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1 | MOTIVATION

Increasing population and resource-intensive lifestyles are driving

enhanced demands for clean water, food, and energy. In parallel, land-

use change, climate change, and perturbations—including drought,

floods, fires, and early snowmelt—are significantly reshaping interac-

tions within watersheds throughout the world. While watersheds are

the Earth's key functional unit for assessing and managing water

resources, hydrological processes in watersheds also mediate biogeo-

chemical interactions that support terrestrial life on Earth (Kaushal,

Gold, Bernal, & Tank, 2018; National Research Council, 2012). Although

society is dependent upon clean water availability, tractable prediction

of watershed hydrobiogeochemical behavior, including watershed

response to perturbations, remains a challenge. Central to the challenge

are complex, multiscale interactions between plants, microorganisms,

organic matter, minerals, dissolved constituents, and migrating fluids,

which occur within and across bedrock-to-canopy compartments and

along extensive lateral gradients of a watershed. Several recent commu-

nity reports have synthesized formidable challenges associated with

watershed science and technology (AGU, 2018; Blöschl et al., 2019).

Here, we discuss emerging technologies and collaboration modes that

are critical for developing generalizable insights about and predictive

understanding of complex watershed hydrobiogeochemical behavior,

which are important for underpinning optimized natural resource

management.

Recent developments in field observatories and open-science

principles provide foundational pillars for advancing predictive

understanding of watershed hydrobiogeochemistry using emerging

technologies. Field observatories have fostered crossdisciplinary col-

laboration and provided platforms for quantifying hydrological, bio-

logical, geological, geochemical, and atmospheric processes and

their couplings (Bogena, White, Bour, Li, & Jensen, 2018). Observa-

tory networks in the United States include the Critical Zone

Observatories (Brantley et al., 2017), National Ecological Observa-

tory Network (Loescher, Kelly, & Lea, 2017), the Long-Term

Ecological Research Network (Hobbie, Carpenter, Grimm, Gosz, &

Seastedt, 2003), and the Department of Energy (DOE) Watershed

Network (U.S. DOE, 2019). Select international observatory net-

works include the German Terrestrial Environmental Observatories

(Zacharias et al., 2011), the French OZCAR network (Gaillardet

et al., 2018), and the Chinese observatories (Li et al., 2013). The

observatories are complemented by long-term distributed measure-

ment suites, such as the US Geological Survey stream discharge and

concentration measurements (NASEM, 2018a) and the DOE

AmeriFlux network carbon, water, and energy flux measurements

(Novick et al., 2018). Open-science concepts (NASEM, 2018a),

which have recently started to permeate watershed science, provide

another foundational pillar. While the open-data FAIR (findable,

accessible, interoperable, and reusable) principles (Wilkinson

et al., 2016) are perhaps the most recognized aspect of open-science,
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open-science concepts are also critical for generating and sharing

data, knowledge, and models in a manner that promotes transferabil-

ity and generalizability across watershed networks (U.S. DOE, 2019).

2 | EMERGING TECHNOLOGIES POISED
TO ADVANCE WATERSHED
HYDROBIOGEOCHEMISTRY

Several emerging technologies hold potential to greatly enhance pre-

dictive understanding of watershed hydrobiogeochemical behavior,

including machine learning (ML) and artificial intelligence, exascale

computing, 5G wireless communications, and cloud data storage and

compute capacity. Deep learning using large neural networks with

multilayered structures can identify abstract concepts about datasets

(Schmidhuber, 2015); these methods have been useful in other fields

to discover physical concepts from data. Several recent publications

have also illustrated the potential of ML for advancing Earth sciences

(Bergen, Johnson, Maarten, & Beroza, 2019; Nearing et al., 2020;

Reichstein et al., 2019; Shen, 2018). Exascale computing will provide

computing systems capable of at least a quintillion (or billion billion)

calculations per second, representing a thousand-fold increase over

the first petascale computers that came into operation about a decade

ago. Teams of scientists are currently developing exascale-ready

codes for several applications (Alexander et al., 2020), including for

Earth sciences (Johansen et al., 2017). In addition, cloud platforms

(such as Google Earth Engine and Amazon Web Services) are enabling

an era of “Big Data” in the Earth sciences by providing on-demand

storage, networking, and mid-range computing capacity. These devel-

opments are already spurring advances in geospatial data processing

and bioinformatics (Yang, Huang, Li, Liu, & Hu, 2017). 5G technology

refers to the fifth generation of digital wireless communication tech-

nologies, which will offer significantly enhanced data rates and low

latency. 5G will also offer enhanced connectivity of massively parallel

Internet of things devices—up to 1 million per square kilometer

(Forbes, 2019).

Below, we provide examples of how emerging technologies are

starting to be used to advance three key elements: watershed hydro-

biogeochemical characterization, data management and informatics,

and modeling.

2.1 | Watershed characterization

The desire to characterize and monitor watershed hydrobio-

geochemical dynamics at increasing spatial and temporal resolutions

has driven an explosion of observational technologies and platforms.

For example, fiber-optic distributed sensors can now autonomously

measure temperature and strain with very high spatiotemporal resolu-

tion in terrestrial and aquatic systems (Ajo-Franklin et al., 2017; Joe,

Yun, Jo, Jun, & Min, 2018; Slater et al., 2010), and fiber-based

approaches for sensing chemical and biological properties are in

development (Ding et al., 2015; Lu, Thomas, & Hellevang, 2019). New

sensing strategies are being tested to noninvasively monitor active

plant-root functions in situ (Benjamin et al., 2020; Peruzzo et al., 2020)

and to monitor nutrient fluxes (MacDonald, Levison, & Parker, 2017).

Autonomous unmanned aerial vehicles (UAVs) equipped with various

instruments can now sense previously difficult-to-reach environments

in high-resolution. UAV approaches complement airborne and satellite

imaging strategies (McCabe et al., 2017), all enabled through cloud stor-

age. Remotely sensed, spatially distributed “data layers” of watershed

compartments and associated properties now enable creation of 3D

bedrock-to-canopy watershed “digital twins” (Wainwright et al., 2019).

Networked sensing systems can now coincidentally and autonomously

monitor bedrock-through-canopy fluxes (Dafflon et al., 2017), provid-

ing a “window” to remotely track fluxes across watershed

compartments.

ML is starting to show promise for advancing watershed charac-

terization using these and other diverse datasets (Ahmad, Kalra, &

Stephen, 2010; Oroza, Zheng, Glaser, Tuia, & Bales, 2016). One prom-

ising approach has focused on using ML-based spatial clustering

approaches for characterizing functional zones: parcels within a land-

scape that have unique distributions of properties relative to neigh-

boring regions that influence how that zone functions from a

hydrobiogeochemical perspective. The approach can include

geomorphorphic, topographic, vegetation, hydrogeologic, geochemi-

cal, and other properties that may influence behavior. For example,

Hubbard et al. (2013) and Wainwright et al. (2015) used ML with geo-

physical and other datasets to identify functional zones in an Arctic

tundra and to quantify the zone-based property suites important for

carbon fluxes. Wainwright et al. (2019) used a suite of remotely

sensed bedrock-through-canopy watershed data layers to identify

zonation within a mountainous watershed. Current investigations are

focused on quantifying how properties associated with distinct func-

tional zones govern water and nitrogen export in response to snow

dynamics and in turn contribute to the aggregated watershed

concentration-discharge signature (Hubbard et al., 2018).

2.2 | Watershed data cyberinfrastructure and
informatics

Management, sharing, and reuse of environmental data have greatly

increased over the past decade in response to their increasing volume,

diversity, and complexity (Blair et al., 2019; Rode et al., 2016). In par-

allel, advances in environmental data infrastructure, cloud computing,

and ML have dramatically improved the ability to store and utilize

diverse data for watershed science.

Data from research efforts are becoming available through open-

data movements based on FAIR principles, which advocate the use of

metadata and standards. Data from operational and experimental

monitoring networks are now widely available through data systems

such as the USGS National Water Information System, the US inter-

agency water quality portal (Blodgett, Read, Lucido, Slawecki, &

Young, 2016), and the European Union's Water Information System

for Europe (Hering et al., 2010). Several repositories now enable
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scientists to easily archive and publish data with essential metadata

and provide easy-to-use watershed data access mechanisms, such as

interactive portals and web service application programming inter-

faces. Examples in the US include the NSF-supported Hydroshare

(Horsburgh et al., 2016) for hydrological data, and the DOE-supported

ESS-DIVE (Varadharajan et al., 2019) for watershed hydrological and

biogeochemical data from experimental and modeling research.

In parallel, cyberinfrastructure for synthesizing and processing

these increasing amounts of data are being developed. For example,

Varadharajan et al. (2019) recently demonstrated the utility of

watershed-centric data infrastructure and tools using diverse hydro-

logical, climate, geochemical, and biological data from a mountainous

watershed in Colorado. The end-to-end data pipeline required devel-

opment and use of several novel methods, including new software

that allowed seamless, real-time integration of data stemming from a

variety of sources with differing metadata, source formats, and vocab-

ularies, through the use of a data broker (BASIN-3D). BASIN-3D,

which also provides tools for semiautomated QA/QC, has enabled

rapid synthesis of watershed time-series observations and interactive

visualizations (Hubbard et al., 2018). The Consortium of Universities

for the Advancement of Hydrologic Science hydrologic information

system pulls time-series data from over 95 sources, which can be

accessed via the Hydroclient interactive portal and the

WaterOneFlow web services (Horsburgh et al., 2016). Other efforts,

such as Pangeo (an ecosystem of open-source, interoperable, scalable

tools), are enabling big data integration for HPC using cloud services

(Eynard-Bontemps, Abernathey, Hamman, Ponte, & Rath, 2019).

The availability of these data and tools is enabling a new paradigm

wherein data-driven methods are being used to probe hydro-

biogeochemical scaling, similarity and function, as well as to generate

and test new hypotheses (Peters-Lidard et al., 2017). Classical

methods, such as statistical time-series analyses and concentration-

discharge relationships, are being applied to large, regional data prod-

ucts to determine streamflow and water quality trends across catch-

ments with different characteristics (Godsey, Hartmann, &

Kirchner, 2019; Murphy & Sprague, 2019). Data mining and classifica-

tion algorithms, such as ensemble decision trees and unsupervised

clustering, can recognize patterns in coupled human–natural system

behavior and watershed response to disturbance (Hamshaw,

Dewoolkar, Schroth, Wemple, & Rizzo, 2018; Smith, Knight, &

Fendorf, 2018). The application of mutual information theory and

causal inference approaches is being used to derive explanatory rela-

tionships between environmental variables and hypothesis testing

(Goodwell & Kumar, 2017; Nearing, Ruddell, Bennett, Prieto, &

Gupta, 2020).

2.3 | Watershed hydrobiogeochemical modeling

While process-based, integrated numerical models have been used

to predict watershed hydrological behavior (Fatichi et al., 2016;

Maxwell et al., 2014; Troch, Carrillo, Sivapalan, Wagener, &

Sawicz, 2013), a significant challenge remains to develop

computationally efficient capabilities that also incorporate reactive

transport. Advancing a robust predictive understanding of watershed

hydrobiogeochemical behavior requires numerical representation

and coupling of hydrological and biogeochemical processes—from

reaction (mm–cm) to watershed (km) scales and across bedrock-to-

canopy compartments and terrestrial–aquatic interfaces (Bao, Li,

Shi, & Duffy, 2017; Li, 2019; Li et al., 2017; Steefel, 2019; Troch

et al., 2009). Here, we describe the potential for emerging technolo-

gies and strategies to meet this objective, including model interoper-

ability, computational meshing strategies and architectures, and

ML-based approaches.

There are tremendous opportunities to advance interoperability

between models that solve for integrated (surface–subsurface) hydrol-

ogy and reactive transport. While hydrology and reactive transport

modeling have historically evolved along different paths, disparate

communities have worked together in recent years to couple hydro-

logic and reactive transport models. Examples of models used for such

coupling include PFLOTRAN (Hammond & Lichtner, 2010), advanced

terrestrial simulator (ATS; Coon, Moulton, & Painter, 2016), ParFlow

(Kollet & Maxwell, 2008), and CrunchFlow (Steefel et al., 2015). While

these and other codes each offer certain strengths, none can currently

simulate full multiscale, multiphysics watershed reactive transport

(Dwivedi et al., 2016; Steefel et al., 2015). Recently, adoption of

model interoperability approaches has enabled researchers to take

advantage of select strengths of different codes to enhance predictive

understanding (Heroux et al., 2020). For example, while ATS can simu-

late coupled surface–subsurface flow but not reactive transport, new

interfaces now allow ATS to access the reaction engines of either the

PFLOTRAN or CrunchFlow (Coon et al., 2016) to enable simulation of

surface–subsurface hydrobiogeochemical processes in watersheds.

Following the hydrological modeling community's lead in consid-

ering the need for hyperresolution (0.1–1 km resolution; Bierkens

et al., 2015), efforts are underway to advance the ability to similarly

simulate watershed reactive transport in high resolution using

leadership-class supercomputers. For example, Dwivedi, Arora,

Steefel, Dafflon, and Versteeg (2018) used PFLOTRAN to numerically

examine hot spots and hot moments influencing nitrogen cycling in a

small watershed floodplain in 3D and with meter-scale spatial resolu-

tions. This simulation required 250,000 CPU hours (or 24 wall clock

hours) on the National Energy Research Scientific Computing Center

supercomputer to simulate processes occurring over one water year.

As exascale computers come online, the reaction calculations are

expected to undergo a substantial speed up, rendering watershed-

scale reactive transport and associated uncertainty quantification

strategies not only feasible, but practical from a research perspective.

As exascale simulation capabilities are not expected to be accessi-

ble to the wider community and practitioners for many years, several

strategies hold potential for reducing the computational burden

required for simulating watershed reactive transport using current

leadership-class computers. For example, approaches for adjusting the

resolution in computational grids, such as including static and adaptive

mesh refinement methods (AMR; Blayo & Debreu, 1999; Wang, Liu, &

Kumar, 2018), offer potential for simulating small-scale reactive
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hotspots and their influence on larger system behavior in a computa-

tionally efficient manner. The ability to employ variable resolution in

mechanistic watershed reactive transport models, allowing codes to

“telescope” into regions that are rapidly evolving, may provide a path

forward for balancing accuracy and tractability associated with stimu-

lating watershed reactive transport processes. AMR approaches have

recently been developed to improve the efficiency of watershed

hydrologic simulations (Wang et al., 2018) and to enable simulation of

coupled hydrobiogeochemical processes (Özgen-Xian et al., 2020).

Recently, data-driven approaches have gained momentum in

watershed modeling because of their computational efficiency and

agility to incorporate diverse and multiscale data that are often diffi-

cult to incorporate into current process-based models (Shen, 2018).

The value of ML for watershed modeling has been illustrated by appli-

cations focused on streamflow prediction (Kratzert, Klotz, Brenner,

Schulz, & Herrnegger, 2018), early warning of droughts and floods

(Mosavi, Ozturk, & Chau, 2018; Park, Im, Jang, & Rhee, 2016), ground-

water level fluctuations (Müller et al., 2019), and chemical equilibrium

calculations (Leal, Kulik, & Saar, 2017). However, as data-driven

models are developed directly from observations, their effectiveness

is limited when data are sparse. Data-driven modeling also does not

provide insight about processes, which limits transferability of results.

A strategy for taking advantage of increasing data availability

while honoring mechanistic process representation in a computation-

ally efficient manner is hybrid modeling, also known as physics-based

ML (Bergen et al., 2019; Reichstein et al., 2019). Hybrid-modeling

strives to marry complementary aspects of mechanistic process-based

models and ML, data mining, and genetic algorithms. Given the com-

plexity of hydrobiogeochemical data and processes that occur across

scales and compartments of a watershed, this strategy holds signifi-

cant promise for advancing predictive understanding of watershed

hydrobiogeochemical behavior. Nearing, Kratzert, et al. (2020) advo-

cated the importance of integrating ML into hydrological workflows.

We contend that ML, and in particular the hybrid modeling strategy,

holds significant potential for advancing prediction of watershed

hydrobiogeochemistry.

3 | LOOKING FORWARD

Early research is illustrating the promise of ML, 5G, computational strat-

egies and architectures, and cloud-based technologies for improving

watershed characterization, data handling, and modeling. We envision a

future where the emerging technologies will be able to seamlessly unify

sensing systems, data infrastructure, and computational tools to allow

near real-time, autonomous communication, and feedback. To realize

this vision, “codesign” strategies are needed whereby watershed sens-

ing, data, and modeling systems are “born” to communicate with each

other across multiple scales (Varadharajan et al., 2019). Enabled by the

emerging technologies, codesign strategies hold potential for rapid syn-

thesis and assimilation of increasingly diverse and autonomous data

streams into data systems and models, and near real-time feedback

from models to observing systems, including instructions regarding

what data should be collected where. We urge the community to work

together to advance observation-data-modeling system codesign strat-

egies, with an aim to improve watershed characterization and predic-

tion within and across observatories, and eventually enable near real-

time information for resource managers. We recognize that building

and maintaining elaborate codesign strategies is challenging for individ-

ual research efforts, and that incorporation of technologies alone will

not allow us to address the many existing watershed scientific ques-

tions. This brings us to a second recommendation.

We submit that new modes of “radical” collaboration are needed

to facilitate teams-of-teams to work together in a coordinated fashion

across watershed networks using “Open Science by Design” principles

(NASEM, 2018b; U.S. DOE, 2019). The collaborations could focus on

addressing specific watershed science questions; advancing common

measurements, models and codesign strategies; and discovering gen-

eralizable metrics and transferable insights. For example, collabora-

tions working across diverse, globally distributed watersheds that

span hydroclimatic and property gradients could investigate questions

such as: how do different types of watersheds respond to different

stressors, such as climate change, droughts, floods, wildfire, and land-

use? How will multiple stressors impact sustainability of water, food,

energy systems that rely on water? Can generalizable metrics of resil-

ience be identified and tracked? What is the minimum but sufficient

amount of information needed to predict watershed behavior at tem-

poral and spatial scales critical for underpinning resource management

decisions? In addition to working across gradients, international col-

laborations could use distributed watersheds to address more focused

questions relevant to specific types of watersheds, such as pristine

mountainous watersheds, contaminated watersheds, agriculture-

dominated watersheds, or urban watersheds. Figure 1 illustrates how

investigations carried out across geographically distributed mountain-

ous or agriculture-dominated watersheds could be useful for exploring

the influence of various stressors on the functioning of these systems,

and the associated impacts on water supply and water quality, power

generation, agricultural productivity, and other societal benefits.

Systematic incorporation of emerging technologies and adoption

of radical modes of collaboration require substantial coordination,

resources and commitment to overcome technical, social, and organi-

zational barriers. We are encouraged by the many recent efforts

focused on advancing collaborations and tools across watershed com-

munities, observatories, and government agencies (U.S. DOE, 2020;

NSF critical zone collaborative network opportunity; U.S. DOE, in

prep.). We are also encouraged by a new generation of watershed sci-

entists who embrace open watershed science philosophies and

approaches to advance connectivity across scales, sites, disciplines,

and nations (Arora et al., 2019; Wymore et al., 2017). As resource

managers struggle to make increasingly difficult decisions in the com-

ing decades, we envision that the emerging technologies and radical

collaborations described here will mobilize the scientific enterprise

toward providing actionable information over space and time scales

useful for such decisions (Figure 1).
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F IGURE 1 Enabling technologies and new modes of collaboration, together with open science principles and watershed networks, hold
potential to transform our ability to address complex scientific questions and to develop generalizable insights and predictive understanding of
watershed hydrobiogeochemical behavior critical for resource management
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