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Abstract

Purpose of review: Flame retardant chemicals (FRs) are added to consumer products to reduce 

fire incidence and severity; approximately ~1.5 million tons of these chemical are used annually. 

However, their widespread has led to their ubiquitous presence in the environment and chronic 

accumulation in human tissues. We summarize current trends in human FR exposure, and review 

recent data highlighting concerns for thyroid dysregulation and cancer risk in human populations.

Recent findings: Polybrominated diphenyl ethers (PBDEs) were once commonly used FRs, 

but recently were phased-out. Exposure is associated with thyroid dysregulation (mainly T4 

reductions) in animals, with new work focusing on specific mechanisms of action. PBDEs also 

impact human thyroid regulation and are related to clinical thyroid disease, but associations appear 

both dose and life-stage dependent. Emerging data suggest that common alternate FRs may be 

more potent thyroid disruptors than their predecessors, which is particularly concerning given 

increasing levels of exposure.

Summary: Potential health impacts of FR are only beginning to be understood for “legacy FRs” 

(i.e. PBDEs), and are largely unevaluated for newer-use chemicals. Cumulatively, current data 

suggest impact on thyroid regulation is likely, potentially implicating FRs in thyroid disease and 

cancers for which thyroid dysregulation impacts risk or prognosis.
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Introduction to Flame Retardants

Every year new consumer products designed to improve our daily lives enter the market. 

There are new computers, tablets, and phones to help us more readily share information and 

be more efficient with our time, and new construction materials designed to meet improved 
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building codes and make buildings and homes safer and more secure. However, these new 

products are often treated with synthetic chemicals, which can be emitted over time and 

lead to widespread exposure among the general population. Flame retardant chemicals (FRs) 

are a prime example of chemicals intended to improve our wellbeing, but which may have 

unintended health consequences.

Over the past decades, a number of mandatory and voluntary flammability standards have 

been implemented following an increase in the number of household fires [1]. To meet these 

standards, various industries use FRs in their products (e.g. foam insulation used in homes 

and buildings, electrical circuit boards, furniture and televisions). Although the past several 

years have seen increased awareness about the potential health hazards of FRs and changes 

to policies governing their use, global consumption is expected to increase by 50% between 

2012 and 2019 [2].

Polybrominated diphenyl ethers (PBDEs), once among the most commonly used FRs, 

have received considerable attention due to their long environmental persistence, high 

bioaccumulation potential and likely toxicity. They share a similar chemical structure with 

thyroid hormones, particularly thyroxine (T4) and triiodothyronine (T3) (Figure 1), raising 

concerns about their potential to alter endocrine function, a hypothesis now supported by 

an extensive literature linking PBDEs with thyroid hormone regulation (detailed below). 

These concerns lead to PBDEs being largely phased out or banned beginning in the 

mid-2000s, but now alternative FRs, including other brominated flame retardants (BFRs) 

and organophosphate flame retardants (PFRs), have become popular replacements and are 

being used in higher volumes (Figure 1) [3, 4].

Given the increasing use of FRs and their known exposure pathways (discussed below), it 

is imperative that we understand their potential health effects. For example, FRs have been 

implicated in several types of cancer, and more research is ongoing to elucidate potential 

connections [5]. This review article summarizes recently published research on the effects of 

several types of FRs on thyroid regulation and cancer.

Human flame retardant exposure

Many FRs are used as chemical additives, meaning that they are not chemically bonded to 

the polymers and resins in which they are used, and are predisposed to migrate into the 

environment over time. The primary pathway of human exposure to FR depends both on the 

compound of interest and the geographic region of study. In the U.S., exposure to PBDEs 

occurs mainly though incidental ingestion of indoor dust, inhalation of indoor air, and to a 

lesser extent, via dietary sources; however, in Europe, where some PBDE mixtures were not 

used, and phased out earlier, exposure is primarily dietary [4, 6, 7]. Exposure to other FRs 

is thought to follow similar patterns, with the relative importance of each pathway differing 

based on physiochemical properties [8-11].

Although the vast majority of humans have measureable levels of exposure biomarkers in 

their bodies, FR exposure varies geographically. People living in North America tend to have 

serum and breastmilk PBDEs levels that are one to two orders of magnitude higher than 
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those in Europe and Asia [12]. Biomonitoring data indicate that PBDE exposure increased 

from the 1970s through the early 2000s [12]; however, new data show that PBDE exposure 

may be declining [13-15]. For example, Among California women, serum PBDE levels 

decreased by 40% from 2008-2009 to 2011-2012 [13], likely reflecting their phase-out.

Unlike PBDEs which persist in the human body for months to years, PFRs are rapidly 

metabolized and excreted in urine. The recent development of assays to measure urinary 

biomarkers of PFR exposure has led to numerous new studies investigating exposure [16]. 

Although this work indicates ubiquitous exposure, it also demonstrates considerably higher 

levels of exposure among young children (e.g. [17-20]). For example, the levels of a urinary 

biomarker of TDCIPP (a PFR) were 15 times higher in young children compared to their 

mothers [17]. To date, PFR exposure patterns have not been evaluated over a sufficient 

time period to provide insights on temporal trends; however, increasing levels of exposure 

over the last 15 years seem probable based on the changes in average urinary metabolite 

concentrations reported in research conducted over the past several years (Figure 2). While 

biomonitoring data are not available to evaluate trends in humans, environmental data 

indicate that levels of BFRs are increasing; Dodson et al. reported that levels of compounds 

found in Firemaster® 550 (FM550), a mixture of BFRs and PFRs used as a replacement for 

PBDEs, increased in household dust between 2006 and 2011 [36].

FR Thyroid Toxicity

PBDEs.

Given the similarities in chemical structure between PBDEs and thyroxine (Figure 1), a 

number of investigations using animal models have focused on thyroid dysregulation as an 

endpoint of interest. Earlier work in the late 1990s and 2000s demonstrated that exposure 

to PBDEs in rodents, fish, and avian species all led to significant reductions in circulating 

levels of T4, and sometimes T3 (reviewed in [37]); however, the mechanisms responsible 

were unclear. Further studies suggested that both competitive binding for serum transporters 

(e.g. transthyretin and thyroid binding globulin) and upregulation of clearance enzymes (e.g. 

glucuronidases) could lead to the decreases in circulating levels [38-40]. Recent in vitro and 

in vivo studies have investigated more specific mechanisms and consequences. For example, 

a study in adult male fathead minnows found that dietary exposure to low and high doses 

(300-fold difference) of BDE-209 (a commonly used PBDE in plastics) led to very similar 

decrements in circulating T3 and T4 levels, and similar inhibition of thyroid deiodinase 

Type 2 activity (~50%) in the brain [41]. And a study using rats found that gestational and 

lactational exposure to a commercial PBDE mixture led to significant decreases in T3 and 

T4 in both the exposed dams and their offspring, with more severe reductions observed in 

the offspring at postnatal day 21 [42]. Furthermore, they observed significant increases in 

hepatic ethoxyresorufin-O-deethylase (EROD), pentoxyresorufin-O-dealkylase (PROD) and 

benzyloxyrsorufin-O-dealkylase (BROD) activity in male and female offspring, suggesting 

that a number of metabolic pathways, including metabolism of thyroid hormones, could 

be affected. While accumulation has always been thought to be a passive process, one 

study demonstrated that PBDEs are substrates for organic anion transporting polypeptides 

(OATPs) which can then actively transport PBDEs, particularly in hepatic tissue [43]. 
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OATPs also transport thyroid hormones in select tissues, indicating another mechanism 

by which thyroid dysregulation can occur. In cell culture, PBDEs also have been shown 

to inhibit sodium iodine symporter (NIS)-mediated iodide uptake in rat thyroid follicular 

FRTL-5 cells [*44]. Specifically, BDE-47 (a common PBDE congener) was found to be a 

non-competitive inhibitor of NIS, and to decrease the expression of thyroid peroxidase.

In human liver tissues, PBDEs can be metabolized, albeit at very slow rates, to oxidative 

metabolites known as hydroxylated PBDEs (OH-BDEs) [45]. OH-BDEs are often detected 

in human serum, but at levels which are much lower than PBDEs [46-48]. OH-BDEs are 

even more similar in structure to thyroid hormones than PBDEs due to the addition of 

a hydroxyl group on the aromatic ring (Figure 1), likely explaining why OH-BDEs are 

often more active and potent in eliciting adverse effects on thyroid endpoints (e.g. protein 

binding, deiodinase inhibition, etc) [49]. Therefore, it is possible that some effects observed 

in vivo are associated with these more active metabolites that are not often measured in 

epidemiological studies.

Other BFRs.

While PBDEs have now been phased-out of manufacturing, other BFRs are still used in 

furniture, insulation, and electronics. Although these compounds are not as well studied as 

PBDEs, their chemical structure suggests they may also interfere with thyroid regulation. 

One BFR, tetrabromobisphenol-A (TBBPA), has been used in high volumes for several 

decades and is a brominated analogue of the well-characterized endocrine disruptor, 

bisphenol-A (BPA) [37]. Studies conducted with TBBPA demonstrate that like PBDEs, 

TBBPA exposure in animals leads to decreases in circulating T4 levels. TBBPA also has 

been shown to inhibit thyroid deiodinase Type 1 activity and strongly bind and inhibit 

estrogen and thyroid sulfotransferases [40, 50, 51]. More recently, the National Toxicology 

Program conducted a two-year carcinogenicity study with Wistar Han rats and found that 

exposure was significantly tied with an increase in uterine carcinomas [*52]. Further 

characterization of the molecular and morphologic features of these tumors suggests that 

uterine tumors caused by exposure to TBBA are similar to type 1 endometrial carcinomas 

observed in women and warrant further investigation in epidemiological studies.

FM550 contains both BFRs and PFRs, and in an in vivo study with rats, was shown to result 

in significant increases in dam serum thyroxine levels as well as early puberty and metabolic 

dysfunction in offspring exposed gestationally and lactationally [53]. Furthermore, a 

metabolite of one of the BFRs in FM 550 (TBMEHP) was shown to significantly decrease 

serum T3 levels in rats and activate a nuclear receptor (PPARg) involved in adipogenesis 

[54].

PFRs.

Animal studies suggest that the PFRs may exert similar or even more potent endocrine 

disrupting effects as the PBDEs they replaced [*55, 56]. In chronic exposure studies 

in zebrafish, for example, TDCIPP was found to significantly reduce plasma T4 and 

T3 levels in females, but not males, and was similar whether exposure occurred during 

embryogenesis or in adults [*57, *58]. In an another study, pubertal Sprague Dawley rats 
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orally exposed to TDCIPP displayed elevated serum T3 levels, increased expression of 

deiodinase Type 1 activity, and downregulation of thyroid nuclear receptor beta [*59]. In 

addition, follicular hyperplasia was observed in the rat thyroid tissue, and several genes 

related to thyroid hormone biosynthesis were upregulated, including thyroid peroxidase and 

the sodium iodide symporter. The mechanism responsible for changes in circulating levels 

is not clear, but increased upregulation of clearance enzymes (e.g. Uridine 5'-diphospho-

glucuronosyltransferase) has been observed in vivo and in vitro and has been hypothesized 

to play a role [*59, 60]. Alternatively, TDCIPP may elicit some effects through nuclear 

receptor binding, as a recent study demonstrated that TDCIPP can antagonize TRb [61].

Triphenyl phosphate (TPHP) is another PFR used both as a FR and as a plasticizer in a 

variety of applications (e.g. nail polish [28]). Aqueous exposure to TPHP in zebrafish led to 

significant increases in tissue levels of T3 and T4 at all doses tested. In a thyroid follicular 

cell line (FRTL-5), TPHP exposure led to increased expression of NIS and TPO genes, 

suggesting stimulation of thyroid hormone synthesis [*62].

FRs and Human Thyroid Regulation

Results from epidemiologic studies investigating relationships between PBDEs and 

circulating thyroid hormone concentrations are consistent with animal studies, in that they 

indicate that exposure is associated with altered thyroid regulation; however, the direction 

and magnitude of effect varies considerably between species and across studies. A recent 

meta-analysis reported that relationships between PBDEs and thyroid hormones follow U-

shaped patterns, with low levels of exposure inversely associated with thyroid hormones and 

higher level associated with thyroid hormone increases (TSH and TT4) [**63]. These results 

suggest that differences in the range of exposure between studies may explain previously 

observed inconsistencies. Differences in the life-stage of participants (e.g. infants vs adults) 

included in past studies also could be driving conflicting findings related to thyroid hormone 

regulation and have yet to be formally considered. The effects of PFRs on human thyroid 

hormone regulation have been less explored, but data suggest that higher levels of TDCIPP 

in the home environment are inversely associated with fT4 and among adult men [64]. Two 

additional studies have reported positive associations between a urinary metabolite of TPHP 

(i.e. diphenyl phosphate) and fT4 and TT4, [*30, 65] with greater impact observed among 

women [*30].

Emerging evidence indicates that the impact of FR exposure on thyroid hormone regulation 

is leading to clinically-significant downstream heath impacts [**66, **67]. Among 

Canadian women, higher levels of exposure were associated with increased prevalence of 

hypothyroidism, with the relationship stronger among women aged 30-51years [**66]. A 

recent study of U.S. women demonstrated that those with the highest levels of exposure to 

PBDEs also were more likely to report a previous diagnosis of thyroid disease; however, 

in this study findings were stronger among postmenopausal women [**67]. While these 

studies are not entirely consistent with respect to higher risk groups, they strongly suggest 

that the mechanism by which PBDEs impact thyroid disease risk could be mediated through 

cross-talk with estrogen. Difference between studies could be explained by differences in 

the case definition, although one would expect significant overlap of case definitions given 
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the prevalence of hypothyroidism or by differences in the range of exposure which was 

higher on average in the U.S. cohort compared to the Canadian cohort. To our knowledge, 

relationships between clinically-significant thyroid disease and exposure to replacement 

flame retardants have yet to be evaluated.

Clinical hypothyroidism is associated with the growth of many cancers, and hyperthyroidism 

has been linked to the prevalence of several types of cancer, including thyroid, suggesting 

that chemicals that disrupt thyroid hormone homeostasis in a significant way may contribute 

to cancer risk and severity [68]. However, by in large, the potential of FRs to contribute to 

human cancer risk or prognosis has not been evaluated in epidemiologic studies. Thyroid 

cancer has been investigated in a single study among participants of the Prostate, Colorectal, 

Lung and Ovarian Cancer Screening Trial, which reported no association between exposure 

to the commercial PentaBDE mixture and the odds of developing thyroid cancer [69]. The 

literature linking FR exposure to other cancers is equally limited, although levels of several 

PBDEs in residential dust recently were associated with increased risk of childhood acute 

lymphoblastic leukemia [70]. To our knowledge, there have been no contemporary studies 

examining human cancer risk and exposure to currently-used FRs, potentially because 

capturing relevant exposure measures for these compounds is problematic due to their rapid 

metabolism in the human body or to the lack of exposure biomarkers.

Conclusions

Although the last several years have seen significant advances in research related to PBDEs 

and thyroid regulation and disease, our understanding of their health impacts remains 

limited. Even less is known about the alternative FRs (e.g. PFRs and alternative BFRs), 

compounds for which exposure levels appear to be increasing. Given their structural 

similarities to PBDEs and thyroid hormones (i.e. alternative BFRs), and the limited number 

of animal studies suggesting alterations in circulating levels of thyroid hormones following 

exposure, more research is needed to understand the full extent of endocrine disruption for 

these compounds, and most importantly, mixtures of FRs that most people are exposed to on 

a daily basis.
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Key Points:

• Exposure to flame retardant chemicals, particularly newer-use flame 

retardants, is likely increasing.

• Evidence demonstrates that exposure to several different classes of flame 

retardant chemicals impacts thyroid hormone regulation and function.

• It remains unclear whether flame retardant exposure increases the risk of 

thyroid cancer; however, additional data are urgently needed as current 

evidence supports the hypothesis that flame retardant chemicals may impact 

the risk or severity of thyroid and other cancers.
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Figure 1. 
Chemical structures of thyroid hormones and flame retardants.
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Figure 2. 
PFR metabolite concentrations may be increasing over time. Temporal trends in geometric 

mean (or median where mean not reported) urinary BDCIPP (a PFR metabolite) 

concentrations in North America, Europe, and Australia [8, 16-35].
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