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ARTICLE

Brain-wide reconstruction of inhibitory circuits after
traumatic brain injury
Jan C. Frankowski1,6, Alexa Tierno 1,6✉, Shreya Pavani1, Quincy Cao1, David C. Lyon1 &

Robert F. Hunt 1,2,3,4,5✉

Despite the fundamental importance of understanding the brain’s wiring diagram, our

knowledge of how neuronal connectivity is rewired by traumatic brain injury remains

remarkably incomplete. Here we use cellular resolution whole-brain imaging to generate

brain-wide maps of the input to inhibitory neurons in a mouse model of traumatic brain injury.

We find that somatostatin interneurons are converted into hyperconnected hubs in multiple

brain regions, with rich local network connections but diminished long-range inputs, even at

areas not directly damaged. The loss of long-range input does not correlate with cell loss in

distant brain regions. Interneurons transplanted into the injury site receive orthotopic local

and long-range input, suggesting the machinery for establishing distant connections remains

intact even after a severe injury. Our results uncover a potential strategy to sustain and

optimize inhibition after traumatic brain injury that involves spatial reorganization of the

direct inputs to inhibitory neurons across the brain.
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Brain function relies on an extremely diverse group of
inhibitory interneurons that control the input and output of
local networks1–3. In the cerebral cortex, one of the largest

populations of interneurons expresses the neuropeptide, soma-
tostatin (SST)4–6. These cells inhibit dendrites and thereby reg-
ulate the integration of glutamatergic input to local principal
neurons. This endows them with unique roles in shaping synaptic
plasticity, learning, and memory7–14. However, SST interneurons
are among the most vulnerable to cell death following a brain
injury, and their loss has been well documented in experimental
models of epilepsy, traumatic brain injury (TBI), and Alzheimer’s
disease15–19, and in humans20,21. In the hippocampus, surviving
SST interneurons receive more excitatory drive, form new inhi-
bitory synapses onto glutamatergic neurons and even grow into
territories they normally do not occupy22–25. This pattern of local
circuit rewiring raises the question of whether brain damage
reorganizes interneuron connectivity on a much larger scale.

To address this possibility in an unbiased manner, we took
advantage of a retrograde monosynaptic rabies virus system and
enhanced whole-brain tissue clearing techniques to create brain-
wide maps of the direct input to SST interneurons in a mouse
model of focal TBI. We found dramatic quantitative differences in
both the local and long-range input to hippocampal SST inter-
neurons at the injury site. However, there was no neuron loss
within the distant input regions themselves, and the proportion of
neuron subtypes targeting starter neurons was stable. To our
surprise, we uncovered a similar pattern of circuit reorganization
far away from the injury in the prefrontal cortex (PFC), which
interacts with the hippocampus bidirectionally26 but was not
directly damaged by the initial insult. Interneuron progenitors
grafted into the lesioned hippocampus successfully established
appropriate long-range connections; however, graft-derived
interneurons retained the enhanced local input seen after TBI.
Thus, our experiments provide new insights about large-scale
circuit remodeling following brain injury and suggest that brain
damage, even when focally restricted, has a far broader impact on
neural circuit function across the entire brain than previously
appreciated.

Results
Long-term loss of SST interneurons after TBI. Despite their
important role in shaping local network activity and memory11,14,
the precise brain-wide input to SST interneurons in the dentate
gyrus has not been systematically defined. We first quantified
SST+ neuron density during the chronic period after TBI using
reporter mice that label nearly all SST interneurons with GFP27.
A unilateral controlled cortical impact (CCI) injury was delivered
to young-adult mice at P60 (1.0 mm impact depth, 3.5 m s−1 and
500 ms duration), and animals were processed for immunos-
taining eight weeks later. This period corresponds to a time when
long-term neuropathology and behavioral phenotypes are well
established. In all brain-injured mice, the lesion consisted of a
cavity extending through the thickness of the neocortex and
included substantial distortion and thinning of the principal cell
layers in the hippocampus (Fig. 1a). We observed ~65% reduction
in GFP+ cells in the hilus (Fig. 1b; Supplementary Data 1),
consistent with short-term loss of SST interneurons reported in
previous studies17,18.

Visualization of input neurons to hippocampal SST+ inter-
neurons. To label monosynaptic input to SST interneurons in the
chronically injured brain, we used a genetically restricted two-
virus approach to anatomically reveal their putative inputs
(Fig. 1c-e). We first injected a Cre-dependent helper virus
(AAV8-hSyn-FLEX-TVA-P2A-eGFP-2A-oG) into the dentate

gyrus of adult SST-Cre mice 4 weeks after TBI. This helper virus
provides the receptor that allows EnvA-coated rabies virus to enter
only Cre-positive neurons and glycoprotein for rabies virus to
transfer retrogradely to monosynaptic input neurons. Three weeks
later, we injected a G-deleted and EnvA-pseudotyped rabies virus
coding mCherry into the same location (RVΔG-mCherry). Because
SST+ interneurons in the dentate gyrus are exclusively located in the
hilus, we targeted this region for virus injection. After 7 days, we
identified neurons that were positive for both fluorescent reporters at
the injection site (starter cells) and neurons infected with the rabies
virus were tagged with mCherry (pre-synaptic input neurons). Sub-
stantial numbers of neurons in different brain areas were labeled by
rabies virus (Supplementary Fig. 1).

To confirm the specificity of virus labeling, we performed
immunostaining against SST at the injection site. We found 97% of
the GFP-labeled neurons were SST+ (152 of 156 cells, n = 3 mice)
(Fig. 1f, g). To evaluate the potential leakage expression of the virus,
we performed a series of control experiments. To confirm the
dependence of Cre recombination, we injected AAV8-hSyn-FLEX-
TVA-P2A-eGFP-2A-oG helper and RVΔG-mCherry virus into
Cre- littermates. No neurons were labeled anywhere in the brain
(Supplementary Fig. 2a). In Cre+ animals, GFP+ neurons were
only labeled at the injection site and no GFP+ neurons were found
outside the injection site (Supplementary Fig. 2). In both control
and brain-injured animals, starter cells were almost exclusively
confined to the hilus (Fig. 1h, Supplementary Data 1). Only
occasional starter cells were found in the adjacent CA3 region; no
GFP+ cells were found in CA1, CA2, neocortex, or any other brain
region.

Whole-brain input to SST-positive neurons is reorganized by
TBI. Next, we generated whole-brain maps of neurons sending
monosynaptic input to SST interneurons using iDISCO+ brain
clearing and whole-brain light-sheet imaging (Fig. 2a). One of the
major challenges to these techniques has been accessing input
neurons deep within the tissue28. Building on existing iDISCO+
protocols and recent advances in permeabilization chemistry29,30,
we therefore modified the clearing conditions to achieve deep
tissue immunolabeling in a traumatically injured brain. We made
three key improvements in iDISCO+ sample preparation and
imaging procedures (Supplementary Fig. 3). First, we incorporated
an initial wash using N-methyl diethanolamine (MDEA) to
decolorize residual unperfused blood, which absorbs light31. Sec-
ond, we denatured the extracellular matrix using a concentrated
guanidine hydrochloride solution prior to immunolabeling. Third,
we incorporated an additional detergent (3-[(3-cholamidopropyl)
dimethylammonio]-1-propanesulfonate, CHAPS) to the antibody
diluent to enhance the penetration of antibodies deeper into the
tissue. These optimizations enabled whole-brain immunolabeling
without need for separating the brains into two separate hemi-
spheres, as is commonly done. The raw data acquired from ima-
ging were registered to the Allen Common Coordinate Framework
(CCF) and cell positions were annotated and analyzed using tools
from the BrainGlobe suite32,33 (Supplementary Fig. 4). As
expected, the number of starter neurons was reduced in brain-
injured animals (control: 48.0 ± 3.7 cells, TBI: 9.4 ± 0.9 cells,
P= 9.45E-06, two-tailed t-test), consistent with the loss of SST
interneurons. Starter cells were almost exclusively confined to the
hilus (control: 92.8 ± 0.96% starter cells in dentate gyrus, TBI:
89.8 ± 3.2% starter cells in dentate gyrus; P= 0.3, Fisher exact
test). Although the number of labeled neurons varied from animal
to animal, there was a correlation between the number of input
neurons and starter cells (Fig. 2b).

Whole-brain mapping of rabies-labeled neurons revealed input
from 15 distinct brain regions (Fig. 2c, Supplementary Figs. 5, 6).
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The majority of input came from the dentate gyrus and CA3, as
expected24,34,35 followed by the medial entorhinal cortex
(ENTm), diagonal band nucleus (NDB) and lateral entorhinal
cortex (ENTl). Of note, this pattern of input is different from
previous retrograde tracing results in dentate granule cells, which
receive considerably weaker projections from ENTm than ENTl
and prominent input from mammillary nuclei36,37, as well as SST
interneurons in CA1, which receive very little input from
entorhinal cortex38. After TBI, there was a shift in the Euclidian
distance of rabies-labeled neurons to the starter cell centroid
(Fig. 2d; Supplementary Fig. 5), suggesting input neurons were
substantially closer to starter cells after brain injury.

A higher proportion of local connections was confirmed when we
analyzed the input to SST interneurons in greater detail. In control
animals, approximately 40% of the input neurons were detected
outside the hippocampus, and 8% of input neurons were located in
the contralateral hemisphere. The proportions of these long-range
inputs were significantly reduced in animals with TBI (Fig. 2e, f).
Furthermore, we analyzed the probability of input neurons in
200 μm bins along the entire anterior-posterior (AP) axis, from
0mm (olfactory bulb) to 13mm (cerebellum) (Fig. 2g). This
revealed significant increases in the percentage of input neurons
between 6.8mm to 7.4mm at the level of hippocampus (6.8–7mm,
uninjured: 6.79 ± 0.79%, TBI: 18.12 ± 5.03%, P= 1.42E-11;
7–7.2mm, uninjured: 7.15 ± 0.83%, TBI: 18.31 ± 4.01%, P= 3.02E-

11; 7.2–7.4mm, uninjured: 8.67 ± 1.70%, TBI: 16.72 ± 4.55%,
P= 7.64E-06; two-way repeated-measures ANOVA with Bonferro-
ni’s post-hoc test; Supplementary Data 3) and decreases at 10mm to
10.2mm at the level of ENTm (control: 7.48 ± 2.04%, TBI:
1.90 ± 1.03%, P= 1.33E-02; two-way repeated-measures ANOVA
with Bonferroni’s post-hoc test; Supplementary Data 3). After TBI,
massive input labeling was detected within the ipsilateral hippo-
campus, with a significantly higher proportion of input from area
CA1 (Fig. 2h; Supplementary Data 4). However, distant brain areas
providing the greatest proportion of input to SST interneurons in
controls, such as ENTm and NDB, were found to have a significant
reduction in input after TBI (Fig. 2h; Supplementary Data 4). To
directly compare changes in the number of input neurons rather
than the proportion of input, we calculated the convergence index
for each animal, defined as the number of mCherry-labeled input
neurons divided by the number of GFP- and mCherry-labeled
starter cells. This analysis also revealed a significant increase in CA1
input, and decreases in long-range input from ENTm and NDB
(Supplementary Fig. 7; Supplementary Data 5). Thus, there is a
dramatic shift in both the number and relative proportion of local
and long-distance input to hippocampal SST interneurons after TBI.

Long-range input is proportionally stable, but local input is
not. The loss of long-range input after TBI could result from a
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loss of neurons at distant sites or a loss of anatomical connec-
tions. To test this, and to characterize the neurochemical iden-
tities of the input to hilar SST interneurons, we developed a
method for rehydrating the same brains used for light-sheet
imaging and processing them for traditional double-
immunofluorescence immunostaining (Fig. 3a-c). Because long-
range input to hilar SST interneurons arrives primarily from basal
forebrain and ENTm, we quantified neuron populations in these
areas.

The basal forebrain contains multiple cell types that project
long distances via the fimbria/fornix pathway to the hippocampus,
including cholinergic, glutamatergic and GABAergic neurons39. In
both control and injured animals, the absolute majority of NDB
input neurons to hilar SST interneurons expressed choline
acetyltransferase (CHAT) (control: 67.1 ± 6.8%, n= 3 mice; TBI:
79.2 ± 12.5%, n= 4 mice; P= 0.99, Fisher’s exact test; Fig. 3d, e).
This is different from inhibitory interneurons in CA1, which
primarily receive GABAergic input from the basal forebrain38. We
did not find a difference in the density of CHAT+ neurons in
NDB between control and brain injured animals (Fig. 3f),
suggesting CHAT+ neurons were not reduced in the basal
forebrain after focal TBI.

Because neurons in NDB and ENTm project directly into the
hippocampus, their axons are almost surely damaged by TBI.
Therefore, we next examined whether the density of cholinergic
projections in the hippocampus were affected by TBI. In both
control and injured animals, there was a dense plexus of CHAT+
axonal processes innervating every layer of hippocampus, even at
the injury epicenter (Fig. 3g, h). We did not detect a difference in
CHAT expression between groups (control, ipsilateral:
20.8 ± 1.9%, control, contralateral: 20.8 ± 1.7%, n= 3 mice; TBI,
ipsilateral: 22.9 ± 0.6%, TBI, contralateral: 22.0 ± 1.2%, n= 4
mice; P= 0.96, two-way ANOVA). These results demonstrate
the reduction in CHAT+ input neurons was not accompanied by
a general loss of CHAT+ afferents in the hippocampus after TBI.

This result was unexpected, because a loss of CHAT
immunoreactive neurons has been reported in basal forebrain
of diffuse injury models40,41. To rule out the possibility that cell
quantifications were influenced by rabies circuit mapping or brain
clearing procedures, we examined a second, independent cohort
of control and brain injured animals that did not undergo these
procedures (n= 6 controls, n= 4 TBI animals). In this replica-
tion experiment, we also found similar numbers of CHAT+
neurons in NDB of age-matched control and TBI mice
(Supplementary Fig. 8).

In both control and brain injured animals, input neurons in
ENTm were found almost exclusively in layer II (Fig. 3i).
Approximately 90% of these cells co-expressed reelin and had
large multipolar stellate cell morphologies (control: 86.8 ± 0.34%,
n= 3 mice; TBI: 95.2 ± 4.8%, n= 3 mice; P= 0.99, Fisher’s exact
test; Fig. 3j). These results are consistent with prior studies
showing that reelin-expressing stellate cells in ENTm give rise to
the main associational glutamatergic pathway known as the
perforant path that projects to the dentate gyrus, CA3 and CA2
regions of hippocampus42–44. We did not find a difference in the
density of reelin+ neurons in ENTm between control and brain
injured animals (Fig. 3k), similar to our results in basal forebrain.
Together, our results demonstrate there is a reduction in the
amount of input to hilar SST interneurons from both of the major
distant brain regions innervating dentate gyrus after focal TBI,
but these distant areas remain structurally intact.

Input from CA1 increased more than 10-fold after TBI. To
identify which CA1 neuron types provide input to hilar SST
interneurons, we assessed the laminar position of CA1 input
neurons in the same reverse-cleared tissue (Fig. 4). In controls,
~65% of CA1 input neurons were positioned in the pyramidal cell

layer. These neurons had morphological features of pyramidal
neurons and expressed WFS1, a marker of CA1 pyramidal
neurons (Fig. 4a). A smaller portion of CA1 input neurons were
found outside the pyramidal layer and did not express WFS1;
these are putative interneurons. In brain injured animals, there
was a significant increase in the proportion of input neurons
positioned in the pyramidal cell layer (control: 64.5 ± 14.0%,
n= 3 mice; TBI: 92.1 ± 5.1%, n= 4 mice; P= 1.29E-07, Chi-
square test; Fig. 4b). Robust projections from these neurons could
be clearly seen entering dentate gyrus (Fig. 4a). Therefore, there is
an increase in local CA1 input to hilar SST interneurons after
TBI, and CA1 pyramidal neurons are the primary source of this
new input.

Whole-brain connectivity is reorganized in PFC. Having
observed dramatic brain-wide reorganization of hippocampal SST
interneuron circuitry, we next asked whether the input to SST
neurons was also rewired far away from the injury. The PFC is a
critical higher-order limbic site that is central to memory retrieval
and decision making and receives a highly diverse pattern of
inputs spanning the entire brain, including direct input from
hippocampus45. At 24 hrs after injury, fluoro-jade C staining
revealed degenerating neurons in the hippocampus and neocortex
at the injury epicenter, but no labeled cells were detected at dis-
tant sites, such as PFC, entorhinal cortex, basal forebrain or
thalamus (Supplementary Fig. 9). This result is nearly identical to
previous reports in this model46. We also did not find a difference
in SST+ neuron density in PFC eight weeks after TBI (Supple-
mentary Fig. 10; Supplementary Data 1). These results are con-
sistent with producing a highly focal contusive brain injury.

To generate whole-brain maps of the input to SST interneurons
in PFC, we used the same two-virus rabies-based approach to
label dual-color starter cells and mCherry-labeled input neurons
in SST-Cre mice (Fig. 5a, b). For these studies, PFC was defined as
including the following subregions based on a consensus drawn
from the literature:45 secondary motor area (MOs), anterior
cingulate areas dorsal and ventral (ACAd and ACAv), prelimbic
area (PL), infralimbic area (ILA), orbital cortex medial, lateral
and ventrolateral (ORBm, ORBl, and ORBvl). Injections were
made into the ipsilateral hemisphere (that is, the injured side of
the brain). We found 96.5% of the GFP-labeled neurons were
SST+, and no neurons were labeled anywhere in the brain after
injecting AAV8-hSyn-FLEX-TVA-P2A-eGFP-2A-oG helper and
RVΔG-mCherry virus into Cre- animals (Supplementary Fig. 11).
In both control and brain-injured animals, starter cells were
almost exclusively located inside the PFC (Fig. 5c-f). Regional
distributions of the starter cells were similar to what has
previously been published for PFC47, and no differences were
detected between groups in the dorsal-ventral location of the
starter neurons (Fig. 5d; Supplementary Data 6) or layer
distribution (Fig. 5e), indicating there was no major bias in the
location of the starter cells. As expected, there was a correlation
between the number of input neurons and starter neurons, but
unlike hippocampus, the number of starter neurons were not
reduced in brain-injured animals (control: n= 283.6 ± 69.5 cells;
TBI: n= 178.8 ± 18.2 cells, P= 0.2, two-tailed t-test, n= 5
animals per group; Fig. 5g).

Next, we quantified the input to SST interneurons in PFC. Whole-
brain retrograde tracing revealed input from 178 distinct brain
regions (Fig. 6a, Supplementary Figs. 12, 13). The majority of input
was detected within the isocortex, especially in the ipsilateral
hemisphere, followed by thalamus, hippocampus, and pallidum.
These results are comparable to previous retrograde tracing results in
control animals47,48. Within isocortex, PFC subregions provided the
most prominent input; the agranular insular area and hippocampus
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area CA1 also provided prominent input. Analysis of the probability
of input along the AP axis showed significant increases in the
percentage of input neurons between 3.2 and 3.4mm at the level of
PFC in brain-injured animals (uninjured: 9.14 ± 1.14%, TBI:
12.06 ± 1.41%, P= 4.82E-03; two-way repeated measures ANOVA
with Bonferroni’s post hoc test; Supplementary Data 7). Along the
medial-lateral (ML) axis, we detected significantly higher proportion
of input neurons between 0.2 and 0.5mm lateral to midline in the
ipsilateral hemisphere (5.9–6.0mm, uninjured: 8.37 ± 1.38%, TBI:
11.38 ± 1.69%, P= 9.09E-07; 6.0–6.1mm, uninjured: 10.20 ± 1.12%,
TBI: 13.35 ± 0.81%, P= 2.08E-07; 6.1–6.2mm, uninjured:
8.94 ± 0.61%, TBI: 11.90 ± 1.24%, P= 1.68E-06; two-way repeated-
measures ANOVA with Bonferroni’s post-hoc test; Supplementary
Data 7), and a significantly lower proportion of input neurons were
found between 0.4 and 0.5mm lateral to midline in the contralateral
hemisphere (5.2 to 5.3mm, uninjured: 3.22 ± 0.34%, TBI:
1.35 ± 0.32%, P= 3.51E-02; two-way repeated-measures ANOVA
with Bonferroni’s post-hoc test; Fig. 6b, Supplementary Data 7).
There was a significant decrease in the overall percentage of
contralateral input to SST interneurons after TBI (Fig. 6c), similar to
what we observed in the hippocampus. However, no differences were
detected in the mean distance of input neurons to the starter cell
centroid (Fig. 6d) or the overall percentage of input neurons located
outside ipsilateral PFC (Fig. 6e).

Input neurons were initially grouped according to large
functional divisions, i.e. isocortex, olfactory areas, hippocampal
formation, cortical subplate, striatum, pallidum, thalamus,
hypothalamus, midbrain and hindbrain. In brain injured animals,
we found that SST interneurons in PFC received significantly
greater percentage of total input from the ipsilateral isocortex as
compared to controls, but the percentage of input neurons in the
contralateral isocortex and ipsilateral thalamus were both reduced
(Fig. 6f; Supplementary Data 8). In thalamus, anterior thalamic
nuclei (ATN) and the ventral group of dorsal thalamus (VENT)
showed a significantly lower proportion of input neurons after
TBI (Fig. 6g). Whole-brain analysis of the input neurons in all
discrete brain areas revealed that six of the seven areas with
altered input after TBI were in the isocortex (Fig. 6h). Notably,
not all PFC regions in the ipsilateral hemisphere had a
significantly higher proportion of input neurons; input from
ACAd and ORBvl were both significantly reduced after TBI. The
proportion of input from contralateral PL was also reduced after
TBI. Similar results were obtained by analyzing the convergence
index for each animal (Supplementary Fig. 14; Supplementary

Data 9). This pattern of enhanced local connectivity and reduced
long-range input is similar to what we observed in brain injured
hippocampus, suggesting that even in brain regions very far away
from the injury site, the topographic organization of inhibitory
neurons is dramatically rewired after a focal brain injury.

Transplanted SST interneurons establish orthotopic brain-
wide connections. Grafts of embryonic-derived interneuron
progenitors enable robust restoration of inhibition and are ther-
apeutic in a wide range of acquired brain disorders, including
epilepsy49, Alzheimer’s disease50 and TBI51. However, the circuit
basis for this regeneration is unknown. Therefore, we tested
whether interneuron progenitors are capable of establishing
appropriate local and long-range connections in a damaged brain.
For this purpose, we harvested GABA progenitors from the
medial ganglionic eminence (MGE), the developmental origin of
nearly all SST-expressing cortical interneurons6. Then, 7 days
after TBI, we transplanted 3 × 104 MGE cells into the ipsilateral
hippocampus of C57BL/6 J mice at the injury epicenter. This
corresponds to the period of maximal deafferentation after TBI52.
We first examined grafts of SST interneurons harvested from
E13.5 SST-Cre donor mice crossed with Ai6 reporter to allow for
their visualization after transplantation. At 35 days after trans-
plantation (DAT), transplanted interneurons were found
throughout hippocampal subfields (n = 3 animals) (Fig. 7a, b,
Supplementary Fig. 15). The majority of Ai6-labeled cells
expressed SST (83 ± 2.1%, Fig. 7c), confirming selective Cre
expression in the SST population of transplanted MGE cells.

Next, we performed whole-brain mapping to identify local and
long-range inputs to transplanted SST interneurons in the injured
brain. For these experiments, donor cells were obtained from
SST-Cre+ embryos that did not contain the Ai6 reporter.
Transplants were performed 7 days after TBI, virus injections
were made into the hippocampus at 8 weeks (AAV8-hSyn-FLEX-
TVA-P2A-eGFP-2A-oG) and 11 weeks (RVΔG-mCherry) after
injury, and animals were processed for brain clearing and analysis
7 days after the final virus injection. This period corresponds to a
time when MGE transplantation shows robust therapeutic effects
on memory and seizures in brain injured animals51. We found
substantial numbers of input neurons across the brain labeled by
rabies virus (Fig. 8a-c). Notably, input neurons were identified in
14 distinct brain areas, including all regions of the hippocampus,
ENTm, ENTl, medial septum and NDB (Fig. 8c-f, Supplementary
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Fig. 16). The majority of input came from the hippocampus,
including robust input from area CA3 and CA1. This pattern of
local input was similar to what we observed in brain injured
animals that did not receive transplants rather than controls
(Supplementary Fig. 17). To determine whether regional inputs
co-vary, we calculated Pearson’s correlation coefficients for each
pair of input regions. This showed a significant positive
correlation between several input regions including CA1, CA2,
magnocellular nucleus (MA), prosubiculum (ProS), subiculum
(SUB), and perirhinal cortex (PERI), indicating that when
transplanted neurons receive input from one region, they
generally received input from the other correlated regions

(Fig. 8g). Thus, transplanted SST interneurons received ortho-
topic input patterns, but transplanted cells showed enhanced local
input seen after TBI.

Discussion
Using a mouse model of focal TBI, we report a systematic
assessment of large-scale circuit reorganization in a damaged
brain. We mapped the brain-wide input to a single cell type with
high therapeutic relevance, SST interneurons, in uninjured con-
trols, after brain injury and after transplantation into brain-
injured animals. Our data demonstrate that surviving SST
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interneurons gain new local input after TBI, but they are largely
disconnected from distant brain regions. This occurred at two
spatially distinct but interacting brain areas: the injury site in the
hippocampus and far away from the injury in PFC, which was not
directly damaged by TBI. Our observation of circuit reorganiza-
tion far away from the injury was unexpected, because PFC was
not directly damaged by TBI and results from silver staining
experiments suggest interhemisphere projections do not
degenerate46. Thus, post-traumatic circuit rewiring is not
restricted only to damaged areas, but occurs broadly throughout
the brain in response to focal injury. We further show that the
diminished long-range connections did not result from cell loss in
distant brain areas or a general reduction in axon collaterals

projecting into the damaged hippocampus. Transplanted SST
interneurons integrated robustly into brain-injured hippocampus
and received local and long-range host input that resembled the
connections of native-born interneurons. This is consistent with
previous ex vivo functional studies documenting robust excitatory
drive onto transplanted interneurons from the host brain49,51,52,
although the source of these inputs was previously unknown.

TBI produces major structural and functional alterations in
neural circuitry, resulting from progressive brain damage and
secondary neuroplasticity responses, which develop over
time53,54. Until recently, our understanding of how TBI damages
the brain’s wiring diagram has been limited to standard neu-
roanatomy and slice electrophysiology approaches. These studies
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show principal neurons undergo initial deafferentation after TBI,
possibly due to loss of input neurons53–56. This is followed by a
progressive increase in the number of synaptic contacts and the
formation of new excitatory circuits within injured areas of the
brain54,57–62. Excitatory drive onto hippocampal SST inter-
neurons, which normally receive sparse input from local principal
neurons, is also increased after brain injury24. However, slice
recordings are limited to resolving functional connections of a

few neurons within local circuits, because they are surgically
isolated from long-range afferent input. By comprehensively
mapping brain-wide inputs to SST interneurons at cellular reso-
lution, we found a significant enhancement of local input neurons
to hilar SST interneurons after TBI, in agreement with prior slice
electrophysiology studies. We additionally identified previously
unknown sources of input in controls, such as a back-projection
pathway from CA1 to hilar SST interneurons which is enhanced
after TBI. Notably, CA1 interneurons are also capable of pro-
jecting to dentate gyrus in temporal lobe epilepsy models25, but
these cells primarily innervate granule cells.

Previous functional connectivity studies assume that TBI shifts
the brain away from a small-world architecture, defined as den-
sely connected local networks linked by sparse long-range input
that connects discrete brain areas63. In line with this concept,
interhemispheric resting-state fMRI connectivity is reduced after
TBI64, possibly a result of diffuse axonal injury63, and there is a
temporary increase in hyper-connectivity of local networks that
generally weakens over time65. While these methods are useful for
general hypotheses about brain connectivity, they are unable to
identify a precise structural basis for circuit dysfunction in TBI
and are likely disproportionately influenced by excitatory neu-
rons. Our circuit mapping data are not entirely consistent with
this idea at the cell type level. In both hippocampus and PFC, we
found the most prominent sources of long-range input to SST
interneurons, including input from the contralateral hemisphere,
were diminished after focal TBI, but local connections are
chronically increased. Thus, TBI may permanently enhance small
worldness of inhibitory circuits by increasing local network
connections and making long-range input more sparse. There is
support for this idea from human functional connectivity
studies66.

There is obvious axon damage after CCI46, and this likely affects
long-range input to the hippocampus. We cannot exclude the
possibility that some of the structural reorganization we observed
after TBI is influenced by damage to white matter tracts. However,
axon damage alone cannot fully explain the long-range circuit
changes we observed in brain-injured animals. In hippocampus, we
found ~4 fold reduction in long-range input to SST interneurons
that was not accompanied by cell loss in distant brain regions or
their projections in the hippocampus (e.g., CHAT+afferents). This
suggests input regions are not disconnected from SST interneurons
by a general loss of input neurons or axotomy. Rather, inputs may
be added or removed in a cell-type-specific manner. It is possible
that long-range afferents are selectively damaged by CCI but remain
otherwise intact. For example, it is well known that TBI disrupts
axonal transport mechanisms67, and this could disproportionately

Fig. 6 Input to SST interneurons in PFC is reorganized after TBI. a Schematic coronal sections (100 μm) showing individual input neurons registered in
standardized atlas space for uninjured controls (blue) and brain injured animals (red). One dot represents one neuron. n = 5 animals per group. b Gaussian kernel
cell density plots of the whole-brain distribution of input neurons along the anterior-posterior (AP) and medial-lateral (ML) axis. Grey shading represents the pooled
population with individual lines representing each animal. Bregma, 5.3mm; midline, 5.7mm. c Proportion of input neurons found in contralateral hemisphere.
Uninjured: 14.00 ± 1.02%; TBI: 8.22 ±0.98 %; n = 5 mice per group; **P = 3.41E-03; two-tailed t-test. d Quantification of average Euclidian distance between
starter cell centroid and input neuron positions. n = 5 animals per group. e Proportion of input neurons found outside ipsilateral PFC. n = 5 animals per group.
f Proportion of total input arising from high-level brain regions. ***P= 2.84E-06, uninjured versus TBI (IsoCTX, contralateral), ***P= 4.46E-10, uninjured versus TBI
(IsoCTX, ipsilateral), ***P= 4.12E-05, uninjured versus TBI (TH, ipsilateral); n= 5 mice per group; two-way repeated measures ANOVA with Bonferroni’s post hoc
test. g Proportion of total presynaptic input arising from thalamic areas. ***P= 1.16E-11, uninjured versus TBI (ATN, ipsilateral), *P= 4.46E-02, uninjured versus TBI
(VENT, ipsilateral); n = 5 mice per group; two-way repeated measures ANOVA with Bonferroni’s post hoc test. h Heatmap showing the proportion of input
neurons identified in all discrete brain regions innervating PFC. ***P= 1.00E-15, uninjured versus TBI (ACAd, ipsilateral), ***P= 1.00E-15, uninjured versus TBI (ILA,
ipsilateral), ***P= 1.00E-15, uninjured versus TBI (ORBm, ipsilateral), *P= 1.25E-02, uninjured versus TBI (ORBvl, ipsilateral), ***P= 1.00E-15, uninjured versus TBI
(PL, ipsilateral), ***P = 1.18E-04, uninjured versus TBI (PL, contralateral), ***P = 1.07E-05, uninjured versus TBI (AM, ipsilateral); n = 5 mice per group; two-way
repeated measures ANOVA with Bonferroni’s post-hoc test. Error bars, s.e.m.; scale bar, 1 mm. A list of abbreviations is provided in Supplementary Data 2. See also
Supplementary Figs. 12 to 14, Supplementary Data 7 to 9, and Supplementary Movies 3 and 4. Source data are provided as a Source Data file.
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affect retrograde transport of rabies into long-range pre-synaptic
input neurons. However, our finding that transplanted interneurons
are capable of establishing long-distance connections at all suggests
that the potential for re-growing these diminished inputs was
retained in all brain-injured animals. We found similar increases in

local input and decreases in long-range input to SST interneurons
in PFC. Unlike hippocampus, these projections are not directly
damaged and do not degenerate after CCI46. Of particular interest is
the anteromedial thalamus, which was the only thalamic area with
altered input neurons after TBI. Anterior thalamus (ATN,
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comprised of anteromedial, anteroventral and anterodorsal sub-
divisions) provides a subcortical circuit supporting memory and
spatial navigation68, behaviors that are profoundly affected in
rodent models of TBI. It is possible that excessive activity in
damaged hippocampus could lead to downstream changes in PFC
(e.g., via the hippocampus-ATN-PFC circuit). Alternatively, sei-
zures are well documented in this injury model and could lead to
circuit reorganization across the entire brain. Nevertheless, our
results suggest that focal TBI leads to widespread remapping of
inputs to SST interneurons across the brain regardless of whether
there was direct injury or cell loss.

With far fewer inhibitory neurons in the damaged hippo-
campus, TBI puts extraordinary demands on surviving inter-
neurons. There are three physiological features of SST
interneurons that might explain why a loss of long-range input
could reflect a compensatory response to damage. First, SST
interneurons recieve strongly facilitiating excitatory synaptic
input and have other membrane properties that allow these cells
to be activated by a high-frequency burst from just one pre-
synaptic neuron69,70. In hippocampus, gaining input from local
principal neurons and losing ENTm input may help stabilize local
network activity after TBI71. Second, muscarinic-mediated
depolarization can produce prolonged spiking in SST
interneurons72. Given the rich local innervations after TBI, the
loss of CHAT input from basal forebrain could reflect a strategy
to balance the excitatory drive to this important cell type in the
injured brain. Third, even a single dendrite-targeting interneuron
can control spike generation in cortical principal neurons7. Thus,
a shift from feed-forward to feedback inhibition to dendrites –
through the loss of long-range input and enhanced local back-
projections – may reflect a potential strategy to gate input inte-
gration and maintain the sparse activation of dentate granule cells
that enables memory and prevents seizures73,74. Alternatively,
increased local input may synchronize SST interneurons, support
patterns of pathological activity or impede the coordination
between discrete brain areas. Further work combining in vivo
neurophysiology with selective manipulation of hippocampal cell
types will be required to clarify these possibilities.

The ability of transplanted SST interneurons to incorporate
structurally into the damaged hippocampus was striking given the
dramatic reorganization of inhibitory circuits across the injured
brain. Although host-donor cell connectivity has been broadly
documented75,76, the precise anatomical input to individual neuron
types has not. Cell-type specificity is an important consideration,
especially for understanding the circuit basis of disease. Despite
massive reactive plasticity in the damaged brain, we found that
transplanted interneurons receive highly orthotopic input that is
cell-type-specific rather than region-specific. We propose that the
beneficial effects of interneuron transplantation seen in various
preclinical disease models are driven by the precise integration of
interneuron precursors into host brain circuits. This view is sup-
ported by a large body of evidence reporting the general structure
and function of transplanted interneurons closely resemble their
native-born counterparts49,51,52,77–79 as well as recent DREADD-
inactivation and VGAT loss-of-function studies demonstrating that
therapeutic effects are linked to the electrophysiological integration
of the transplanted interneurons51,80. An alternate view suggests
interneuron precursors form only weak contacts with the host
brain81 and work indirectly by releasing rejuvenation factors that
modify host brain circuits82. Yet detailed electrophysiological stu-
dies consistently report strong synaptic connections51,52,83,84 and
direct evidence for a circuit rejuvenator remains to be identified. In
the current study, we were unable to directly test synaptic con-
nections among transplanted interneurons, because it was not
possible to distinguish starter cells from AAV-labeled SST neurons
that received rabies via retrograde transport. However, the large

majority of local input neurons were putative principal neurons, not
inhibitory neurons (based on morphology and laminar location).
This is consistent with a robust literature on MGE transplantation
using EM ultrastructural analysis, neuroanatomy, and patch-clamp
electrophysiology that demonstrates most synaptic connections are
with principal cells of the host brain51,52,77,81–85.

The pattern of synaptic circuit rewiring after TBI is complex.
Our results suggest that focal brain damage reorganizes inhibitory
circuits on a global scale. We expect this experimental approach
will serve as a useful framework for considering whole-brain
analyses of network dysfunction in TBI and related brain
disorders.

Methods
Animals. All animal procedures were performed under Institutional Animal Care
and Use Committee (IACUC) approval by the University Laboratory Animal
Resources at the University of California, Irvine and adhered to National Institutes
of Health Guidelines for the Care and Use of Laboratory Animals. Experiments
were performed on adult mice of both sexes maintained in standard housing
conditions on a 12 h light/dark cycle with food and water provided ad libitum. For
SST cell quantifications, we used GIN mice maintained on a FVB background (Jax
Stock No: 003718). For rabies circuit tracing, we used Sst-IRES-Cre mice main-
tained on a C57BL/6 J background (Jax Stock No: 018973). We used C57BL/6 J
mice (Jax Stock No: 000664) for fluoro-jade C experiments. For cell transplanta-
tions, embryonic donor tissue was produced by crossing Sst-IRES-Cre J mice with
C57BL/6 J mice (Jax Stock No: 000664) or Ai6-ZsGreen reporter mice (Jax Stock
No: 007906); host mice were C57BL/6 J mice (Jax Stock No: 000664).

Experimental Design. Experiments were performed on male and female littermates
between P55 and P139. Upon weaning, animals were coded and randomly assigned
into uninjured (naïve control), TBI or MGE-injected treatment groups. Brain injured
mice and age-matched controls were housed together (2–5 animals per cage) within
a temperature- (21–22 °C), humidity- (40–51%), and light- (12 h light:dark cycle)
controlled vivarium. The order of injury, virus injection and cell transplantation was
also randomized. Blinding was not possible due to the presence of an injury in TBI
treatment group. CHAT immunostaining experiments were replicated using a
separate, independent cohort of control and brain-injured animals. No other repli-
cation studies were performed.

Brain injury. CCI injury was performed on adult male and female mice at P5518.
Briefly, mice were anesthetized by 2% isoflurane inhalation and placed in a custom
stereotaxic frame. The skull was exposed by midline incision, and a 4–5 mm cra-
niotomy was made ~1 mm lateral to the sagittal suture and centered between
bregma and lambda. The skull cap was removed without damaging the underlying
dura. The contusion device consisted of a computer-controlled, pneumatically
driven impactor fitted with a beveled stainless-steel tip 3 mm in diameter (Precision
Systems and Instrumentation; TBI-0310). Brain injury was delivered using this
device to compress the cortex to a depth of 1.0 mm at a velocity of 3.5 m s−1 and
500 ms duration. The incision was sutured without replacing the skull cap, and the
animal was allowed to recover on a heating pad. A qualitative postoperative health
assessment was performed daily for 7 d after TBI and periodically thereafter. All
animals that received surgery were treated with buprenorphine hydrochloride
(Buprenex; 0.05 mg/kg, delivered i.p.) at the time of surgery and 24 h later. All
brain-injured mice survived and remained otherwise healthy until the day of
experimentation.

Virus injections. AAV8-hSyn-FLEX-TVA-P2A-GFP-2A-oG with a titer of
1.2 × 1013 genome copies/mL was obtained from the GT3 Core Facility of the Salk
Institute and diluted to a titer of 2.4 × 1011genome copies/mL in sterile 0.9% NaCl
prior to use, to prevent impairments in tracing performance86. RVΔG-mCherry
was produced as previously described87 with a titer of 5 × 109 infectious units/mL.
Virus was front loaded into beveled glass micropipettes (40 μm tip diameter,
Wiretol 5 μl, Drummond Scientific) and injected into the brains of adult uninjured
control and brain injured mice at a rate of 15 nL min–1 and the needle was left in
place for 5 min before retraction. Target coordinates were first verified in a series of
preliminary injection studies into control and brain injured mice to determine ideal
target locations (e.g., hilus) and the titer and volume of virus that could be
delivered into hilus or PFC without leakage into nearby regions. AAV injections
(200 nL) were made into hilus of dentate gyrus at the following stereotaxic coor-
dinates: anterior-posterior (AP) −2.0 mm, medial-lateral (ML) 1.30 mm, dorsal-
ventral (DV) −1.9 mm. In separate cohort of animals, injections were made into
prelimbic cortex: AP 1.8 mm, ML 0.35 mm and DV −1.4 mm. RVΔG-mCherry
(100nL) was injected 3 weeks later at the same location.

Tissue clearing and whole-brain immunostaining. Mice were transcardially
perfused with 0.1 M PBS containing 1uL/mL of 10 mg/mL heparin sodium (Serva
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cat no. 24590.01) followed by 4% PFA in 0.1 M PBS. Samples were postfixed
overnight in 4% PFA in 0.1 M PBS. Subsequent steps were performed in 5 mL
centrifuge tubes (Eppendorf cat. No 0030119401) with 0.01% sodium azide added
to each solution. First, samples were decolorized in 10% 3-[(3-Cholamidopropyl)
dimethylammonio]-1-propanesulfonate (CHAPS, Anatrace cat. no. C316S) and
25% N-methyl diethanolamine (MDEA, Alfa-Aesar cat. no. L15712) in 0.1 M PBS
for 48 h at 37 °C with nutation. Samples were then washed in 0.1 M PBS for 24 h,
dehydrated in a methanol/water gradient (20%, 40%, 60%, 80%, 100%, 100%) for
1 h each and delipidated in 2:1 DCM:MeOH overnight. The next day, samples were
washed twice in 100% MeOH for 4 hr to remove DCM:MeOH and bleached in 5%
H2O2 in 80% MeOH overnight at 4 °C without shaking. Samples were then
rehydrated in 60% MeOH, 40% MeOH, 20% MeOH, 0.1 M PBS and PTx.2 for 1 hr,
incubated in 4M guanidine hydrochloride (Alfa-Aesar cat. no. A13543-30) and 1%
CHAPS in 0.1 M PBS for 24 h and washed overnight in 0.1 M PBS with three
solution changes. Next, samples were permeabilized in 10% CHAPS/25% MDEA in
0.1 M PBS overnight at 37 °C with nutation, incubated in 3%NDS/10%DMSO in
PTx.2 with nutation at 37 °C overnight. Primary antibody incubations were per-
formed in heparinized 0.1 M PBS containing 0.2% Tween-20 (PTwH) containing
0.25% CHAPS, 3% NDS and rabbit anti-DsRed (1:1000) and chicken anti-GFP
antibodies (1:1000) for 7 days at 37 °C with nutation. Samples were then washed in
PTwH overnight on an orbital shaker (115 RPM) at room temperature with five
solution changes. Secondary antibody diluent was prepared in PTwH containing
0.25% CHAPS, donkey anti-rabbit 546 (1:1000) and goat antichicken 647 (1:1000),
syringe filtered at 0.2 μm and incubated for 7 days at 37 °C with nutation before
washing in PTwH overnight with five solution changes and shaking at room
temperature. The next day, samples were dehydrated in increasing methanol/water
gradients (20%, 40%, 60%, 80%, 100% for 1 h each) and allowed to sit in 100%
MeOH overnight at 4 °C. Samples were then washed in 2:1 DCM/MeOH for 3 hrs,
followed by two 100% DCM washes for 15 min each and cleared in dibenzyl ether
(DBE) overnight at 4 °C. DBE was changed four additional times before imaging
for refractive index matching. A step-by-step protocol for whole-brain immunos-
taining can be found at: https://github.com/roberthuntlab/clearedbrainanalysis.

Light-sheet imaging. Cleared samples were mounted in a 3D-printed sample
holder in a custom-built imaging chamber with the same lot of DBE solution used
for refractive index matching and imaged using a Zeiss Z1 light-sheet microscope
with Zeiss Zen software. Samples were imaged in the sagittal orientation with
single-sided illumination using a x5/0.1 illumination objective and a x5/0.16
detection objective at 0.91 μm/pixel resolution with 4.97 μm step size. mCherry-
labeled input neurons were imaged using a 561 nm laser coupled to a 575–625 nm
BP filter. GFP and auto-fluorescence channels were acquired simultaneously with
488 nm and 638 nm laser lines coupled to 505–545 nm BP and 660 nm LP filters.
Laser power was set to 40% intensity for all laser lines with 200 ms exposure. Tile
overlap was set to 8%.

Whole-brain 3D image registration and annotation. Raw data (.czi) were con-
verted into hierarchical format (.ims) using Imaris File Converter 9.1 (Bitplane).
The 561 nm channel data was downsampled by a factor of two in each dimension
and exported as numpy arrays (.npy) using custom Python scripts. Individual tiles
were stitched non-rigidly using WobblyStitcher88. Stitched arrays were exported
as.tif series with a background subtraction value determined for each animal.
Individual cell positions were manually annotated using cellfinder33. Image stacks
were downsampled to 10 μm resolution and registered to the Allen Reference
Atlas89 using brainreg, a Python port of aMAP90. Atlas boundaries were upsampled
to the original high-resolution image in Image J, and image planes containing cells
were inspected for accuracy. To correct for whole-brain registration error, pairs of
correspondence points were manually marked where atlas boundaries diverged
from anatomical landmarks. Average vector length was calculated, and annotated
cell positions were linearly transformed based on the correspondence point vector
length. Schematics of the anatomical position of starter cells and input neurons
were plotted using brainrender32. Coronal atlas plates were rendered at selected
positions along the anterior/posterior axis and individual cells positions ± 125 μm
(hippocampus tracing) or ± 50 μm (PFC tracing) to the selected atlas plate.

Whole-brain quantification. Registered cell positions for each animal were
summarized using cellfinder33. Cell counts were combined for laminated cortical
strucutures. Ipsilateral and contralateral cell counts were analyzed as separate
regions. In one uninjured control (hippocampus injection), a small number of
rabies-labeled cells were found near the injection tract in overlying neocortex.
These cells were excluded from analysis as they were labeled by the needle injec-
tion, not trans-synaptic spread of virus. Each individual brain area used for
quantification and their abbreviation within the Allen CCF atlas are provided in
Supplementary Data 2. For Euclidian distance calculation, the starter cell centrioid
was calculated by averaging the atlas coordinates of each registered starter cell and
rounding the result to the nearest integer. Three dimensional Euclidian distance
was calculated between the starter cell centriod and each pre-synaptic input neuron
position using the following formula:

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx2 � x1Þ þ ðy2 � y1Þ þ ðz2 � z1Þ
p ð1Þ

where (x2,y2,z2) represents AP, ML and DV of the starter cell centriod, (x1,y1,z1)
represents AP, ML and DV of each registered pre-synaptic cell position and d
represents the length of the calculated distance vector. For analysis of AP and DV
distances, cell counts were binned at 200 μm intervals and normalized to the total
number of cells for each animal. For analysis of ML distance, cell counts were
binned at 100 μm to produce an even number of bins for each hemisphere.
Gaussian kernel density estimates were computed using seaborn python script, and
bandwidth was set at 0.5.

Reverse clearing. Cleared samples were removed from DBE and washed in DCM
twice for 15 min followed by overnight incubation in 2:1 DCM/MeOH. Samples
were then rehydrated in 100%, 80%, 60%, 40%, 20% MeOH/water and 0.1 M PBS
for 1 hr each on an orbital shaker (115 RPM) at room temperature. Free-floating
vibratome sections (50 μm) were cut using a vibratome at room temperature in
0.1 M PBS containing 0.05% Triton-X. A step by step protocol for reverse clearing
can be found at: https://github.com/roberthuntlab/clearedbrainanalysis.

Immunostaining. Mice were transcardially perfused with 4% paraformaldehyde (v/v)
and free-floating vibratome sections (50 μm) were processed using standard immu-
nostaining procedures51. Primary antibodies were as follows: chicken anti-green
fluorescent protein (GFP; 1:1000; Aves, cat no. GFP1020), chicken anti-mCherry
(1:1000; Abcam, cat no. ab205402), goat anti-choline acetyltransferase (CHAT; 1:500;
Millipore, cat no. AB144P), mouse anti-reelin (1:500; Millipore, cat no. MAB5364, clone
G10), rabbit anti-DsRed (1:1000; Clontech, cat no. 632496), rabbit anti-somatostatin
(SST; 1:200; Santa Cruz, cat no. SC-7819) and rabbit anti-WFS1 (1:1000; Protein Tech,
cat no. 11558-1-AP). All antibodies have been previously used for immunostaining
analysis in brain. For secondary antibodies (1:1000, Life Technologies), we used Alexa
488–conjugated goat antibody to chicken IgG (cat. no. A11039), goat antibody to
mouse IgG (cat. no. A11029), donkey antibody to goat IgG (cat. no. A11055); Alexa
546-conjugated goat antibody to rabbit IgG (cat. no. A11035), donkey antibody to
rabbit IgG (cat. no, A10040), Alexa 594–donkey antibody to goat IgG (cat. no. A11058)
and Alexa 647–conjugated goat antibody to chicken IgG (cat. no. A32933). Sections
were then mounted on charged slides (Superfrost plus, Fisher Scientific) with
Fluoromount-G containing DAPI. Confocal images were obtained with an Olympus
FV3000 laser scanning microscope. Epifluorescent images were obtained using a Leica
DM6 microscope with Leica LAS X software. Brightness and contrast were adjusted
manually using Image J, as needed.

Cell quantification in brain sections. Fluorescently labeled sections (50 μm) were
imaged using a Leica DM6 microscope with a ×10 or ×20 objective or Olympus
FV3000 confocal microscope with a ×20 or ×40 objective and counted using FIJI
(ImageJ)51. All cells that expressed a fluorescent marker were counted in every
sixth section through the entire brain (that is, 300 μm apart). All sections con-
taining labeled cells were analyzed per animal and the values averaged to obtain a
mean cell density (cells/mm2).

Fluoro-jade C staining. Mice were transcardially perfused with 4% paraf-
ormaldehyde (v/v) and free-floating vibratome sections (50 μm) were processed for
fluoro-jade C staining according to manufacturer instructions91. Briefly, brain
sections were dried on gelatin-coated slides for 30 min at 50 °C. Slides were
immersed in 1% NaOH in 80% ethanol for 5 min, 70% ethanol for 2 min, dH2O for
2 min, 0.06% potassium permanganate for 10 min, dH2O for 2 min, 0.00015%
fluoro-jade C (Histo-Chem Inc., cat no. 1FJC) and 0.0001% DAPI in 0.1% acetic
acid for 10 min, followed by three washes in dH2O for 1 min each. Slides were then
dried at 50 °C for 5 min and cleared in xylenes before coverslipping with Eukitt
mounting medium (Sigma, cat. no 03989).

Tissue dissection and transplantation. Ventricular and subventricular layers of
the MGE were harvested from E13.5 embryos. The time point at which the sperm
plug was detected was considered E0.5. Embryonic MGE explants were dissected in
Leibovitz L-15 medium, mechanically dissociated by repeated pipetting in L-15
medium and concentrated by centrifugation (3 min at 600 × g). Concentrated cell
suspensions were front loaded into beveled glass micropipettes (50 μm tip dia-
meter, Wiretol 5 μl, Drummond Scientific) and injected (3 × 104 cells per injection)
into the hippocampus of adult brain-injured mice 7 d after CCI injury. Cell
injections were made into stratum radiatum of the CA3 subfield at the following
stereotaxic coordinates: AP −2.0 mm, ML 2.45 mm, DV −1.8 mm.

Statistical analysis. All statistical tests were performed with Graphpad Prism 9, R
and Microsoft Excel. Sample sizes were based on previous publications38,47,92. For
whole-brain quantitative analyses, the number of input neurons in each distinct
brain area was normalized to the total number of input neurons detected in the
whole brain (% input) or to the total number of starter cells (convergence index).
Data were compared by two-tailed student’s t-test, one-way ANOVA followed by a
Tukey’s post hoc test for multiple comparisons, two-way ANOVA followed by a
Tukey’s post hoc test for multiple comparisons, two-way repeated-measures
ANOVA followed by a Bonferroni’s post hoc test, Chi-Square analysis or Fisher’s
exact test. UMAP analysis and Pearson correlation was computed in R. Data are
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expressed as mean±SEM, n = animals unless otherwise specified and significance
was set at P < 0.05. For a complete list of statistical tests and results, see Supple-
mentary Data 1–9 and Source Data.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data generated in this study are provided in the Supplementary Information and
Source Data file. Source data are provided with this paper.

Code availability
Custom Python scripts are available at: https://github.com/roberthuntlab/
clearedbrainanalysis.
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