generality by feeding different subsets
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of applications to the framework, which is shown as a spectrum arrow in Figure 1.1 (other

approaches are all points). To achieve this goal, several design demands are imposed to each

aspect of this framework:

• Design Space: The universal design space should be both modular and general. By

modular, it means each software/hardware co-designed feature can be independently

integrated to the target hardware. By general, this design approach generates domain-

specific accelerators, while the target domain itself is agnostic. Therefore, the universal

design space should be general enough to cover as many potential domains.

• Software Stack: This programming interface should be expressive enough to develop

general-purpose applications, and the compiler should be robust to handle any combi-

nation of the features. This is the key aspect of this framework, because 1. programs

naturally encode the accelerator design demands; 2. the compiler best understands the

correspondence between the software behavior and the hardware specialization.

• Design Space Exploration: To well leverage the compiler’s awareness on the soft-

ware/hardware co-optimization, an effective and efficient design space explorer should

be developed. Effective means that it should effectively evolve the candidate hardware

by evaluating the software/hardware affinity. Considering the high cost of running the

applications and synthesizing the hardware, the explorer should efficiently estimate the

software/hardware affinity.

The technical details of this design automation framework, DSAGEN, will be presented

in Chapter 6. The acronym, DSAGEN, can be both used as domain-specific accelerator as

well as decoupled-spatial architecture. A decoupled-spatial architecture with rich optional

specializations will be generated, according to the specialization demands given by the target

application domain. The decoupled-spatial architecture paradigm is particularly attractive

to build programmable accelerators because of its flexibility and capability on deep special-

ization, which will be overviewed in the next section.
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Figure 1.2: Composing prior accelerators by basic primitives

1.3 Decoupled-Spatial Architectures

In this dissertation, we particularly focus on the decoupled-spatial paradigm for our special-

ized accelerator design automation because of its capability to become deeply specialized for

a wide range of potential applications (achieving near-ASIC performance) while retaining

flexibility.

This architecture paradigm was studied since the 1980s [236], and has been widely

adopted by many prior works [154, 55, 210, 193] as it is shown in Figure 1.2. By decoupling

memory access and computation, memory bandwidth can be better utilized while retaining a

programmable software pipeline on a spatial architecture. Spatial refers to the spatial layout

of the architecture’s computing resources connected by the on-chip network. These architec-

tures expose the computing resources (also called as processing elements, PE) and on-chip

network to their low-level programming interfaces so that instructions can be mapped to

computing resources and dependences among the instructions can be routed through the

on-chip network. The characterization of spatial architectures will be elaborated in Chap-

ter 2. Built on the top of spatial paradigm, the decoupled data access specialization will be
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discussed in Chapter 3, and the software stack of this decoupled-spatial paradigm will be

explained in Chapter 4.

1.4 Contributions

In this section, the contributions achieved by the published works, including DSAGEN [273],

REVEL [276], UNIT [274], and OverGen [166], will be discussed.

Taxonomy of Execution Model of Spatial Architectures The execution model of

spatial architecture can be categorized in two dimensions, the timing of the execution and the

number of instructions mapped to each single processing elements. These two together enable

tradeoffs among performance, programmability, degree of specialization, and hardware cost.

We characterize each execution model to determine the scenarios at which each specific

execution model is good. This will be in detail discussed in Chapter 2.

Modular ISA for Specialization (Exploration) As discussed above, prior design effort

can hardly be reused for future applicable places because of lacking considerations on mod-

ularity, and a well-defined design space. We address this issue by modularizing each hard-

ware/software co-designed feature, so that they can be independently integrated/disabled in

a target hardware. All the future design effort can be comprised within this design space

by either extending existing features or adding new features. This design approach was

first practiced in our work REVEL discussed in Chapter 5, and later used as a part of our

automated design space exploration in Chapter 6.

A Hardware-Neutral Programming Interface To productively program the accelera-

tor, high-level abstraction is desired. Though the underlying hardware may have an arbitrary

set of specialized features, they all follow the same decoupled-spatial paradigm. We develop

a unified high-level abstraction for this paradigm. With moderate human hints, the compiler

8



can understand the opportunities of hardware specialization.

Modular Compilation Transformation To bridge the gap between the hardware-neutral

programming abstraction and the arbitrary subset of specialized features, the compiler also

modularizes hardware-specialized transformation passes. Corresponding to the modular ISA,

for each transformation that requires a specific hardware support, there is always a corre-

sponding “fall back” transformation that avoids using this feature. This approach accompa-

nied with the programming interface discussed above will be elaborated in Chapter 4.

A Software/Hardware Co-design Algorithm for Design Space Exploration We

build an algorithm to automatically generate a specialized decoupled-spatial architecture

deeply specialized for the given set of applications. To efficiently search the design space and

guide the candidate hardware evolution, we need to determine software/hardware affinity

rapidly by estimating the hardware cost and software performance. Instead of synthesiz-

ing the design and profiling each application, we build analytical models to predict these

numbers. The hardware cost is estimated by a regression model based on values of each

component collected by synthesizing each single hardware component, and the software

performance is calculated by estimating the instruction parallelism on the spatial architec-

ture. This design automation algorithm is a key aspect of our design automation framework

DSAGEN, which will also be in detail explained in Chapter 6.

A Brand New FPGA Programming Paradigm FPGA programming is known to be

difficult and time consuming. Developers either need to manage excessive low-level details

by writing register-transfer level (RTL) language or use high-level synthesis (HLS). Though

HLS provides a relatively high-level abstraction, it also trades off flexibility and still suffers

from long FPGA backend time. In another accomplished work presented in this disserta-

tion, OverGen, we propose a brand new FPGA programming paradigm — auto-generated

programmable accelerators are deployed on FPGA as another level of overlay. A unified

9



coarse-grain programmable design not only saves the time of invoking the FPGA backend,

but also improves orders-of-magnitude compilation and reconfiguration time. This work is a

follow-up of DSAGEN, which will be discussed in Chapter 7.

A High-level and Extensible Programming Interface for Tensorization Hardware

vendors extends specialized instructions, including NVIDIA TensorCore, Intel VNNI, and

ARM VDOT, for the increasing demands on computing power for tensor operations, but the

compilation techniques are lagging. Based on a tensor domain-specific language, TVM [53],

a high-level and extensible compilation flow for tensorized instructions is developed, which

will be elaborated in Chapter 8.

1.5 Organization

The goal of our proposal is to enable a full-stack ecosystem for designing and implementing

specialized accelerators. In the rest of this dissertation, we will first in detail describe the

background of the spatial architectures as well as the decoupled access specialization in

Chapter 2 and Chapter 3. The software stack of this architectural paradigm will be explained

in Chapter 4. Then, we demonstrate a case study of how the principle of composing hardware

primitives helps specialized architecture design in our completed work, REVEL, in Chapter 5.

Based on the promise of the case study, we will discuss how automated software/hardware

co-design of decoupled-spatial architectures is achieved in our completed work, DSAGEN, in

Chapter 6. By applying the principles and insights we learned from DSAGEN, we also have

works that propose a new FPGA programming paradigm, discussed in Chapter 7, and build

an extensible and high-performance compilation flow for the emerging tensorized instruction

paradigm, discussed in Chapter 8. Finally, we will discuss the future directions of this area

and conclude this dissertation in Chapter 9.
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CHAPTER 2

Spatial Architecture Taxonomy

In this chapter, we set up the background of spatial architectures by characterizing spatial

architectures in two different aspects, the execution model and the granularity to get poised

for the decoupled-spatial paradigm in the next chapter.

2.1 Spatial Execution

In this section, a basic execution model of spatial architectures will be covered, and then the

tradeoffs among different spatial architecture variants will be discussed.

Spatial refers to the layout/topology of the computing resources connected and the on-

chip network. As it is shown in Figure 2.1(c), the computing resources (also referred as

processing elements, PEs) of this spatial architecture adopt a meshed layout connected by

on-chip network composed by switches. These computing resources and on-chip network

are exposed to the low-level software/hardware interfaces. The processing elements are for

the instruction execution, and the on-chip network routes the dependences among these

instructions.

To map a dot product program shown in Figure 2.1(a) to a spatial architecture, all the

instructions are first represented in a data dependence graph as shown in Figure 2.1(b).

Then each aspect of this graph will be isomorphically mapped to a spatial architecture.

Each operation is mapped to the processing element, and each edge dependence is routed

through the network. Note, because all the instructions are locally buffered in the processing

element, conditional execution cannot be supported by branches in imperative thread like

11
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Figure 2.1: Mapping a dot product to spatial architecture.

CPU. Instead, as it is shown in Figure 2.1(d), a predication based execution is adopted

— besides the operands of addition, an additional predicate is also fed to the processing

element to control execution behavior by looking up a control table inside so that the result

of accumulation is produced only at the last iteration of the loop.

Mapping a program to a spatial architecture can either be done by manually program-

ming the low-level interfaces or by spatial compilers. There are also semi-automatic works

which accepts manually extracted graphs as inputs and schedule them onto the spatial ar-

chitecture [291, 172, 192, 158]. Such a baseline mapping algorithm will later be elaborated

in Section 2.3.

Understanding the Performance Gain over GPP The spatial execution enables a

programmable software pipeline. All the instructions are locally buffered in the processing

elements so that the overhead of instruction fetching and decoding caused by the impera-

tive pipeline is amortized. Moreover, the performance is longer bound by the size of the

instruction issue window. Similarly, the data dependences are routed by the on-chip net-

work instead of accessing a centralized register file, so the resource idle caused by instruction

dependences is also minimized.
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Decoupled-Spatial Paradigm Spatial execution enables high instruction-level paral-

lelism by distributing instructions across the processing elements. On the other hand, be-

cause of this distributed nature, each memory access has to be made in scalar and hard

to coalesce, which underutilizes the memory bandwidth. This can be solved by the im-

proved decoupled-spatial paradigm. The memory access pattern of interest can be encoded

in the software/hardware interface to coalesce and better use the memory bandwidth. This

architectural paradigm will be discussed in the next chapter.

Variant Taxonomy There are several variants of the spatial execution model, which can

be characterized in two dimensions, the instruction buffer size of each PE (either dedicated to

one instruction or shared across multiple instructions) and the timing of instruction execution

(either statically determined by the compiler or dynamically determined by the runtime).

Next, we will stick to Figure 2.2 to explain the micro-architectural support for different

execution models and their tradeoffs between cost and specialization. Different execution

models are determined by both the on-chip network, and the processing elements. The

execution model taxonomy is shown in Figure 2.3, and Table 2.1 gives examples of each
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category. We explain each quadrant:

• Static/Dedicated (Systolic): The simplest processing element whose instruction

buffer has only one slot 2 , and it has very strict requirement for the timing of the

data arrival. For a multi-operand instruction, each operand should reach the processing

element at exactly the same time. To meet this timing requirement, the compiler is

required to adapt the timing of data arrival using the FIFO buffers ( 6 in Figure 2.2).

Data can be temporarily stored in these FIFO buffers to lengthen the timing of data

arrival. The static timing and small instruction buffer keep the hardware simple by

escaping the control logic to check the data availability. On the other hand, since the

FU is always active, its power consumption is higher.

• Static/Shared (CGRA) Conventional coarse-grain reconfigurable arrays (the gran-

ularity will be explained in Section 2.2) adopts a statically shared execution. Multiple

instructions can share computational resources within one single PE, and there is an
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Dedicated PE Temporally Shared PE

Static

Scheduling

“Systolic”

Warp [25], FPCA [69], Soft-

brain [193], Tartan [179],

Piperench [102]

“CGRA”

MorphoSys [234], Remarc [180],

MATRIX [178], ADRES [173],

WaveFlow [189]

Dynamic

Scheduling

“Ordered Dataflow”

DySER [104], Q100 [278],

Plasticine [210]

“Tagged Dataflow”

SGMF [263], dMT-CGRA [264],

Triggered Instructions [200],

WaveScalar [244],TRIPS [44]

Table 2.1: Classifying Architectures within Spatial Taxonomy

arbiter in the PE which determines the instructions to execute in each cycle accord-

ing to a pre-compiled static schedule. This PE costs additional area and power for a

larger instruction buffer 2 and a larger register file 5 for intermediate results com-

municating across instructions, while keeping a simple instruction scheduler 3 . This

execution model imposes more challenges to the compiler because larger instruction

buffer and register files exponentially enlarge the space of mapping the instructions to

the architecture.

• Dynamic/Dedicated (Ordered Dataflow) Compared with the static/dedicated

PE’s, this kind of PEs introduce additional control logic to check the data availability

and trigger the instruction execution and data producing/consumption conditionally.

Since data producing and consumption rate is determined by the dynamic conditions,

the on-chip network should also be extended to support backpressure to dynamically

control the data traffic. This dynamic timing offers more semantic flexibility to cap-

ture workloads with dynamic data consumption (e.g. key-value join), which will be

discussed in Section 4.4.

15



FPGA Configurable 
Logic Block (CLB)

LUT

Flip 
Flop

M
U

X

(a) Fine-Grain PE

Arith.
Unit

Inst. 
Buffer

Inst. 
Sched.

Regs

MUX MUX

C

(b) Coarse-Grain PE

MUX

(c) Decomposable PE

MUX MUX MUX

FU

I/B

I/S

Reg

FU

I/B

I/S

Reg

Bundle or Route

• Programmability at bit level
• Look up several bits (typically 1-4)
• Compose CLBs for various functionality

• Programmability at word-level
•Arithmetic capability determined 

after fabrication

• Subword FUs can be composed or 
decomposed for different precision

Figure 2.4: Spatial PEs with different granularities.

• Dynamic/Shared (Tagged Dataflow) The PE’s with dynamic instruction sched-

uler 3 and shared instruction buffer 2 have the best flexibility and cost the most

power and area. Multiple instructions are buffered in the same PE, and their exe-

cution is triggered by the data availability. This amortizes the complexity of spatial

mapping, because we only need to find a feasible mapping of the instructions. This

execution model is useful to achieve high instruction concurrency across code regions

with different execution frequency, which will be discussed in Chapter 5.

A spatial architecture can adopt one or more execution model to get specialized execution

model to get specialized for code regions with different execution frequency. This will be in

detail studied in my completed work REVEL [276], discussed in Chapter 5.

2.2 Datapath Granularity

Another key dimension of the spatial architectures is the datapath granularity, which enables

tradeoffs between among flexibility, programming difficulties, and hardware complexity.
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FPGAs FPGAs are the most well known and widely adopted spatial architecture, not

only as a computing platform but also for hardware design verification. As it is shown in

Figure 2.4(a), FPGAs’ PEs are most fine-grain (bit-level reconfigurable), and connected by

on-chip network. This bit-level reconfigurability is enabled by loading different values to the

lookup table (LUT) in each configurable logic block (CLB). This flexibility makes FPGAs

powerful computing platform — the on-chip resources can be reconfigured according to the

demands of the workloads, including the number, data type, and precision of the functional

units. On the other hand, FPGAs’ fine-grain fabrics also suffer from high power and area

overhead to support this flexibility, and the global routing.

FPGA developers either have to write RTL to manage excessive low-level details —

besides the hardware behaviors, they should also carefully manage the LUT synthesis, com-

puting resource placement, and data routing — or write high-level synthesis with limited

control to all the hardware aspects. Both programming interfaces have to undergo a lengthy

process to synthesize and export the bitstream implementation. One of the works presented

in this dissertation aims at re-proposing a new FPGA programming paradigm by deploying

another level of coarse-grain overlay onto FPGA, so that both the compilation time, and

programming difficulties can be reduced. In addition, excessive effort spent on the FPGA

backend can be saved by a unified programmable design. This work will be elaborated in

Chapter 7.

Coarse-Grain Spatial Architectures As it is shown in Figure 2.2(b), in the prior sec-

tions, we mainly focus on explaining coarse-grain spatial architectures. Compared with

FPGAs, the flexibility of coarse-grain architectures is limited at the word-level. Meanwhile,

the number of functional units is determined after the fabrication. Systolic arrays like Google

TPU [131] and Amazon Inferentia [2] are typical coarse-grain spatial architectures, which

are widely adopted in their data centers.

By trading off the full flexibility, coarse-grain spatial architectures enables orders-of-
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magnitude better energy efficiency, as well as orders-of-magnitude smaller mapping space,

which save significant amount of time for finding a mapping with acceptable quality. Next,

we will briefly walk through a spatial mapping algorithm.

Decomposability The discussion above mainly sticks on the tradeoffs between the re-

configurability, and the underlying hardware cost determined by the datapath granularity.

Decomposability was proposed in SPU [74] to achieve versatile function units while saving

the hardware cost by reusing computing resources across different precisions. For example,

a 16-bit adder can be composed by two 8-bit adders.

2.3 Spatial Mapping

In this section, we discuss how instructions are mapped onto a coarse-grain spatial archi-

tecture. Each instruction is locally buffered in processing elements with required functional

units, and the dependences among the instructions are enforced by the on-chip network.

All the instructions are first represented in a data dependence graph, and isomorphically

mapped to the spatial datapath. Because of the nature of finding a graph isomorphism,

the code mapping space is exponentially large, which makes it particularly hard to find the

optimal mapping. Prior works either use heuristic based approximate algorithms [172, 171],

convert it to an optimization problem [291, 158], or make co-design decisions to balance the

mapping difficulties and qualities [192].

To find such an isomorphic mapping with acceptable time budget and quality, we adopt

a heuristic-based algorithm, which iteratively adjust the data dependence graph mapping

onto the spatial datapath. This algorithm can be described as iteratively applying these

three steps to the software/hardware mapping:
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Mapping The algorithm randomly picks some unmapped instructions and map them onto

a processing element with capable functional unit and with available instruction buffer slots.

Routing Each pair of operand-consumer relationship is inspected. If both are already

mapped, a heuristic-based search algorithm [171] is invoked to route the data from source

to the destination (either operands to the newly mapped instructions or newly mapped

instruction to the consumers). Over provisioning routing resource is allowed during the

process of iteration, and will be captured by the objective function.

Timing For the spatial architecture with static execution, we need to calculate the timing

of data arrival. This can be abstracted as finding a set of integer solutions for a group of

inequalities. Instead of using a linear programming solver, we use an iterative approximate

algorithm to adjust the timing of data arrival. After adding up the latency of routing and

executing each instruction, we inspect the capability of each delay FIFO, to figure out the

bound of the timing when entering each PE. Then we iteratively apply this process on this

graph to make the bound tighter by inspecting the bound of downstream and upstream. If

the bound overwhelms (the lower bound is larger than the upper bound), we relax the timing

of mismatch. When the bounds converge, we greedily assign delay to each node to minimize

the latency of computation.

If one of the steps fail, the mapping algorithm may remove some instructions from the

existing mapping, and repeat these three steps, until it finds a proper mapping. When

iteratively adapting the mapping, we allow some imperfectness like the over provisioned on-

chip resources including PE and routing, and this will be captured by our objective function.

Once the mapping algorithm succeeds, the mapping will be encoded in a bitstream format.

When configuring a spatial architecture, this bitstream will be loaded to the configuration

registers right near each component, including but not limited to the processing elements,

delay FIFO, and switches, of the spatial architecture.
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CHAPTER 3

Decoupled-Spatial Architectures

In this chapter, the decoupled-spatial paradigm, the architecture paradigm mainly targeted

by this dissertation, will be elaborated. By decoupling memory accesses with particular pat-

terns and offloading them to specialized hardware extensions, the decoupled-spatial paradigm

is enabled. Along with explaining the hardware support for this paradigm, the principle of

defining design space of the decoupled-spatial architectures will also be briefly covered. Fi-

nally, the software/hardware interfaces will be discussed to demonstrate how each hardware

specialization is encoded in the ISA.

3.1 Decoupled-Spatial Paradigm

Decoupled-spatial architectures are capable to attain near-ASIC performance under mod-

erate power/area overhead while retaining programmability by specializing the decoupled

memory access and computation respectively. Decoupled memory operations are encoded in

control commands (will be explained in the Section 3.3) and executed by a specialized mem-

ory engine. Computational instructions are offloaded onto a spatial architecture, which has

already been explained in the last chapter. Since memory accesses are already decoupled and

executed on a specialized memory unit, unlike the processing elements shown in Figure 2.1

(in last chapter), processing elements no longer need a capability of requesting the memory.

This keeps the computing resources simple to better utilize the on-chip resources. Next, we

overview the decoupled-spatial paradigm through the example shown in Figure 3.1.

20



c = 0;
for (i=0; i<n; ++i)
c += a[i] * b[i];

(a.1) Original Program

Sync

Sync

Memory Ctrl

Ctrl
Config Spatial Arch
Stream: a[0:n]->A
Stream: b[0:n]->B
Stream: C->&c
Wait Streams Done

(c.1) Spatial Mapping

×
A B

C
+

Stream Data Stream State

(c.2) Ctrl Cmd

loop:
%va = load a[%i]
%vb = load b[%i]
%tmp = mul %va, %vb
%c = add %c, %tmp
%i = add %i, 1
br i<n, loop

(a.2) Imperative Represent.

a[0:n] b[0:n]

×
+
c

(b) Dataflow Represent.

Figure 3.1: Example of decoupled-stream program and hardware mapping.

We still use the same application, a simple dot product, shown in Figure 3.1(a). To map

it to the decoupled-spatial paradigm, the memory access and computation are decoupled and

represented in a dataflow graph format shown in Figure 3.1(b). Different from Figure 2.1,

the memory accesses are no longer represented in arrays slices (e.g. a[0:n] and b[0:n])

rather than scalars (e.g. a[i] and b[i]). Each element in the array slices will flow through

this graph to execute the program.

To support this execution paradigm, the computational portion of the dataflow graph

will be isomorphically mapped to a spatial architecture as shown in Figure 3.1(c.1) using

the algorithm described in Section 2.3. The host controller will issue a configuration

command to the spatial architecture to load the spatial bitstream. Synchronization FIFOs

are injected between the memory and the spatial architecture, which not only serve as the

operand interfaces of the spatial architecture, but also reason a timing of data arrival when

adopting static timing (discussed in Section 2.1).

As discussed in the last chapter, the scalar memory accesses generated by each processing

element can hardly be coalesced, which leads to redundant memory requests to the same

cacheline that waste the memory bandwidth. The decoupled-spatial paradigm seeks to get

specialized for this program behavior by encoding the memory access with particular patterns

in coarser grain format. A set of memory accesses under a nest of loops can be encoded in a

constant number of control commands. These commands are issued from the host controller
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to the memory controller. These encoded memory accesses are called “stream”s. The

memory controller arbitrates the execution of each stream, and maintains a state machine

to generate coalesced memory accesses.

Moreover, our decoupled-spatial architecture has a unique mechanism specialized for the

loop-dependent program behaviors. The dot product accumulates the result of multiplica-

tion, and the behavior of the adder is different when entering and leaving the loop — reset

the accumulate register to 0 when entering and produce the result when leaving. This be-

havior is controlled by the state of the “stream”s. Both the memory stream and stream state

will be explained in Section 3.2.2.

All the coordination, including spatial configuration, data access, and phase synchro-

nization, are encoded in specialized control commands and issued by a host controller as

shown in Figure 3.1(c.2). Specific to our implementation, we use a light-weighted RISC-V

core as the controller so that when the decoupled-spatial architecture cannot accelerate a

program portion, it can still fall back to the host execution. All these bold keywords are the

key components of a decoupled-spatial architecture. The functionality and their associated

design parameters will be discussed in Section 3.2.

Key Tradeoffs Besides amortizing the imperative overhead, including instruction fetch,

decode, and result write back, as discussed in Section 2.1, the decoupled spatial paradigm

coalesces the memory access to better utilize the memory bandwidth. The instruction-

level parallelism among computational instructions are maximized when the data bandwidth

sustains.

On the other hand, this paradigm even more aggressively reforms the execution model.

The memory access and computation are executed on different hardware aspects, which

imposes more challenges on the software stack development. The compilation techniques for

this paradigm will be explained in Chapter 4.
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3.2 Hardware Support and Design Parameters

Each aspect of a decoupled-spatial architecture is already overviewed when going through the

example shown in Figure 3.1. In this section, we discuss the functionality of each component

as well as their associated design parameters.

3.2.1 Spatial Architecture

The spatial architecture paradigm was already covered in the Chapter 2. Under the context

of decoupled-access execution, spatial architectures are composed by following components:

• Processing Elements (PE) are the key to instruction execution. Instructions are

buffered and executed locally in each PE. The design parameters of a processing ele-

ment are the timing of execution, size of the instruction buffer and register file, and

arithmetic capability, which were already discussed in Section 2.1. As discussed above,

PEs for decoupled-spatial architectures no longer need the capability of requesting the

memory which keeps each PE simple.

• On-Chip Network is composed by switches, which is the key of the programmability

of the datapath. Because of the distributed nature of the PE’s, spatial architectures

do not have a centralized register file to store the intermediate results, so all the de-

pendences among the instructions are routed through this network. The key design

parameter of the switches are the routing degrees and the capability of back pres-

sure. The back pressure, accompanied with certain PE parameters, enables dynamic

execution, which were already discussed in Section 2.1.

• Delay FIFO’s serve as buffers to delay the timing of data arrival. This is critical

for the PE’s with static execution to match timing of data arrival. The key design

parameter is the size of the buffer, which enables a tradeoff between the mapping

difficulties and the cost of on-chip resources [192].
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• Synchronization Elements are essentially FIFO buffers injected between compo-

nents without a static timing (e.g. memory with caches, and dynamic PE’s) and static

elements (static PE’s). The purpose is to synchronize multiple inputs of a computa-

tion instance to enable static reasoning about the timing of all dependent events. The

coordination is implemented by a programmable ready logic, which can be configured

statically to allow multiple synchronization elements to fire data together. In the rest

of this proposal, we these elements are also called “ports”. These ports also serve as

the interfaces of the spatial architecture to enable data communication.

Spatial architectures are attractive to our accelerator design automation goal because of

its flexibility and scalability. Computing power can easily be scaled up or down by integrating

different components. With different design parameters adopted for each component, spatial

architectures can have different execution models, which enables a tradeoff among cost,

flexibility, and specialization, as it was already discussed in Chapter 2.1.

3.2.2 Coordination and Data Access

Control Host: As mentioned above, coordination across different hardware aspects are

done by a host controller. The memory access streams, inter-port data communication,

and synchronizations are encoded in hardware intrinsics issued by the control host to a

stream dispatcher. The stream dispatcher arbitrates the order of the streams, and dis-

patches streams to corresponding modules. In our works, we use a single-issue RISC-V core

as our control host [193] so that when it comes to something that cannot be specialized by

the decoupled-spatial paradigm, it can still fall back to general-purpose execution. All coor-

dination commands are enabled by extending the RISC-V ISA, and the supported commands

will be elaborated in Section 3.3.

Memory Controller/Stream Engine: Instead of reading data in scalars or vectors,

decoupled-spatial paradigm aggressively encode memory accesses in more coarse-grain pat-
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tern, streams. Streams are defined by a group of memory accesses under loop nests. Both

dense (e.g. a[i*n+j]) and sparse (e.g. a[b[i]]) memory accesses are supported.

By extracting several essential parameters of the memory access pattern, these encoded

memory streams can be encoded (encoding will be explained in Section 3.3) in control com-

mands issued from the host controller to the memory stream engines. How these essential

parameters of the memory access pattern are analyzed and encoded in stream commands

will be discussed in Chapter 4. Memory stream engines are associated with different memory

modules (e.g. scratch memory or main DRAM).

3.3 Decoupled-Spatial ISA

The ISA of decoupled-spatial architecture we target in this work is derived from Soft-

brain [193]. Table 3.1 shows the specification of hardware intrinsics for configuration, data

access, and synchronization. All our works use this ISA as a prototype. This ISA extension

and modularization will be discussed in Chapter 4, Chapter 5, and Chapter 6.

Spatial Architecture Configuration The spatial mapper will encode the mapping in a

bitstream for spatial architecture configuration. The Config loads a configuration bitstream

with a specific size from the given address.

Memory Streams The memory accesses with particular patterns are encoded in special-

ized hardware intrinsics. Figure 3.2 shows the capability of supporting both dense and sparse

streams. Those shadowed parameters, including the iterations of each loop, the coefficient

of each loop variable, and the array address, are essential to encode the streams. Because

of the limited number of operands in an instruction, we use a ConfigReg instruction to load

these shadowed values in instructions, and use LinearStream and indirect IndirectStream

to specify the associated information, including flags and ports, of memory streams.

25



for (i=0; i<n3d; ++i)
for (j=0; j<n2d; ++j)
for (k=0; k<n1d; ++k)
// request a[i*si+j*sj+k*sk]

for (i=0; i<n2d; ++i)
for (j=0; j<n[i]; ++j)

// indirect memory access
// request a[b[i]+j]

(a) Dense Memory Stream (b) Sparse Memory Stream

Figure 3.2: The semantics of the streams encoded. Up to 3-d dense stream is supported,

and the sparse access pattern is widely used in graph processing.

Response Packet
Data:
State:

Enter
Leave

Dim  1 2 3

… // vectorize by 2
for (i=0; i<n; ++i)

c[i] = a[i] + b[i];

Sync

Sync

+
A0

+
A1 B0 B1

D0 D1
LinStrm(1d,read, addr=a, n1d=n, port=A,

pad=1d-end-off);
LinStrm(1d,read, addr=b, n1d=n, port=B,

pad=1d-end-off);
LinStrm(1d,read, addr=c, n1d=n, port=C,

pad=1d-end-off);
LinStrm(1d,write, addr=d, n1d=n, port=D);

When n is odd, pad residue for 
last iter: Data path 1 is disabled.

Use Case 1: Implicit Residue Padding

Sync

Sync

×
A B

C
+Reset register when entering 

loop, produce value when 
leaving loop

c = 0;
for (i=0; i<n; ++i)

c += a[i] * b[i];

Use Case 2: Accumulation

Additional 6-bit vector 
indicates the state of 
stream exec.

Figure 3.3: Stream state encoding, and two typical use cases of stream state.

The memory stream derives the other additional mechanisms, data generation stream,

and implicit data padding, which will next be explained.

Data Generation Stream Essentially, the encoded dense memory stream generates a

sequence of memory addresses and request data using these memory addresses. Instead of

requesting data, we also support directly exposing these values to applications. This is useful

when a sequence of constant values are required (e.g. passing a constant coefficient to the

computation).

26



Sync

Sync

Memory Ctrl

Ctrl

+
B C

A

ConfigPort(Boradcast, C);
Lin1D(read, addr=b,

n1d=n, port=B);

Besides sending value from 
the stream to port B, C is also 
broadcasted.

Array b: [1, 2, 3, 4, 5, …]

5
4
3
2
1

5
4
3
2
1

Sync

Sync

Memory Ctrl

Ctrl

+
B C

A

ConfigPort(Repeat, B, 3);
Lin1D(read, addr=b,

n1d=n, port=B);

Each value in the FIFO will not 
be popped until it is reused 3 
times.

5 5 5
4 4 4
3 3 3
2 2 2
1 1 1

Sync

Sync

Memory Ctrl

Ctrl

+
B C

A

ConfigPort(Repeat, B, 4);
ConfigPort(Priod, B, 2);
ConfigPort(Delta, B, -1);
Lin1D(read, addr=b,

n1d=n, port=B);

The initial times of repeat is 4.
When every 2 values are popped, 
decrease the times of repeat by 1.

5 5
4 4 4
3 3 3
2 2 2 2
1 1 1 1

(a) Example of Broadcasting (b) Example of Repeating

(c) Example of Periodically Changed Repeating

for (i=0; i<n; ++i)
  for (j=i; j<n; j+=2)
    // vectorize by 2
    // b[i] * c[j]

The repeat time of b[i] is 𝑛𝑛−𝑖𝑖
2

Figure 3.4: Examples of ConfigPort

Stream State Besides having data itself, the response packet requested by memory streams

also associates a 6-bit metadata, to record the state of the stream execution to indicate if

it is entering/leaving a loop as it is shown in Figure 3.3. This is useful for implicit data

padding accumulation — loop residue happens at the last iteration of the innermost loop,

and data accumulation needs to be reset when entering and value should be produced when

leaving. This mechanism was first developed in Chapter 5, because the inductive nature of

the workloads make it impossible to find a perfect tiling.

Configure Port As aforementioned, coordination FIFO’s are injected to serve as inter-

faces between components with different timing. These coordination FIFO’s are exposes

as interfaces so that the data accessed by the data stream intrinsics can be forwarded to

the target operands specified by the ports. The ports can also be used to control the data

consumption rate. Figure 3.4 shows how each field of a port affects the behavior of a read

stream:
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Sync

Sync

Memory Ctrl

XF
ER

Ct
rl

Ctrl

×
B C

A

+

Recur(out=A, in=C, n);

n values from the port A will be 
directly forwarded to port C 
through the transfer bus.

Figure 3.5: A simple example of data recurrence.

• (a) shows that for a read stream destined to port B, it will also be duplicated to port

C because of broadcast configuration.

• (b) shows that each element of this stream is repeated 3 times when feeding to the

spatial architecture.

• (c) is an even more advanced case of (b), the repeat time can be changed periodically.

This is especially useful for inductive kernels, which will be explained in Section 5.3.1.

Recur This instruction is especially useful when we want to use some value right after it is

produced from the output port. Instead of writing this value to the memory and synchronize

the whole accelerator, the value can be directly forwarded from output port to the input

port through a recurrence bus as it is shown in Figure 3.5

Stream Order The order of data streams, including memory stream, recur stream, and

data generation stream, can either be implicitly or explicitly enforced. By implicitly, as it

is shown in Figure 3.6(a), if there is no barrier between two streams, and these two streams

involve a same port, the order of these two streams will be their order in the command

thread.

As it is shown in Figure 3.6(b)&(c), barriers are provided to enforce the order among

a type of streams. A bitmask operand is provided in a barrier instruction is to specify
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1: Lin1D(read, addr=b, n1d=n, port=B);
2: Lin1D(read, addr=c, n1d=n, port=C);
3: Lin1D(write, addr=a, n1d=n, port=A);
Barrier(Memory|Read|Write|Compute);

1: Lin1D(read, addr=b, n1d=n, port=B);
Barrier(Memory|Read);
2: Lin1D(read, addr=c, n1d=n, port=C);
3: Lin1D(write, addr=a, n1d=n, port=A);

(b) Memory Read Barrier

(c) “Wait All” Barrier

• “Read” Stream 2 will not be issued until 
stream 1 is retired.

• “Write” stream 3 is not affected.

• Fully Masked: The control host will not move 
on until the spatial computational pipeline if 
fully drained and all the streams are retired.

1: Lin1D(read, addr=b, n1d=n, port=A);
2: Lin1D(read, addr=c, n1d=n, port=A);

(a) Implicit Order

• Stream 2 will not be issued to until stream 1 
is retired, because they have same port (A) 
involved.

Figure 3.6: The examples of stream orders with and without Barrier

the “type” of streams to be enforced — read, write, memory, scratchpad, and recurrent.

Any instructions with the specified type after the barrier will not be issued to until all the

instructions with the involved types before the barrier retire. Figure 3.6 shows the examples

on how barriers affect the order of stream execution.

Summary: The decoupled-spatial ISA encodes program behaviors of interest in the ex-

posed software/hardware interfaces which enable a deep degree of specialization, while re-

taining high flexibility. In the rest of this dissertation, we will discuss how we develop

accelerators, software stacks, and automate the design process under this paradigm.
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Instruction Parameters

Config
addr: The address of the bitstream

size: The size of the bitstream

ConfigPort

port: The port involved

field: Broadcasting, repeat, period, or delta.

value: The value of the selected field to be set.

ConfigReg
reg: The register ID. Refer the shadowed boxes in Figure 3.2 for more details.

value: The value load to the register.

LinearStream

dimension: The number of loop levels

port: The source/destinationport

mem: DMA or scratchpad

action: Generate value, or access pointer

op: If accesses pointer, read or write.

padding: Implicitly pad the datapath to fill the lanes at the end of this stream.

IndirectStream

index port: The data source of the index

op: read, write, or atomic binary update

port: The port involved as destination or source of operand

Recur

src: The output port of the data source

dest: The in port of the destination

n: The number of elements to forward

Barrier mask: The streams involved by this barrier

Table 3.1: The hardware intrinsics and the argument list of each intrinsic.
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CHAPTER 4

Idiomatic Compilation for Decoupled-Spatial

Architectures

Program w/
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Annotation

clang

!decouple

config.start

config.end
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Figure 4.1: An overview to decoupled-spatial compiler.

In the last chapter, we have already explained the decoupled-spatial architecture and

demonstrated the promise of this paradigm. This chapter presents the software stack for the

decoupled-spatial architectures, from high-level abstraction to compiler transformation. The

compiler is overviewed in Figure 7.2. Since the spatial mapping is already well explained in

Section 2.3, this chapter will mainly focus on decoupling the computation and the memory

accesses, as well as mapping the program idioms to the hardware specialization.

Two key design demands are imposed for building such a software stack: First because of

the generality of the decoupled-spatial paradigm, the programming interface should also be

general-purpose. Therefore, instead of using a domain-specific language, a general-purpose

language, C, is adopted. However, C is originally designed for imperative execution, To

avoid excessive compilation work while retaining a high-level programming interface, the
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compiler relies on additional information provided by developers by annotating the program

with several pragmas, which will be explained in Section 4.1.

Second, the main goal of this dissertation is to automate specialized accelerator design,

so instead of targeting a specific hardware, the compiler should be able to robustly translate

code for various hardware within the design space. To stay robust across any combination

of the optional features of a decoupled-spatial architecture, the compiler should be aware

of the underlying hardware capability and make transformation decisions accordingly. The

underlying hardware capability is encoded in an architecture description graph, which will

be in detail explained in DSAGEN (Chapter 6), and we develop modularized compiler trans-

formations — each optional-feature-oriented transformation will also have a fallback trans-

formation that escapes this feature. This guarantees the success of compilation at cost of

the performance when a specialized hardware support is unavailable. This will be explained

in Section 4.3 and Section 4.4.

This compiler is evaluated on three application suites MachSuite [216], DSP from REVEL [276],

and Xilinx Vitis to demonstrate both its performance and robustness across hardware with

various feature combinations.

4.1 Programming Interfaces

To fulfill the first design demand while retaining sufficient information to the compiler to

understand the opportunity of taking advantage of hardware specialization, we adopt C as

our high-level programming interface. To compile a piece of C program to a decoupled-spatial

architecture, it should undergo:

1. Determining the code regions to be offloaded to the decoupled-spatial paradigm.

2. Determining the concurrency among the offloaded code regions.

3. Decoupling the computational instructions and the memory operations.
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#pragma dsa offload
for (i=0; i<n; ++i) {

d[i] = a[i] + b[i] * c[i];
}

#pragma dsa offload unroll(2)
for (i=0; i<n; ++i) {

d[i] = a[i] + b[i] * c[i];
}

(a) Annotated Program (b) Extracted DFG

No Unrolling

Unroll by 2

Sync

Sync

×
B C

A
+

Sync

Sync

×
B[2] C[2]

A[2]
+

×
+

A[2]

A

Figure 4.2: Tuning different resource occupation through the unrolling degree

• Analyzing the decoupled memory operations, and encode them in hardware in-

trinsics.

• Extracting the dataflow graph of the decoupled computational instructions and

map them onto the spatial architecture.

4. Removing‘ the instructions offloaded onto the decoupled-spatial paradigm.

To find a balance between the human intervention and the compiler effort, we leave step

1, and 2 for application developers to decide. Figure 4.2 show an example of an annotated

program. These additional information can be provided by annotating the original C program

with our extended pragmas:

#pragma dsa offload: This pragma annotates either a compound statement or a loop,

which indicates the computational instructions in the annotated code region will be offloaded

onto the spatial architecture. As it is shown in Figure 4.2, when application development,

users are allowed to use an optional clause unroll to specify the unrolling degree to tune the

resource occupancy. Different loop behaviors (e.g. elementwise and reduction) may lead to

different unrolling transformation, which will be covered in Section 4.3. When the unrolling

degree is -1, the unrolling degree is enumerated by the compiler.
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#pragma ss config
{

#pragma dsa stream
#pragma dsa offload
for (i=0; i<n; ++i) {

a[i] = b[i] + c[i];
}
#pragma dsa stream
#pragma dsa offload
for (i=0; i<n; ++i) {

d[i] = e[i] * f[i];
}

}

(a) Annotated Program
Concurrent Code Region

#pragma ss config
{

#pragma dsa stream
#pragma dsa offload
for (i=0; i<n; ++i)

a[i] = b[i] + c[i]; }
#pragma ss config
{

#pragma dsa stream
#pragma dsa offload
for (i=0; i<n; ++i)

a[i] += b[i] * c[i]; }

(b) Compiled Decoupled-Spatial

Separate Code Region

Sync

Sync

Memory Ctrl
Ctrl

Sync

Sync

Memory Ctrl

Ctrl

+
B C

A

×
E F

D

+
B C

A

Sync

Sync

Memory Ctrl

Ctrl

×
E F

D

Lin1D(read, addr=b, n1d=n, port=B);

Lin1D(read, addr=c, n1d=n, port=C);

Lin1D(write, addr=&a, n1d=n, port=A);

Config;

Lin1D(read, addr=e, n1d=n, port=E);

Lin1D(read, addr=f, n1d=n, port=F);

Lin1D(write, addr=d, n1d=n, port=D);

Barrier;

Lin1D(...);

Lin1D(...);

Lin1D(...);

Config;

Barrier;

Lin1D(...);

Lin1D(...);

Lin1D(...);

Config;

Barrier;

Figure 4.3: Different instruction concurrency caused by different compound body annotation

#pragma dsa stream: This pragma annotates a loop, which indicates the memory oper-

ations under this loop level are restricted, so that memory operations can be safely decoupled

and encoded in hardware intrinsics.

#pragma dsa config: This pragma annotates a compound body, which indicates all the

code regions annotated by offload will be concurrent on the spatial architecture. As it

shown in Figure 4.3, we can use this pragma to explore the concurrency among offloaded

code regions.

Next, we overview how the compiler take advantage of these annotated pragmas to trans-

form a C program to decoupled-spatial architectures.

4.2 Transformation Overview

Decoupling Computation and Memory Access After annotation, the compiler starts

with the code region annotated by the offload to gather the code regions for decoupled-
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spatial rewriting. After gathering these regions, the computation and memory access are

sliced for analysis.

Data Dependence Transformation: After slicing the memory operations, we transi-

tively traverse the dependence relation among the remaining computational instructions to

gather a data dependence graph. As discussed in Section 2.1, the branch conditions cannot

be executed by instruction fetching on a spatial archtiecture, so they will be converted to

predications of the instructions in those blocks [91]. We use a variant of the transformation

to program dependence graphs. Figure 4.4 (a) shows that the original code and the control

flow graph with two branches, and Figure 4.4 (c) shows the transformed data dependence

graph — both branches will be executed, and a selector will select the proper value according

to the result of the comparison.

Analyzing the Program Idioms: Our compiler respectively analyzes the program id-

ioms among the computation and memory access so that program behaviors of interests can

be captured by hardware specialization. We develop our unique data structure, idiomatic

memory tree (IMT), to represent results of the memory access analysis, which will be dis-

cussed in the next section.

Modular Transformation After the analysis, the compiler understands the correspon-

dence between program idioms and hardware specialization, but not every optimization can

be applied because of the availability of the optional specialized features, and the computing

resource occupancy. To fulfill the second requirement of the compilation (robustness across

any decoupled-spatial architectures), the compiler inspects the capability of the underlying

hardware, and explores a set of legal transformations by enumerating the tunable dimensions

(e.g. unrolling degree of each offloaded region). To guarantee the success of transformation,

a modularized strategy is adopted. For a code rewriting specialized for a hardware feature,

there will always be a fallback transformation that escapes this feature when unavailable.
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for (i=0; i<n; ++i) {
  if (a[i] > b[i])
    c[i] = a[i]+1;
  else
    c[i] = b[i]+2;
}

(a) Original C Code

a[0:n]

CMP

Sel

b[0:n]

c[0:n]

(c) Data Depend. Graph

+ +

a[i]>b[i]

c[i]=a[i]+1

c[i]=b[i]+2

loop.header

loop.cleanup

(b) Control Flow graph

Figure 4.4: Transform the control dependence to data dependence

Code Generation These extracted computation instructions will be removed from their

original site, since they are offloaded onto the spatial architecture. The decoupled memory

operations will be hoisted and encoded in data intrinsics discussed in Section 3.3. After

these transformations, some instructions without consumers, and empty loop bodies will

be introduced. Therefore, we will invoke the compiler’s generic O3 optimization passes to

cleanup the dead code.

4.3 Idiomatic Analysis Transformation

After extracting the memory access and computation, the compiler for the decoupled-spatial

idiomatic ISA must find the best-suited idiom that is applicable to a program region. Here,

we explain a set of broadly applicable idiom analysis and transformations for memory access

and computation.

4.3.1 Decoupled Memory Access

Expressing memory in terms of predefined coarse grain idioms — i.e. streams — has many

benefits, including better-utilizing memory bandwidth and reducing control instructions and

core-accelerator communication. To aid mapping/optimization on streams, we develop the

idiomatic memory tree (IMT).
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for (i=0; i<n; ++i)
  for (j=0; j<m; ++j)
    // access a[i*m+j]

(a) Linear Access

LinearCombine
base: a
trip_cnt: [m,n]
coef: [1,m]

(b) Indirect Access

for (i=0; i<n; ++i)
  // access a[b[i]]

LinearCombine
base: b
trip_cnt: [n]
coef: [1]

Load

BinaryOp
  +a

+

a

+

i:0~n

*

m

j:0~m

+

a Load

b

+

i:0~n

Pointer Expr Idiom Mem. Tree

Pointer Expr Idiom Mem. Tree
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m n

1

a
m
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n

(c) Graph Traversal 

LinearCombine
base: n
trip_cnt: [m]
coef: [1]

LinearCombine

trip_cnt: [ ]
coef: [1]

base
LinearCombine

trip_cnt: [ ]
coef: [1]

base

Load

BinaryOp
  +lhsa

BinaryOp
  +lhsa

LinearCombine
base: b
trip_cnt: [m]
coef: [1]

LinearCombine
base: b
trip_cnt: [m]
coef: [1]

Load

Pointer Expr Idiom Mem. Tree

for (i=0; i<m; ++i)
 for (j=0; j<n[i]; ++j)
  // access a[b[i]+j];

m m

m

Chain of Recurrence

n

m

n
a Load

b

i:0~m

+

j:0~

m

+

Load

n

i:0~mm

+ +

Figure 4.5: An example of analyzing memory access pattern.

Idiomatic Memory Tree Prior works on program idiom analysis under loops, like chain

of recurrence (CR)1[85], mainly focus on analyzing the expressions of loop variables and

invariants, and have limited support on memory-dependent expressions.

To store and analyze the idiomatic memory behaviors in a structured way, our insight is

that complicated program behaviors can be composed by a set of simple primitive idioms. To

explain, Figure 4.5(c) shows a complicated graph traversal example. This program behavior

is composed of an affine pattern in the inner loop and an indirect pattern in the outer loop.

Next, we introduce IMT nodes that capture primitive behaviors.

LinearCombine Figure 4.5(a) shows an example of linear memory accesses. Dashed boxes

annotate the sub-expressions that can be analyzed by CR. By walking through these expres-

sion nodes, we can extract the coefficient of each loop variable and represent the pointer

1Our implementation uses LLVM’s ScalarEvolution for CR.
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for (i=0; i<n; i+=2) {
  access a[i+0]
  access a[i+1] }

LinearCombine
base: a
trip_cnt: [n/2]
coef: [2]

LinearCombine
base: a+1
trip_cnt: [n/2]
coef: [2]

(a) Stream Coalescing

LinearCombine
base: a
trip_cnt: [2, n/2]
coef: [1, 2]

√: All the coefs are 
same, the only diff 
is the base.

(b) Dimension Fusion

LinearCombine
base: a
trip_cnt: [n]
coef: [1]

√: trip_cnt[0]*coef[0] == coef[1]

Fuse inner most two 
dimensions; requests 
fully utilize the b/w.

10101010:
01010101:

Same cacheline 
requested twice.
Half b/w wasted.

11000000, 00110000, 00001100, ...
×: Each request still bounded by the inner dim

(c) Unrolling Accumulation
for (i=0; i<n; ++i) {
 acc = 0; //reset
 for (j=0; j<n; ++j)
  acc += m[i*n+j]*v[j];
 res[i] = acc; //consume
}

(d) Data Padding for Unrolling
for (i=0; i<n; ++i)
  a[i] = b[i]*c[i];

n is not divisible by the 
unrolling degree (4)

R[2]

× ×
+

× ×

M[4] V[4]

+

+

S

+
• Unroll into a reduction tree.
• Sites of reset/consume mapped to state & LUT

C

< Min

A Bfor (i=0; i<n || j<m; ) {
  c[k++] = min(a[i], b[j]);
  cond = a[i] < b[j];
  i+=cond;
  j+=!cond;
}

(e) Meta-reuse

Conditional pointer move; mapped 
to dynamic-timing spatial datapath.

for (i=0; i<n || j<m; ) {
  c[k++] = min(a[i], b[j]);
  cond = a[i] < b[j];
  i+=cond;
  j+=!cond;
}

(e) Meta-reuse

Conditional pointer move; mapped 
to dynamic-timing spatial datapath.

i != (n-1)
i == (n-1)

Data to port B

A[4]

× ×

C[4]

× ×

B[4]

Non-divisible data in the last iter is 
implicitly padded by predication off

Figure 4.6: Generic program idioms

expression, a[i*n+j], in a linear combination format:

∑
k

ik × coefk + base

BinaryOp Figure 4.5(b) shows a pointer expression (a[b[i]]) without loop variable di-

rectly involved in the operands, which cannot be analyzed by CR. Thus, we use a BinaryOp

node to wrap this node and recursively analyze both operands.

Load Continuing with the example shown in Figure 4.5(b), a memory load is involved on

the rhs operand, which indicates an indirect memory operation. We wrap the memory load

with a Load node, and recursively analyze the pointer expression of this memory load. In

this case, the load pointer can be handled by CR, and yields a LinearCombine node.

The IMT is useful for generic optimizations (explained next) and to choose the right set

of idioms for code generation.
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Fusing Stream Idioms Because memory requests are issued at line granularity, stride-

access wastes bandwidth. We address this through two transformations:

Stream Coalescing Figure 4.6(a) shows if we generate streams for a[i] and a[i+1] sep-

arately, these two streams will request each cacheline twice. Streams which have the same

coefficients, and where the base differs by one, are coalesced by appending a new dimension

(see purple box, Figure 4.6(a)).

Dimension Fusion Continuing with Figure 4.6(b), after appending a new dimension, two

1-d streams become a 2-d stream with two continuous dimensions. Therefore, our compiler

will fuse subsequent stream dimensions when their outer dimension’s coefficient equals the

coefficient times the trip count of the inner loop.

In the code generation phase, our compiler matches the analyzed and optimized IMT on

idiomatic ISA to fill in parameters. A LinearCombine node indicates affine memory access,

so it encodes as many as possible linear dimensions supported on the hardware. A BinaryOp

node with a Load involved indicates an indirect memory access, so the compiler extracts the

4.3.2 Computational Idioms

Accumulator Accumulation manifests as a loop carried dependence that involves itself

— see Figure 4.6(c). To specialize for this idiom, the intermediate accumulated results

can be stored implicitly in the instruction (later allocated to a PE register), and the data

output/accumulator-reset is controlled by a stream state metadata of an operand stream.

Data Padding As shown in Figure 4.6(d), the trip count of the innermost dimension can

be indivisible by the unrolling degree, which normally requires loop peeling for the final

iterations. Our compiler specializes for idiom by generating memory streams with different

padding flags according to their consumers. For elementwise operations, stream data is

padded to fill with invalid data to predicate off the unused datapath. For accumulator
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C

< Min

A Bfor (i=0; i<n || j<m; ) {
  c[k++] = min(a[i], b[j]);
  cond = a[i] < b[j];
  i+=cond;
  j+=!cond;
}

(b) Meta-reuse

Conditional pointer move; mapped 
to dynamic-timing spatial datapath.

for (i=0; i<n || j<m; ) {
  c[k++] = min(a[i], b[j]);
  cond = a[i] < b[j];
  i+=cond;
  j+=!cond;
}

(b) Meta-reuse

Conditional pointer move; mapped 
to dynamic-timing spatial datapath.

(a) Resource Allocation

for (i=0; i<n; ++i)
  a[i] = b[i]*c[i];

for (i=0; i<n; ++i)
  norm += a[i]*a[i];
norm = 1.0 / sqrt(norm);

(c) Exec. Frequency A

×

+
B

N

O

√
/

Regions outside loops are favoured 
to go to temporally shared PEs.

for (i=0; i<n; ++i)
  c[i] += a[b[i]];  

(d) Indirect Memory

O

+
A C

B

// w/o indirect support
for (i=0; i<n; ++i)
  Scalar(a[b[i]], B);

// w/ indirect support
AffineStream(b, n, 0, 1, read, B);
IndirectStream(/*array=*/a,
  /*length=*/n, /*index-port=*/B,
  /*op=*/read);

A

×

B C

S

Unrolling degrees tune 
resource allocation.

XFORM w/ lower h/w requirement

XFORM w/ deeper specialization requirement

A[4]

× ×

C[4]

× ×

B[4]

Figure 4.7: Modular transformations with fallbacks.

operations, stream data is padded with zeros to avoid adding extra control/muxing.

Meta-reuse Figure 4.6(e) describes an algorithm for merging two lists, by repeatedly

increasing the iterator of the smaller value. To specialize for this, input elements elements

are popped/reused according to the result of comparison. This shortens the dependence

chain on control, but causes data-dependent consumption rate on the spatial architecture;

thus, dynamic-scheduled hardware elements are required.

4.4 Modular Compilation

To stay robust across accelerators, we use modular transformations with fallbacks for each

idiom and develop an exploration algorithm to quickly converge to the optimal set of trans-

formations.
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4.4.1 Modular Transformations with Fallbacks

As mentioned above, our compiler guarantees the success of compilation by modularizing

transformations. Fallback transformations (shadowed regions in Figure 4.7, and listed in

Figure 4.8 and Figure 4.9) either uses less resources or non-idiomatic hardware features

when optional features unavailable. Here, we give six examples:

High Allocation→Low allocation Executing more loop iterations simultaneously is

faster but requires more resources. Thus, a knob to resource allocation is the unrolling

degree, as shown in Figure 6.4(a).

Meta-reuse→Host Execution Meta-reuse control requires dynamic PEs/switches which

are more expensive. A fallback is to execute related instructions on the control core: the

comparison, the green arrows, and the memory streams a[i] and b[i].

Temporal PEs→Dedicated PEs/Host Execution Figure 6.4(c) shows that norm com-

putation is out of the loop body and involves two expensive operations. Offloading instruc-

tions with lower execution frequency to dedicated PEs leads to low resource utilization, so

these instructions are favored to go to temporally shared PEs. If shared PEs are not avail-

able, the compiler first falls back to dedicated PEs if enough are available, then falls back to

the control core.

Indirect Memory→Scalar Memory A memory operation pointer expression involves

another memory operation indicates an indirect memory access. Accelerators without indirect-

memory specialization require a fallback transformation: The compiler will perform indirect

accesses as a series of scalar accesses (single element stream); this requires an order-of-

magnitude more core/accelerator communication. Figure 6.4(d) shows the different gener-

ated stream commands depending on whether indirect memory is available.
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#pragma dsa decouple
for (i=0; i<n; ++i) {
v=0;
#pragma dsa offload
for (j=0; j<n; ++j)
v += a[i*n+j]*b[j];

#pragma dsa offload
for (j=0; j<n; ++j)
a[i*n+j] -= v*b[j];

}

#pragma dsa decouple
for (int i=0; i<n; ++i)
#pragma dsa offload
for (int j=0; j<m; ++j) {
c[j] += a[i]*b[j];

}
}

(a) Producer-Consumer (b) Repetitive Update

Figure 4.8: Two idioms benefit from data recurrence

Data Recurrence→Barriers: Enforcing the data depencence by stalling the whole sys-

tem harms the performance. We find two idioms are quire useful to avoid this when the

recurrence bus is available:

• Producer-Consumer: Consider the example shown in Figure 4.8(a) where a value v

produced by the first offloaded region is consumed by the second. Instead of waiting

for the first region write this value to a host register and sending it back to the spatial

architecture, we can use the transfer bus directly forward the value from the output

port to the input port.

• Repetitive In-Place Update: As it is shown in Figure 4.8(b), the array c is updated

repetitively. To avoid unnecessary memory traffic and synchronization, our compiler

will try to convert the in-place read/write of c to transfer bus communication. The

compiler first analyzes the length of this stream to see if it overwhelms the size of

on-chip buffer. If so, this loop will be tiled by the maximum factor that fits in the

on-chip buffer so that we can take advantage of data recurrence in each tiled portion.

If not, we fall back to memory read/write enforced by barriers.

High-Dimension Stream→Lower-Dimension Streams As it is shown in Figure 4.9,

if the stream engine of the underlying decoupled-spatial architecture is not capable to han-

dle high-dimension streams, the compiler will generate a group of low-dimension streams
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for (i=0; i<n; ++i) { // only 1d supported

}

#pragma dsa stream

for (i=0; i<n; ++i) {

#pragma dsa offload

for (j=0; j<m; ++j)

a[i*n+j] = b[i*n+j] * c[j];

}

(a) Annotated Program (b) Transformed Host Control

Sync

Sync

Memory Ctrl

Ctrl

×
B C

A

Lin1D(read, addr=&b[i*n], n1d=m, port=B);

Lin1D(read, addr=c, n1d=m, port=C);

Lin2D(addr=b, n1d=m, n2d=n,

stride=m, port=B);

Lin2D(addr=c, n1d=m, n2d=n,

stride=m, port=C);

Lin1D(write, addr=&a[i*n], n1d=m, port=A);

Lin2D(addr=a, n1d=m, n2d=n,

stride=m, port=A);

Figure 4.9: Different stream encoding caused by different loop annotation

wrapped by loops to achieve the same semantics. This guarantees the success of compilation

while introducing more overhead to the host controller.

4.4.2 Transformation Space Exploration

As aforementioned, idioms and modular features are dimensions of a transformation space.

When it comes to multiple loops and program behaviors of interest, the transformation space

grows exponentially. Meanwhile, invoking the spatial scheduling algorithm is expensive,

making it difficult to try every possibility. Therefore, we adopt a somewhat-greedy search

algorithm. The basic steps are:

1. The compiler first determines all the explorable dimensions for each concurrently

mapped program region, according to relevant transformations and the hardware ca-

pability in the ADG.

2. For each region and dimension, the compiler “relaxes” it (e.g. reduce the unrolling

degree of one of the loops, or disable indirect memory encoding), and then estimate

the performance reduction caused by the relaxation based on the expected ILP and

memory bandwidth of any streams.

3. The transformation with the least performance reduction is applied, and the trans-

formed IR is fed to the spatial scheduler for hardware mapping. If it fails, eliminate

the transformation point and go to step 2; else, the the feasible transformation point
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is returned.

Because this algorithm enumerates transformation points in a roughly decreasing order of

the ideal performance, the first successful mapping is likely to have the best performance. In

addition, we also adopt a region-balance strategy to prune this space — resource allocations

where a low execution frequency code region has a higher resource allocation than a higher-

frequency code region will be skipped.

4.5 Methodology

Software Stack: The compiler is implemented by extending the Clang frontend for pragma

parsing, and LLVM for ISA extension and IR transformation.

Benchmarks We select 9 from MachSuite, 9 from Xilinx Vitis, and 5 DSP workloads, each

with their own prevalent program idioms. The data type, size, and computation intensity of

each is shown in Table 4.1.

Hardware Setup We choose the AMD EPYC 7702P as our CPU baseline. All the bench-

marks run on this are compiled by gcc -O3.

Accelerators are generated with DSAGEN [273]. The accelerator controller is a single-

issue RISCV core with extended ISA. Both the AMD CPU and the accelerator have the

same L1/L2 cache size (32KB, 512KB) and bandwidth (64B/cycle). The AMD CPU has

nearly 24GB/s DRAM bandwidth, and the accelerator has 20GB/s memory bandwidth.

We start with a general accelerator with full specialized features and the spatial archi-

tecture is 5×5 (16 dedicated multiplier PE’s, 8 dedicated adder PE’s, one temporally shared

PE with full arithmetic capability) mesh-topology.

We then use DSAGEN to auto-generate accelerator targets for each benchmark suite

with three different degrees of specialization.

• Capability Specialization (Cap) indicates the architecture adopts all the specialized fea-
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Workloads crs/ellpack gemm nw stcl-2d stcl-3d viterbi merge radix

Size 496×4 643 1282 342 343 140×64 2048 2048

DType f64 i64 i64 i64 i64 f64 i64 i64

Op/DRAM 0.16 4 0.13 1.99 1.14 0.1 0.5 0.06

Feat. Ind. Mem Basic Basic Basic Basic Basic Dyn. Timing Ind. Mem

Specialization Cap. +FU +Topo

A
re
a
(m

m
2
)

FU 0.15 0.11 0.08

SW 0.03 0.02 0.02

Port 0.03 0.03 0.02

Spad 0.12 0.12 0.12

Total 0.36 0.31 0.27

(a) MachSuite

Workloads acc acc-sqr acc-wei grey blur cha-ext conb drvt vecmax

Size 1282×4

DType i16

Op/DRAM 0.16 0.33 0.66 0.4 0.5 n/a 0.5 0.5 0.16

Feat. Basic

Specialization Cap. +FU +Topo

A
re
a
(m

m
2
)

FU 0.15 0.05 0.05

SW 0.02 0.02 0.02

Port 0.03 0.02 0.02

Spad 0.04 0.04 0.00

Total 0.28 0.18 0.13

(b) Vitis

Workloads chol fft mm qr solver

Size 482 2048 323 482 482

DType f64 f32x2 f64 f64 f64

Op/DRAM 3.07 6.8 1.33 4.08 0.24

Feat. Shared PE Basic Basic Shared PE Basic

Specialization Cap. +FU +Topo

A
re
a
(m

m
2
)

FU 0.15 0.08 0.07

SW 0.03 0.02 0.02

Port 0.02 0.02 0.02

Spad 0.04 0.04 0.04

Total 0.29 0.20 0.19

(c) DSP

Table 4.1: Benchmark specification and generated hardware characteristics.

45



tures required and a generic mesh topology. Both floating point and integer functional

units are included.

• FU Specialization (+FU) indicates the unused functional units will be trimmed off.

• Topology Specialization (+Topo.) indicates the topology (the connectivity of hardware

components) is specialized to the applications.

The bottom of Table 4.1 shows the area breakdown of these accelerators. All these

numbers are synthesized by Synopsys DC @28nm.

Simulation We develop a cycle-level simulator for performance estimation, by integrating

a spatial architecture simulator to a gem5 single-issue core.

4.6 Evaluation

We evaluate the compiler’s performance and robustness. The key takeaways are:

• Our compiler achieves 2.2×, 3.3×, and 1.3× speedup on the three workload suites,

MachSuite, Vitis, and DSP, respectively.

• The generated binaries reduce dynamic RISCV instructions by mean 99.8% on the

control core.

• Our compiler allows graceful performance degradation when compiling to accelerators

with different degrees of specialization.

Idiomatic Transformation: Figure 4.10a shows the performance of each workload on

the general initial accelerator when incrementally enabling optimizations. It achieves mean

2.3× speedup and 98.7× area-normalized speedup over the CPU.
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Base is the code generation without any idiomatic optimization, which just transforms

the program into decoupled dataflow and maps the decoupled aspects to specialized units,

e.g. linear memory access to stream engine.

Generic refers to the stream coalescing and dimension fusion optimization. gemm, nw,

stcl-2d, stcl-3d, grey, blur, and fft all have adjacent scalar access in the innermost

loop body, thus benefiting from stream coalescing and dimension fusion. The performance

of these 7 workloads is improved by mean 1.8× compared with base optimizations.

Temporal means offloading instructions to temporally shared processing elements. cholesky

and qr both have code regions with more than one instruction outside the loop nest. Of-

floading these to shared PE’s enables higher ILP and avoids control core serialization. Thus,

their speedup is improved by mean 1.2×.

Dynamic supports the capability of conditionally popping data. Only merge benefits

from dynamic capabilities; falling back to control instructions on the single issue control-

core would cost 8.6× speedup.

Indirect enables parallel indirect memory access, and radix, crs, and ellpack all benefit

by 11.5× speedup over feeding indirect access data one-by-one to the accelerator.

Speedup Implication: To study the source of speed up, we demonstrate the dynamic

instruction reduction and the cycle breakdown. By compiling the original C codes to RISCV

and simulating on gem5, we count the dynamic instructions. Figure 4.10c shows that 66%

of the dynamic instructions are removed, and 99.8% of RISCV instructions are eliminated.

The instructions are in four categories: computation, memory, other, and dsa control.

The “memory” and “other” category constitute the biggest savings, because of the stream

encoded memory. For simplicity, we compare here against a non-vectorized RISCV baseline,

but idiomatic memory streams can coalesce multiple memory operations into one request;

“other” instructions mainly include pointer expression and loop control: these can be ex-

pressed by encoded streams to reduce instruction count by orders-of-magnitude.
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Moreover, Figure 4.10b shows that besides computation, memory bandwidth is the second

largest portion of the execution time, which indicates that speedups are mainly from high

ILP enabled by the decoupled-spatial execution.

An outlier is merge sort, which not only has 1.3× dynamic instructions, but is also

bounded by control instructions. Our current idioms can only capture the inner loop of merge

sort. A loop nest with affine outer loop and data-dependent inner loop is not supported,

and is a candidate for broadening the idioms.

Robustness over Specialization: We demonstrate the compiler’s robustness on acceler-

ators for three domains with different degrees of specialization.

Figure 4.10d shows the relative perf/mm2 normalized by the capability-specialized accel-

erator. Our compiler can robustly target architectures with different feature combinations

while exploiting the hardware/software affinity. Performance is retained on the designs spe-

cialized for the target domain. Topology-specialized have reduced area at the expense of

performance on non-targeted domains.

4.7 Related Work

Idiomatic ISAs Prior idiomatic ISA constructs include streams [229] and streams+vectorization [81].

Prior idiomatic spatial architecture ISA’s include database [261] and sparse processing prim-

itives [74].

Accelerator Compilers Prior works developed general-purpose compilers for accelera-

tors. DySER’s compiler [105] developed a dataflow representation (AEPDG) which separates

memory and computation. SARA [291] parallelizes sequential programs across spatial ac-

celerator tiles. ParallelXL’s compiler [52] targets general-purpose dynamic task scheduling.

However, these compilers are for an accelerator with fixed capabilities.
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Spatial Architecture Design FAST [289] incorporates loop reorganization into the DSE

for ML-accelerators. CGRA-ME [62] and SNAFU [100] are CGRA generation frameworks

that are flexible across topologies and resource allocation. REVAMP [33] and AURORA [247]

have automated DSE for spatial architecture parameters (but not topology or capabilities).

High-Level Synthesis Vivado HLS also adopts a C+pragma programming interface, bit

its pragmas are more complex. The key difference is that HLS generates a fixed hardware

design for a single application.

Our modular compilation approach enables robustness across a significantly larger design

space of programmable architectures, including different topologies and parameters.
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CHAPTER 5

Hybrid Systolic-Dataflow Spatial Architecture for

Inductive Workloads

In this chapter, we will introduce our work, REVEL, Reconfigurable Vector Lanes. Beyond

targeting the inductive dense linear algebra kernels itself, this project works as a proof

of concept for the idea of defining a unified software/hardware co-design space. All each

hardware component of which all those software/hardware codesigned features are composed

can be comprised within this space for further reuse. Moreover, further software/hardware

codesigned innovations can also be done by extending existing components or adding new

components to this space. This idea will be in detail discussed in Chapter 6.

Dense linear algebra kernels have long been the workhorse of signal processing for decades.

The oncoming proliferation of the 5G standard just intensifies this condition1. The inductive

nature of many algorithms in this domain, accompanied with small matrix sizes caused by

the antenna array, makes the parallelism in these algorithms are hard to exploit, which will

be characterized in Section 5.2.1.

We address these challenges by applying decoupled-spatial paradigm and integrating

specialized mechanisms. In the rest of this chapter, we will first explain the kernels we

target, and then discuss the challenges in these kernels. In Section 5.3.1, we discuss which

set of the specialized mechanisms for the challenges are enabled. Finally, we evaluate it and

conclude this project.

1When we first worked on this project in 2017, the 5G standard was still ongoing.
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Figure 5.1: A typical 4G/5G Transmitter/Receiver Pipeline

5.1 Wireless Signal Processing Pipeline

Figure 5.1 shows typical 4G/5G transmitter/receiver stages: Channel coding and modulation

involve mostly bit-level arithmetic. RE mapping is a short resource allocation phase which

is not computation intensive. The BF stage involves mostly matrix multiplication, coming

from spatial signal filtering. Filters and FFT of several varieties are also very common

[130, 295, 177].

The challenging workloads are mostly in MIMO equalization and channel estimation.

These include Singular Value Decompose used by noise reduction, QR Decomposition used

for signal detection, and Cholesky and Solver used in channel estimation. Because of the

size of the antenna array in the base station, the sizes of these matrices are typically very

small, ranging from 12 to 32.

5.2 Motivation

To design a specialized accelerator for wireless signal processing, we not only need to target

conventional compute intensive workloads like FFT, filter, and matrix multiplication, but
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also need to target inductive workloads, like QR, Cholesky, and SVD. Our goal is to have a

unified accelerator specialized for both kinds of workloads. Since the acceleration for FFT,

filter, and multiplication has already been well studied, next we only discuss the challenges

of inductive workload in Section 5.2.1, and explain why the state-of-the-art solution cannot

perfectly resolve these challenges.
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5.2.1 Characterizing Inductive Algorithms

Inductive Workloads To characterize the properties of inductive workloads, we take

Choleksy as an example. The term, inductive, indicates that the algorithm has loop carried

dependence and recursively applies a process to a sub-problem — as it is shown in Fig-

ure 5.2 (a), Cholesky iteratively applies three phases of computation on a shrinking matrix

controlled by the outer loop k. This algorithm contains three interdependent phases are

point, vector, and matrix computations. This workload is unique to FFT, filter, and matrix

multiplication, because:

• Imperfect Loop Body Figure 5.2 (a) shows that the loop body of this algorithm is

no longer perfect. The outermost loop k can be separated into three interdependent

regions. The result produced by the scalar region is consumed by both the vector and

matrix region.

• Shrinking Matrix Size Figure 5.2 (b) shows that because the loop trip count of the

innermost loop j keeps changing, it is impossible to have a perfect loop tiling factor.
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5.2.2 Challenges

General-Purposed Specialization The conventional general-purposemulti-threading and

vectorization cannot specialize for these workloads well. As it is shown in Figure 5.2(b), if

we view the dependence in elementwise granularity, each phase can be executed as early as

the data is available. However, to achieve the execution schedule shown in Figure 5.2(c), the

overhead of thread synchronization and context switch for just a few elements is higher than

the benefit gained from the parallelism. This is especially true when the matrix sizes are

small, and shrinking. Moreover, because of the shrinking matrix size, it is impossible to find

a perfect loop tiling factor to transform the code into SIMD instructions without residue

instructions as it is shown in Figure 5.2(b).

Decoupled-Spatial Paradigm Decoupled-spatial accelerators seem promising since the

instruction execution is driven by the data availability, which avoids the overhead of synchro-

nization in multi-threading. To adopt decoupled spatial architecture, a very first question to

answer is which execution model to adopt. As we discussed before, there are two key dimen-

sions of the execution model, the size of the instruction buffer and the timing of instruction

execution. Under a fixed power/area budget, we stress the decoupled-spatial architectures

with both systolic and tagged dataflow execution model, and the results are shown in Fig-

ure 5.3. Each type of spatial architecture can only perform well on a subset of the workloads.

Just like SIMD, statically scheduled spatial PE’s (Systolic and CGRA) can only paral-

lelize the innermost loop [140] like SIMD, so the inter-dependent code regions are executed

in serial. Host controller intervention is inevitably required to coordinate the non-uniform

produce/consume rate between the code regions. The dynamically scheduled PE’s in ordered

dataflow can handle this, but each of them is dedicated to only one instruction. When it

comes to too many instructions in the concurrent code regions (e.g. QR and SVD), the

dedicated instruction buffer can easily be overwhelmed. Then the execution falls back to

serializing the execution of each region and reconfiguring the accelerator. Tagged dataflow
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PE’s can buffer multiple instructions in a single PE to achieve the code region concurrency.

However, it suffers from not only high area/power overhead, but also difficulty of scheduling

the instructions. As it is shown in Figure 5.3, in compute-intensive workloads because of

the resource contention across instructions, the performance of the tagged dataflow is poor.

We claim that none of the execution model of decoupled-spatial architecture can well spe-

cialize this application domain alone, so it urges us to develop new specialized architecture

mechanisms.

5.3 REVEL: Reconfigurable Vector Lanes

In this section, we introduce the developed hardware specializations to resolve the challenges

discussed in the section above, and then we scale it up to a multicore system for both latency

and throughput.

5.3.1 Composing Hardware Primitives

Hybridizing Systolic and Dataflow A key observation is that, in inductive workloads,

program regions have mismatched instruction count and execution frequency — program

regions in outer loops often have more instructions, and the body of innermost loops are

highly data-parallel multiplications and additions. These data-parallel compute intensive

regions can be well specialized by systolic PE’s. On the other hand, code regions with less

execution frequency often have more numbers of instructions. It will be highly desirable

to keep these instructions on the spatial PE with larger instruction buffer with fewer com-

putation resources provided. Tagged dataflow is attractive to this idiom, because it can fit

in multiple instructions and resilient to the timing variation caused by inductive execution.

Therefore, we decide to integrate a few tagged dataflow in the systolic PE mesh.

The dataflow processing elements are embedded into the on-chip network. The commu-

nication between the systolic and shared PE’s should be carefully enforced by the compiler
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— synchronization FIFO intervention are required to reason a timing of data arrival and

execution when there are multiple instructions mapped to a single shared PE or shared PEs

want to pass data to systolic PEs. In addition, the shared dataflow PE can still be used as

a dedicated PE with a very low priority. Only in this case, the shared and systolic PE’s can

communicate directly through the on-chip network.

Producer-Consumer Because of The different execution frequency also introduces non-

uniform producer/consumer rate among different code regions. If the value is consumed in

a higher rate than it is produced, this value should be reused multiple times. This kind of

communication across codes regions should be coordinated by the synchronization elements

(ports) to comply the timing of systolic PE’s: a value are fired to the spatial architecture,

but this value will not be popped from the FIFO until the time of reuse if over. For example,

as it is shown in Figure 5.4, the invsqrt and inv produced by the “point” are reused (n-k),

and (n-k)2

4
times respectively in the “vector” and “matrix” region. The port repeat feature in

Figure 6.4 should be integrated. Moreover, because the memory operation a[k,j] is under

loop i, and the trip count of loop i depends on loop j, the time of reuse should decrease

when loop j moves forward. More specifically, because of the loop unrolling, we have a
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for (j=0; j<n2d; ++j)
for (k=0; k<n1d; ++k)
// request a[j*sj+k*sk]

(a) Original Rect. 2-D Memory Stream

for (j=0; j<n2d; ++j)
for (k=0; k<n1d+stretch*j; ++k)
// request a[j*sj+k*sk]

(b) Extended Triangular Access

Figure 5.5: The extended triangular memory stream support

ceiling in the formula of time of reuse — the time of reuse should decrease by 1 when every

2 elements are popped from the FIFO. This feature was first proposed in this work and has

already been clarified in Section 3.3.

Triangular Streams The blue boxes in Figure 5.4 show that the inner loop iteration is

controlled by the outer loop. To achieve the same access pattern with our dense memory ac-

cess pattern support, we have to issue excessive commands. Since we only have a single-issue

control host, the performance can easily be bounded by issuing massive control commands.

Therefore, as it is shown in Figure 5.5, we extend the original 2d memory access from (a)

to (b). By passing an additional parameter stretch, the inner loop iteration can change

when the outer loop moves forward. This practices the idea of making software/hardware

co-innovations within a unified design space discussed in the introduction of this chapter.

Implicit Padding We already have triangular stream support, but the performance will

still be bounded by massive control commands when unrolling is adopted. As it is shown in

Figure 5.2, because the trip count of inner loops depends on the outer loops, it is impossible

to find a perfect tiling factor to benefit from the data parallelism achieved by unrolling. As it

was discussed in the background section, implicit padding can be done by taking advantage

of the additional meta information of the stream execution state. When every time the state

machine that tracks the execution of a memory stream comes to the end of the innermost

loop, predication-off that matches the residue of the tiling factor should be implicitly fed

to the coordination FIFO. The triangular stream and implicit padding together enables low
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Figure 5.6: The architecture of REVEL.

control overhead to execute the complicated data access.

5.3.2 Scaling Up

Rationale We have to scale up our design for the purpose of both latency and throughput.

We can either have a large spatial architecture or have multiple lanes of relatively small spa-

tial architectures. To sustain the computation on a large spatial architecture, higher memory

bandwidth and more coordination resources should also be added. Moreover, a large spatial

architecture may lead to an exponentially larger space to explore the mapping. The exces-

sive mapping time makes it impractical. Therefore, we decide to use multiple duplications

of small spatial architectures. The final architecture of REVEL shows in Figure 5.6.

ISA Extension We extend new hardware intrinsics over the ISA discussed in Section 3.3

to support multi-lane scaling up. As it is shown in Table 5.1, we have
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Instruction Parameters

Context mask: The bitmask of the accelerator lanes.

ConfigOffset offset: An offset applied on the starting address.

Table 5.1: The extended ISA

• Context: This instruction configures a bitmask predication that indicates the streams

are broadcasted to the REVEL lanes.

• ConfigOffset: This instruction configures the offset of the starting address for those

accelerators with bitmask predication enabled. This instruction enables task partition

with low control overhead.

5.4 Evaluation Methodology

REVEL Modeling Table 5.2 shows REVEL hardware parameters. All blocks are modeled

at a cycle level in a custom simulator, which is integrated with a gem5 model of a RISCV

inorder core [39, 221], extended for vector-stream control. To compare against state-of-the-

art spatial architectures, we create a custom simulator for each. We synthesized REVEL’s

prototype using Synopsys DC, 28nm tech library. The design meets timing at 1.25GHz.

An open source triggered instructions implementation was our reference for the temporal

fabric [218]. Results from synthesis are used to create an event-based power model and area

model.

ASIC Analytical Models These optimistic models (Table 5.3) are based on the opti-

mized algorithms, and are only limited by the algorithmic critical path and throughput

constraints, with equivalent FUs to REVEL. ASIC area and power models only count FUs

and scratchpad.
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4dm+ 2QR(n) + ⌈ n3

8vec
⌉ 7dn+ 2

n∑
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(i+ ⌈ i
2vec

⌉n) ⌈ n
8vec

⌉mp

Solver FFT Cholesky Centro-FIR

2
n−1∑
0

max(⌈ i
4vec

⌉, d+ 2) n
8vec

log n
n−1∑
i=1

max(⌈ i2

2vec
⌉, 4d) ⌈n−m+1

4vec
⌉m

Table 5.3: Ideal ASIC Models. m, n, p are the matrix dims. (except SVD, where m is the

number of iterations and Centro-FIR, where m is the filter size), xvec indicates x-vectorized,

and d is the latency of div/sqrt.

Workload Data Size Lanes

SVD 12,16,24,32 1

QR 12,16,24,32 8

Cholesky 12,16,24,32 8

Solver 12,16,24,32 1

FFT 64,128,512,1024 1

GEMM 12,48x16x64 8

FIR 37,199x1024 8

Table 5.4: Workload Parameters. “small”,“large” sizes bolded

Workload Versions We evaluate batch size 1 and 8, requiring different optimizations: For

batch 1, REVEL spreads work across lanes (if possible), and for batch 8 each lane operates

over one input. Table 5.4 shows data-sizes and # lanes in batch 1.

Comparison Methodology For fairness, we compare designs with similar ideal max.

FLOPs (except GPU, which has more):

• TI 6678 DSP (@1.25GHz) 8-core DSP, each core has 16-FP adders/multipliers,

using DSPLIB C66x 3.4.0.0.
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• OOO Core: Intel Xeon 4116 (@2.1GHz) Conventional OOO processor using

highly optimized Intel MKL library. (8 cores used)

• GPU: NVIDIA TITANV (@1.2GHz)GV100 graphics processor using cuSOLVER,

cuFFT, and cuBLAS NVIDIA CUDA library as our gpu benchmark. GPU’s peak

FLOPs is >10× higher than REVEL.

• Spatial: The systolic design is similar to Softbrain [193], and dataflow is similar to

Triggered Insts. [200]. FUs and #lanes are the same.

5.5 Evaluation

Our evaluation has four main goals. First to quantify the speedups over state-of-the-art

CPUs, DSPs, Spatial, and GPUs. Second, to characterize the sources of benefits behind the

specialization of inductive parallelism, as well as the remaining bottlenecks. Third, to under-

stand the sensitivity to architecture features. Finally, to compare the area/power/performance

with ASICs. Overall, we find that REVEL is consistently better than all state-of-the-art de-

signs, often by an order of magnitude.

5.5.1 Performance

Overall Speedup Speedups over DSP for batch 1 are shown in Figure 5.7. The DSP and

CPU have similar mean performance. REVEL attains up to 37× speedup, with geomean of

11× and 17× for small and large data sizes. REVEL is 3.5× and 3.3× faster than dataflow

and systolic.

Performance for batch 8 is in Figure 5.8. For small and large sizes, REVEL gets a speedup

of 6.2× and 8.1× over the DSP and CPU. REVEL’s dataflow/vector-stream model provides

4.0× speedup over dataflow, and 2.9× over systolic.

REVEL provides factors speedup over state-of-the-art.
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Figure 5.7: Performance Tradeoffs (batch size=1)

REVEL vs CPU Parallelism Figure 5.9 shows the scaling of REVEL’s performance

against the MKL’s library’s CPU version for different sizes of Cholesky and thread counts.

Observe that when multi-threading is first enabled in MKL (>= matrix size 128), it actually

hurts performance. This is because of the inherent fine-grain dependences, which REVEL

supports natively.

Inductive dataflow can parallelize much finer-grain dependences than with CPU threading.

Benefits from Hardware/Software Mechanisms To understand the sources of im-

provement, we evaluate four versions of REVEL with increasingly advanced features. We

start with the systolic, then add inductive streams, hybrid systolic-dataflow, and finally

stream predication to enable efficient vectorization. Figure 5.10 shows the results.

Inductive memory and dependence streams improve all workloads by reducing control

and increasing parallelism. Even FFT benefits by using inductive reuse to reduce scratchpad

bandwidth. QR and SVD have complex outer-loop regions, so do not benefit as much until

after adding hybrid systolic-dataflow, which enables more resource allocation for inner-loop

regions.

Solver was also accelerated by the heterogeneous fabric because it is latency sensitive,
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Figure 5.8: Performance Tradeoffs (batch size=8)

and collapsing less critical instructions can reduce latency. The vectorized workloads also

receive large gains from stream predication by reducing the overheads of vectorization.

The vector-stream ISA and hybrid systolic-dataflow architecture together enable high per-

formance.

Cycle-Level Bottlenecks Figure 5.11 overviews REVEL’s cycle-level behavior, normal-

ized to systolic. To explain the categories, issue and multi-issue means that one or multiple

systolic regions fired, and temporal means only a temporal dataflow fired during that cycle.

All other categories represent overhead, including the drain of the dedicated fabric, scr-b/w

and scr-barrier for bandwidth and synchronization, stream-dpd for waiting on dependences,

and ctrl-ovhd for waiting on the control core.

The clearest trend is that our design reduces the control overhead dramatically. For some

kernels, REVEL is able to execute multiple regions in the same cycle, especially for larger

matrices. One outlier is FFT with small data; it requires multiple reconfigurations, each

requiring the pipeline to drain.

Exploiting inductive parallelism increases parallel work and reduces control, enabling bet-

ter performance.
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Figure 5.9: CPU vs REVEL Scaling

Dataflow PE Allocation Tagged dataflow PEs are helpful on inductive workloads, but

expensive. A tagged-dataflow PE costs > 5× more area than a systolic PE (2822µm2 versus

16581µm2). Figure 5.12 shows REVEL’s performance and area sensitivity. SVD has the

largest demand on dataflow PEs, so are affected the most. The effects on other workloads

are neglectable, so we choose 1 dataflow PE to minimize the area penalty.

5.5.2 Area and Power Comparison

Breakdown Table 5.5 shows the power/area breakdown; the largest source (especially

power) comes from FP units. REVEL is 1.93mm2, and 1.63 Watts.

Comparing against CPU and DSP Figure 5.13 shows the relative performance/area

normalized to the CPU after adjusting the technology. The DSP achieves a high performance/mm2,

and REVEL is able to achieve even higher performance with a moderate area overhead.

REVEL has 1089× performance/mm2 advantage over the OoO core, and 7.3× over the

DSP.
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Figure 5.11: REVEL’s Cycle-level bottlenecks

Comparing against ASIC Table 5.6 shows performance-normalized area overhead over

ASIC analytical models. REVEL is mean 2.0× power. This is mostly due to the control logic

(ports, bus, etc.) and reconfigurable networks. It is 0.55× the area of the combined ASIC.

This is optimistic for ASICs in that it assumes perfect pipelining and no control power.

REVEL is on par with ASICs-level efficiency.
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area(mm2) power(mw)

Compute Dedi. Net. (24) 0.06 71.40

Fabric Temp. Net. (1) 0.02 14.81

Func. Units 0.07 74.04

Total Fabric 0.13 160.25

Control (ports/XFER/str. ctrl) 0.03 62.92

SPAD-8KB 0.06 4.64

1 Vector Lane 0.22 207.90

Control Core 0.04 19.91

REVEL 1.93 1663.3

Table 5.5: Area and Power Breakdown (28nm)

Workloads SVD QR Cho. Sol. FIR MM FFT Mean

Power Ovhd. 2.8 2.0 1.9 1.6 2.0 1.9 1.9 2.0

Area Ovhd. 3.3 2.4 2.3 2.2 2.3 2.3 2.8 2.5/0.55

Table 5.6: Power/Area overheads to ideal ASIC (iso-perf)
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Figure 5.12: Temporal region sensitivity

5.6 Related Work

In this section, we discuss work other than that previously covered by the spatial architecture

taxonomy in Section 3.2.1.

Synchronous Dataflow Variants The inductive production to consumption rates in our

dataflow model is inspired by the static rates in synchronous dataflow [159] (SDF). SDF was

developed as a specialization of existing dataflow models which could be statically scheduled.

Cycle-static dataflow [38] extends SDF with periodically changing rates, and heterochronous

dataflow [99] extends SDF to enable an FSM to step through predefined rates. None of the

above were applied to spatial architectures or handle inductive dependences.

StreamIt [250] is a language and runtime with somewhat similar semantics to vanilla

SDF, and was evaluated on RAW [103], a (mostly) static/shared-PE spatial architecture.

Outer-loop Parallelism Prabhakar et al. develops “nested-parallelism,” which enables

coupling of datapaths with nested parallel patterns [209]. Inductive parallelism is a general-
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ization of nested-parallelism, and we can achieve a higher utilization due to hybrid systolic-

dataflow execution.

Some CGRA compilers target nested loops [140, 160], but only parallelize the epilogue and

prologue of subsequent loop nests. Recent work has made progress in pipelining imperfect

nests [286], but does not parallelize across multiple region instances. CGRA Express [203]

allows a CGRA to use the first row of its PEs in VLIW mode during outer loops. Concurrent

execution across inner and outer regions is not attained. None of the above handle inductive

dependences.

In addition, recent work [58] by Cheng et al. target inter-loop parallelism on a manycore

system by adopting a dynamic task-parallel programming interface and communicating data

through software managed scratchpads.

Flexible Vectorization Vector-threading techniques also marshal independent execution

lanes for vectorized execution when useful [161, 151, 219, 139]. The RISC-V vector extension

supports configurable vector-length and implicit vector masking [93]. Vector-length is limited

by physical registers (REVEL’s streams are arbitrary length), and inductive access is not

supported, so the vector length would have to be reset on each iteration. These architectures
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are also not spatial, so cannot exploit pipelined instruction parallelism.

Some spatial dataflow models use predicates for control [235, 43]. These do not use

streams for vector predication. dMT-CGRA [264] adds inter-thread communication for a

spatial-dataflow GPU [263, 262].

DSP Accelerators Many application/domain-specific reconfigurable designs have tar-

geted DSP algorithms. Fasthuber et. al [88] outline the basic approaches. One representative

example includes LAC [205], targeted at matrix factorization. Our architecture allows more

general programmability.

Stream-based ISAs and Reuse Many prior architectures have used memory-access

stream primitives [220, 278, 193, 64, 272, 121, 69, 271]. To our knowledge, no prior work has

incorporated inductive patterns into such streams.

5.7 Conclusion

To conclude, this work, besides being a promising accelerator that target the DSP domain,

fortifies the idea of having a unified reconfigurable accelerator over a collection of application-

specific designs. With moderate overhead, near-ASIC performance can be achieved while

retaining flexibility. In addition, the idea of unifying the design space of specialized accel-

erator is well practiced. Hardware features can be integrated from a unified design space

as needed by the target applications, and software/hardware co-innovations can be done by

adding new components or extending existing components. This idea enables my Ph.D. core

project, DSAGEN [273], which will be in detail discussed in the next Chapter.
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CHAPTER 6

DSAGEN: Synthesizing Programmable Accelerators

In this chapter, the core project of this dissertation, DSAGEN [273], will be elaborated.

This work aims at building a programmable accelerator design automation framework. The

overview of this work is shown in Figure 6.1. There are three key aspects of this framework,

the design space, the software stack, and the design automation algorithm.

The design space is defined by formalizing the approach discussed in Chapter 5: each

component of which the software/hardware co-designed features are composed is comprised in

this design space, and each design point can be represented by connecting these components.

A graph is a data structure that naturally encodes the connectivity, and such a graph is called

an architecture description graph (ADG).

Accelerators are designed by studying the program behaviors of interest to derive special-

ized hardware mechanisms, which means all the design demands are naturally encoded in the

programs. Therefore, we adopt the programming interfaces and compilation flow described

in Section 4.1 as our software stack so that a wide range of specialized accelerators with

optional features can be robustly targeted. By taking advantage of the compiler’s capabil-

ity of exploring the set of transformations and generating multiple versions of transformed

IRs, the design demands and the software/hardware affinity can easily be attained by the

compiler.

Base on the design space, and the software stack, we develop a design space explo-

ration (DSE) algorithm that iteratively make changes to the candidate architecture and

select the IR version that best fit this underlying hardware, guided by the software/hardware
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Figure 6.1: Programmable Accelerator Design Automation Framework — DSAGEN

affinity estimated by our analytical models. Once the software/hardware pair converge, a

specialized accelerator and applications well-tuned for this accelerator are generated.

In the rest of this chapter, the technical details of three key aspects, the hardware descrip-

tion, the transformation exploration, and the design space exploration, that together enable

automated accelerator design will first be covered. Then, we will evaluate and conclude this

work.

6.1 Architecture Description Graph

To automatically synthesize programmable accelerator, a very first question to answer is how

the design space is designated and represented. As mentioned in Chapter 1, the decoupled-

spatial architectures are attractive to us because of their performance, flexibility, and the

capability of approximating prior works. Moreover, according to our prior studies, optional

hardware/software codesign features can be independently integrated to these architectures

by composing different components to explore tradeoffs between hardware cost and degree

of specialization. These primitive architecture components and integration are discussed in

Section 3.2.1.

A graph naturally encodes the connectivity among these components to a design point of a
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Figure 6.2: The examples of ADG approximation.

decoupled-spatial architecture. Such a graph is called architecture description graph (ADG).

Figure 6.2 shows how ADG’s approximate the prior reconfigurable accelerator works. Instead

of tuning the parameters of a template hardware, representing the architectures in a graph

gives us more flexibility on exploring the topology among the components, which enables

potentially deeper specialization.

6.1.1 Parameterizing Components

Besides the connectivity, the attributes of each vertex in the ADG should also be specified.

In this section, we discuss trade-offs among flexibility, programmability, and hardware cost

enabled by these parameters. The components and the parameters of each component are

shown in Figure 6.3. Instead of viewing the ISA we discussed in Table 3.1 as a whole, the
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Figure 6.3: The hardware primitives that compose a decoupled-spatial architecture.

ISA can be modularly enabled/disabled according to the parameters of the components. As

it is shown in Figure 6.4, the deeper colors of boxes indicate deeper degree of specialization

(which also requires more on-chip resources), and the nested boxes indicate the dependences

among the specialization.

Processing Elements (PE) can be categorized in two dimensions, the timing of execu-

tion (dynamic/static), and the size of the instruction buffer (dedicated/shared). These two

dimensions together enable tradeoffs among hardware cost, compilation time efforts, and

degree of specialization as discussed in prior chapters (Chapter 2 & 3).
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On-chip Network is composed by switches. The key parameter of a switch is its connec-

tivity and the capability of traffic control. Each switch has a #in×#out matrix to describe

the connectivity between inputs and outputs. In a systolic PE array, the switch has no

capability of traffic control, and in a dynamically scheduled array, the switches should have

capability to backpressure the upstream nodes.

Decomposability The granularity of routing and computation can both be down to bytes.

Each switch and arithmetic unit in PE can optionally be decomposable [74] down to a certain

bitwidth, aligned with a power of two. This enables better flexibility of data types, but

introduces more on-chip resources overhead, which was discussed in Section 2.2.

Synchronization Ports The ports not only serve as the interfaces between the memory

and the spatial architecture, but also can be used to control the consumption rate of the

data, and the implicit padding predications of the loop residues (refer the ConfigPort and

pad in Section 3.3).

Delay FIFO’s These are critical for the systolic PE execution. If the timing cannot be

matched perfectly, performance degradation will be imposed to guarantee the correctness of

execution [192]. The throughput of firing computation cannot exceed:

Pipeline Utilization ≤ FIFO Size

max miss + FIFO Size

Larger delay buffers can make compilation easier, but more areas are occupied.

Memory Memories are parameterized by their capacity, number of banks, number of con-

current streams as well as their expressiveness of the streams. Typically, there are two

kinds of streams, linear and indirect. The indices of linear streams are linear combinations

of nested loop variables (e.g. a[(i*n+j)*m+k]). The indices of indirect streams are ex-

pressions contains memory operation (e.g. a[b[i]]). The detection and encoding of these
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Figure 6.4: The ISA features that can be modularized

memory streams were already discussed in Section 4.3 & 3.3. The more dimensions/deeper

loop nest it supports, the more complicated micro-architectural state machine it requires.

This graph serves not only as a serialized representation of the composed architecture, but

also as an abstraction/specification for the compiler to understand the underlying hardware.

The spatial mapper uses the information encoded in this graph to be aware of the topology

of the network, and the capability of each processing element to map dataflow graph, and the

compiler (refer next section for more details) inspects this graph to be aware of the modular

ISA enabled to invoke each hardware-specialized transformation.

6.1.2 Limitations and Future Directions

Figure 6.2 shows the architectures can be composed of the primitives mentioned above.

Beyond these architectures, there are still many architectures can or cannot be represented

in ADG’s. In this section, we discuss the bound of DSAGEN, including features that can be

hypothetically added to DSAGEN as well as fundamental limitations.

Potential Features: When DSAGEN was developed, we had relatively limited support

for compilation and architectural design space. We propose these following future directions.
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• Overlay: The generated coarse-grain reconfigrable accelerator can be used as another

level of overlay on the FPGA to save the expensive FPGA physical design and recon-

figuration. This work was realized, and will be discussed in the next chapter.

• Flexible Memory Topology: When building this framework, we made very strong

assumption on the memory-accelerator connection. It is possible to explore the topol-

ogy among these coarse-grain components. This was also supported in our follow-up

work, and will be discussed in the next chapter (Chapter 7), which requires extensions

to the dataflow graph, and compiler to encode more domain knowledge.

• Heterogeneous Cores: Each host controller can only command one instance of the

spatial accelerator currently. We can make the host controller connect to multiple

instances of the accelerators.

Fundamental Limitations:

• Memory Consistency: Because of the concurrent nature of the memory streams,

we cannot enforce the orders among every single memory request. The compiler or

programmer should be responsible to the coarse-grain memory operation.

• Speculation: Because of the decoupled nature of our system, the control command

cannot be easily rolled back when mis-speculation.

6.2 Generating Multiple Intermediate Representation

As discussed before, the accelerator design demands are naturally encoded in each program

behavior of interest, which will also be referred as idioms next. The compiler is aware of

these software/hardware co-design opportunities, and these opportunities are reflected by

performing different sets of transformations as it is shown in Figure 6.5. Here, we discuss

three typical modular transformations that reflect hardware design demands.
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#pragma dsa offload unroll(-1)

for (i=0; i<n; ++i) {

a[i] += b[i] * c[i];

}

(a) Exploring Unrolling Degree

Sync
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×
B C

A

+

Sync

Sync

×
B[2] C[2]

A[2]

+
×
+
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a larger design.

Not Unrolled Unroll by 1

(b) Sparse Memory Access

#pragma dsa offload

for (i=0; i<n; ++i) {

// access a[b[i]]

}

LinearStream(

/*arr*/b, /*l1d*/n,

/*dst*/IdxPort);

IndirectStream(

/*arr*/a, /*l1d*/n,

/*idx*/IdxPort,

/*dst*/DataPort);

for (i=0; i<n; ++i)

scalar(/*value*/a[b[i]],

/*dst*/DataPort);

Without Sparse Support

With Sparse Support

Sync

Sync

#pragma dsa offload

{ a=b*c; d=1.0/a;

e=1.0/sqrt(a); }

(c) Spatial Execution Model
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Figure 6.5: Compiler transformation to reflect design demands.

Unrolling Degree mainly reflects the demands of the computing resource. The higher

unrolling degree the compiler adopts, the more hardware resources are required as it is shown

in Figure 6.5(a).

Sparse Memory Access The compiler can generate code with the same semantics using

different memory stream intrinsics. In the case shown in Figure 6.5(b), data will be fed

scalar by scalar from a for-loop if the sparse memory engine is not available, which pressures

the host controller to issue more instructions, while keeping the underlying hardware simple.

On the other hand, if the sparse unit is required, the compiler can generate stream intrinsics

uses those intrinsics.

Spatial Execution Model Section 2.1 already characterizes different spatial execution

model, and REVEL discussed in Chapter 5 already demonstrates the promise of adopting

suitable execution model for different code regions. The compiler tries to map the instruc-

tions to either shared PEs or dedicated PEs to reflect the demands of integrating different

execution models.

Different design demands may lead to different software/hardware affinity. To rapidly
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evaluate how efficiently the underlying hardware is specialized for these transformations,

several analytical models are developed. This will be explained in the next section.

6.3 Design Space Exploration

Our framework can perform automated codesign between the input programs and the hard-

ware, selecting the best set of transformations along with a fine-grain selection of hardware

features based on iterative search. The basic iterative approach to codesign as follows:

1. Start with the initial ADG and input applications.

2. The compiler generates multiple versions of transformations for different hypothetical

sets of hardware features, and resource occupation.

3. At each iteration:

• Make a number of random modifications on the ADG: a number of components

are added or removed with random connectivity without exceeding the power and

area budget.

• Map all the versions of the applications onto the ADG.

• Estimate the performance of the versions can be properly mapped onto the can-

didate hardware based on an analytical model.

• Select the version with the best performance of each application and estimate the

objective function.

• If the objective function improves, continue with the new ADG.

4. Repeat the iterations until the objective function until the objective (perf2/mm2) con-

verges.
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To enable efficient design space exploration, we need to optimize the most time-consuming

steps in the design space exploration, the compilation, and the software/hardware evaluation.

In the rest of this chapter, we will discuss the insights and solutions to these challenges.

6.3.1 Spatial Mapping Repair

Because of the iterative nature of the spatial mapping algorithm, it becomes one of the

most timing consuming steps in the design space exploration, especially when the hardware

resources and datapath are highly tailored for the applications. The transformed applications

stay stationary across each iteration of the design space exploration, and the modified ADG

is not totally different from what it was in the previous iteration. Therefore, instead of

remapping the applications onto the candidate hardware from scratch, we adopt a mapping

repair algorithm. After the ADG is modified, only the portion mapped to the removed

hardware resources is affected by the modification. Therefore, we only need to find new

mapping for this portion. Compared with fully remapping, this partial repair inherits a

highly iterated solution and make progress on this, so it will potentially yield better mapping

with fewer additional iterations. Figure 6.6 shows how schedule repair saves the effort over

rescheduling.

6.3.2 Analytical Estimation

It is not practical to synthesize the candidate hardware and run each application on it, consid-

ering the time consumed. We need an accurate and efficient way to predict performance-cost

tradeoff of the hardware-software pair.

Performance Estimation As aforementioned, a main source of spatial architecture ac-

celeration is the ILP achieve by the software pipelining, and the instruction execution is

driven by the data availability. Therefore, we use the ILP as the metric of the estimated
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Figure 6.6: An example of DSE step with schedule repair

performance. To estimate the ILP, we only need to estimate the rate of data availability by

analyzing each data source:

perf = #inst× data rate

For a stream from memory, the data rate can be computed:

data rate =

∑
data traffic

memory bandwidth

where data traffic is the number of bytes required to sustain the data path of the spatial

architecture.

For a recurrence stream, the data rate can be computed:
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data rate = min(1,
length

latency
)

where length is the length of the stream, and the latency is the number of cycles from the

input port to the result port. If we have enough instances fired to the spatial architecture

to hide the latency of the datapath, the data rate is considered good.

When there are multiple offloaded regions, we use LLVM’s block frequency module to

estimate the relative execution rate of each offloaded region and use this as a weight to

normalize the performance of each application.

Power/Area Estimation We estimate the power and area by simply adding up the

power/area of each component predicted power/area interpolated models. Each component

is synthesized alone with different parameters, and then we use these synthesized results to

calculate a set of proper parameters for the models.

6.3.3 Hardware Generation

When the design space exploration is finalized, our framework can generate the hardware.

Besides the RTL implementation, our framework also generates the ISA.

Feature-Oriented Interfaces As aforementioned, each hardware features can be inte-

grated independently, so our framework may inspect the ADG to determine the hardware

features demanded. For exmaple, if indirect memory is required in the generated hardware,

address generation unit with indirect capability will integrated.

Bitstream Encoding Each component of the spatial architecture has its own local regis-

ters to store the bitstream that encodes the programmable information: A switch’s bitstream

encodes the routing table. A PE’s bitstream encodes the instruction opcodes, execution tim-

ing (for static PE’s only), and instruction tags (for shared PE’s only). A synchronization
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element’s bitstream encodes the cycles of delay. The spatial architecture is configured by

loading the bitstream into these registers.

Config. Path Generation The ADG can describe arbitrary topologies, so a key question

to answer is how the bitstream is loaded along with this topology. We define the problem as

finding one or more paths that covers all the nodes in the ADG, and the longest path should

be as short as possible. We use an approximate algorithm to solve this question. We first

use a spanning-tree like algorithm to get multiple initial paths. Then we iteratively apply

a heuristic: cut a node from the longest path and connect it to any nearby shorter paths.

Iteratively repeat this process until the length converges.

6.4 Methodology

Compiler We build our compiler by customizing clang so that it can parse and encode the

pragmas in metadata of an LLVM module. Then a customized LLVM pass is implemented

to analyze and rewrite the code by taking advantage of this additional metadata. These

transformed IR will generate assembly code and be assembled and linked by GNU binary

toolchain.

Simulation We use a single-issue RISC-V core as our control host. We simulate it by

extending gem5 RISC-V in-order core, and integrating a cycle-accurate spatial architecture

simulator.

Target Accelerators We chose five accelerators to instantiate (approximately), to stress

different hardware features:

• Softbrain [193] is instantiated using a mesh of static-scheduled/dedicated PEs and

switches and a single non-banked scratchpad memory.
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• MAERI [154] is approximated similarly to Softbrain, but with its novel tree-based

topology.

• Triggered Instructions [200] is approximated with a mesh of dynamic-scheduled/temporal

PEs. Our designs assume a group of PEs shares access to a decoupled scratchpad.

• SPU [74] is similar but has dynamic-scheduled/dedicated PEs, and banked scratch-

pad.

• REVEL [276] composes static-scheduled and dynamic-scheduled PEs in one mesh,

and allows communication through synchronization elements.

In our experiments, we assume that accelerators are integrated to a high-bandwidth L2

cache (75 GB/s).

Synthesis We build a Scala-embedded DSL to generate the RTL implementation of the

decoupled-spatial architecture, and synthesize the design in Synopsys DC 28nm library.

6.5 Evaluation

DSAGEN adopts the compiler discussed in Chapter 4, which was already evaluated, so

we only evaluate DSAGEN’s design space explorer and hardware generator. The major

takeaways are:

• According to our estimation, the design space explorer is able to save 42% power and

area over the initial hardware.

• The automated DSE generates hardware with mean 1.3× perf2/mm2 comparing with

prior programmable accelerators across multiple sets of workloads.
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6.5.1 Design Space Exploration

The goal of our design space exploration is to demonstrate the ability to automatically

tune the fine-grain hardware/software features and architecture topology. We evaluate three

different sets of workloads:

• MachSuite: This set represents a variety of workloads with different needs and some

irregularity. This allows us to compare DSAGEN’s design (DSAGENMachSuite) against

a hand-designed accelerator for these kinds of workloads: Softbrain [193].
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• Dense neural networks: We evaluate convolution, pooling, and classifier kernels,

which have regular access and control. This allows us to compare the generated design

(DSAGENDenseNN) against not only Softbrain, but also a domain-specific accelerator:

DianNao [55].

• Sparse convolutional neural network: This is a single workload: outer-product

multiply and re-sparsify. It has regular computation but data-dependent memory

access. We compare DSAGENSparse CNN against SCNN [201] (a fixed accelerator) and

SPU [74] (a programmable accelerator for sparse workloads).

We perform three DSE runs starting from the same initial hardware, a 5×4 mesh with full

capability, including control flow, FU decomposability, and an indirect memory controller.

The design space explorer estimates the performance, power, and area using the model

discussed in Section 6.3, and the objective function is perf2/mm2. The explorer runs up to

200 scheduling iterations to initialize or repair the mapping after changing the hardware.

The algorithm will exit after 750 iterations without objective improvement.

Figure 6.10 shows how the area (left bar), power (right bar), and overall objective (color

intensity) evolve during design space exploration. The first two iterations initialize the

exploration: after the datapaths are mapped to the initial hardware in the first iteration,

the redundant features, including known unneeded functional units and address generation

capability are removed. Because of the objective function, achieving better performance

has higher priority than saving resources. Therefore, in these three DSE runs, the estimated

performance is enhanced, and then the explorer trims redundant resources. It is hard to map

sparse CNN’s datapaths onto the initial hardware within a few iterations, so the explorer

in the early iterations adds some redundant compute and routing resources to ease the

difficulties of mapping. For MachSuite, the memory bandwidth is the bottleneck, so the

explorer adds more initially. Subsequently the explorer focuses on enhancing the reuseability

of on-chip network across multiple workloads, and minimizing the synchronization element
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depth.

Overall, our design space explorer saves mean 42% of the area and achieve mean 12×

objective improvement over the initial hardware across the three selected sets of workloads.

Model Validation We validate our power/area regression model by comparing the num-

bers against synthesis. The results are shown in Figure 6.9. The bold label is the corre-

sponding hardware, which is either a DSE generated hardware or existing reconfigurable

accelerator. “Est.”, “Synth”, and “Scaled” stand for “estimated by the regression model”,

“obtained by synthesis”, and “obtained from prior paper by technology scaling” respectively.

For the generated hardware, the estimate is 4-7% smaller than the synthesis area/power.

While the model was tuned by synthesizing each component alone, extra structures are

required to meet timing for the whole fabric. Our estimated model shows a somewhat large

discrepancy between estimated and scaled area/power of Softbrain and SPU, which is partly

due to microarchitecture1 and technology/scaling differences. Further, some overhead may

be due to having to provide more general protocols for modularity.

To validate the performance model, we simulate the generated hardware with the com-

piled programs after DSE. The model has mean performance error of 7%, with maximum

error of 30%. The maximum error occurred in stencil-3d, because our model does not yet

capture the performance impact of excessive control instructions.

Quality of the Generated Hardware Figure 6.9 shows comparison of DSAGEN de-

signs with corresponding less-specialized programmable accelerators (Softbrain and SPU).

According to our regression model’s estimation, DSAGENDenseNN and DSAGENSparse CNN

saves 64% and 18% area comparing against SPU and Softbrain for respective workloads.

While DSAGENMachSuite introduces 1.2× area overhead comparing with Softbrain, it also

1Softbrain’s design [193] assumed delay structures could be eliminated by the compiler, which prior
work [192] found not to be true.
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provides 1.2× speedup (favorable given the objective function).

We also compare against scaled domain-specific accelerators, DianNao and SCNN, for

reference; this is not particularly accurate due to technology differences. DSAGENDenseNN

has overhead of 2.4× area and 2.6× power over scaled DianNao. DSAGENSparseNN is 1.3×

area and power over SCNN. We believe the overhead is mainly from reconfigurability. While

these accelerators use a specific network (eg. tree in DianNao), DSAGEN’s irregular network

does not converge perfectly to these specific, perhaps optimal, topologies. There is still future

work to be done to improve the design space exploration.

Schedule Repair We compare two different strategies, traditional scheduling (map entire

dataflow every iteration) and our schedule repair approach. During DSE, after each iteration

of the hardware update, both perform up to 200 scheduling iterations. The result is shown

in Figure 6.7 for the MachSuite workloads. At the early stages, both strategies have a very

close objective, because there are abundant resources on the hardware and scheduling is

simple. Remapping the whole schedule can still succeed within 200 iterations. When the

hardware resources become tight, the traditional scheduler cannot succeed on these more

efficient designs, because it has to re-discover the entire mapping. Overall, schedule repair

leads to a 1.3× better objective for DSE.

Configuration Path Improving the configuration time can aid performance of short pro-

gram regions. Configuration time is dominated by the longest configuration path. We

evaluate the path generator by giving it multiple mesh spatial architectures (2× 2 to 5× 5

PEs) under the constraint of having 3, 6, and 9 configuration paths, and the result is shown

in Figure 6.8. The dashed lines are the ideal lengths (for a network with n nodes, p paths,

the longest path cannot be shorter than ⌈n
p
⌉), and the solid lines are the actual lengths. The

path generator only introduces mean 1.4× overhead versus the ideal.
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6.6 Related Work

DSE for General Purpose Processors Custom fit processors [92] is a framework to

build application-specialized VLIW designs. Somewhat related proposals target customized

VLIW or superscalar pipelines through some codesign process [120, 117, 28, 184, 71, 72].

Another related work is for general purpose processors called Liberty [255], which uses a

microarchitecture specification to generate simulators and perform DSE. Similar frameworks

include Expression [110], UPFAST [197] and LISA [206]. None of these support spatial

architectures.

Network Synthesis Network synthesis techniques enable customized network topologies

based on workload properties. One example is SUNMAP [186], which performs network

topology synthesis, and similar techniques have been developed for irregular network topolo-

gies [208, 265]. DRNoC [152] and Connect [199] are network generators tailored for FPGAs.

DRNoC is particularly relevant, as it generates a network based on the application’s task

graph. These NoC generators only addresses network design without considering computa-

tion. Other works map applications onto potentially irregular NoCs [185, 124], but do not

perform codesign search.

Accelerator Design Frameworks CGRA-ME [62] is a design framework for static-

scheduled CGRAs. It uses a C programming strategy, and includes fast power and area

models [191]. The framework has a generic spatial scheduler for any topology based on

integer linear programming [266, 63]; this is too slow for DSE. Several works explore the

design space for CGRAs, including ADRES [41] and the KressArray Xplorer [114]. Kim

et al. develop a design space exploration framework tailored for DSP applications [141].

EGRA [26] is another template-based CGRA which supports compound functional units

(we do too through composition). RADISH is a CGRA generator which uses genetic al-

gorithms to search for compound PEs based on a corpus of applications [277]. Suh et al.
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propose a CGRA with heterogeneous FUs, amenable to DSE [242]. APEX [175] explores

the topology using a subgraph mining algorithm while keeping each processing element ho-

moegneous. AutoSA [268, 301] generates programmable accelerators using systolic-array-like

architecture as compute substrate, and their design spaces are limited to applications with

static dataflow timing.

µIR [232] is an IR and framework for designing application-specific accelerators that

exposes microarchitecture features as first-order primitives.

Key Differences: None of the above 1. have a design space including multiple execution

models (e.g. dynamic+static scheduling, dedicated+temporal PEs), and 2. perform topology

search to specialize the hardware datapath to a set of programs. To the best of our knowledge,

DSAGEN is the first one that achieves these two.

Compilation for Heterogeneous Systems Prior work develops high-level abstraction

for programming heterogeneous systems [53, 211, 146], but mainly focus on domain-specific

languages instead of general purposed programming. Our framework can be integrated with

existing high-level compilers in each one of these systems. Doing so would enable DAEGEN

to serve as the middle layer for enabling many accelerators to targeted with the same compiler

infrastructure.

The Spatial [146] compiler uses DSE to map parallel programs to FPGAs and the Plas-

ticine [210] CGRA, with an optimizer called HyperMapper [187]. It is fundamentally or-

thogonal as it is targeting the compilation problem and not DSE of the architecture itself.

We were also inspired by the decoupled-spatial execution model to develop a unified com-

pilation flow for the emerging tensorization idiom [274]. Because of the spatial architecture

enables a programmable datapath, the offloaded computation can be arbitrary. However, for

the tensorized instructions, the semantics of these instructions are fixed. This work adopts

a reversed methodology comparing with the compilation for decoupled-spatial architectures.

The computation and the memory accesses are decoupled and analyzed respectively to de-
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termine applicability and code organization.

6.7 Conclusion

To broaden the potential of acceleration, this work develops an approach and framework,

DSAGEN, for programmable accelerator design automation. In this paradigm, an accel-

erator can be developed by composing simple spatial architecture primitives, and also be

generated through automated codesign. Codesign works because the compiler can under-

stand how best to use the simple primitives that are composed in an architecture description

graph. Modular compiler transformations can robustly target accelerators with different ISA

features, parameterizations, and topologies. Further, only traditional languages are required

with relatively little programmer intervention.

More broadly, the field of computer architecture has historically grappled with what

should be the layers of abstraction from hardware to software to enable efficient designs. A

fixed ISA has been both the typical assumption and a persistent burden. This work suggests

that the ISA does not need to be the hardware/software abstraction which designers rely on,

at least for the domain of accelerators. Instead, a modular accelerator description can serve

that purpose, and enable much greater flexibility to explore deeply specialized designs. This

framework has been used for many use research projects [40].

This approach can also be extended and used to improve and revolutionize the existing

FPGA programming, which will be discussed in the next chapter.
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CHAPTER 7

OverGen: Improving FPGA Usability through

Domain-specific Overlay Generation

In this chapter, a work [166] aims at reforming the existing FPGA programming paradigm

is presented. By deploying a specialized programmable accelerator as another level of over-

lay on FPGA, under a unified high-level programming interface, orders-of-magnitude faster

reconfiguration and compilation over the existing FPGA programming approach is achieved.

7.1 Motivation

FPGAs have been proven to be a very powerful computing platform. However, the exist-

ing FPGA programming paradigms impose significant challenge to developers. Developers

have to manage excessive low-level details when writing register transfer language (RTL),

including but not limited to timing, concurrency, and heterogeneous on-chip resources. An

alternate is high-level synthesis (HLS). HLS tools can generate high-performance designs,

by relying on hints provided by the developers. Hints are often encoded in a very compli-

cated pragma system. State-of-the-art frameworks (e.g. AutoDSE [239]) explore these hints

on behalf of the programmer. While highly effective, HLS limits programmer productivity

because of high compilation/synthesis times. Moreover, HLS-generated FPGA designs are

specific to either a single application or an application domain. When switching across dif-

ferent applications, loading bitstream takes significant time, taking more than a second to

reconfigure modern FPGAs [225, 212].
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Figure 7.1: Overlay Generation Compared to HLS

Alternatively, FPGA overlays map a coarser grain architecture (e.g. CPUs [143, 156, 230,

227], GPUs [142, 21, 83, 24], CGRAs [204, 36, 19]) on top of the FPGA’s fine grain abstrac-

tions. While overlays reduce compilation/synthesis time and are more general, they experi-

ence quite high overheads due to the abstraction gap between general purpose architectures

and the low-level fine-grain abstractions exposed by FPGAs. Overlays can be customized

with domain-specific extensions [3, 168], but this approach is highly time-consuming.

Vision and Requirements Our vision is to use an HLS-like approach where the gen-

erated hardware is tuned to input applications, but which targets a highly-flexible overlay

architecture instead of a fixed-function pipeline. Figure 7.1 gives the basic idea, where a set

of applications are fed to a design-space exploration (DSE) step to determine the ISA and

resource provisioning in the overlay, and compiling a new application (and reconfiguring)

is extremely fast. Ideally, small application changes would not require FPGA re-synthesis.

We envision four requirements for overlay generation to be successful: 1. the overlay design

space must include both system parameters and a broad accelerator design space, 2. it must

balance generality versus specialization, depending on the degree of diversity in input appli-

cations, 3. the memory system itself should be highly specializable to the application, and

4. it has to get competitive performance with traditional HLS within reasonable DSE time.

95



Approach For the first two requirements, we leverage prior work on flexible multicore

system generators (e.g. [23, 32]) and spatial architecture synthesis (e.g. [273, 248, 277, 33,

69, 246, 150, 30, 232]). Multicore system generators enable simple scaling in terms of cores,

cache and network [23]. My prior study [273, 276] has proven the power of the decoupled-

spatial paradigm, which is able to get deeply specialized for a wide range of applications

while retaining flexibility with a high-level programming interface under moderate hardware

overhead. Moreover, these decoupled-spatial architectures can be automatically generated

to be specialized for the given applications, which well fits the goal of being a counterpart

for HLS for FPGA programming.

To enable even deeper specialization, our primary insight is that data-reuse structures

(e.g. DMA engines, scratchpads) must be incorporated into the spatial architecture de-

sign space to better ultize the FPGA memory system (requirement 3) – i.e. enabling a

custom topology connecting reuse structures to compute structures. For the DSE to make

good decisions, this requires the compiler to analyze and expose data-reuse analysis to the

spatial-scheduler intermediate representation. We refer to this technique as spatial-memory

exploration, which will be explained in further sections.

Finally, for requirement 4, we notice that significant time is spent on recompiling work-

loads as the hardware definition changes. We develop novel techniques for modifying the

hardware while preserving the validity of previous compilations. We call these schedule-

preserving transformations.

Implementation and Implications This work is called OverGen, which integrates two

open-source frameworks, the DSAGEN [273] spatial architecture generation framework and

the ChipYard [23] SoC generator, and extends these with support for FPGA resource mod-

eling at the system level, novel hardware design space extensions, and novel algorithms for

DSE-time reduction.

While much of this work is about the integration of previous ideas and existing frame-
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works (with some novel extensions), the results are profound: The evaluation suggests that

domain-specific spatial overlays, and the OverGen framework specifically, have the poten-

tial to challenge HLS as the defacto FPGA design methodology. Our approach preserves

a programmer-friendly interface with short compilation and reconfiguration times, and has

competitive performance across many domains compared to the state-of-the-art HLS frame-

work AutoDSE [239]. Across workload suites of DSP, Machsuite, and Vitis Vision, OverGen

achieves geomean speedups of 1.21×, 1.13×, 1.25× speedups over baseline AutoDSE without

kernel tuning, and it still reaches comparable performance, 0.71×, 0.37×, 0.65× respectively,

with manual kernel tuning for AutoDSE. Our approach also enables overlays that support

single or multiple workloads by automatically reasoning about the cross-workload flexibility.

In the rest of this chapter, the novel extensions on DSAGEN we made to enable this

revolutionizing FPGA programming paradigm will be elaborated, including the extended

design space, software interfaces, as well as the design space exploration.

7.2 Extension Overview

Here we overview OverGen’s extensions span compilation, design space exploration, and

resource modeling, and then overview the design space and key tradeoffs.

7.2.1 Overview

Compilation Figure 7.2 shows the overview of OverGen. We begin with the compilation

flow, which takes the system-level ADG (sysADG) as input. The sysADG defines the spatial

accelerator and system design spec, and is created during overlay generation (described

later). The programming interface of OverGen is multithreaded C with aforementioned

pragmas (details in Section 7.4.5). The LLVM-based compiler will attempt to create the

highest-performance dataflow graph for the spatial accelerator using its knowledge of the

available hardware features in the sysADG. The compiler extracts the memory access and
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Figure 7.2: Overview of OverGen Framework

computation from the program to construct a Memory-enhanced Dataflow Graph (mDFG);

the mDFG is enhanced with information about array size, suitability for mapping arrays

to scratchpads, and data reuse of each stream. The program represented as an mDFG is

then mapped onto the ADG by the spatial scheduler, using the reuse information to make

informed decisions. The mDFG could fail to map to the hardware; if so, the compiler will

“relax” the DFG complexity by using less aggressive transformations (e.g. reduce unrolling

degree [275]).
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Overlay Generation The input to the overlay generation is a set of workloads which

forms the domain of interest. It is too inefficient to redo the compilation with each step of

DSE. As we discussed before, the applications naturally encode the design demands of the

generated hardware. To better utilize the underlying FPGA memory resource, the compiler

generates a set of different mDFGs representing program versions that could be useful. These

extracted mDFGs are incrementally recompiled during DSE.

Compiled mDFGs are used to guide spatial-accelerator synthesis: all mDFGs are sched-

uled to an ADG, and the ADG is iteratively updated to maximize the objective (mean

performance of the best-performing mDFG for each workload). There are four innovations

over prior work: 1. the system and spatial accelerator are co-designed; 2. reuse and array

information enables reasoning about memory and cache allocation at the spatial level, and

3. DSE balances FPGA resource utilization, and 4. the mDFG resource utilization guides

ADG transformations with schedule-preserving transformations, described in Section 7.4.2.

Finally, the chosen sysADG will then be lowered to synthesizable RTL for the FPGA,

in part leveraging hardware generators from DSAGEN [273] and ChipYard [23]. DSAGEN’s

microarchitecture implementation is enhanced to enable pipelining on FPGAs with tight

cycle-time constraints.

Model Setup Our FPGA resource utilization model is based on per-hardware element

models. Elements with a few parameters (e.g. core) can be exhaustively synthesized. For

elements with many parameters, we use a machine-learning (ML) based model, trained from

synthesizing a representative design space, which is proven to be accurate and effective [280].

Leveraging learned models means that this framework can more easily be ported to other

FPGAs.
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7.2.2 Overlay Design Space

Accelerator Design Space This accelerator design space is very similar to the design

space discussed in the last chapter. By connecting different hardware components, including

but not limited to processing element, memories, and recurrence bus, a decoupled-spatial

architecture can be composed. Similarly, each component can have different parameters to

enable a tradeoff among cost, flexibility, and performance. Refer prior Section 6.1 for more

details.

System Design Space This is one of key differences from DSAGEN. The target overlay

is a homogenous multi-tile (i.e. multicore) where each tile contains an instance of the spatial

accelerator, associated with a light-weight control core where DSAGEN can only synthesize

single-core systems. Because we target highly-acceleratable workloads, the control cores

are kept simple (single issue, small private cache), and are only provisioned for managing

accelerator execution. The control cores and accelerators share access to a shared L2 cache

over a crossbar-based NoC. Overall we explore the number of tiles, NoC bandwidth, L2

banks (for controlling L2 bandwidth), and L2 capacity.

7.2.3 Key tradeoffs

OverGen opens a variety of tradeoffs that were previously difficult to explore and would have

required manual effort. On the system side,

Big tiles vs. More tiles Many acceleratable workloads benefit from vectorization, while

others are difficult to vectorize due to irregularity or loop dependencies. This leads to a

tradeoff where some domains prefer more small accelerators (less pipeline/vector parallelism)

or fewer large accelerators (more pipeline/vector parallelism).
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L2 cache size vs. Scratchpad capacity Some workloads have regular access to private

data that can map to scratchpads, while less regular codes often benefit from hardware

managed caches. Each domain requires a tailored allocation.

Balancing Bandwidths The overall design space has essentially three levels of memory

hierarchy, from shared cache to spatially distributed scratchpads, and reuse in the compu-

tation units. Allocating bandwidths across these levels requires understanding the compute

bandwidth and data reuse possible in the chosen workloads — these decisions are tightly

coupled with accelerator size and number of tiles.

Compute Density vs. Generality If the goal of the overlay is to support either many

workloads or dissimilar workloads, a more general overlay is required. This tradeoff can be

made by constructing a flexible datapath at the cost of more resources, thus affecting all of

the above tradeoffs.

7.3 Spatial Memory Exploration

7.3.1 Motivating Spatial Memory DSE

Prior spatial architecture synthesis algorithms assume that all memory elements (scratch-

pads/DMAs) can communicate with all computation elements. While this simplifies the

design space and spatial scheduling, it also prevents the DSE from exploring the best way to

connect memories and processing elements together. Figure 7.3(a) shows an example design

where memory stream engines communicate over essentially a crossbar to the spatial com-

pute units. Figure 7.3(b) shows the potential of a system that allows spatial memories, where

these engines have local communication with a smaller subset of elements. Similarly, extend-

ing this design space enables the possibility of deciding between multiple smaller scratchpads

or a single unified scratchpad.
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Making these decisions with existing DFG abstractions is difficult, as they lack two key

pieces of information: 1. the relationship between access patterns and data structures, and

2. the size and reuse of these data structures. Together, these can enable reasoning about

the validity and performance of spatial memory optimizations.

Memory-enhanced DFGs (mDFG) We enhance DFGs with data structure and reuse

information by introducing array nodes, creating what we call a memory-enhanced DFG

(mDFG). Array nodes have edges to streams that consume or produce those arrays, and we

include reuse properties on streams. An example is in Figure 7.4 for a simplified version of

FIR. Here, the input array a is stored in scratchpad for higher bandwidth requirement and

reuse. The size parameter describes the total size allocated in either DRAM or scratchpad.

If it is in scratchpad, the additional space of double-buffering is included. Also, streams are

annotated with additional information for computing the reuse factor, including data traffic,

data footprint, stationary reuse, and recurrent reuse (see the “Reuse Analysis” paragraph).

There is now sufficient information in the mDFG to decide which scratchpad to use —

i.e., if data can be routed between the scratchpad node in the ADG and PE nodes that

consume this data, and if there is enough remaining space in the scratchpad. If there is

ever a limited capacity, the reuse information can help determine which array node in the
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mDFG should be mapped to a scratchpad node; for example, if an array has a stream with

stationary reuse at the port, the benefit of exploiting reuse at the scratchpad level could be

less than another array without stationary reuse. Note that the reuse information in the

mDFG will also be used in the DSE for making system-level design decisions (Section 7.4).

7.3.2 Software Support for Spatial Memory

To implement spatial memories, we extract array and reuse information from the program,

and embed this in the mDFG to utilize during spatial scheduling.

Array Node Extraction As it was discussed in Chapter 3, all memory operations under

the stream pragma are “restricted” (alias free), so we can extract the arrays involved in the

dataflow graph by analyzing the pointer expressions. Specifically, we extract all the array

pointers that are transitively used by all the decoupled memory operations. Consider the

example in Figure 7.4(a): a, b, and c are extracted as array nodes. An array node has three

attributes: pointer, footprint, data traffic, and memory reuse.

Reuse Analysis Being aware of memory behaviors that can be captured by hardware

specializations helps both compiler optimization and DSE. Our compiler recognizes these

patterns and annotates them on the associated stream nodes. Next, we discuss three typical
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reuse patterns, general, stationary and recurrent through the example in Figure 7.4(a) and

(b).

General Reuse refers to when a memory stream repeatedly accesses a set of data within a

program region. Scratchpad is often favored to exploit this reuse, provided there is sufficient

capacity. Reuse can be identified by finding a discrepancy between data footprint (array

or tile size) and traffic (number of uses). Consider the operand a[i*32+ii+j] from the

innermost loop; the compiler recursively analyzes and joins the memory boundaries touched

by each loop, and finally computes that 255 elements are in the memory footprint. To

compute the data traffic, the compiler notes that every loop variable is involved in this

pointer expression, which means a different element is accessed in each iteration. Thus, the

data traffic of this operand is computed by multiplying all loop trip counts, i.e. 32×128×32 =

16384. This indicates that each element is reused an average of 16384
255

times. Indirect memory

access, e.g. a[b[·]], can also be analyzed similarly. To simplify, we assume: 1. b[·] is linear

and can be analyzed by the above techniques; 2. no memory access will overflow, and the

indirect memory access is a uniform distribution over array a. Therefore, data traffic is

calculated by multiplying loop trip counts, and the data footprint is the size of array a.

Stationary Reuse refers to an operand repeatedly reused across the innermost loop so that

this operand can be stationary in the compute substrate (e.g. the port FIFO). Consider the

b[j] operand: Because the innermost loop ii does not involve the pointer expression, this

value is reused across loop ii 32 times. Even though b[j] also has general reuse, it does

not provide as much value to map to scratchpad, because much of the reuse is captured as

stationary reuse (i.e. in the port).

Recurrent Reuse refers to when a pair of memory streams repeatedly update a set of

data. When this set of data can concurrently fit in the data path pipeline and port FIFO,

this pair of streams are favored to use the recurrence stream engine to avoid memory traffic.

Consider the c[io*32+ii]: it repeatedly reads and writes a set of memory touched by ii

(i.e. 32 concurrent instances) along with j (i.e. 32 recurrences). Therefore, when there is
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enough on-chip buffer for these 32 concurrent instances, this pair of streams will be mapped

to the recurrence stream engine.

To sum up, reuse behavior captured by scratchpad, port FIFO, and the recurrence stream

engine will all be considered as the reuse factor; this factor is used to calculate the bandwidth

pressure of each stream in the DSE performance model (Section 7.4.3).

mDFG Scheduling Enhancing any spatial-scheduling algorithm to support mDFGs is

straightforward. The principle is to treat array nodes (the ones representing the data struc-

ture), as any other node which must be scheduled onto the ADG, but with unique scheduling

constraints. Intuitively, an array node can be mapped to a memory stream engine if:

1. There is sufficient remaining space (for a scratchpad).

2. There is a legal route from producers to consumers.

3. The access pattern of all streams for the array node is supported by the stream engine

(e.g. indirect access).

The stream engines in our implementation allow more than one array each (as they

support multiple concurrent streams), provided there is sufficient capacity. The tradeoff is

that the bandwidth must be shared between any associated streams. Thus, even if it is legal

to map more than one array to a scratchpad, it is sometimes beneficial to avoid sharing by

using a different scratchpad or even just placing the array node onto a DMA stream engine;

this can help maximize the utilization of available bandwidth.

Having reuse info on streams can help resolve these choices. For example, array nodes

with stationary reuse at ports (e.g., read the same value X times) provide less benefit when

mapped to scratchpads than those array nodes without stationary reuse – this is because

their bandwidth consumption is already reduced. These factors must be considered during

spatial scheduling; thus, we modify the objective of the spatial scheduler to use the projected
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performance of the mDFG, which factors in reuse and bandwidth bottlenecks. Because this

is a critical portion of the system-level DSE, we explain the performance model in the next

section (Section 7.4.3).

7.4 Unified System & Accelerator

Design Space Exploration

The goal of DSE in OverGen is to codesign the system parameters and accelerator fea-

tures/topology to maximize FPGA performance on the set of input applications. Here we

first give an overview, then discuss a novel technique to use prior schedules to guide spatial

DSE, and finally discuss the performance and area modeling techniques.

7.4.1 Overlay Design Exploration

Logically, one iteration of the DSE involves proposing a new ADG for the hardware, recom-

piling all the workloads to it, and evaluating an objective (performance and FPGA resource

use) to guide the next step of DSE — repeat until convergence. We use three main strategies

to reduce the time for each DSE iteration.

First, we attempt to avoid recompilation as much as possible. During standard compila-

tion, the compiler will iteratively back-off from aggressive transformations that require more

resources than available (e.g. reduce the vector width and recompile). To avoid this during

DSE, the compiler pre-generates different mDFGs for each program region which each use

different transformations (different unrolling degrees, use a recurrence stream instead of ac-

cumulation, etc.). These different mDFGs are maintained during DSE, and ultimately only

one of them needs to be used (only one has to schedule correctly to the ADG). While this in-

creases the up-front cost for the first DSE iteration, it eliminates from-scratch recompilation

during DSE.

106



Spatial
DSE

Spatial
Scheduler

System
DSE

Stochastic
Select

Scheduled
DFG*(s)

Scheduled
DFG*(s)

ADG*
Valid ADG* Sys. ADG*

Prior Scheduled DFG(s)

Selected Sys-ADG by Simulated Annealing

* : Modified in this iteration of DSEDFG

×
+

a[ ]c[ ]

c[ ]

b[ ]

+ +

b[ 0: n]

IP 1

OP 0

IP 0

a[ 0: n] c[ 0: n]

Invalid
ADG*

Figure 7.5: OverGen’s Unified DSE Flow

Next, we also try to avoid the expensive spatial-scheduling stage of compilation by reusing

the mDFG-to-ADG schedules from the prior iteration of DSE. A simple approach is to only

re-schedule the portions of the DFG mapped to ADG elements that were modified (i.e.

schedule repair [273]). In addition, we can use information about prior schedules to make a

more informed decision about how to modify the ADG (see Section 7.4.2).

Finally, we leverage the disparity between spatial scheduling time (very high) and system-

level design-space exploration (quite low). Rather than explore both ADG design (spatial

DSE) and system parameters (system DSE) at the same level of the DSE, it is relatively

inexpensive to nest system DSE inside of spatial DSE – i.e. run a full exploration of system

parameters every time we modify the ADG. This improves the convergence of the overall

DSE.

DSE Flow Summary The overall DSE flow is in Figure 7.5. At the beginning of each DSE

iteration, the spatial DSE will propose a new ADG named ADG∗. ADG∗ is constructed us-

ing a combination of random and schedule-preserving transformations (Section 7.4.2). Then,

mDFGs are rescheduled onto ADG∗, leveraging the prior schedules for any unchanged por-

tions of the ADG. If any program region has no successfully scheduled mDFGs, then ADG∗

is abandoned, and a new iteration begins. If not, then the system-level exploration (sys-

tem DSE) exhaustively searches for the best system-design parameters for ADG∗ (creating

sysADG∗) based on estimated performance and resource constraints.
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The objective function favors estimated performance first (Section 7.4.3), followed by

estimated resources-per-accelerator (Section 7.4.4). This secondary objective encourages the

spatial DSE to prune unneeded resources in the ADG, even if it does not lead to more cores

or higher performance in the current DSE iteration. The final step is to choose whether

to continue with this ADG∗, which is done stochastically through a simulated annealing

approach.

7.4.2 Schedule Preserving Transformations

During each DSE iteration where the Spatial DSE randomly modifies the hardware, it is

common that some of the compiled DFGs can become invalidated due to hardware deletions

or resource reduction. While this can sometimes be rectified by repairing the schedule to

use other resources, it often cannot be. In these cases, the DSE algorithm either has to use

a lower-performance schedule, less-vectorized DFG. The repair itself also takes a significant

amount of time. This is unfortunate, because this can even happen when deleting units that

are not necessary: e.g. a switch that is only used to pass through a value without requiring

flexible routing.

Thus, we introduce the concept of schedule-preserving transformations, which use prior

DFG schedules to guide hardware modifications that preserve their validity. Schedule pre-

serving transformations are defined as hardware modifications that simplify the ADG while

adding back the minimum capability to support the existing schedules. Thus, in essence,

schedule-preserving transformations increase hardware utilization, providing further incen-

108



tives for the removal of hardware units that provide less value. Specifically, we identified

three such transformations:

Node Collapsing, as shown in Figure 7.6(a), occurs when a unit which performs routing

(e.g. a switch) is deleted. Here, after the routing node is deleted, any routes on existing

schedules that went through the node are used to define new direct hardware connections

from their source to their destination. Thus, this transformation preserves prior schedules

by ensuring a valid path for routes through a deleted unit.

Edge Delay Preservation, as shown in Figure 7.6(b), preserves the pipeline depth of all

operands for a PE when an intervening routing node is deleted. A balanced pipeline depth

ensures that all operands arrive at the same time to avoid pipeline bubbles; these bubbles

can lower the throughput of the spatial accelerator [192]. Our approach is to increase per-

operand FIFO-depths in the PE (called delay-fifos) whenever this imbalance can be observed

on an existing schedule.

Module-Capability Pruning prunes excess module capabilities, and associated hardware,

that are not needed by mapped schedules. Without this transformation, the DSE oftentimes

does not have enough incentive to remove some costly capabilities, and more frequently

removes capabilities that are actually useful.

7.4.3 Performance Model with Spatial Memory

To estimate performance, we implemented a bottleneck-based analysis that captures system-

level design parameters, memory bandwidth at different layers, and computational band-

width. Specifically, the overall performance is calculated as the weighted geometric mean

of the estimated IPC for each mDFG. An mDFG’s IPC is calculated by multiplying the

maximum instruction bandwidth (mDFG Insts) by the number of tiles and by the lowest

bottleneck factor of all levels of the memory system:

Perf = (mDFG Insts) · (# of Tiles) · min
L1...L3

(
RProduction

RConsumption
) (7.1)
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Hardware Unit Total Synthesized

Processing Elements 100,000

Switches 56,700

Input Port 34,412

Output Port 25,796

Table 7.1: Number of Hardware Modules Synthesized

The mDFG Insts factor captures vectorization degree, allowing the DSE to explore trade-

offs between higher vectorization degrees and number of tiles. Memory operations, namely

load and store operations, are included within the estimated IPC to ensure that vectorization

of pure data-movement DFGs is incentivized.

While counting loads and instructions estimates the ideal IPC, memory bandwidth limi-

tations reduce the observed IPC, as memory subsystems cannot always supply enough data

to fulfill computational requirements. We compute the most-bottlenecked performance re-

duction over L1, L2, and L3, corresponding to the Scratchpad, L2 Cache, and DRAM.

This bottleneck factor is calculated by dividing the production and consumption rate (as

RProduction

RConsumption
in the previous equation). These factors are calculated as follows, taking into

account stream reuse factors (see Section 7.3.2):

RProduction = BWLN ,LN+1
· (# of Banks)

RConsumption =
∑
i=1

(
BW(Streami)

Reuse(Streami)
) · (# of Shared Tiles)

(7.2)

In the above equations, the production rate is computed by multiplying the bandwidth

and bank count at each memory level. The consumption rate, or data needed to satisfy

compute bandwidth, is the sum of compute data required by a single tile, multiplied by the

number of tiles at that memory hierarchy level. The single-tile required data is computed as

the summation of all stream bandwidths divided by their associated reuse rates. We describe

how the bandwidth (BW) and reuse factors are computed at each level:
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Scratchpad Bandwidth With scratchpads replicated across tiles, the # of Shared Tiles

factor is one, making the bandwidth only depend on vectorization degree. Also, the band-

width is calculated separately for the read and write port.

L2 Bandwidth As L2 Bandwidth is shared amongst tiles, the consumption rate increases

with respect to tile count, requiring more banks. Accesses to L2 cache occur when a stream

pattern cannot be supported by port reuse or recurrent data stream, without which the

required data production rate will be increased – thus demanding more L2 Banks.

DRAM Bandwidth Similar to L2 bandwidth, the consumption rate is dependent on both

reuse and tile count; however, the total FPGA’s DRAM bandwidth is fixed.

7.4.4 ML-based FPGA resource model

To rapidly predict FPGA resources, the DSE leverages a machine-learning (ML) resource

prediction model, which estimates resources on a component-level basis. To generate the

ML model, we perform out-of-context synthesis on variations of each hardware unit, shown

in Table 7.1, to train an ML-based FPGA resource model. The component-level ML model

implements a 3-layer multi-layer perceptron (MLP), with an 80%/10%/10% test, train, and

validation data split. As the FPGA resource model was synthesized out-of-context with

no synthesis optimization passes being performed, our model behaves pessimistically – the

projected design point is larger than the actual post-PnR result.

7.4.5 Limitations & Future works

Threading Interface The current pthread-like programming interface assumes a one-

to-one mapping of threads to tiles, where threads run to completion uninterrupted. Also,

the performance models assume that all tiles are parallelizing the same code region, and

this is our convention when implementing kernels. We also do not manage the interaction
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between host and FPGA in terms of offloading or data movement. A more sophisticated

programming interface, task model (e.g. [188, 75, 73, 245]), and analytical models could

significantly expand usability.

Processing Elements Our current implementation of processing elements only supports a

dedicated instruction execution model; in contrast, the use of shared PEs (either static [178,

173] or dynamically scheduled [276, 200, 76]) can potentially support kernels with larger

code regions and get higher utilization for kernels with more complex control flow.

Compilation Support Although our processing elements already support a predication-

based control lookup table for conditional execution, our compiler has only limited support

for converting arbitrary control flow to predication based dataflow execution. A more general

dataflow control flow model (e.g. [101, 136]) is future work. Meanwhile, our compiler only

supports data parallel loop unrolling when exploring DFG resource occupation (i.e. DFG

size). When it comes to exploiting overlapping data reuse between subsequent loop iterations,

we still require manual unrolling to take advantage. This can be improved by integrating prior

work on reuse distance analysis [68]. Also, our reuse analysis relies on strong assumptions on

compilation-time determined loop trip count and array shape. One of our future directions

is to support dynamical array shape and loops.

7.5 Methodology

Benchmarks We selected 19 workloads from different domains: 9 from Xilinx Vitis com-

puter vision library, 5 from the digital signal processing (DSP) domain targeted by REVEL

[276], and 5 from MachSuite [216] for commonly-accelerated workloads. The data size and

data type are shown in Table 7.2.
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Workload Size Type #ivp #ovp #arr #m,a,d

D
S
P

cholesky 482 f64 7 3 2 5,4,2

fft 212 f32x2 3 1 2 4,8,0

fir 210 × 199 f64 4 2 2 4,4,0

solver 482 f64 4 2 2 4,4,1

mm 323 f64 4 3 3 4,4,0
M
ac
h
S
u
it
e stencil-3d 343 × 8 i64 7 1 2 4,12,0

crs 494× 4 f64 6 5 6 1,0

gemm 642 i64 4 2 3 8,8,0

stencil-2d 662 × 32 i64 3 1 2 9,11,0

ellpack 494× 4 f64 4 3 4 4,4,0

V
is
io
n

channel-ext 1282×4 i16 1 1 2 0,0,0

bgr2grey 1282×4 i16 3 1 2 16,32,4

blur 1282×4 i16 3 1 2 0,52,8

accumulate 1282×4 i16 2 1 2 0,16,0

acc-sqr 1282×4 i16 2 1 2 16,16,0

vecmax 1282×4 i16 2 1 3 0,16,0

acc-weight 1282×4 i16 5 1 2 32,16,4

convert-bit 1282×4 i16 3 1 2 0,32,0

derivative 1302×4 i16 3 1 2 16,32,4

Table 7.2: Workload specification: size, data type, input/output ports, and multiply, add,

div ops in the best DFG.

Baseline We evaluate OverGen in terms of speedup, compilation, DSE time and device

reprogram time. We compare against the state-of-the-art HLS technology, AutoDSE [239],

as our baseline by using Merlin Compiler (2020.3) and Xilinx Vivado (2020.2). Because

AutoDSE benefits significantly from manual kernel tuning, we evaluate both against non-

tuned and tuned code versions for AutoDSE.

Compiler support We augment the open-source DSAGEN [273] compiler with spatial

memory support. An extended Clang and LLVM compiler transform the pragma-annotated

program into RISC-V assembly, and the RISC-V GNU toolchain is modified for binary

generation.
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Figure 7.7: Quad-Core OverGen FPGA Floorplan

Hardware Generation & Verification OverGen augments the Chisel-based DSAGEN

hardware generator [273] by extending it to full system-level with a modular spatial memory

system as described in Section 7.3. After obtaining RTL from hardware generation, we

further verify the functional completeness as a full system with RISC-V binaries on RTL

cycle-level by using Synopsys VCS before FPGA verification.

System-Level Integration & Experiment Platform Each accelerator is integrated

into ChipYard [23] as an RoCC accelerator to a small RISC-V Core (Rocket Core). All

designs use an 8-way associative directory-based inclusive L2. The generated RTL is further

synthesized to Xilinx VCU118 Evaluation board by using Vivado 2021.2. All data for each

kernel begin offchip and are loaded from FPGA DRAM.

Because of FPGA implementation difficulties, we were not able to run on our FPGA

when multiple DRAM channels were enabled. Thus, we use a single DRAM channel for

most experiments, and study the effect of multiple DRAM channels separately using VCS

RTL simulation (Eval. Q7).

Figure 7.7 shows the floorplan of a Quad-tile General OverGen design at 92.87MHz,

including the DRAM controller’s location. The critical path is around the L2 MSHR logic,

and optimizing is beyond the scope of this work.
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Figure 7.8: Overall Performance Comparison

7.6 Evaluation

The goal of our evaluation is to provide perspective on the opportunities of synthesized

spatial overlays as compared to state-of-the-art automated HLS (AutoDSE). This section is

organized around 8 key questions, with the takeaways being:

• OverGen is able to generate reconfigurable designs that can outperform baseline Au-

toDSE (without kernel tuning) by mean 1.2×, even though the generated designs are

more flexible.

• HLS benefits more heavily from kernel tuning, while OverGen’s execution model and

compiler can handle many code patterns natively without software effort.

• New applications within the same domain can be easily deployed on an existing overlay

with only modest performance degradation, due to overlay flexibility.

Q1 How performant are generated overlays?

Figure 7.8 shows the overall performance of OverGen across all workloads, normalized to

AutoDSE without kernel tuning. We demonstrate three different kinds of overlays:

115



ch
ol fft

st
cl-

3d cr
s

ge
m

m
st

cl-
2d

ch
an

.
bg

r2
.

bl
ur

1/8
1/4
1/2

1
2
4
8

16

Sp
ee

du
p 

o/
 V

an
illa

 A
ut

oD
SE Hatched bar indicates s/w tuned version.

AutoDSE w/l-OG

Figure 7.9: Effect of tuned kernels

• General Overlay (second bar): A single hand-designed mesh-based accelerator over-

lay targeting all workloads with maximum vectorization width (512 bit).

• Suite Overlay (third bar): An overlay specialized to each workload suite. Table 7.3

shows the specs of each.

• Workload Overlay (fourth bar): An overlay specialized only to a single workload.

We first compare against AutoDSE without manual kernel tuning. The general overlay

achieves comparable performance to AutoDSE on the DSP suite and MachSuite, and mean

68% of the performance on vision suite. This is because it can only fit at most 4 general

tiles, due to the high overhead of the general overlay’s datapath and FUs (about 52% in

LUT). The per-suite specialized overlays outperform baseline AutoDSE by a mean 1.2×,

primarily due to having 2-3× more tiles (i.e. due to specialized network, FUs, and mem-

ories). Additionally, the DSP overlay uses two scratchpads to increase bandwidth without

requiring more expensive wider accelerator datapaths. The per-workload specialized designs

can outperform AutoDSE without kernel tuning by mean 1.45× for similar reasons; the rel-

ative improvement over suite-specialized is modest, especially for Vitis, due to the strong
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Spec. Mach. Vitis DSP General

S
y
st
em

Tile Count 10 13 7 4

L2 #Bank 16 16 8 4

NoC B/W (Byte) 64 64 64 32
A
cc
el
er
a
to
r

PEs 20 16 10 24

Switches 17 11 27 35

Avg. Radix 2.9 2.61 2.85 4.69

Int +/× /÷ 16/14/0 16/15/13 0/0/0 24/24/24

Flt. +/× /÷ /
√
x 4/4/0/0 0/0/0/0 6/6/5/2 24/24/24/24

Spad. Cap. (KB) 64 - 8, 32 32

Spad. B/W (B/cyc) 32 - 32, 32 32

Spad. Indirect? Yes - No, No Yes

GEN/REC/REG 0/0/0 0/0/0 0/1/0 1/1/1

In Ports B/W (B) 160 112 152 224

Out Ports B/W (B) 96 48 104 160

Table 7.3: Specification of Suite Specific Overlays

similarity between workloads.

Compared to AutoDSE with manual kernel tuning, OverGen is able to achieve 0.71×,

0.37×, 0.65× of performance for DSP, Machsuite and Vision respectively, while still main-

taining workload-flexibility. This is sensible, as hardware structures for preserving generality

and programmability reduce the maximum resource efficiency; Q2 goes into depth on why

kernel tuning is more critical for AutoDSE.

While most suite overlays were at least half the performance of the AutoDSE designs,

there were a few outliers. Both stencil-2d and derivative both apply aggressive reuse

optimization through a sliding window, which can be well specialized by line buffer archi-

tecture on HLS [211]. For ellpack, we have to load a vector to the scratchpads of all cores,

but we currently lack broadcast support from DRAM to scratchpad, which wastes significant

bandwidth; incorporating stream-based multicast [226] would be helpful.
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Q2 Impact of kernel tuning across frameworks?

We studied 9 workloads that benefit from kernel tuning, as shown in Figure 7.9. There

are 7 workloads where AutoDSE (and its underlying HLS technology) does not handle some

code patterns well, leading to lower performance because of increased initiation interval (II:

number of cycles between pipeline compute instances). In general, these patterns are more

easily supported on OverGen’s ISA/compiler. To substantiate this, we manually transform

these 7 workloads to improve their II for AutoDSE, and we found 4 opportunities for kernel

tuning in OverGen.

AutoDSE Kernel Tuning: We find that two main manual transformations are useful

in these workloads: eliminating variable loop trip counts, and strength reduction for strided

access patterns. Table 7.4 shows the II’s before and after these transformations, and the

hatched bar in Figure 7.8 and Figure 7.9 shows the tuned workloads’ performance. Note

that all other workloads achieve II=1, and OverGen always achieves II=1. We next discuss

each transformation and the affected workloads.

Causes Var. Loop TC Inefficient Strided Access

Workload chol. crs fft bgr2. blur chan. stcl-3d

Untuned II 10 4 2 9 6 8 6

Tuned II 5 2 1 1 1 1 1

Table 7.4: HLS Initiation Interval (II) Optimization

Variable Loop Trip Count : HLS prefers a perfect loop nest with fixed trip-count [211],

but cholesky, fft, and crs all have variable trip counts or imperfect loop bodies. To

transform these programs, we replace variable trip counts with a fixed maximum, and push

outer-loop computation into the inner loop. We then guard the conditional execution with

if-statements within the inner loop. OverGen supports variable trip-count streams natively

(using REVEL’s ISA [276]).

Inefficient Strided Access : AutoDSE’s toolchain has trouble efficiently performing strided
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memory access with small strides (including accesses that appear strided when observing only

the innermost dimension of the access pattern). Such patterns can limit AutoDSE’s ability

to exploit memory parallelism, either at the BRAM level with multiple ports, or at the

DRAM level with memory request coalescing. To help the underlying HLS tools understand

the access pattern better, the solution is to perform a strength reduction on any strided

accesses using the innermost induction variable (e.g. instead of using i * 4, increment i by

4 in each iteration). OverGen’s compiler natively supports strided streams and coalescing

adjacent streams.

Prebuilt Database: AutoDSE has a pre-built database that records the best explorer

configuration of AutoDSE for common workloads. gemm is optimized using this database.

OverGen Kernel Tuning: These software behaviors of interest are more easily cap-

tured by the OverGen compiler, so only 4 workloads benefit from source code transformation

on OverGen. For fft, we peel the last several iterations, so that strided scalar access can

be coalesced to fully utilize the memory bandwidth [273, 275]. For gemm, to minimize I/O

traffic into the accelerator and improve reuse, we unroll across two inner-loop dimensions

(similar to tensorization [274]). For stencil-2d and blur, our compiler has limited support

for exploiting reuse from overlapped data access between subsequent iterations. Therefore,

we manually unrolled the iterations to reuse the overlapped data.

Overall, while kernel tuning is a helpful avenue for performance improvement in Au-

toDSE’s HLS-based approach, it also more often requires programmer effort to get compet-

itive performance than OverGen for this set of workloads.

Q3 How fast is OverGen’s DSE?

Figure 7.10 shows the DSE and synthesis time comparison between AutoDSE (first bars

in each suite) and the suite-wise OverGen overlay (right-most hatched bar). Comparing

AutoDSE’s combined time of synthesizing each application, our DSE constructs a more

general accelerator while using only 47% of the time.
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Figure 7.10: DSE and synthesis time comparison.

Q4 What are the limiting FPGA resources?

Figure 7.11 shows the resource breakdown of each component, normalized by the total

FPGA resources available for both overlay and AutoDSE designs (with kernel tuning). All

the generated overlay designs (both per-workload and suite) consume from 81% to 97% of

LUTs, which is the limiting factor. Because OverGen favors some potential generality for

future workloads, the DSE greedily consumes as many resources as possible, even if there is

no parallelism or when we are memory bandwidth bound. One of the biggest components in

terms of LUTs is the NoC, due to its crossbar-based implementation (prior work observed

similar overheads [69]). AutoDSE tends to consume fewer resources as it favors utilizing less

hardware when memory bound or parallelism bound, as generality is not a goal.

Q5 Can additional workloads be mapped to an overlay?

We perform a “leave-one-out” experiment to study the overlay flexibility. Specifically,

we generate an overlay for all but one workload in a suite, then try to map the remaining

workload. If that workload can map with relatively high performance, that indicates a more

robust design.

The results are shown for MachSuite in Figure 7.12. Most of the workloads can be mapped
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Figure 7.11: FPGA Resource Breakdown

to the corresponding leave-one-out accelerator, with mean 49.5% performance degradation.

Performance loss is caused by datapath specialization, which prevents the optimal spatial

mapping; generally, a less-vectorized version is used, which has commensurately less perfor-

mance. The modest performance loss may be acceptable to an FPGA programmer making

incremental changes. We imagine that the compiler could inform the user when a significant

performance improvement is expected, to signal when to perform DSE again.

We use the same setup to evaluate the compile/reconfiguration time, as compilation time

is most meaningful on an overlay that was not specifically designed for that workload. Com-

paring against AutoDSE-based HLS, our spatial overlay compilation is 10000× faster. Also,
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Figure 7.12: “Leave-one-out” Flexibility Evaluation

reconfiguration is much faster by mean 54000×. This is useful if the desired FPGA func-

tionality changes rapidly, enabling efficient temporal multiplexing at very fine time scales.

Q6 How does overlay-generality affect performance?

OverGen can be used to generate increasingly general designs by incrementally adding

more target workloads. Figure 7.13 shows the results of such an experiment, where we

incrementally add workloads and rerun the DSE to analyze how the number of tiles and

resource usage changes. We witness the overall datapath (PE + Port + network) use per tile

increases as new workloads are added to the target set, because the datapath becomes more

general. To compensate, the number of tiles decreases from 15 to 10. Because some of the

workloads are memory bound, it only costs mean 8% performance to support all workloads

in this suite.

Q7 How do more DRAM channels affect performance?

Figure 7.14 shows the performance with varying DRAM channel count, normalized to

single-channel DRAM for each design. For AutoDSE, most MachSuite kernels can benefit

from multiple DRAMs by mean 25%. Element-wise memory-intensive workloads like mm,
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Figure 7.14: Effects of DRAM channels

gemm1, vecm., accu., acc sqr, acc wei and deri. can also benefit from multiple DRAM

channels. The OverGen Workload Overlays see benefits on a similar set of workloads by

mean 19%.

Q8 Do schedule-preserving transforms improve DSE?

Figure 7.15 compares the DSE algorithm with and without schedule-preserving transfor-

mations. Here the x-axis is time in hours, and the y-axis is the DSE’s estimated IPC for the

1gemm is a tiled (blocked) implementation of matrix multiply, mm is not
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whole FPGA. Schedule-preserving transformations help the DSE converge faster to designs

that are more-specialized to the workload datapath topologies. Overall, DSE time is reduced

by mean 15%, and the estimated IPC is improved by 1.09× (running on the FPGA confirms

1.08x speedup).
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Figure 7.15: The effects of schedule-preserving transforms.

7.7 Related Works

Overlay Architectures We highlight significant and recent overlay approaches; Li et al.

provide an in-depth survey [162], and a recent ACM community article by Yuze et al. also

in detail discussed how FPGAs target DSAs [61].

Soft CPU: FPGA vendors provide soft processor implementations, e.g. Xilinx MicroB-

laze [4] and Intel Nios II [5], and there are also many open source works, e.g. SPREE [284],

iDEA [48, 47], and OpenRISC [198]. Some alternatives provide higher-performance mi-

croarchitectures, such as multi-issue (e.g. Leon3 [95], FPGA-Nehalem [227]), multi-thread

(e.g. Octavo [156], CUSTARD [80], MT-MB [182]), multicore with scalable networks (e.g. Her-

acles [143], Kumar et al. [153]), vector operations (e.g. SIMD-Octavo [155], MXP [230]), as

well as VLIW (e.g. TILT [215]).

Soft GPGPU: FlexGrip [24] and MIAOW [31] are single compute-unit (CU) overlays

based on Nvidia and AMDGPU architectures, respectively. FGPU [21] was able to synthesize
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multiple CUs on a single FPGA board, with a follow-up work specialized for persistent deep

learning [168].

Reconfigurable Architectures: QUKU [233] is an early example of a 2D-mesh style CGRA

overlay. reMORPH is another 2D mesh-based overlay that is built around the FPGA’s DSP

blocks as primitives [204]. VDR [46] is a CGRA overlay which can map short program

traces for JIT-based compilation. The DySER heterogeneous core/CGRA architecture was

also mapped to FPGA [37, 118]. ZUMA is an example of an FPGA-on-FPGA overlay [42].

Customizable Overlays: Interestingly, some overlays allow architecture customization.

For example, CREMA [97, 122] and Quickdough [164, 126] leverage templates to customize

PEs for each application and speedup the design process. CGRA-ME [62, 191, 63, 266]

and AHA [150, 174, 30] further introduced architecture description languages for arbitrary

topologies and DSE with CGRA mapper involvement. Mocarabe [251] introduces the com-

munication cost as a first-class citizen in the compiler to obtain a design with high fre-

quency while still meeting the targeted II. SCRATCH [83] is a GPU-based overlay based on

MIAOW [31], which automatically identifies the application-specific demands regarding the

instruction set and computing unit capability, and generates a trimmed down GPU design.

Key Difference to prior Overlays As compared to these prior frameworks, our overlay-

synthesis approach attempts to perform application specialization automatically and across

many aspects of the overlay architecture (instructions/topology/execution model/provisioning).

FPGA Programming While the overlay approach improves the programmability by pro-

viding another layer of abstraction, there are also efforts to directly tackle this problem with

new programming languages with lower-level abstractions. As an example, Dahila [190] gen-

erates predictable HLS designs by incorporating time-sensitive affine types into the language.

On the other hand, Reticle [257] proposes an intermediate representation and low-level assem-

bly that explicitly expresses special resources on FPGAs, e.g. LUTs and DSPs. Spatial [146]
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is a language designed for implementing accelerators based on parallel patterns. Although

these techniques improve the programmability, they do not tackle reconfiguration overheads.

Just-in-time compilation frameworks can also reduce the burden of FPGA synthesis [228, 35].

A recent approach integrates separate compilation into an FPGA design flow to enable

better usability [202, 279]. These works leverage faster compilation/reconfiguration to subre-

gions of the FPGA, and enable linking through a packet-switched network. The RapidStream

framework [108, 107, 60] also partitions a large design for parallel implementation and final

re-assembly, but instead uses customized point-to-point and pipelined channels to address

the high area and limited bandwidth of packet-switched NoC’s in prior work.

7.8 Conclusion

While FPGAs have proven to be extremely effective computational accelerators, their us-

ability is not ideal. The heart of the problem is the limited design space of existing HLS

tools, which is inflexible and requires frequent re-synthesis. In this work, we develop and

evaluate the idea of an alternate HLS paradigm where a highly-flexible overlay is the target

architecture. Surprisingly, even though the generated designs are programmable, the overall

performance is on-par with state-of-the-art HLS tools.

Yet there is much more to be explored, and OverGen should be seen as a proof-of-concept

for the potential of multicore spatial overlays. Many aspects of the design space can be further

specialized to the chosen applications, leveraging the extreme flexibility of FPGAs. Examples

include the NoC topology [297], NoC protocol [67, 285], cache policies [138], coherence

protocol [302], and synchronization [98] to name a few. One broad, underexplored aspect

is heterogeneity : including heterogeneous cores, caches, networks, and memories. While our

current framework assumes pure single-program parallelization, real systems (e.g. mobile

SoCs [116], datacenters, VR [123] and even brain computer interfaces [135]) often require

heterogeneous mixes of workloads with different throughput and latency requirements on
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the same fabric — this opens up vast potential for these different forms of architecture and

microarchitecture heterogeneity. Supporting heterogeneity is challenging both because it

adds another dimension to design-space exploration, and because it requires novel system

support in virtualization and runtime management of heterogeneous resources.

Overall, we see spatial overlay synthesis as a potentially disruptive approach for FPGA

HLS, and OverGen as springboard for future spatial architecture research.
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CHAPTER 8

UNIT: Unifying Tensorized Instruction Compilation

In this chapter, an extensible framework embedded in a tensor domain-specific language that

compiles tensorized instructions will be presented. In reaction to the increasing computing

demand on the tensor operations, general-purpose hardware vendors (e.g. Intel, ARM, and

NVIDIA) have extended their instruction sets to develop specialized instructions for these

operations. These instructions specialize new program behavior that can hardly be captured

by prior compilation techniques. Though we claimed to have a general-purpose compiler for

specialized accelerators, there is still a gap between generality and high specialization. By

taking advantage of the domain knowledge provided by a tensor domain-specific language,

a productive and extensible compilation flow for these instructions is developed.

8.1 Motivation

Dense tensor operations like matrix multiplication (Matmul) and convolution (Conv) have

long been the workhorses in many domains, including deep learning workloads [79]. The

popularity of deep learning means that aggressively optimizing these operations has a high

payoff. Essentially, Matmul and Conv are a series of multiply-accumulate (MAC) operations,

which perform accumulation over a number of elementwise multiplications.

To capture the reduction behavior and perform it more efficiently, recent general-purpose

processors offer native tensor operation specialized instructions (hereinafter referred to as

tensorized instructions), like Intel VNNI [12], Nvidia Tensor Core [15], and ARM DOT [11].
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Unlike the conventional SIMD instructions, after performing elementwise arithmetic oper-

ations, these instructions introduce a “horizontal computation” to accumulate elementwise

results. Further, tensorized instructions are often mixed-precision, meaning that elementwise

operations use less precise and lower bitwidth operands (e.g., fp16 and int8), while accumu-

lation occurs with higher bitwidth, where it is needed. This offers a good balance between

data width and precision that is generally sufficient for deep learning workloads [176, 125],

and enables the use of quantized data types.

Mixed-precision is difficult to express in a single SIMD instruction, because the output

vector width is different than the input vector width. In most ISAs this paradigm requires

multiple SIMD instructions to express. In a tensorized instruction, by definition there are

fewer outputs, so allocating more bitwidth to them for the output vector is natural. In

addition, tensorized instructions sometimes reuse the same inputs multiple times, which

reduces the required register file bandwidth. Overall, tensorized instructions offer significant

advantages over SIMD for executing MACs.

While promising, the absence of appropriate compilation techniques limit c the appli-

cability of these tensorized instructions. Conventional SIMD instructions are vector in-

structions, so industry standard compilers only try parallelizing the innermost loops. In

addition, it is difficult for the high-level language programmer to express the compute flow

in a tensorization-friendly way and hint the compiler to try tensorization upon a loop nest,

because the dependency of reduction is more complicated and error-prone.

In practice, there are normally two options to leverage tensorized instructions. One

way is to call the vendor-provided libraries such as Intel oneDNN [16], Nvidia cuBLAS and

cuDNN [14], which provides highly optimized performance in some pre-defined single kernels

using tensorized instructions [112, 281]. However, it also brings inflexibility when it comes

to new workloads or when further performance exploitation is desired. The other option

is to manually write assembly intrinsics, which sets a high bar to ordinary developers and

hence lacks productivity. Some prior works tried to solve this problem by developing a

129



compiler [240, 249] for each instruction. This requires too much effort when there are many

tensorized instructions, both within and across hardware platforms.

Our Goal: Although different processors may provide different tensorized instructions, in

the context of deep learning workloads, we observe that these instructions essentially handle a

similar compute pattern, i.e., elementwise multiplication and then horizontal accumulation.

They primarily differ in the number of elementwise computation lanes and the accepting

data types. Therefore, we aim to develop a unified approach to compile these tensorized

instructions on multiple platforms to optimize the tensor operations in deep learning work-

loads. Our techniques are extensible to the tensorized instructions with other data types

and operations as well.

Challenges: There are several challenges to attain a unified compilation pipeline:

• Instructions Integration: Instead of building a new specialized compiler for each new

instruction, it is desirable to create a unified and extensible compilation flow;

• Detecting the applicability: Given a tensorized instruction, a first question is whether

and how this instruction can be applied to the target tensor operation, which may

require loop reorganization to make it applicable;

• Code rewriting: When applicable, the compiler must determine how the loops involved

should be rewritten by the tensorized instruction, and how the loops should be rear-

ranged to achieve high performance.

Our Insight: We envision that the key to addressing these three challenges is to have a uni-

fied semantics abstraction for tensorized instructions so that the analysis and transformation

can also be unified.

This paper presents UNIT, an end-to-end compilation pipeline to surmount the above

three challenges. UNIT takes the tensorized instructions (e.g., Intel VNNI instructions on

CPUs, or Nvidia Tensor Core instructions on GPUs) and a deep learning model as input,
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lowers the tensor operations of the model into loop-based IRs to identify the tensorizable

components, and inserts the tensorized instructions by transforming and rewriting the loop.

It achieves high performance for tensor operations, and consequently, model inference. To

the best of our knowledge, this is the first work to tackle tensorized instruction compilation

and optimization with a unified solution. UNIT not only achieves high performance for

single tensor operations, but also provides desirable model inference latency in practice.

Key Results: According to our evaluation, UNIT is expressive enough to target many

tensorized instructions on multiple hardware platforms, including Intel VNNI, Nvidia Tensor

Core, and ARM DOT. The generated programs for end-to-end model inference are 1.3× and

1.75× faster than the solutions backed up by Intel oneDNN and Nvidia cuDNN on CPU

and GPU, respectively. In addition, UNIT can be extended to new tensorized instructions

with moderate effort. Although we designed UNIT to target Intel CPUs and Nvidia GPUs,

on an ARM Cortex A-72 CPU with DOT instructions, UNIT achieves up to 1.13× speedup

against a carefully manual tuned solution.

8.2 Background

UNIT is an end-to-end compilation pipeline capable of automatically mapping tensorized

instructions to the deep learning tensor operations. It defines the tensorized instruction’s

semantics using a suitable intermediate representation (IR) and inserts them in proper places

of the program of tensor operations. In this section, we give an overview of popular mixed

precision tensorized instructions, followed by the limitations of existing solutions in auto-

matic mapping of these tensorized instructions. Finally, we discuss the background of tensor

domain specific language and the multi-level intermediate representation.
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Figure 8.1: Performance comparison on Nvidia V100-SXM2 between fp32 and fp16 without

mixed precision instruction support.

8.2.1 Mixed Precision Tensorized Instructions

Deep learning is computationally expensive, requiring substantial compute and memory

resources. As deep learning becomes more pervasive, researchers are designing both software

and hardware techniques to reduce the compute and memory burden. A widely adopted

approach in this context is using mixed precision for expensive operations, e.g., convolution

or dense operations [176, 125]. In practice, this means representing 32-bit floating point

(fp32) operands with a lower bitwidth datatype - 16-bit floating point numbers (fp16) or

8/16-bit integer numbers (int8, int16). To keep the accuracy in check, it is helpful to

accumulate the results in higher precision (fp32 or int32). This type of mixed precision

computation is often called quantization for integer values [125]. In this paper, we will always

use mixed precision for brevity.

While using mixed precision data types reduces memory footprint, it might not necessarily

lead to performance improvement. To investigate this, we conducted an experiment to

compare the performance of Nvidia cuDNN performance for fp16 and fp32 in the absence

of Nvidia mixed precision tensorized instructions (Tensor Core). As shown in Figure 8.1,

we observe that blindly using mixed precision leads to substantial slowdown because of the
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Figure 8.2: The semantics of Intel VNNI and Nvidia Tensor Core. The text beside is the

name of the corresponding LLVM intrinsic.

overhead of casting between two data types.

Therefore, mainstream hardware vendors (Intel, ARM and Nvidia) have introduced mixed

precision tensorized instructions to achieve better performance. These instructions add

mixed precision arithmetic support where operands are of lower precision while the ac-

cumulation happens in higher precision, potentially leading to 2× - 4× speedup. The most

popular examples of these tensorized instructions are Intel VNNI, ARM DOT and Nvidia

Tensor Core. We will discuss the semantics of these operations in Section 8.3.

Hardware vendors have a long history of adding new instructions to accelerate important

applications. However, the mixed precision tensorized instructions introduce a unique idiom

- horizontal accumulation. These tensorized instructions typically conduct a sequence of

elementwise multiplications governed by a memory access pattern, followed by a horizontal

accumulation. The accumulation is termed horizontal because all values to be accumulated

are present in the same vector register. For example, as it is shown in Figure 8.2(a), Intel

VNNI executes a dot product of two vectors, each having 4 int8 elements, while performing
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the accumulation in int32. We observe a similar pattern, though with different numbers of

entries and data types, for Nvidia Tensor Core (in Figure 8.2(b)) and ARM DOT instructions

(this is omitted, because it is similar to VNNI).

8.2.2 Limitations of Existing Solutions

Though tensorized instructions seem promising, their adoption pace is limited because of

the absence of an automatic technique that can detect and use these instructions seamlessly.

Currently, their usage in the deep learning domain is limited to hardware vendor libraries like

Intel oneDNN and Nvidia cuDNN, which may provide high performance for the pre-defined

operations but are inflexible as discussed in Section 8.1.

Similarly, conventional loop vectorizers find it hard to exploit the profitability of these

tensorized instructions, as they are not designed to work with the horizontal reduction idiom.

Conventional loop vectorizers in general-purpose compilers like GCC and LLVMmainly focus

on either analyzing the innermost loop body or combining instructions in the unrolled loop

bodies. When it comes to the horizontal reduction idiom, these compilers often reorder

the computation and generate epilogue reduction, preventing us from using the tensorized

instructions.

There have been some recent works in compiling programs to leverage tensorized instruc-

tions. PolyDL [249] generates CPU programs for convolution kernels in neural networks that

call a GEMM micro-kernel using Intel VNNI instructions. Bhaskaracharya et al. [240] gener-

ate CUDA programs for matrix computation leveraging Nvidia Tensor Core. However, these

works are limited to one platform and its specific instruction, which lacks generalizability.

A generic solution to handle tensorized instructions from multiple platforms together is still

missing.

134



8.2.3 Multi-Level Intermediate Representation

Compilers often have multiple levels of intermediate representation (IR) to express the pro-

gram; each level is designed to enable different analyses and transformations. In this section,

we describe the background of a tensor domain specific language (DSL) and the multi-level

IR.

8.2.3.1 Graph-Level IR

Deep learning compilers like TVM [53], Glow [224], and XLA [10] adopt a graph-level IR

to represent a deep learning model as a directed acyclic graph (DAG) of operations. This

graph-level IR is useful for inter-tensor-operation optimization, like tensor shape padding,

operation fusion, and choosing the proper data layout [167]. Our tensorized analysis relies

on tensor padding so that loops can be tiled by the number of lanes of the instruction

perfectly. However, this IR has little knowledge about the implementation of each tensor

operation. When compiling a graph-level IR, each node of the DAG will be dispatched to

its implementation in tensor DSL as explained next.

8.2.3.2 Tensor DSL

Tensor domain-specific languages, like Halide [214], TVM [53], and Tensor Comprehen-

sion [256], have been developed to productively and portably express tensor programs while

enabling efficient performance tuning. As shown in Figure 8.3 and Figure 8.4, programs

written in tensor DSLs follow this paradigm: Users first declare the tensors and the loop

variables, and then the computation is described by expressions involving the declared ten-

sors and loop variables. These DSLs also provide interfaces to split, reorder, and annotate

loops without affecting the computation semantics for performance tuning.

All the information gathered from the tensor DSL frontend will be stored in a tensor

Op data structure, including the declared tensors, loop variables, expressions, and loop

manipulation.
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8.2.3.3 Tensor IR

Each tensor Op is then lowered to Tensor IR, which is an imperative program IR with

additional constraints: All the loops are canonical (starting from 0, and increased by 1 each

time), and all the array operations are restricted (i.e., an element cannot be accessed by

two different pointers). These two properties enable making strong assumptions for analysis

and transformation. Our work conducts analysis on the tensor Op data structure level and

then performs transformation on the tensor IR. Although the tensor IR provides essentially

identical information for analysis, as discussed above, it is easier to reorganize the loops via

the tensor Op data structure.

8.2.3.4 Low-Level IR

The tensor IR is lowered to a general-purposed low-level IR like LLVM, after all the special-

ized analysis and transformations on the tensor IR are done, to get ready for assembly code

generation.

8.3 Unified Tensorization

Our goal is to automatically tensorize1 mixed-precision deep learning tensor operations across

a variety of hardware platforms. We resolve the challenges discussed in Section 8.1 by

presenting UNIT with the following techniques:

1. Tensorized Instruction in Tensor DSL: To abstract the diverse tensorized instructions

on different hardware platforms, we leverage the existing tensor DSL to represent their

semantics.

2. Applicability Inspection: To determine if and how a tensorized instruction can be

1We coin the word to mean rewrite and optimize a given code by the tensorized instruction.
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a, b = tensor((64,),u8), tensor((64,),i8)

c, d = tensor((16,), i32), tensor((16,), i32)

i, j = loop_axis(0,16), reduce_axis(0,4)

d[i] = c[i] + sum(i32(a[i*4+j])*i32(b[i*4+j]))

(a) Intel VNNI  x86.avx512.pbpdusd

a, b = tensor((16,),i8), tensor((16,),i8)

c, d = tensor((4,), i32), tensor((4,), i32)

i, j = loop_axis(0,4), reduce_axis(0,4)

d[i] = c[i] + sum(i32(a[i*4+j])*i32(b[i*4+j]))

(b) ARM DOT  arm.neon.sdot.v4i32.v16i8

a, b = tensor((16,16),fp16), tensor((16,16),fp16)

i, j = loop_axis(0,16), loop_axis(0,16)

k = reduce_axis(0,16)

c[i,j] += fp32(a[i,k]) * fp32(b[k,j])

nvvm.wmma.m16n16k16.mma.row.row.f32.f32
(c) Nvidia Tensor Core

Figure 8.3: Tensorized instructions as abstracted in the tensor DSL.

applied to a tensor operation, we developed an analysis pass in the Inspector component

of UNIT, which analyzes the tensor Op data structure of both the instruction and the

operation. The result of analysis will guide the loop reorganization and instruction

injection.

3. Code Rewriter: Once the tensorized instruction is determined applicable, the Rewriter

reorganizes the loop nests in accordance with the Inspector so that the innermost loop

nests resemble the tensorized instruction and are ready to be replaced. Finally, it sets

up the tuning space for the remaining loop nests to exploit high performance.

These components of UNIT together enable a unified compilation flow to simplify the

mapping of tensorized instructions across a variety of hardware platforms. In the rest of this

section, the details of each of the above steps will be discussed.
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8.3.1 Semantics Abstraction - Tensor DSL

In order to unify the compilation of tensorized instructions from different platforms and keep

the system open to integrate new instructions, the first question to answer is how to have a

unified description of the semantics of tensorized instructions. As explained in Section 8.2,

we employ ubiquitous tensor DSL and tensor IR to solve the abstraction problem. All mixed

precision tensorized instructions perform some elementwise operations for vectors, followed

by a horizontal reduction. Each tensorized instruction, therefore, can be regarded as a small

tensor operation program written in the tensor DSL.

Figure 8.3(a) shows how an Intel VNNI instruction is described in the tensor DSL. Three

source operands of Intel VNNI are 512-bit registers. Two of them are 64 lanes of unsigned

8-bit integers (uint8) and signed 8-bit integers (int8), and the other one is 16 lanes of signed

32-bit integers (int32), which correspond to the tensors a, b, c we defined. The arithmetic

behavior is defined by the loop variables and the expression of d[i]. Here we annotate that

loop i is data parallel, since these 16 elements are independent from each other; loop j is

reduction since for every independent element it sums up 4 elements along with this loop.

A similar loop pattern appears in the other tensor operations shown in Figure 8.4. The

description of ARM DOT, shown in Figure 8.3(b), is similar to Intel VNNI, with a different

number of lanes and data types.

Nvidia Tensor Core, on the other hand, performs a 163 square matrix multiplication as

shown in Figure 8.3(c). Comparing with (a) and (b), a key difference is that it requires

the accumulator register to be the same as the addition register (note the +=). This is due

to the data type opaqueness of the Tensor Core instruction, which prevents us from giving

arbitrary initial values for the accumulators.

We describe the semantics of each tensorized instruction in tensor DSL. The deep learning

compiler pipeline parses the operation into tensor Op, which preserves tensor information

like the expression tree, the loop trip count, and the array buffers. This information is
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essential for the analysis and transformation passes in Inspector and Rewriter.

8.3.2 Applicability Detection - Inspector

To determine if a tensorized instruction can be applied to a tensor operation, the Inspector

pass uses a two-step approach. It first determines if (part of) the tensor operation program

and the instruction can be arithmetically equivalent by checking a form of isomorphism

between their associated expression trees. After that, it inspects the data access pattern to

confirm the assembly operands can be prepared so as to guide the Rewriter transformation.

8.3.2.1 Compute Isomorphism

Algorithm 1 shows the algorithm we adopt to determine the isomorphism of two expression

trees. It recursively traverses both trees and matches the data type and opcode of each pair

of nodes. Figure 8.4(b).1 shows that the two trees of convolution and pbpdusd (an Intel

VNNI instruction) are in exactly the same topology and data type, so these two programs

are arithmetically isomorphic.

This analysis also finds a mapping from the operands in the tensor program to the

operands in the tensorized instruction. As we explained, tensor operands in the tensorized

instruction are the abstraction for registers. Therefore, a register cannot correspond to

multiple data sources. This property still requires further checks, which will be explained in

the next section.
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…

// Convolution in tensor DSL

a,b = tensor((H,W,C), u8),tensor((R,S,K,C),i8)

k,rc = loop_axis(0,K), reduce_axis(0,C)

x,y = loop_axis(0,H-R+1), loop_axis(0,W-S+1)

r,s = reduce_axis(0,R), reduce_axis(0,S)

c[x,y,k]+= i32(a[x+r,y+s,rc])*i32(b[r,s,k,rc])

(b).1 Arithmetic Isomorphism

for (x=0; x<(H-R)+1; ++x)

 for (y=0; y<(W-S)+1; ++y)

  for (ko=0; ko<K; ko+=16)

   for (r=0; r<R; ++r)

    for (s=0; s<S; ++s)

     for (co=0; co<C; co+=4)

      #pragma tensorize
      for (ki=0; ki<16; ++ki)

       for (ci=0; ci<4; ++ci) {

        k=ko+ki, rc=co+ci;


     c[x,y,k] += a[x,y,rc]*b[r,s,k,rc]; }

(c) Code Transformation:

(a). Algorithm Description

(b).2 Data Access Isomorphism

=

d[i]:i32 +:i32

*:i32c[i]:i32

VNNI:

=

c[x,y,k]:i32 +:i32

*:i32

a[x+r,y+s,rc]:u8

c[x,y,k]:i32

Conv: Two trees are exactly the same topology, 
opcodes, and data type.

cast:i32

b[r,s,k,rc]:icast:i32

b[i*4+j]:i8

a[i*4+j]:u8cast:i32

cast:i32

for (x=0; x<(H-R)+1; ++x)

  for (y=0; y<(W-S)+1; ++y)

    for (k=0; k<K; ++k)

      for (r=0; r<R; ++r)

        for (s=0; s<S; ++s)

          for (rc=0; rc<C; ++rc)

           c[x,y,k] += a[x,y,rc]*b[r,s,k,rc]; 

Reorganize the loops in DSL primitives.

{x,y,k}     →{i}  ⊆{i}
{x,y,k}     →{i}  ⊆{i}

{x,y,r,s,rc}→{j}  ⊆{i,j}
{r,s,k,rc}  →{i,j}⊆{i,j}

c[x,y,k] d[i]k→i

rc→j c[x,y,k] c[i]

a[x+r,y+s,rc]
b[r,s,k,rc]

a[i*4+j]
b[i*4+j]

c[x,y,ko:16]

x16(a[x,y,co:4])

a[r,s,k+0,co:4])
a[r,s,k+1,co:4])

a[r,s,k+15,co:4])

d=pbpdusd(a,b,c);

c[x,y,ko:16]

f:A→B Index: u Index: v S(u)                 S’(u)    ⊆S(v)

x86.avx512.pbpdusd

Figure 8.4: An example of applying Intel VNNI to Conv using UNIT.
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function Inspect(a,b)

if a.type=b.type then

if isleaf(a)∧isleaf(b) then

if a is not bound then

bind[a]:=b

else if bind[a]̸=b then

return False

end if

return True

else if isarith(a), isarith(b) then

cond:=a.opcode=b.opcode

cond:=cond∧Inspect(a.lhs, b.lhs)

cond:=cond∧Inspect(a.rhs, b.rhs)

return cond

end if

end if

return False

end function

Algorithm 1: Determine the isomorphism between expression trees. a is for the instruction,

and b is for the operation.

8.3.2.2 Array Access Isomorphism

Once compute isomorphism is determined, the next concern is how the data are fed to

this instruction. The enforcement explained in the last subsection already determines each

register operand only corresponds to one array in the tensor operation. On top of this,

we need to determine each element in the operand tensor corresponds to only one memory
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address in the tensor program when mapping to the tensorized instruction. To map a tensor

program to a tensorized instruction, we need to know which loop levels are tensorized. We

enumerate the loop levels to be tensorized, and these loop levels will be mapped to loops

in the tensorized instruction. Note that only loops with the same annotation (data parallel

or reduction) can be mapped to each other. Then we check if this enumerated mapping is

feasible, by scanning each pair of operand correspondence determined in the last paragraph.

If the operand in the tensor program is a constant, we just skip it2. If the operand is

a memory operation, we inspect the index expressions of both memory operations in the

operation and instruction. We define:

• A is the set of loop variables to be mapped to the tensorized instruction.

• B is the set of loop variables of the tensorized instruction.

• f : A 7→ B is the mapping we enumerate.

• S(u) := {x|x is loop variable in the index expression u}

• S ′(u) := {f(x)|x ∈ S(u) ∩ A}

A mapping is considered feasible, if every pair of memory operation’s index expressions

(u, v), where u is from the operation and v is from the instruction, holds S ′(u) ⊆ S(v).

Figure 8.4(b).2 shows an example of inspection. If S ′(u) is a subset of S(v), this means

the data loaded by the tensor operation should be broadcast along with the loop variables

that do not exist in S(v) to fill all the register lanes. If not, this means each register lane

corresponds to multiple memory addresses under this mapping, which is not realistic for

code generation, so we should try another enumeration.

2If it is a constant, the correspondence was already checked in the last section. This register corresponds
to this constant.
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If there are multiple feasible mappings, we leave this as a dimension of code tuning

space. Once this mapping is determined, it will guide the further loop transformation and

code generation.

8.3.3 Code Transformation - Rewriter

There are three phases in the code transformation: loop reorganization, tensorized instruc-

tion replacement, and tuning.

8.3.3.1 Loop Reorganization

As discussed in Subsection 8.3.2, the inspector selects the loop levels to be executed by the

given instruction. To get poised for code generation, as shown in Figure 8.4(c), we need

to tile these loops and reorder them to the innermost loop levels so that those innermost

loops perform exactly the same semantics as the instruction. As we explained, tensor DSL

provides the capability to reorganize the loops nests easily.

8.3.3.2 Tensorized Instruction Replacement

After identifying the code region to be replaced by a tensorized instruction, the code gen-

erator should prepare each operand of this instruction. It is difficult to fully automate the

operand preparation for different platforms because of their diverse execution models and

assembly formats. Therefore, we formalize a unified programming interface to compiler de-

velopers to manually specify the rule of operand generation. In this interface, each loop

variable to be replaced, and their coefficients in the index expression are exposed. For ex-

ample, as shown in Figure 8.4(c), by analyzing the strides and trip count of ki, and ci, the

array access c[x,y,c] will be transformed to a 16-lane vector; a[x,y,rc] will be vectorized

along with c by 4, and broadcast along with ki by 16; b[r,s,k,c] will be vectorized along

with ci by 4, and unrolled and concatenated along with ki.
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8.3.3.3 Tuner

All the other loop levels that are not involved in instruction rewriting can be reorganized

to tune the performance. Here, we develop strategies to optimize the performance of ten-

sor programs on both CPU and GPU. The generic philosophy is to exploit both fine- and

coarse-grained parallelism. We also developed specialized strategies because of the different

execution models and memory hierarchy.

CPU Tuning: On CPU, data-parallel loops are distributed to multiple threads to achieve

coarse-grained parallelism. On the other hand, the loop-carried dependence in reduction

loops introduces RAW hazards in the execution pipeline. To avoid this penalty, and achieve

instruction-level parallelism, we reorder and unroll a small degree of data parallel loops below

the innermost reduction loop.

The tuning space of CPU involves two dimensions, the degree of unrolling and paral-

lelization. We enumerate these two parameters and profile the execution time to search for

the best one. If the unrolling degree is too small, there will not be enough independent

instructions to fill in the idle penalty cycles caused by RAW hazards. If it is too large, it will

cause I-cache misses. Similarly, the number of threads can neither be too few or too many.

If it is too few, the computing cores would have insufficient utilization and memory latency

would not be hidden. Too many threads introduce context switching overhead. We rely on

the tuning process to look for the best combination.
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// a[n,k], b[k,m], c[n,m]

Buffer<fp16,16,16> A, B;

Buffer<fp32,16,16> C;

for (i=0; i<n; i+=16)

 for (j=0; j<m; j+=16)

  for (r=0; r<k; r+=16) {

   A = Load(a[i:16,r:16]);

   B = Load(b[r:16,j:16]);

   C += TensorCore(A, B); }

  Store(c[i:16,j:16], C);

// a[n,k], b[k,m], c[n,m]

for (i=0; i<n; i+=16*p)

 for (j=0; j<m; j+=16*p)

  for (r=0; r<k; r+=16) {

   Buffer<fp16,16,16> A[p], B[p];

   Buffer<fp32,16,16> C[p][p];

   for (x=0; x<p; ++x) {

    A[x] = Load(a[i+x*16:16,r:16]);

    B[x] = Load(b[r:16,j+x*16:16]); }

   for (x=0; x<p; ++x)

    for (y=0; y<p; ++y)

      C[x][y] += TensorCore(a[x],b[y]); }

   for (x=0; x<p; ++x)

    for (y=0; y<p; ++y)

     Store(c[i+x*16,j+y*16], C[x][y];); }

(a) Direct Accumulation
- No data reuse.
- Loop carried 
dependences.

+ Each buffered submatrix reused p times.
+ Loop carried dependences hidden by p×p accumulation.

(b) "p×p Outer Product" Accumulation

• Split

• Reorder

• Unroll

Figure 8.5: Accumulating a p×p “square window” avoids loop-carried data dependences,

and reuses buffered submatrices.

GPU Tuning: On GPU, coarse-grained parallelism is achieved by distributing the data

parallel loops across the streaming multiprocessors. Similar to CPU, fine-grained parallelism

is also achieved by reordering and unrolling a small degree of data parallel loops to avoid

the pipeline penalty caused by loop-carried dependences. Moreover, on GPU, data reuse is

explicitly managed by the software. Therefore, as it is shown in Figure 8.5, we adopt an

outer-product style matrix multiply accumulation to reuse the buffered submatrices.
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Besides the generic optimization, we also developed optimization mechanisms specialized

for DNN kernels. Among popular DNN models, there are many layers with relatively small

width and height and deep channels. We apply dimension fusion to layers with small width

and height – these two dimensions are fused into one to save the redundant padding. In

addition, we apply split reduction to layers with deep channels. For a reduction loop with

large trip count, we can split it and parallelize each split segment on threadIdx. After all

the segments are done, we synchronize the threads and reduce the splitted segments in the

shared memory.

8.4 Implementation

In this section, we will discuss technical details in our implementation. UNIT is imple-

mented by extending Apache TVM [53], a full-stack deep learning compiler, with tensorized

instruction support. We leverage TVM’s tensor DSL, tensor Op, tensor IR infrastructure,

and the tuning infrastructure mechanisms [54, 167] to generate high performance kernels.

In addition, implementing UNIT on top of TVM enables end-to-end model inference with

other optimizations such as operator fusion, in addition to tensorization.

8.4.1 Inspector

The inspector pass is implemented by analyzing TVM’s ComputeOp data structure. This

matches the expression tree of both the instruction and program and enumerates mappings

between the loop variables. We enumerate the loops from the tensor’s innermost dimension

to outermost dimension, and greedily return the first eligible one because of the better

potential data locality for inner dimensions. The enumerated mapping provides us with the

correspondence of loop variables between the instructions and the tensor operations.
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8.4.2 Rewriter

These following steps will be performed by the rewriter:

1. According to the loop correspondence analyzed by the inspector, we reorganize the

loops to be tensorized by tiling these loops by the trip counts of the corresponding

loops in the instruction, and reorder them to be the innermost loops. These loops will

be annotated by a tensorize pragma to hint the instruction injection.

2. Based on the strategies discussed in Section 8.3.3, we reorganize the loops above not

involved in instruction rewriting to tune the performance.

3. We lower the manipulated loop nest to the tensor IR, and replace the loop body

annotated with the tensorize pragma with the target instructions, as shown in Fig-

ure 8.4(c).

Steps 1 and 2 are achieved by invoking TVM scheduling primitives on the tensor DSL

level, and step 3 is a tensor IR transformation pass.

Next, we discuss the implementation of the tuning strategies discussed in the last section.

CPU Tuning: The code sketch of tuned CPU code is shown in Figure 8.6. To implement

the tuning we discussed in Section 8.3.3, we enumerate two breaking points on the data

parallel loop nest, which define how the loop levels are parallelized and unrolled. A breaking

point is defined by a loop level and tiling factor, giving more flexibility to the division. Loops

before the first breaking point, will be fused and parallelized. Loops between these two points

will be executed in serialized order. Loops after the second breaking point will be reordered

to the innermost and unrolled.

GPU Tuning: As it is discussed in the last paragraph of Section 8.3.3, both coarse-grained

and fine-grained parallelism optimizations are applied on data-parallel loops, so there is

a tradeoff between them: data reuse is increased by increasing the unrolling degree (each

buffered submatrix is reused p times), but the coarse-grained parallelism is decreased. Also,
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for (ax0=0; ax0<ext0; ++ax0)
  ...
    for (axn=0; axn<extn; ++axn)
      // Reduce Loops
      for (r0=0; r0<extr0; ++r0)
        ...
          for (rm=0; r1<ext_rm; ++rm)
            tensorized-instruction;

parallel (fused=0; fused<fused_ext; ++fused)
  for (serial=0; serial<serial_ext; ++serial)
    for (r0=0; r0<extr0; ++r0)
      ...
      for (rm=0; r1<ext_rm; ++rm) {
        tensorized-instruction.0;
        tensorized-instruction.1;
        ... }  

(a) Loop Organization After Tensorization

(b) Tuned Code Sketch

fuse and parallel reorder and unrollserialized exec. break points

Figure 8.6: The code sketch of CPU tuning.

a large unrolling degree may overwhelm the register resources. Therefore, the key to generic

optimization is to choose a proper unrolling degree.

On the other hand, greedily applying each specialized optimization does not always im-

prove the performance. Though dimension fusion may save the memory traffic, it also

introduces software overhead on data rearrangement. Similarly, though splitting the reduc-

tion loop introduces more parallelism, it also introduces thread synchronization overhead

and register pressure. We enumerate each parameter, including the degree of reduction

parallelization and whether to fuse the width and height dimensions, and then apply these

transformations to the program and profile the performance to determine which transforma-

tion leads to the best performance.
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Figure 8.7: Quantized network inference (bs=1) accelerated by Intel VNNI.
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Figure 8.8: Mixed precision network inference (bs=1) accelerated by Tensor Core.

8.5 Methodology

8.5.1 Target Hardware Platforms

We assess UNIT on three hardware platforms:

Intel x86 CPU:We use Amazon EC2 C5.12xlarge instance as our x86 platform with 24-core

Intel Xeon Platinum 8275CL CPU @3.00GHz (µarch: Cascade Lake) and 96GB memory.

ARM CPU: We use Amazon EC2 M6g.8xlarge instance as our ARM platform with AWS

Graviton2 which features 32-core ARM Cortex-A72 CPU @2.30GHz and 128GB memory.

Nvidia GPU: We use Amazon EC2 P3.2xlarge instance with 16GB host memory as our

GPU platform with Nvidia Tesla V100 SXM2 GPU.
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8.5.2 Software Frameworks

Code Generation: All programs implemented in Apache TVM are emitted to LLVM IR

for code generation. We choose LLVM-10 as our backend, and to be compatible, we use

CUDA-10.0 as the NVPTX linker and runtime.

Baseline: We use vendor-provided libraries for baseline performance of operators whenever

possible. Specifically, Intel oneDNN v1.6.1 and Nvidia cuDNN 7.6.5 are used as our CPU

and GPU baselines, respectively. For end-to-end model inference, we looked for the best

available solutions with those libraries, which was MXNet integrated with oneDNN for CPU

and TVM integrated with cuDNN for GPU. Another set of baselines is the manually written

implementation. To this end, we use the existing TVM solutions for Intel and ARM CPUs,

which involve heavy engineering effort to carefully write intrinsics to use Intel VNNI and

ARM DOT instructions. We did not find a manually written Tensor Core implementation

that covers our evaluated workloads.

8.5.3 Workloads

DNN Models: All DNN models are from the MXNet Model Zoo and converted to TVM’s

graph IR, Relay [222], for quantization [127], layout transformation, and data padding. All

these models adopt NCHW[x]c data layout [167] for the data and KCRS[y]k[x]c for the kernel.

Here N denotes the batch size, C denotes the input channels, H and W are the width and height

of the input image, and [x]c denotes that the original C is split by x. Similarly, K denotes

the number of output channels, R and S are the height and width of the kernel, and [y]k

denotes the original dimension K is split by y. [x] equals to the number of lanes of the

instruction output, and [y] equals to the width of reduction.

In the evaluation, we target the N=1 cases, because it is hard to optimize but critical

for inference use cases. Comparing with batched cases where N>1, we cannot reuse the

kernel tensor across samples, or exploit the parallelism brought by the data-parallel batching

dimension.
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8.6 Evaluation

Our evaluation of UNIT attempts to answer these questions:

1. What is the performance of the end-to-end deep learning model inference powered by

tensorized instructions?

2. How does each optimization technique that UNIT uses impact the performance?

3. Can UNIT be extended to support new hardware platforms and tensor operations?

8.6.1 End-to-End Performance

In this subsection, we show the UNIT end-to-end effectiveness on Intel x86 and Nvidia

GPU processors for tensorizing mixed precision instructions. For Intel x86 experiments, we

use MXNet integrated with Intel oneDNN (referred to as MXNet-oneDNN) as the baseline.

Another comparison of ours is TVM with manually written schedules using Intel’s VNNI

instruction. The findings of this experiment are shown in Figure 8.7.

We observe that UNIT achieves significant speedup compared to MXNet-oneDNN. Note

that Intel oneDNN has access to manually written schedules that have been aggressively

optimized and tuned by domain experts. We also observe that TVM overall achieves bet-

ter performance than MXNet-oneDNN, but has suboptimal performance on resnet50 and

resnet50b, which were heavily tuned by oneDNN engineers. On the other hand, UNIT

outperforms both baselines, by 1.3× over MXNet-oneDNN and by 1.18× over TVM.

Next, we test the efficacy of UNIT on utilizing Nvidia Tensor Core instructions for Nvidia

GPUs. For the baseline, we integrate TVM with cuDNN, which has access to manually

written aggressively tuned Tensor Core schedules. The findings of this experiment are shown

in Figure 8.8. We observe that UNIT consistently achieves better performance than cuDNN

with a mean speedup of 1.75× and up to 2.2×.
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8.6.2 Optimization Implications

In this subsection, we focus on the convolution operators of the DNN models to perform an

in-depth analysis of the impact of different optimization techniques used by UNIT’s Rewriter.

This is essentially an ablation study, showing how important different parts of UNIT are.

There are 148 different convolution workloads (i.e., convolution with different feature map

sizes, kernel sizes, strides, etc.) in the models, out of which we choose 16 representative

convolution layers. These kernels cover diverse input shapes and strides. Other workloads

behave similarly in the ablation study. We summarize the characteristics, namely, convolu-

tion attributes, like shapes, strides, etc., of the selected workloads in Table 8.1.

Intel x86 servers: As we discussed in Section 8.3.3, we have two breaking points in CPU

scheduling. The loop nests before the first breaking point are parallelized and the loop nests

after the second breaking point are unrolled, while the ones in between the breaking point

are executed serially. As loop nests can either be parallelized or unrolled (remaining one

is serialized), we have a search space represented by the tuning pairs. Rewriter tunes this

search space to generate a high-performance kernel. In this experiment, we incrementally

measure the performance improvements brought by parallelizing, unrolling and tuning. The

findings of this experiment are shown in Figure 8.9, normalizing the speedup to Intel oneDNN

execution latency.

First we fuse outer loop nests such that the loop bound of the fused loop nest is < 3000,

and measure the latency of the resulting kernel (shown by Parallel). Then, we take the

remaining loop nests, and tile and unroll them such the unrolling factor is < 8, and measure

this performance (shown by +Unroll). Finally, instead of setting the limits as 3000 and 8,

we tune the search space and measure performance (shown by +Tune), getting the final

latency UNIT achieves. We observe that Parallel and Unroll together is responsible for most

of the speedup. The additional speedup introduced by Tuning is quite small. It turns out

that more than half of the kernels get the optimal performance on the first tuning pair (i.e.
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3000 and 8), and more than 95% of the kernels get the optimal performance within the first

8 tuning pairs.

CPU does poorly on workloads #1 and #4, because their output shapes (OH/OW)

can neither be perfectly tiled nor fully unrolled. Inherited from TVM, loop residues are

handled the by guarding it with a likely clause, which results in an if-branch that harms the

performance.

Nvidia GPU servers: As discussed in Section 8.3.3, we employ three optimizations on

GPU: generic coarse- and fine-grained parallelism, fusing width and height to save memory

bandwidth, and parallelizing the reduction dimension. In this subsection, we study the

impact of these optimizations on the performance. We show the findings in Figure 8.10,

normalizing the speedup to Nvidia cuDNN.

According to our evaluation, any unrolling degree (p in Figure 8.5) larger than 2 may

overwhelm the registers, so we use p=2 to apply the generic optimization. The generic

optimization already beat cuDNN in most cases (shown by Generic). Then, depending

on the height and width values, Rewriter fuses the height and width dimensions to save

memory bandwidth (shown by +FuseDim). Then, we split the reduction dimension K by

64 and measure the performance (+SplitK ). Finally, we let Rewriter to choose the sizes for

these 3 optimizations and measure performance (shown by +Tune).

We observe that SplitK leads to the maximal speedup, as it leads to significant parallelism

and keeps the Tensor Cores busy. More than 70% of the kernels can get high performance by

employing fusion and parallelizing the reduction dimension. Similar to CPUs, the additional

speedup by tuning is small.

UNIT cannot outperform cuDNN on #1 and #15, because the strided data accesses

lead to less data locality. However, since these adversarial cases (both CPU and GPU) only

occupy a very small portion among all these models, we can still outperform vendor-provided

libraries because of the generality of our optimization.
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Figure 8.9: The performance impact of the code space exploration.
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Figure 8.10: The performance impact of the code space exploration.

8.6.3 Extensibility

We evaluate the extensibility of UNIT in two aspects: to new hardware platforms and to

new deep learning tensor operations. We observe that by just representing the semantics

of the new tensorized instruction in tensor DSL, UNIT can easily extend to new tensorized

instructions and tensor operations.

New Hardware Platforms: To demonstrate the capability of extending to new hardware

platforms, we apply UNIT to an ARM CPU supporting the ARM DOT instruction. To the

best of our knowledge, there is a lack of a deep learning framework with well-integrated ARM

backend library support. In the absence of a framework baseline, we choose TVM compiling

to ARM Neon assembly as the baseline (shown by TVM-NEON). Additionally, we find that

TVM has manually-written schedules using ARM DOT instructions, which forms our second
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

C 288 160 1056 80 128 192 256 1024 128 576 96 1024 576 64 64 608

IHW 35 9 7 73 16 16 16 14 16 14 16 14 14 29 56 14

K 384 224 192 192 128 192 256 512 160 192 128 256 128 96 128 192

R=S 3 3 1 3 3 3 3 1 3 1 3 1 1 3 1 1

Stride 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1

OHW 17 7 7 71 14 14 14 14 14 14 14 14 14 27 28 14

Table 8.1: Characteristics of the selected convolution layers.

comparison baseline (shown by TVM-Manual). Note that in contrast to UNIT’s automatic

approach, this is a manually written schedule requiring intense engineering efforts. Finally,

we represent the semantics of ARM DOT instruction in UNIT’s tensor DSL and use UNIT

to compile the models. The findings of this experiment are shown in Figure 8.11, showing

normalized speedup compared to the TVM-Neon baseline. The results show that UNIT

consistently outperforms both TVM-NEON and TVM-Manual, proving UNIT’s effectiveness

in extending to new hardware platforms.

3D Convolution: We test UNIT on 3D convolution operation for mapping Intel VNNI

tensorized instructions. Note that this does not require any changes from UNIT perspective;

we are just giving a new input (tensor-level IR for conv3d) to UNIT. To evaluate this

extensibility, we take all the 2D convolutions from Resnet18 and manually convert them to

3D convolutions. We then apply UNIT on these kernels and show the speedup compared to

oneDNN baseline in Figure 8.12. We observe that UNIT easily extends to 3D convolution,

as it has comparable performance for many convolution kernels, with an average of 1.2×

speedup.
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Figure 8.11: The performance of ARM on model inference.
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Figure 8.12: The performance of each layer on res18-3d.

8.7 Related Work

Compilation support for hardware intrinsics: There exists a large body of literature on

compilation support for various hardware intrinsics [223, 148, 194, 207, 84, 158, 195, 82, 249,

240]. Existing production compilers such as GCC and LLVM implement auto-vectorization to

leverage SIMD intrinsics. Prior works such as [148, 223] propose various approaches to further

improve the performance of the auto-vectorizer. These approaches cannot be extended to

support tensor computation intrinsics which introduce “horizontal computation” within each

lane. To better exploit this programming behavior, multiple IRs [109, 89, 119] were developed

for more effective compiler analysis and transformation. TVM [53] implements an extensible

interface to support new hardware intrinsics that are not limited to SIMD instructions.
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However, programmers need to transform the program to match the behavior of the intrinsics

and declare the lowering rule for the intrinsics prior to compilation. Many prior works seek

to automate software tuning, AutoTVM [54] still requires users to define the space of code

organization. Ansor [298] adopts rule-based strategies to automatically define this space.

However, both Ansor and AutoTVM still relies on execution-based sampling to determine

the quality of tuning, while some recent works develop cost model [296, 243, 288, 134] cost

model based. All these related works mentioned above focus on single kernel acceleration, and

many state-of-art works have shifted their focus to large scale and distributed parallelism [90,

282, 299]. In addition, there are also recent work to improve TVM’s test case coverage [165],

and recent domain-specific language development no longer limit to the ML/AI domain [169].

Software/Hardware Co-designed Accelerators: By carefully study the memory/computation

pattern, software/hardware co-designed accelerators [294, 293] can achieve orders-of-magnitude

performance gain in the tensor operation domain.

Moreover, the analysis pass of UNIT is inspired by the decoupled-access execute (DAE)

architectures [154, 210, 193, 273, 74, 276, 270]. Computation and data access are decoupled

and specialized separately. The computation is offloaded onto a programmable data path

and data access is encoded in hardware intrinsics and executed on a specialized address

generation unit (AGU). UNIT adopts a reversed approach, it matches computation on a

fixed data path, and analyzes data access fed to the data path.

Polyhedral model: Many prior works have built program analysis and transformation

frameworks based on the polyhedral model for tensor programs [148, 249, 240, 82, 256, 70,

181, 259, 106]. Loop Tactics [49] is one representative work which matches the pre-defined

computation patterns in the polyhedral IR and transforms the matched patterns to optimized

programs. UNIT distinguishes itself from Loop Tactics in: 1) Compared with the schedule

tree [260] in the polyhedral model, the tensor DSL provides more information such as loop

reduction properties and operand types; 2) UNIT provides an end-to-end solution including

auto-tuning to obtain the optimal performance, whereas Loop Tactics requires the optimized
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schedules to be provided manually.

Deep learning frameworks: UNIT is complementary to the existing deep learning frame-

works. Existing frameworks such as Tensorflow [18], PyTorch [17], and MXNet [13] rely on

vendor-crafted libraries to support the new tensor intrinsics. TVM [53] requires code re-

writing at the user side. UNIT is able to handle new operators which might not be covered

by the vendor libraries and spare the user from having to perform manual re-writing. We

have demonstrated the effectiveness of the methodology of UNIT based on TVM. Similar

technique can be applied to other frameworks to further boost their performance.
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CHAPTER 9

Discussion

To conclude this dissertation, we first summarize lessons learned from the works discussed

in prior chapters, and then discuss the open questions of this research area.

9.1 Reforming Full-Stack Accelerator Design Paradigm

The research projects presented in this dissertation primarily aim to push the bound-

aries of full-stack specialized accelerators. Specifically, we propose a reform of the design

paradigm for specialized accelerators, where each prior software/hardware co-designed in-

novation should be modularized and comprised in a unified design space for future reuse.

By identifying commonalities among accelerators within this design space, we can adopt a

high-level mainstream programming language with moderate extensions as the unified pro-

gramming interface. This approach makes porting legacy workloads to our accelerator easy,

although it does impose challenges to the development of compilation techniques. An alter-

nate approach to build software stacks for new specialized accelerators is to develop domain-

specific programming languages. The tradeoff of choosing different programming interfaces

for non-conventional execution models will be elaborated in the next section (Section 9.2).

Besides serving as a bridge between the software and the hardware, the applications

written in this programming interface also naturally encode the demands of accelerator

design. Leveraging the compiler’s awareness of these demands, specialized accelerator design

automation can be realized. Through our evaluation, we have found that the automatically
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generated accelerators exhibit comparable quality to prior handcrafted ones.

In addition to advancing full-stack specialized accelerators, this dissertation also demon-

strates how techniques developed for specialized accelerators and general-purpose processors

can mutually enhance each other when applied to relevant problems. For instance, ScalarEv-

olution, initially developed for automatically generating vector instructions for general-

purpose ISAs like X86 AVX512 and ARM NEON, is utilized in Chapter 4 to analyze and

encode specific memory access patterns for memory stream commands. Similarly, the com-

pilation techniques employed to detect applicability and rewrite programs with tensorized

instruction are derived from finding a graph isomorphism from the computational graph to

the spatial datapath.

Another future direction of this work is to broaden the applicability of full-stack spe-

cialized accelerators. We envision a promising applicable area to be mobile SoCs. Over

the past decade, mobile SoCs produced by companies like Apple and Qualcomm have em-

ployed numerous specialized blocks, with their numbers continually increasing. These spe-

cialized blocks consume a significant amount of on-chip power and area. Prior research

[193, 276, 278, 166, 55, 273] has demonstrated that a unified programmable accelerator can

achieve performance close to that of individual specialized blocks, while maintaining flexibil-

ity with only a moderate (or even better) power/area overhead compared to a combination

of specialized blocks. Hence, we believe it is the opportune time to reconsider the design of

specialized blocks on SoCs by adopting unified programmable accelerators. This would save

significant effort in developing new accelerators for each generation, and sometimes software

tuning alone can meet the performance requirements. Given the proven promise, the ques-

tion arises as to why programmable accelerators are not yet widely adopted in industries.

Apart from legacy issues, we argue that this is due to the insufficiency of various aspects,

including operating systems and design approaches, which will be discussed in Section 9.3.
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9.2 Software Stacks for Accelerators

While the hardware development itself has been well studied in many early works on pro-

grammable accelerators, the importance of the software stack has often been overlooked.

This neglect of the software stack has hindered the adoption of specialized accelerators, as

developers have had to program in low-level interfaces that manage excessively exposed de-

tails. The aggressively broken and reformed execution model of these accelerators has made

it challenging to develop high-level programming interfaces and compilation techniques. To

address this issue, there are two main approaches that have been used to develop software

stacks for these accelerators: domain-specific and legacy.

Domain-Specific Language Some prior works have focused on developing domain-specific

languages (DSLs) [53, 214, 7, 29, 147, 145] to program domain-specific accelerators. These

DSLs encode additional domain knowledge in the programming interface, allowing compilers

to better optimize applications for the underlying hardware. For example, tensor domain-

specific languages [53, 214, 256] offer opportunities to automatically tune the performance of

tensor applications by maximizing data locality. Additionally, by exposing fixed primitives,

DSLs like Spatial [147] can generate high- performance code by taking advantage of known

parallel patterns.

The tradeoff of this domain-specific approach is the learning curve and portability. De-

velopers must learn a new programming model when targeting a new application domain,

which may limit potential users. An example of this tradeoff is choosing between Tensor-

flow and PyTorch. While Tensorflow’s IR builder interface may be counterintuitive to many

ML/AI researchers, PyTorch’s interface is closer to numpy and is preferred by more ML/AI

researchers [8]. Moreover, because of the domain-specific programmability, many legacy ap-

plications written in legacy programming interfaces should be redeveloped. It will impose

significant inconvenience on a big team to thoroughly shift the infrastructures, considering

the path dependences.

161



for (i0=0, i1=0; i0<n0 && i1<n1; ) {
  if (k0[i0]<k1[i1]) {
    ++i0;  // pop k0, v0
  } else if (k0[i0]>k1[i1]) {
    ++i1;  // pop k1, v1
  } else {
    // implicitly k0[i0] == k1[i1]
    acc += v0[i0]*v1[i1]; // do compute
    ++i0; ++i1; // pop both
  }
}

i0<n0 && i1<n1

k0[i0]<k1[i1] ++i0

k0[i0]>k1[i1] ++i1

acc+=v0[i0]*v1[i1]

++i1++i0

Latch

End

k0[0:n0]

acc

CMP ×

+

Pop, 
when <=

Exe, when ==

Pop, 
when >=

Pop, 
when <=

(a) Original C Code (Sparse Inner Product) (b) Control Flow Graph (c) Data Dependence Graph

Decoupled Streams

Cond. Predications

+ Computation Inst.

Data Dependence

Control Depencence

Pop, 
when >=

Generic Ctrl Block

k1[0:n1] v0[0:n0] v1[0:n1]

All the branches are dominated by the result 
of the comparison between k0[i0] and k1[i1].

Figure 9.1: A key-value join implemented in a general-purpose language, and compiled to a

specialized accelerator.

Legacy Approach The legacy approach involves making no or moderate modifications to

the existing programming interface, allowing for easier porting of applications to the newly

developed software stack. Examples of this approach include CUDA and HLS. Developers

can utilize their existing C-programming knowledge to rapidly develop applications or even

tune the performance. This approach is also adopted in core projects discussed in this

dissertation, such as DSAGEN and OverGen.

However, the legacy approach has its tradeoff in terms of the expressiveness. Most ex-

isting programming models were designed for the Von-Neumann’s imperative execution, so

to effectively map this programming paradigm to the accelerators with aggressively broken

and reformed execution models can pose challenges for both compiler and application de-

velopers. Some parallelism and execution that was not originally encoded and exploited in

conventional programming requires additional hints from the developers. For example, in

high-level synthesis, the developers are required to annotate the program to explicitly express

the memory banking, loop pipelining, and the data produce/consume flow. Although some

state-of-art research on HLS [239, 237] seeks to automatically annotate these hints on the

behalf of developers, it still takes excessive time to explore the space of code transformation.
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sorted_join(key1=k1[0:n1], key2=k2[0:n2],

value1=v1[0:n1], value2=v2[0:n2],

stentinel=true);

INF

91132…

k0:

k1: INF

(a) Sentinel to Clean-up

CMP

Assuming k0 finishes early, 
so an INF is appended at the 
end of k0 to pop out the 
residue of k1.

(b) Domain-Specific Interface

for (i0=i1=0; i0<n0 && i1<n1; ) {

pred = pred_compare(k0[i0], k1[i1]);

acc += (pred == equal) ? v0[i0] * v1[i1] : 0;

i0 += pred == less || pred == equal;

i1 += pred == greater || pred == equal;

}

(c) Manually Converting Data-dependent Format

Figure 9.2: Injecting sentinels for clean-up; choosing the right abstraction.

Discussion While there is promise in having a general-purpose abstraction for full-stack

specialized accelerators, it is not yet perfect.

Consider the example depicted in Figure 9.1. Implementing this in a general-purpose

imperative language necessitates a complex transformation from the imperative control flow

in Figure 9.1(b) into the dataflow presented in Figure 9.1(c). Successfully converting this

general-purpose imperative code into accelerator commands demands strong assumptions

about both loop iterations and branch organizations.

As illustrated in Figure 9.1(a), there are two explicit conditions (“if” and “else if”) and

an implicit one (the final “else”), comparing k0[i0] and k1[i1]. These conditions dictate

the progression of the index pointers of v0[] and v1[]. This intertwining memory access

and computation complicates the loop iteration analysis. ScalarEvolution analysis is best

suited for canonical loops, i.e. loops with only one inductive variable and increased by one

each iteration. Thus, to analyze such a loop with multiple conditionally increased inductive

variables and various termination conditions, we could only rely on very strong assumption

on the loop structure to match the pattern of a key-value join template: there are three
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comparison conditions, which share the same operands in contiguous branches, and these

two loop variables will be increase accordingly in each branch.

Beyond detecting the key-value join behavior itself, to clear the remnants of a late-

terminate stream, sentinels after each array should be injected, as shown in Figure 9.2(a).

The compiler can automatically generate the sentinels, but this deviates from the intended

purpose of faithful translating the program. Adopting a domain-specific programming in-

terface would significantly simplify compiler analysis and code generation, and the sentinel

can be a part of the semantics. However, this places a heavy burden on compiler developers,

who need to continually expand the domain-specific software stack to accommodate new

programming patterns.

An alternative solution in the middle (between the arbitrary control flow and the domain-

specific programming) is to retain the general-purpose imperative programming while man-

ually embedding a predication-based code segment within the loop body, as demonstrated in

Figure 9.2(c). To manage the late-terminate stream, the developer can just manually append

a sentinel to the end of each array. While this approach mildly increases the workload for ap-

plication developers, it notably amortizes the difficulties for compiler analysis. Nonetheless,

there is still one pressing question remains unresolved: a well-structured principle should be

formalized to analyze the intertwined conditional increases of loop variables and the various

loop termination conditions.

9.3 Future Research and Open Questions

As the landscape of specialized accelerators continue to evolve, so must our code design

approaches and understanding. In this section, several future directions may potentially

usher in transformative advancements in this area.
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Virtualizing Decoupled-spatial Accelerators Previous research, both within this dis-

sertation and externally, has highlighted the potential of decoupled-spatial architectures

which achieves near-ASIC performance and energy saving under a moderate overhead. While

the software/hardware interfaces and compiler transformations have been well studied, system-

wide support remains underexplored. This hinders the broader adoption of this innovative

architectural paradigm. The distinct nature of this paradigm paves the way for ground-

breaking research questions on operating system support.

For instance, mobile operating systems like Android and iOS already well manage tightly

coupled specialized on-chip blocks. Unlike these dedicated ASICs, which are tailored and

dedicated for specific applications, a decoupled-spatial architecture’s compute resources can

be shared across multiple applications. Yet, the current mobile operating systems have not

been sufficiently investigated to manage application concurrency on a spatial architecture.

Though there is some capability for desktop operating systems (e.g. Windows and *nix-

like systems) to manage the application concurrency on PCIe devices (i.e. loosely coupled),

like GPUs. However, GPUs still adopt thread-based execution, so many techniques from

CPU virtualization, like context switching, and isolation can be reused. For a spatial accel-

erator, as mentioned before, all the instructions are locally buffered in spatial PE’s, which

makes context switching more complicated than a mere adjustment of the program counter.

In addition, compared with CPU’s centralized register file, all the intermediate results are

either buffered in PE’s local register file or routed through the on-chip network, which com-

plicates preserving the intermediate states during application switches.

The research question most akin to our needs, namely virtualizing a decoupled spatial

architecture, lies in multi-tenancy FPGA execution. FPGA vendors have leaned to hardware

solutions, while virtualizing FPGA for multi-tenancy execution is still an open question on

academic research, and attracts significant attention [149, 170, 157]. Decoupled-spatial ar-

chitectures distinguished themselves from FPGAs because of their programming interfaces,

and granularity. FPGAs still rely on low-level RTL programming interfaces, and take sub-
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stantial duration to reconfigure ( ms order). Instead of switching the context, to ensure the

performance of executing different applications, excessive on-chip resources are reserved for

different application instances. On the other hand, the coarse granularity of decoupled spa-

tial architectures requires only a brief period of cycles to reconfigure, which makes frequent

fine-grain context switching a feasible venture.

Because of the uniqueness discussed above, one promising direction is to develop operating

systems tailored for decoupled-spatial computing resource management.

Context-Aware Accelerator Synthesis We currently adopt the perf/mm2 as the ob-

jective for our hardware design space exploration in our design automation discussed in

Chapter 6, which is also the implication of Moore’s Law, maximizing the number of on-

chip active transistors. This is already proven to be effective to generate accelerators with

comparable quality compared against handcrafted accelerators.

In the future, integrating further insights regarding the use context of accelerators could

enhance the quality of the generated hardware. Specifically, the performance of an accelerator

could be fine-tuned in terms of latency, throughput, power, and clock frequency depending on

the usage scenario. For instance, in real-time systems such as self-driving vehicles or graphics

rendering, latency becomes a paramount concern. In these cases, eliminating superfluous

switches and FIFOs from the data path could substantially improve response times. On the

other hand, for applications that resist parallelization across multiple cores, increasing the

clock frequency might emerge as a viable alternative strategy.

To facilitate such optimizations, a more comprehensive pre-synthesis estimation that

encompasses power, area, and frequency is essential.

Unifying Simulation and Implementation The current architectural research and de-

velopment stick on such a familiar pattern: When architects introduce a novel feature, its

efficacy is initially ascertained through functional simulation. If these simulated results prove
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promising, this feature is then handed over to the implementation team for RTL design. This

approach, which we consistently employ in the design and execution of both DSAGEN and

OverGen, presents coordination challenges. It necessitates seamless alignment between teams

regarding performance metrics and intricate technical specifics. Ideally, there should be a

unified development interface that serves both simulation and implementation phases.

By carefully studying the execution model of the RTL interface, we discern event-driven

programming a promising opportunity for this goal. In this paradigm, each RTL module

acts in response to specific signals, activating the logic contained within. This methodology,

prevalent in UI design and distributed systems, might well be repurposed to innovate the

hardware design landscape.

9.4 Conclusion

An application domain does not inherently dictate an accelerator design. Rather, the specific

program idioms within these applications do. Based on this insight, this dissertation unveils

the potential for automated, programmable accelerator design. Through careful crafting,

each co-designed software/hardware innovation can be modularized and encapsulated within

a comprehensive, universally defined design space. Moreover, the correspondences between

software and hardware can be understandable by a domain-agnostic compiler.

The compiler serves a dual purpose: it is not only a bridge between software and hard-

ware but also a navigator for hardware design space exploration. Harnessing the compiler’s

awareness of software/hardware synergies, alongside design requirements innately embedded

within applications, can foster effective design space exploration.

Beyond the realm of automation, we posit that the true transformative potential lies

in reshaping the foundational design principles of specialized accelerators. Subsequent in-

novations can be realized by augmenting this design space, rendering them reusable across

diverse application domains. The era of initiating accelerator designs from a blank slate may

be nearing its end.
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[197] S. Önder and R. Gupta, “Automatic generation of microarchitecture simulators,” in
ICCL, 1998.

[198] “Openrisc project, http://opencores.org/project,or1k.”

[199] M. K. Papamichael and J. C. Hoe, “Connect: re-examining conventional wisdom for
designing nocs in the context of FPGAs,” in FPGA, 2012.

[200] A. Parashar, M. Pellauer, M. Adler, B. Ahsan, N. Crago, D. Lustig, V. Pavlov, A. Zhai,
M. Gambhir, A. Jaleel, R. Allmon, R. Rayess, S. Maresh, and J. Emer, “Triggered In-
structions: a control paradigm for spatially-programmed architectures,” in 40th ISCA,
2013.

[201] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan, B. Khailany, J. Emer,
S. W. Keckler, and W. J. Dally, “SCNN: an accelerator for compressed-sparse convo-
lutional neural networks,” in 44th ISCA, 2017.

[202] D. Park, Y. Xiao, N. Magnezi, and A. DeHon, “Case for fast FPGA compilation using
partial reconfiguration,” in 28th International Conference on Field Programmable Logic
and Applications, FPL 2018, Dublin, Ireland, August 27-31, 2018. IEEE Computer
Society, 2018, pp. 235–238.

[203] Y. Park, H. Park, and S. Mahlke, “Cgra express: Accelerating execution using
dynamic operation fusion,” in Proceedings of the 2009 International Conference
on Compilers, Architecture, and Synthesis for Embedded Systems, ser. CASES
’09. New York, NY, USA: ACM, 2009, pp. 271–280. [Online]. Available:
http://doi.acm.org/10.1145/1629395.1629433

[204] K. Paul, C. Dash, and M. S. Moghaddam, “reMORPH: a runtime reconfigurable archi-
tecture,” in 2012 15th Euromicro Conference on Digital System Design. IEEE, 2012,
pp. 26–33.

187



[205] A. Pedram, A. Gerstlauer, and R. van de Geijn, “Algorithm, architecture, and floating-
point unit codesign of a matrix factorization accelerator,” IEEE Transactions on Com-
puters, no. 1, pp. 1–1, 2014.

[206] S. Pees, A. Hoffmann, V. Zivojnovic, and H. Meyr, “Lisa-machine description language
for cycle-accurate models of programmable dsp architectures,” in DAC, 1999.

[207] P. M. Phothilimthana, A. S. Elliott, A. Wang, A. Jangda, B. Hagedorn, H. Barthels,
S. J. Kaufman, V. Grover, E. Torlak, and R. Bodik, “Swizzle inventor: data movement
synthesis for GPU kernels,” in Proceedings of the Twenty-Fourth International Con-
ference on Architectural Support for Programming Languages and Operating Systems,
2019, pp. 65–78.

[208] A. Pinto, L. P. Carloni, and A. L. Sangiovanni-Vincentelli, “Efficient synthesis of
networks on chip,” in 21st ICCD, 2003.

[209] R. Prabhakar, D. Koeplinger, K. J. Brown, H. Lee, C. De Sa, C. Kozyrakis,
and K. Olukotun, “Generating configurable hardware from parallel patterns,”
in Proceedings of the Twenty-First International Conference on Architectural
Support for Programming Languages and Operating Systems, ser. ASPLOS
’16. New York, NY, USA: ACM, 2016, pp. 651–665. [Online]. Available:
http://doi.acm.org/10.1145/2872362.2872415

[210] R. Prabhakar, Y. Zhang, D. Koeplinger, M. Feldman, T. Zhao, S. Hadjis, A. Pedram,
C. Kozyrakis, and K. Olukotun, “Plasticine: A reconfigurable architecture for parallel
paterns,” in 44th ISCA, 2017.

[211] J. Pu, S. Bell, X. Yang, J. Setter, S. Richardson, J. Ragan-Kelley, and
M. Horowitz, “Programming heterogeneous systems from an image processing dsl,”
ACM Transactions on Architecture and Code Optimization, vol. 14, no. 3, p. 1–25,
Aug 2017. [Online]. Available: http://dx.doi.org/10.1145/3107953

[212] W. Qiao, J. Oh, L. Guo, M.-C. F. Chang, and J. Cong, “Fans: Fpga-accelerated
near-storage sorting,” in 2021 IEEE 29th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), 2021, pp. 106–114.

[213] W. Qin, S. Rajagopalan, M. Vachharajani, H. Wang, X. Zhu, D. I. August, K. Keutzer,
S. Malik, and L.-S. Peh, “Design tools for application specific embedded processors,”
in Proceedings of the Second International Workshop on Embedded Software, Lecture
Notes in Computer Science, 2002.

[214] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and S. P. Amarasinghe,
“Halide: a language and compiler for optimizing parallelism, locality, and
recomputation in image processing pipelines,” in ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’13, Seattle, WA, USA,

188



June 16-19, 2013, H. Boehm and C. Flanagan, Eds. ACM, 2013, pp. 519–530.
[Online]. Available: https://doi.org/10.1145/2491956.2462176

[215] R. Rashid, J. G. Steffan, and V. Betz, “Comparing performance, productivity and
scalability of the TILT overlay processor to OpenCL HLS,” in 2014 International
Conference on Field-Programmable Technology (FPT), 2014, pp. 20–27.

[216] B. Reagen, R. Adolf, Y. S. Shao, G. Wei, and D. Brooks, “MachSuite: benchmarks for
accelerator design and customized architectures,” in IISWC, Oct 2014.

[217] B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K. Lee, J. M. Hernández-
Lobato, G. Y. Wei, and D. Brooks, “Minerva: Enabling low-power, highly-accurate
deep neural network accelerators,” in 2016 ACM/IEEE 43rd Annual International
Symposium on Computer Architecture (ISCA), June 2016, pp. 267–278.

[218] T. J. Repetti, J. a. P. Cerqueira, M. A. Kim, and M. Seok, “Pipelining a triggered
processing element,” in Proceedings of the 50th Annual IEEE/ACM International
Symposium on Microarchitecture, ser. MICRO-50 ’17. New York, NY, USA: ACM,
2017, pp. 96–108. [Online]. Available: http://doi.acm.org/10.1145/3123939.3124551

[219] S. Rivoire, R. Schultz, T. Okuda, and C. Kozyrakis, “Vector lane threading,” in 2006
International Conference on Parallel Processing (ICPP’06), Aug 2006, pp. 55–64.

[220] S. Rixner, W. J. Dally, U. J. Kapasi, B. Khailany, A. López-Lagunas, P. R. Mattson,
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