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Abstract

Neurodevelopmental disorders are associated with atypical development and maturation of brain 

networks. A recent focus on human connectomics research and the growing popularity of open 

science initiatives has created the ideal climate in which to make real progress towards 

understanding the neurobiology of disorders affecting youth. Here we outline future directions for 

neuroscience researchers examining brain networks in neurodevelopmental disorders, highlighting 

gaps in the current literature. We emphasize the importance of leveraging large neuroimaging and 

phenotypic datasets recently made available to the research community, and suggest specific novel 

methodological approaches, including analysis of brain dynamics and structural connectivity, that 

have the potential to produce the greatest clinical insight. Transdiagnostic approaches will also 

become increasingly necessary as the Research Domain Criteria (RDoc) framework put forth by 

the National Institute of Mental Health (NIMH) permeates scientific discourse. During this 

exciting era of big data and increased computational sophistication of analytic tools, the 

possibilities for significant advancement in understanding neurodevelopmental disorders are 

limitless.
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What are brain networks and why should we focus on them?

Over the past decade we have witnessed the emergence of a new subspecialization within 

cognitive neuroscience, often referred to as “human connectomics” or “network 

neuroscience”. This new theoretical framework originated from observations that cognitive 
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processes rely on interactions among distributed brain regions (Mesulam, 1990), and 

encourages the examination of brain connectivity as a means for exploring the biology of 

complex behaviors (Sporns, 2014). Concepts from network science and complex systems are 

increasingly being used in this nascent field (Bassett & Sporns, 2017).

A network is any system that can be represented by a graph consisting of nodes and edges. 

In cognitive neuroscience, nodes are often thought of as discrete brain regions and edges as 

the links or connections between them (Bressler & Menon, 2010; Wig, Schlaggar, & 

Petersen, 2011). Connectivity in this context is typically defined as functional (e.g. temporal 

correlations between remote neurophysiogical events (Friston, 1994) or structural (e.g. 

anatomical links between brain regions). For the purposes of the current review, a brain 

network will be considered a neural system with characteristic functional and/or structural 

connectivity patterns among brain regions that constitute it. One example of a well-studied 

brain network that has been implicated in multiple mental disorders (Buckner, Andrews-

Hanna, & Schacter, 2008) is the default mode network (DMN) (Raichle, 2015). The DMN is 

comprised of key nodes in medial prefrontal and posterior cingulate cortices (Greicius, 

Krasnow, Reiss, & Menon, 2003), and is thought to be involved in internally-oriented, 

evaluative cognitive processes (Uddin, Iacoboni, Lange, & Keenan, 2007).

In the context of clinical child and adolescent psychology, a focus on connectomics has yet 

to become mainstream. There are however, reasons to believe that such studies will become 

increasingly important for the future of the field. Researchers, clinicians, and policy makers 

are beginning to move towards more biologically-based models in their conceptualizations 

of disorders emerging in early childhood. The most prominent example of this shift is the 

Research Domain Criteria (RDoC) framework put forth by the National Institute of Mental 

Health. The RDoC integrates genomics, neural circuit, and behavioral data in an attempt to 

understand mental health in terms of degrees of function and dysfunction in psychological 

and biological systems (Insel, 2014). A recent comprehensive review highlights how the 

RDoC approach compares with traditional models such as those guiding the Diagnostic and 

Statistical Manual of Mental Disorders (DSM) and International Classification of Diseases 

(ICD) with respect to understanding and classifying mental disorders. The authors identify 

key challenges for the field, including understanding etiology and multiple causality, the 

description of phenomena as categorical or dimensional, thresholds for setting boundaries 

between disorder and nondisorder, and comorbidity among conditions (Clark, Cuthbert, 

Lewis-Fernandez, Narrow, & Reed, 2017). Network neuroscience can make subtle 

distinctions about neural function and dysfunction that may vary both along symptom 

spectrums as well as across development. As such, network neuroscience is poised to make 

significant contributions to each of the growth areas highlighted by Clark and colleagues, 

and to lead the field towards more data-driven, objective approaches for disease 

classification and treatment. Quantification of brain networks provides biologically-

grounded metics that can be used to discriminate disordered from non-disordered 

populations, parse heterogeneity within disorders, and evaluate the effectiveness of treatment 

strategies.
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Brain networks in neurodevelopmental disorders

Several reviews have summarized how network neuroscience approaches have informed 

studies of typical and atypical development (Di Martino et al., 2014; Uddin, Supekar, & 

Menon, 2010). Key themes that have emerged from these investigations include an emphasis 

on the evolution of segregation and integration of brain networks across development (Fair et 

al., 2007; Grayson & Fair, 2017). To date, the neurodevelopmental disorders that have been 

most thoroughly investigated using neuroimaging approaches are autism spectrum disorder 

(ASD) (Ecker, 2017; Uddin, Supekar, & Menon, 2013) and attention-deficit/hyperactivity 

disorder (ADHD) (Castellanos & Aoki, 2016). Considerable progress has also been made 

towards characterizing brain network abnormalities that emerge across adolescence in 

disorders including schizophrenia (Fornito & Bullmore, 2015), anxiety (Tovote, Fadok, & 

Luthi, 2015), and depression (Hamilton, Farmer, Fogelman, & Gotlib, 2015). While the 

DMN has received the most attention from clinical neuroscientists (Mohan et al., 2016), it is 

worth noting that several large-scale brain networks, and interactions among them, have 

increasingly been implicated in disorders with early life onset. One key finding emerging 

from studies of brain networks is that dysfunction of densely interconnected brain regions 

(“hubs”), such as the insula, is a common feature of multiple disorders including ASD, 

schizophrenia, and frontotemporal dementia (Uddin, 2015). Meta-analyses examining 

schizophrenia, bipolar disorder, depression, addiction, obsessive-compulisve disorder, and 

anxiety reveal common gray matter volume loss in the insula, suggesting that this region 

may be a common neurobiological substrate for mental illness (Goodkind et al., 2015). 

Unresolved big questions for the field include understanding whether and to what extent 

different clinical phenomena map on to distinct neurobiological signatures and how this 

might change across development. If it turns out to be the case that the majority of disorders 

result from atypical functional and structural connectivity within and among circumscribed 

brain networks, the implications for clinical psychology are widespread. Recent advances in 

neuroimaging data analytic approaches now permit such investigations.

Future Directions: Advanced neuroimaging data analytic approaches

Analysis of brain dynamics

Much of what is currently known regarding the development of brain networks comes from 

studies assessing functional connectivity using resting-state fMRI. Resting-state fMRI 

involves collection of functional neuroimaging data from participants who are not engaged 

in task performance. Participants are instructed to lay still in the MRI and either close their 

eyes or fixate on a cross-hair during data collection, which typically lasts five minutes or 

longer. Functional connectivity analyses use resting-state fMRI data to quantify 

spontaneous, synchronized fluctuations in the blood oxygen level dependent (BOLD) signal 

and identify “intrinsic” functional brain networks. Since the initial discovery that coherent, 

spontaneous low-frequency fluctuations in the BOLD signal can delineate functional brain 

networks even in the absence of task performance (Biswal, Yetkin, Haughton, & Hyde, 

1995), it has become widely accepted that so-called “resting state networks” (De Luca, 

Beckmann, De Stefano, Matthews, & Smith, 2006) or “intrinsic connectivity networks” 

(Seeley et al., 2007) recapitulate the range of brain networks observable during task 
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performance (Bolt, Nomi, Rubinov, & Uddin, 2017; Cole, Bassett, Power, Braver, & 

Petersen, 2014; Smith et al., 2009).

To date, the majority of resting-state fMRI studies have averaged correlation values across 

the duration of data collection to create an overall index of functional connectivity strength 

between brain regions. A novel approach termed “dynamic functional connectivity” 

challenges the assumption that such an analysis strategy adequately indexes brain function. 

This new approach provides a means for quantification of brain dynamics from fMRI data 

by enabling the study of moment-to-moment (time-varying) changes in functional coupling 

between brain regions (C. Chang & Glover, 2010). Rather than assuming that functional 

relationships between brain regions remain stable over time, dynamic functional 

connectivity approaches aim to determine the frequency and duration of specific recurring 

“functional network connectivity states” in the brain. One approach for computing dynamic 

functional connectivity is the “sliding-window approach” (Figure 1)(Allen et al., 2014). This 

approach computes functional connectivity strength on the order of seconds rather than the 

more traditional practice of averaging across minutes, and permits the quantification of 

metrics including “dwell time” (the amount of time spent in a particular functional network 

connectivity state) and “frequency of occurrence” (the number of times a particular 

functional network connectivity state occurs). Another approach for computing dynamic 

functional connectivity relies on the identification of critical timepoints when the signal 

intensity surpasses a certain threshold, giving rise to multiple stable spatial patterns or co-

activation patterns (CAPs) that can be obtained by clustering of critical time frames. The 

CAP approach relies on fewer model assumptions than the sliding window approach, and 

allows for the examination of state alterations closer to the temporal resolution of individual 

time frames (J. E. Chen, Chang, Greicius, & Glover, 2015). A review of these and other 

approaches for quantifying brain dynamics from fMRI data has recently been published 

(Preti, Bolton, & Van De Ville, 2016). It should be noted that the field of functional 

connectivity dynamics is very new and rapidly evolving, and debates surrounding 

appropriate methodology and conceptualization are ongoing. Recent controversies regarding 

how to properly measure and interpret dynamics in fMRI data have yet to be resolved (Abrol 

et al., 2017; Glomb, Ponce-Alvarez, Gilson, Ritter, & Deco, 2017; Liegeois, Laumann, 

Snyder, Zhou, & Yeo). Research groups actively working in this area are encouraged to 

participate in the Time Varying Working Group (https://groups.google.com/forum/#!forum/

time-varying-working-group) that was formed at the 2017 Annual Meeting of the 

Organization for Human Brain Mapping in Vancouver.

Notwithstanding, studies of brain dynamics have already produced novel insights into 

typical brain development and maturation. Hutchison and Morton found that increasing age 

is associated with greater variability of functional connection strengths across time during 

resting states (Hutchison & Morton, 2015). It is currently unknown how atypical brain 

dynamics contribute to the emergence of symptoms characteristic of most 

neurodevelopmental disorders. A few studies have investigated functional brain dynamics in 

autism. Watanabe and Rees report that high-functioning adults with ASD show fewer 

transitions between brain states, a finding that is linked with symptom severity (Watanabe & 

Rees, 2017). Others have begun to explore brain dynamics as they relate to psychotic 

symptoms, and report not only that clinical high-risk individuals show intermediatate 

Uddin and Karlsgodt Page 4

J Clin Child Adolesc Psychol. Author manuscript; available in PMC 2019 November 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://groups.google.com/forum/#!forum/time-varying-working-group
https://groups.google.com/forum/#!forum/time-varying-working-group


dynamic functional connectivity patterns between healthy controls and individuals with 

schizophrenia (Du et al., 2017), but that otherwise healthy individuals experiencing 

subclinical symptoms show alterations in dynamic connectivity that correlate with executive 

function (Barber, Lindquist, DeRosse, & Karlsgodt).

Analysis of brain dynamics from resting-state fMRI data, while in its early stages, promises 

to be a fruitful avenue for exploring individual differences in functioning levels across 

neurodevelopmental disorders (Hutchison & Morton, 2016). In particular, functional 

connectivity dynamics can reveal more nuanced patterns of dysfunction within neural 

circuits than traditional static connectivity analyses. Individual differences in brain dynamics 

correlate with self-control (Steimke et al., 2017) and executive function abilities (Nomi et 

al., 2017), and can explain twice the variance in behavior across domains (alertness, 

cognition, emotion, personality) compared with traditional functional connectivity metrics 

(Jia, Hu, & Deshpande, 2014). The increased sensitivity to detect brain network 

abnormalities afforded by dynamic functional connectivity analyses will provide utility in 

future studies attempting to tease apart affects of comorbidity and heterogeneity on mental 

health outcomes in clinical populations.

Analysis of structural connectivity

Diffusion weighted imaging (DWI) is a powerful non-invasive tool for examining structural 

connectivity, specifically white matter microstructure, based on patterns of water diffusion. 

By observing how and in what directions diffusion is constrained, information about the 

surrounding tissue can be inferred. In the DWI field, the diffusion tensor model (DTI model) 

is most commonly employed, and yields the frequently used fractional anisotropy (FA) 

measure, which indirectly indexes “neuronal integrity”, putatively reflecting both 

myelination and organization of the white matter tracts. In addition, the secondary measures 

of radial (RD) and axial diffusivity (AD) are believed to more specifically index myelination 

and axonal organization, respectively (Beaulieu & Allen, 1994; Song et al., 2003; Wozniak 

& Lim, 2006). With these capabilities, coupled with the ability to perform the technique in a 

standard MRI scanner over relatively short scan periods, DTI has become a very practical 

way to investigate structural connectivity, and has been shown to be sensitive to 

neurodevelopmental change (Asato, Terwilliger, Woo, & Luna, 2010; De Bellis et al., 2001; 

Giorgio et al., 2010; Kochunov et al.; Schmithorst & Yuan, 2010; Westlye et al., 2010).

However, despite these assets, DTI has limitations that are important for developmental 

researchers to consider. For example, the DTI model measures only extracellular space 

between myelinated axons, and thus cannot differentiate signal changes from myelin 

thickness, axonal girth, tract spacing, or organization. Accordingly, FA and other measures 

are always carefully referred to as indexing “WM integrity” rather than “myelination”. 

Given the importance of myelin development in childhood and adolescence, it is important 

to understand strengths and limitations in measuring it. Currently, diffusion imaging is 

undergoing a period of rapid change, as the field tries to address and understand these 

limitations. For example, RD is generally considered the best DTI measure of myelination, 

however recent evidence shows that other factors may contribute more to RD than 

previously thought (E. H. Chang et al., 2017). In addition, it has become apparent that neural 
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tissue structure may be too complex to be accurately described by a single tensor. One voxel 

may contain fibers in multiple orientations, which is a particular problem in areas where 

tracts intersect and there are crossing fibers. In addition, there can be intracellular and 

extracellular compartments within the tissue, which may have different diffusion properties 

as well as different biological significance and different patterns of developmental change. 

Thus, there has been recent movement towards employment of non-FA measures that go 

beyond simple tensor models. First, when using DTI it is now common to report secondary 

tensor measures of RD, AD, and MD along with FA. In addition, with the recent widespread 

adoption of Human Connectome Project (HCP)-based sequences, and the broader 

availability of multi-shell sequences (e.g. diffusion sequences with multiple b-values), a 

wider range of available techniques are moving into the mainstream. For example, there is 

continuing development of alternatives to FA, such as quantitative anisotropy (QA) (Yeh, 

Verstynen, Wang, Fernandez-Miranda, & Tseng, 2013) which may provide a better basis for 

tractography and shows less interference from confounding factors such as crossing fibers.

Unfortunately, although we know that there are challenges in using DTI to measure 

myelination, the methods that might remedy this are rarely implemented in developmental 

research. One such technique is diffusion kurtosis imaging (DKI), which uses a different 

mathematical approach to modeling diffusion (Jensen & Helpern, 2010). Only a few studies 

have employed DKI developmentally, with two studies showing that kurtosis was more 

sensitive to microstructural changes than FA (Grinberg et al., 2017; Paydar et al., 2014), and 

another finding that DKI showed maturational differences in children with ADHD 

(Adisetiyo et al., 2014). Techniques such as DKI may not necessary supplant FA, but can be 

complementary. Relatedly, diffusion spectrum imaging (DSI) has been able to reveal entirely 

new features of the organization of the white matter (Wedeen, Hagmann, Tseng, Reese, & 

Weisskoff, 2005; Wedeen et al., 2012; Wedeen et al., 2008), but while it has been more 

widely employed than DKI, it is rarely used in developmental samples. Specifically, DSI has 

been used to demonstrate differences in ADHD youth and controls (Chiang, Chen, Lo, 

Tseng, & Gau, 2015; Chiang, Chen, Shang, Tseng, & Gau, 2016; Gau, Tseng, Tseng, Wu, & 

Lo, 2015; Lin et al., 2014) and in ASD (Lo, Chen, Hsu, Tseng, & Gau, 2017; Lo et al., 

2011) showing it is sensitive to the kinds of differences we would expect in 

neurodevelopmental disorders. Still, work characterizing overall developmental changes in 

DSI measures is needed.

Another promising DWI method is neurite orientation dispersion and density imaging 

(NODDI) (Zhang, Schneider, Wheeler-Kingshott, & Alexander, 2012). This technique uses 

multi-shell DWI data and allows us to make better estimates of microstructural architecture 

(Figure 2). In particular, NODDI provides for the estimation of three factors relevant to 

development: neurite orientation, which reflects dendritic density and the complexity of 

dendritic branching (Jespersen, Leigland, Cornea, & Kroenke, 2012), neurite density, which 

is highly correlated with myelination (Jespersen et al., 2010), and cellular density 

(Sepehrband et al.). Measures of pruning and myelination have clear relevance to both 

healthy and disordered neurodevelopment, particularly in adolescence, and yet only a few 

developmental studies have employed NODDI thus far (Batalle et al., 2017; Eaton-Rosen et 

al., 2015; Genc, Malpas, Holland, Beare, & Silk, 2017; Jelescu et al., 2015; Kansagra et al., 

2016; Kunz et al., 2014), primarily in neonates. One limitation in employing many of these 
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analytic strategies is that very few of the large publically available data sets include multi-

shell data, which is necessary for the majority of these new techniques. It is thus imperative, 

moving forward, that developmental researchers not only obtain multi-shell data, but also 

explore the power of these newly developed techniques and translate them to developmental 

samples.

Machine learning for classification, prediction, and parsing heterogeneity

In computer science, the term ‘machine learning’ is used to refer to algorithms that can learn 

from and make predictions from data. In addition to using neuroimaging to identify neural 

correlates of neurodevelopmental disorders, researchers have recently begun to use features 

derived from functional and structural MRI data to discriminate between clinical and non-

clinical populations, or to predict treatment response or other outcomes in patients. 

Identification of reliable brain-based biomarkers for neurodevelopmental disorders using 

machine learning can in principle help provide mechanistic explanations of etiology and 

symptomatology, and contribute to earlier identification and targeted treatment.

While the application of machine learning to the study of neurodevelopmental disorders is 

still in its infancy, the availability of large datasets has significantly accelerated the pace of 

this research. In one recent example using the Autism Brain Imaging Data Exchange 

(ABIDE) dataset, resting-state fMRI features were used to discriminate autism from typical 

development with 67% accuracy (Abraham et al., 2017). Importantly, this study performed 

both intra-site and inter-site cross-validation to validate the robustness of their approach. 

Such careful characterization of the effects of site-specific as well as more generalizable 

effects will be important for future work aimed at increasing the potential translational 

impact of classification studies.

A critical distinction in machine learning is that between supervised and unsupervised 

methods. Most neuroimaging classification studies have used supervised methods, where 

presumed labels (eg. ASD vs. control) are used to first train a classifier to find patterns of 

brain connectivity associated with the distinct labels. With unsupervised methods, on the 

other hand, the classifier explores population samples for patterns in the brain data which 

may be associated with a clinical population. With unsupervised approaches, subjectivity 

involved in label selection is thus avoided. A recent study using the ABIDE dataset achieved 

70% accuracy in classifying ASD vs. control participants using deep learning algorithms, 

which have the added advantage of using unsupervised learning methods for extracting 

relevant neuroimaging features (Heinsfeld, Franco, Craddock, Buchweitz, & Meneguzzi, 

2018).

Of note, several challenges inherent to using machine learning in clinical neuroscience have 

recently been noted. These include limited sample sizes, inconsistent approaches towards 

application of classification algorithms, and ascertainment bias due to the common practice 

of including equal numbers of patients and controls in studies (Uddin, Dajani, Voorhies, 

Bednarz, & Kana, 2017). On a more optimistic note, the issues regarding small sample sizes 

are now beginning to be addressed with the availability of the multi-site, large databases 

described below.
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Future directions include expansion of the use of unsupervised learning methods to parse 

heterogeneity across neurodevelopmental disorders. Consistent with the RDoC framework 

(Casey et al., 2013; Insel, 2014), future work may go beyond traditional DSM-based 

diagnoses to identify aspects of cognitive dysfunction that cut across diagnostic categories 

(Dajani, Llabre, Nebel, Mostofsky, & Uddin, 2016). We envision that both supervised and 

unsupervised machine learning will continue to be important tools for discovering sources 

and consequences of comorbidity among neurodevelopmental disorders.

Future Directions: Harmonization of data acquisition protocols

As we enter an era of “big data”, one growing focus is on the harmonization of 

neuroimaging, cognitive, and clinical measures across institutions, research groups, and 

samples. One important goal is increasing our understanding of the manner in which brain 

network connectivity supports cognitive processes, however our ability to pool data across 

samples to carry out big-data style analyses is limited if the method for assessing cognition 

is not standardized across studies. With growing acceptance of the RDoC approach, efforts 

have been made to identify specific neurocognitive tasks that probe cognitive domains of 

interest (for example, cognitive control, reward learning). This, in theory, should make it 

more likely that different groups, interested in different clinical populations, may select 

overlapping measures enabling data sharing across sites. However, for developmental studies 

it is not just important that measures allow for valid or parallel comparisons across sites, but 

also that they allow valid comparisons across age groups. Ongoing efforts have been made in 

this direction, for instance, the Penn’s Computerized Neurocognitive Battery (CNB) has 

been psychometrically described in individuals aged 8–21, allowing for fairly broad 

developmental analyses. Likewise, the NIH Toolbox Cognition Battery (CB) is meant to be 

able to measure cognition from childhood up into old age (Weintraub et al., 2013). As the 

field moves forward, it would be helpful for researchers across areas to adopt these 

standardized measures in new studies to facilitiate data sharing and comparison.

Recent large-scale initiatives can provide examples for researchers of how harmonization of 

neuroimaging approaches can be accomplished in future studies. In one example focused on 

analytic techniques, the ENIGMA consortium (enigma.ini.usc.edu) has compiled very large 

neuroimaging samples by providing structured processing pipelines for investigators to 

employ in their laboratories, resulting in region-of-interest based data that can be shared, for 

example, to examine development of brain structure or structural connectivity across the 

lifespan (Jahanshad & Thompson, 2017). The benefit of this approach is that it is able to 

take advantage of data that investigators have already collected, whether the initial protocols 

were harmonized or not. Alternatively, on the side of acquisition approaches, the HCP has 

had a substantial impact on imaging practices. The HCP sequences have become broadly 

available, and scanners with features like multiband capabilities that allow the collection of 

high resolution data in shorter amounts of time (important for studies in children and 

adolescents as well as patient populations) have become more widespread. As a result, more 

groups have worked to try to implement the same neuroimaging sequences across sites, thus 

enabling both a priori and post-hoc collaborations. These approaches represent promising 

strides, and efforts are ongoing to determine the best methods for compilation and 

comparison of multi-site data (Jovicich et al., 2016; Mirzaalian et al., 2015).
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Future Directions: Integration with biological measures

Biological factors may have a profound impact on developmental studies, and it is important 

to consider how they can be included in future studies of children and adolescents (De Los 

Reyes & Aldao, 2015). Importantly, some of these factors may differ or be more pronounced 

in patient populations. A key consideration for many developmental brain connectivity 

studies is the inherent variability in levels of maturity even among children of the same 

chronological age, particularly in peri-pubertal individuals where, for example, the 

differences between two twelve year olds can be substantial. One approach to this issue, 

which is still fairly uncommon in the literature, is to either incorporate questionnaire based 

measures of pubertal stage, or to measure hormonal markers of puberty (Blakemore, 

Burnett, & Dahl, 2010). As attention to this issue grows, and data from large scale studies 

become available, enough imaging data with puberty measures may accumulate to make 

these analyses more common (Di Martino et al., 2014; Herting et al., 2017; Nguyen et al., 

2013; Satterthwaite et al., 2016; Satterthwaite et al.). However, an important limitation of 

such measures is that the age-range in which pubertal changes may occur, typically around 

early adolescence (Blakemore et al., 2010), is narrower than our current understanding of 

neural and cognitive development, which can continue up into the third decade of life 

(Casey, Heller, Gee, & Cohen, 2017; Dennis et al.; Karlsgodt et al., 2015; Peters et al., 

2014). More research is needed to clarify whether pubertal changes serve as a driving force 

impacting neural connectivity changes.

In addition, body mass index (BMI) has been associated with differences in structural brain 

connectivity in both adults and adolescents (Alarcon, Ray, & Nagel, 2016; Gupta et al., 

2015; Kennedy, Collins, & Luciana, 2016). The importance of this in young samples is 

twofold. First, there has been a nationwide increase in obesity, with 30% of children in 

North America being qualified as either overweight or obese (Tyson & Frank, 2017), which 

would of course be associated with an increased BMI. However, in addition, adolescence is a 

risk period for eating disorders such as anorexia, which may be associated with lower BMI, 

and which has also been shown to be associated with both functional and structural brain 

connectivity changes (Ehrlich et al., 2015; Gaudio et al., 2017; Scaife, Godier, Filippini, 

Harmer, & Park, 2017). Furthermore, some patient populations may have differences in BMI 

associated with medication or other factors (Ventriglio, Gentile, Stella, & Bellomo, 2015). 

As BMI is a relatively straightforward variable to acquire, often based on data already 

gathered as part of the imaging process, inclusion of BMI with other demographics may help 

with generalizability and comparisons between samples. BMI may also be used as a 

covariate to help better understand the basis of neural connectivity differences.

There is also growing evidence that sleep is an important variable, particularly for 

adolescents (Meltzer, 2017). Differences in sleep have been shown to impact functional 

connectivity measures (Nilsonne et al., 2017; Uy & Galvan, 2017; Zhou, Wu, Yu, & Lei, 

2017) as well as functional activation patterns (Telzer, Fuligni, Lieberman, & Galvan, 2013). 

However, sleep duration, self-reported sleepiness, or sleep variability is rarely reported on as 

a part of standard imaging studies, nor is it often included as a covariate. This variable is 

particularly important to consider in clinical samples, as there are a number of 

developmental disorders that have been associated with sleep disruption (Meltzer & Mindell, 
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2006). Finally, early life environmental influences, such as trauma, stress, or immune 

dysfunction can have profound impacts on later neural function or cognition (Ellman et al., 

2010; Fareri & Tottenham, 2016; Hostinar, Nusslock, & Miller, 2018). These factors may be 

relatively more difficult to measure, but studies that are focused on elucidating the effects of 

such early factors may have important ramifications for our understanding of development.

An important consideration for future research is that while there have been efforts to 

investigate biological variables that might contribute to structural and functional brain 

connectivity changes, as described above, the majority of these efforts are cross-sectional. 

Moving forward, it will be important to look not only at how such variables impact 

neuroimaging measures in the moment, but also how they longitudinally impact 

developmental trajectories.

Future Directions: Considerations for translational neuroscience

With a growing emphasis in the field on translational research that can take us from ‘bench 

to bedside’, it is important to consider how measures of brain networks can bridge across 

different levels of analysis, and how that may impact our thinking about developmental 

disorders. Indeed, some of our earliest notions that brain regions can function as a network 

originated from studies in animal models (Fuster & Alexander, 1971; Quintana, Fuster, & 

Yajeya, 1989). The power that neuroimaging analyses derive from being non-invasive, easy 

to integrate with behavior, and possible to do longitudinally cannot be understated, but many 

neuroimaging measures are limited by their inferential nature. As new analytic methods 

develop, it is important to continue thinking of ways in which translational work may serve 

as a validation or extension of more standard analytic approaches. As one example of the 

potential for translational validation of current structural connectivity methods, there have 

been efforts to use neuroimaging and histological techniques in animal models to validate 

our assumptions about what aspects of cellular architecture DTI techniques are measuring 

(E. H. Chang et al., 2017; Sepehrband et al., 2015). In addition, with recent advances in 

small bore imaging, it has also become possible to measure functional connectivity in rodent 

models (Bergmann, Zur, Bershadsky, & Kahn, 2016; Gorges et al., 2017), expanding the 

range of possibility for genetic investigations or assessments of animal models of 

neuropsychiatric disorders. By continuing to pursue translational approaches that take the 

new developments from cognitive neuroscience and neuroimaging fields, and translate them 

both to basic science models of cellular and neural function, as well as to relevant clinical 

populations, we will greatly enhance our ability to gain traction on the neural bases of 

developmental disorders.

Future Directions: Leveraging the power of existing data collection and 

sharing initiatives

One of the most exciting developments over the past several years has been the emphasis, 

both from funding agencies and from grassroots initiatives, on making large neuroimaging 

datasets publicly available to researchers. These “open science” data sharing initiatives 

permit unprecedented access to neuroimaging and phenotypic information, and have already 

been leveraged by researchers across fields to provide unique insights into typical and 
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atypical brain development. A list of currently available datasets curated by the authors and 

the larger community is available at https://sites.google.com/site/publicdatadatabase/. Below 

we highlight some of these datasets that we anticipate will continue to contribute to 

discovery science in developmental populations for years to come (Table 1). We note where 

some of the future directions outlined above can already be addressed using existing 

datasets.

Philadelphia Neurodevelopmental Cohort

The Philadelphia Neurodevelopmental Cohort (PNC, http://www.med.upenn.edu/bbl/

philadelphianeurodevelopmentalcohort.html) is a research initiative funded by NIMH that 

focuses on characterizing brain and behavior interaction with genetics (Satterthwaite et al., 

2016). Data have been collected from over 9,500 individuals age 8–21 from the greater 

Philadelphia area, with functional and structural neuroimaging data available from a subset 

of these participants. These data permit analyses of the impact of genetic variation on brain 

network organization and function in children and adolescents. As this dataset is based on a 

community sample, it is also well-suited to allow investigations of not just diagnosed 

disorders, but of a range of subclinical symptoms, for instance, attention disorders, psychosis 

spectrum disorders, and mood disorders, consistent with the RDoC approach.

Adolescent Brain Cognitive Development

The Adolescent Brain Cognitive Development (ABCD, https://abcdstudy.org/) is the largest 

concerted effort in the United States to study brain development and factors that influence 

child health. Supported by NIH, ABCD funds 21 research sites across the US to collect 

neuroimaging, behavioral, and other biological data from approximately 10,000 children 

ages 9–10 years longitudinally. This ambitious project aims to determine how childhood 

experiences interact with biological changes to affect brain development and social, 

behavioral, academic, and health outcomes. This study will be releasing data that will 

potentially allow researchers to predict biological factors that contribute to the development 

of substance abuse and other psychiatric outcomes. Further, the longitudinal design will 

provide neuroimaging data suitable for answering questions regarding developmental 

trajectories of brain networks and relationships with adolescent mental health. The inclusion 

of sleep measures collected using wearable sensors makes this dataset particularly promising 

with respect to answering open questions about how sleep quality influences the developing 

brain. An inaugural, fast track data release occurred in July 2017, with plans to release 

curated data annually starting February 12, 2018.

Lifespan Human Connectome - Development

The Lifespan Human Connectome Project Development (HCP-D) (https://

www.humanconnectome.org/study/hcp-lifespan-development) is associated with the broader 

HCP initiative, which is focused on assessing adults age 21–35 using high quality multi-

modal neuroimaging measures (https://www.humanconnectome.org/). HCP-D is an NIH 

funded project that will enroll approximately 1350 healthy children, adolescents, and young 

adults age 5–21 across four institutions. Importantly for developmental analyses, a subset of 

peri-pubertal participants return for longitudinal data acquisition at 1.5 and 3 years. This 

multimodal data set is particularly well-suited for future investigations of not just how 
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individual neural features, such as grey matter and white matter, mature independently, but 

how their developmental processes may interact, something which is currently not well 

understood. The high quality of the functional and structural neuroimaging data collected 

under this project will permit the advanced types of analyses discussed above, including 

analysis of brain dynamics and microstructural architecture.

IMAGEN

IMAGEN is a European consortium following 2000 participants across 8 sites 

longitudinally, with assessments at ages 14, 16, 19, and 22. This project is focused on 

elucidating neural and genetic risk factors for psychiatric illnesses as well as the basis of 

variability in specific traits associated with psychiatric symptomatology, including 

sensitivity to reward and punishment, impulsivity, and emotional response (Schumann et al., 

2010). The longitudinal design with multiple timepoints of data collection provides 

unprecedented resources for clinical neuroscience researchers to explore questions 

surrounding brain network maturation and socioemotional development. Further, this dataset 

will be ideal for those interested in using machine learning applied to neuroimaging data to 

predict which individuals will go on to develop neuropsychiatric disorders.

ABIDE I and II

The Autism Brain Imaging Data Exchange (ABIDE, http://fcon_1000.projects.nitrc.org/indi/

abide/) is a grassroots initiative founded with the understanding that single laboratories 

typically are unable to obtain sufficiently large datasets to reveal the brain mechanisms 

underlying a heterogeneous disorder like ASD. The curators of ABIDE have released two 

large-scale collections (ABIDE I and ABIDE II), each created through the aggregation of 

datasets independently collected across more than 24 international laboratories. ABIDE I 

was openly released in August of 2012 (Di Martino, 2014) and ABIDE II was released to the 

scientific community in June 2016 (Di Martino, 2017). These datasets are already starting to 

be used by researchers using machine learning to conduct classification analyses, and will 

continue to provide utility for those interested in understanding the multiple neurobiological 

manifestations of ASD. The wide age range of participants included in these datasets 

permits investigation of brain atypicalities in ASD as a function of developmental stage 

(Uddin et al., 2013).

ADHD-200

The ADHD-200 Sample (http://fcon_1000.projects.nitrc.org/indi/adhd200/) is another 

grassroots initiative that orchestrated the unrestricted public release of 776 anonymized 

resting-state fMRI, structural MRI, and phenotypic datasets across 8 independent sites 

(Consortium, 2012). In combination with ABIDE, ADHD-200 data may contribute to a 

clearer undestanding of ASD/ADHD comorbidity and its neural substrates. Further, as the 

ADHD-200 contains data from different ADHD subtypes, it will be possible to explore 

whether these distinct clinical categories map onto distinct patterns of brain network 

abnormalities.
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SchizConnect

SchizConnect (http://schizconnect.org/) is a database that allows researchers to search for 

and download publicly available neuroimaging data collected from individuals with 

schizophrenia (Ambite et al., 2015). SchizConnect provides data integration across several 

multi-site consortia including the Functional Biomedical Informatics Research Network 

(FBIRN) (Glover et al., 2012) and the Mind Clinical Imaging Consorium (MCIC) (King et 

al., 2014). With a current user count of 502 since its initial release in 2014, this tool 

continues to provide schizophrenia researchers with the means to access previously collected 

neuroimaging data to conduct replication studies or test novel machine learning algorithms 

on large samples.

NKI-Rockland

The Enhanced Nathan Kline Institute-Rockland Sample, funded by an NIMH award, (http://

fcon_1000.projects.nitrc.org/indi/enhanced/) is a large-scale community sample of 

individuals across the lifespan, and includes a host of neuroimaging, physiological, and 

phenotypic information (Nooner et al., 2012). This well-characterized sample spans ages 6–

85, and includes detailed information regarding psychiatric diagnoses and scores on a 

battery of widely-used neurocognitive measures. Similar to the PNC sample, this community 

sample includes a broad range subclinical symptoms, making RDoC style investigations 

possible.

Pediatric Imaging, Neurocognition, and Genetics

The Pediatric Imaging, Neurocognition, and Genetics (PING) data resource is a multi-site 

project which includes neurodevelopmental histories, information regarding developing 

mental and emotional functions, multimodal brain imaging data, and genotypes for over 

1000 chidren and adolescents ages 3–20 (http://pingstudy.ucsd.edu/). Funded by the 

National Instute of Drug Abuse (NIDA) and the National Institute of Child Health and 

Human Development (NICHD), this initiative has already resulted in a number of 

discoveries surrounding development of self-regulation (Fjell et al., 2012) and the genetic 

organization of brain areas (C. H. Chen et al., 2012).

Conclusions

At this juncture, the field of child and adolescent psychology has the potential to draw 

inspiration and resources from network neuroscience to make dramatic progress towards 

understanding the neurobiology of mental disorders affecting youth. Collaborations between 

cognitive neuroscientists, clinical psychologists, engineers and computer scientists will 

result in the expertise necessary for leveraging the power of large datasets to further our 

understanding of typical and atypical brain network development.
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Figure 1. Analysis of brain dynamics.
Example sliding window approach for computing dynamic functional network connectivity 

(dFNC). A) High-model order ICA creates functional parcellation of the brain, resulting in 

several independent components. B) Subject-specific timecourses are used to compute 

functional connectivity between pairwise components. Traditional static FNC analysis 

entails computing correlations across the entire duration of a scan per subject. Dynamic 

FNC analysis utilizes sliding windows (eg. 45 seconds in duration) to produce multiple 

correlation matrices for each subject (one per window). C) A concatenated data matrix is 

then subjected to k-means clustering, and the optimal k is identified using the elbow 

criterion (k=5 in this example). Each window is assigned to a dynamic state k regardless of 

subject assignment. Subject-specific medians are then back-reconstructed for each state k 
before they are averaged together to produce the final k dynamic states. Finally, group 

differences in dFNC can be computed.
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Figure 2. Analysis of structural connectivity.
Top panel: Diffusion tensor imaging (DTI), measures are all based on different ratios of 

diffusion restriction, leading to relatively isotropic or anisotropic tensors. Both CSF and grey 

matter show isotropic diffusion, while white matter shows anisotropic diffusion. In DTI each 

voxel is modeled with a single tensor. Lower panel; Neurite orientation dispersion and 

density imaging (NODDI) models tissue as three separate compartments, allowing 

determination of separate contributions of free water (CSF), neurite density (axons and 

dendrites), and orientation dispersion (myelination).
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