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Abstract

Algorithmic and Implementational Level Models of Liking, Flexibility, and Adaptive

Learning

by

Jeffrey B. Inglis

Computational modeling is indispensable in the pursuit of understanding how the

brain generates some of our most intimate subjective experiences, and how it solves some

of the most interesting problems posed by our environment. The first model presented in

this dissertation attempts to improve our understanding of how humans generate subjec-

tive liking judgements of stimuli, while two additional models are presented that attempt

to improve our understanding of how humans learn adaptively and flexibly in a chang-

ing environment. This dissertation begins by introducing the theoretical foundations

underlying these models and then proceeds by introducing each of them independently.

The first model is a probabilistic multidimensional model that accounts for both sen-

sory and hedonic ratings collected from the same experiment. The model combines a

general recognition theory model of the sensory ratings with Coombs’ unfolding model of

the hedonic ratings. The model uses sensory ratings to build a probabilistic multidimen-

sional representation of the sensory experiences elicited by exposure to each stimulus,

and it also builds a similar representation of the hypothetical ideal stimulus in this same

space. It accounts for hedonic ratings by measuring differences between the presented

stimulus and the imagined ideal on each rated sensory dimension. Therefore, it provides

precise estimates of the sensory qualities of the ideal on all rated sensory dimensions.

The model is tested successfully against data from a novel experiment.

The second model is a neurocomputational model of the flexible learning of abstract
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rules. The model is constructed from highly simplified building blocks that each represent

a different brain region. It implements win-stay and lose-switch signals, and it computes

and represents predicted rewards. Despite its simplicity, the model gives an impressively

accurate qualitative and quantitative account of some challenging behavioral and neural

data.

The third model uses a network of spiking neurons to represent activity within a

neural circuit that implements adaptive learning rates by modulating the gain on the

dopamine response to reward prediction errors. The model generates a dopamine signal

that depends on the size of the tonically active dopamine neuron population and the pha-

sic spike rate. The model was tested successfully against results from two single-neuron

recording studies and a fast-scan cyclic voltammetry study. The general applicability

of the model to dopamine-mediated tasks transcend the experimental phenomena it was

initially designed to address.

This dissertation concludes with the most instrumental findings that surfaced through

the process of creating the three models. It will give a behind the scenes view of the

process of model invention and offer some practical advice for creating computational

cognitive neuroscience models.
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Chapter 1

Introduction

This dissertation has been heavily influenced by two key modeling approaches; David

Marr’s three levels of analysis framework for modeling information systems (Marr, 1982),

and the modeling principles of Computational Cognitive Neuroscience (CCN) (Ashby,

2018). Accordingly, in this introduction I will first present these two approaches. I

will then introduce three research questions that motivated the invention of three novel

models. I will also discuss each model’s relationship to Marr’s hierarchy and the CCN

approach where appropriate. Finally, I will discuss how the three models presented here

likely share overlapping functional relationships and underlying neural architectures.

1.1 Theoretical Foundations of Modeling

1.1.1 Marr’s three levels of analysis

In 1982, David Marr proposed a framework for modeling information processing sys-

tems that has been particularly applicable to the field of cognitive neuroscience. Marr

proposed that in order to understand any information processing system it needs to be

understood at three loosely coupled levels of analysis: the computational level, algo-
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Introduction Chapter 1

rithmic level, and implementational level. The computational level is concerned with

what is computed and why. The algorithmic level - referred to as the process level in

mathematical psychology - is concerned with what is represented and how the inputs

are transformed into the outputs. The implementational level is concerned with how the

representation and algorithm are physically instantiated by the underlying hardware.

We can illustrate Marr’s hierarchy by applying it to an interesting hypothetical exam-

ple originally presented by Hofstadter (2007). Consider a device that resembles a typical

chain of dominoes, except in this case, each domino is spring loaded so that when it falls

it shoots back up after a short refractory period. In this example, the domino device

takes as input a positive number and uses the various chains, loops, bifurcations, and

coincidences of falling dominos to implement computations. Ultimately, the computa-

tions inside the domino device terminate and the final output domino falls if the input

number is not prime and remains standing if the number is prime. Hofstadter asks the

reader to consider a naive observer who stumbles upon the domino device and notices

that after an input to the device, the output domino does not fall. The observer then

asks why the domino does not fall. Hofstadter asks us to consider two possible answers

to this question. First, one could answer that the domino does not fall because none of

its neighbors fell. Obviously, the observer will be quite unsatisfied with this answer as

it necessitates a follow-up question concerning why each neighbor did not fall. A sec-

ond possible answer is that the domino did not fall because the number 641 is prime.

Hofstadter (2007) states “641’s primality is the best explanation, perhaps even the only

explanation, for why certain dominos did fall and certain other ones did not fall” (p. 39).

I would offer a slight revision to Hofstader’s statement - 641’s primality is a component

of the best explanation for understanding why the domino did not fall. Indeed, it is the

best explanation at the computational level. However, it seems unlikely to me that the

first question from a naive observer who stumbles upon a domino computer will be “why

2



Introduction Chapter 1

did that domino not fall?”. I suspect the first question would be something more similar

to “what is this?”. In an attempt to answer this question, an observer who is aware of

Marr’s framework would begin asking several questions at many levels of analysis. At

the computational level the observer would ask “what does it compute?” and “why does

it compute that”. Once the observer discovers that the domino computer determines

whether an input is a prime number and that it does this because a previous observer

similar to them has requested it, then the observer would ask “what is represented by

the domino computer and how does it transform the inputs (numbers) into the outputs

(decisions about primality)?”. At this algorithmic level the observer may conjecture a

number of different primality test algorithms. Once the observer has considered a few

candidate algorithms, they will begin to ask questions at the implementational level such

as “how do the dominoes instantiate the representations and the algorithm?”. Therefore,

with Marr’s framework in mind I would suggest that the best explanation of why the

output domino did not fall involves all three of Marr’s levels of analysis.

In accordance with the kind of theoretical pluralism advocated for by Marr’s frame-

work, this dissertation is presented as an amalgamation of models from multiple levels of

analysis. However, each of these models apply to different phenomena, and thus on their

own only represent a component of the complete explanation of the phenomena. In some

cases, models at other levels of analysis have already been invented and these models

are briefly discussed in the chapter introductions and discussions. In other cases these

models do not yet exist. In the general discussion section I provide some suggestions for

integrating already existing models and creating novel models.
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Introduction Chapter 1

1.1.2 Computational Cognitive Neuroscience

Technological advances have resulted in the ability to noninvasively observe brain

activity in the process of collecting behavioral data. This has led to the emergence of

the field of cognitive neuroscience. By studying both mental processes (the mind) and

neural substrates (the brain), cognitive neuroscientists found themselves navigating the

space between abstract high-level models and biophysical low-level models. Historically,

data from these domains have been explained by separate models from separate fields;

with mathematical psychologists modeling behavior and computational neuroscientists

modeling neurobiological data. Models in the field of mathematical psychology tend

to exist at the algorithmic (process) level, while models in the field of computational

neuroscience tend to exist at the implementational level. The growth of empirical data on

the neural underpinnings of behavior has made it possible to create implementational level

models that can account for both neural and behavioral data. The field of Computational

Cognitive Neuroscience emerged to meet this demand (Ashby, 2018).

There are significant advantages to modeling at the implementational level as long

as the data are available to do so. First, scientists have the ability to test their models

against a variety of data types - from response times and accuracy curves to single

neuron recordings and anything in between (e.g. measurements of neuromodulators,

neurosurgical lesions, fMRI and EEG data, etc.). Requiring models to account for a vast

array of data necessarily constrains the viable parameterizations of the model (Ashby,

2018). It also expedites the process of falsifying and eliminating models (Ashby, 2018).

Second, modeling at the implementational level leads to inflexible models (Ashby,

2018). When parameters are added to models at the computational level their sole pur-

pose is almost always to fit more data, thus leading to greater flexibility of the model.

As we descend Marr’s hierarchy, the addition of parameters is not solely to account
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for more data. At the algorithmic level it is typically added to model an additional

process, while at the implementational level it is typically added to model the physical

structure of the hardware. Therefore, on average, the addition of a parameter at the

implementational level has less impact on overall model flexibility than the addition of a

parameter at the computational level. Furthermore, the neuroanatomy of the brain puts

constraints on possible models and parameter values. For example, if the neuroscience

literature suggests that there is no anatomical connection between two brain regions,

then the architecture of the model cannot assume that there is one. Alternatively, if

there is a connection between two brain regions and the neuroscience literature suggests

that it is excitatory, then the parameter representing that connection cannot be negative.

Moreover, although CCN models tend to have lots of free parameters, many of these pa-

rameters are fixed after modeling a portion of the data and would require neurobiological

justification to be modified for fitting additional data (Ashby, 2018).

Third, CCN models are more likely to converge over time due to the fact that all

of the models must be constrained by the underlying neuroscience (Ashby, 2018). The

models may initially disagree on what constitutes the important regions, connections,

neuromodulators, etc. but as models are falsified some consensus should emerge.

Finally, the CCN approach can help unite models created in distinct fields of cognitive

neuroscience because in principle the models should be able to be wired together to

create composite models (Ashby, 2018). Furthermore, by inspecting CCN models in

diverse fields, researchers may discover that processes that once seemed to be entirely

distinct are, in fact, mediated by the same brain networks (Ashby, 2018). To ensure that

researchers can reap the full range of advantages offered by the CCN approach there are

a number of principles that inform the construction of these CCN models. Interested

readers should consult (Ashby, 2018) for details. The models presented in chapters 3

and 4 are examples of CCN models and as such they are strongly influenced by CCN

5
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principles.

1.2 Overview of Dissertation

The three models presented in this dissertation address the following three questions:

1) What algorithm does a human use to decide how much it likes a stimulus? 2) What

algorithm does an agent use to flexibly learn abstract rules and how is this implemented

by the neural architecture of the brain? 3) How does the neural architecture of the brain

implement an algorithm that causes an agent to modulate its learning rate in a changing

environment?

1.2.1 What algorithm does a human use to decide how much it

likes a stimulus?

Chapter 2 presents a General Recognition Theory (GRT) (Ashby & Townsend, 1986)

model for identifying an ideal stimulus. This is an algorithmic level model in that it

specifies the process by which agents generate perceived liking for a stimulus. The entities

in this model are multivariate normal distributions that represent an imagined ideal

stimulus or a sensory percept generated by an agent when presented with a stimulus.

The model proposes that agents generate perceived liking by computing the Mahalanobis

distance between a sample from a multivariate normal distribution that represents their

ideal stimulus and a sample from the multivariate normal distribution that represents

the sensory perception of the to-be-rated stimulus.

6
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1.2.2 What algorithm does an agent use to flexibly learn

abstract rules and how is this implemented by the neural

architecture of the brain?

Chapter 3 presents a neurocomputational model for flexible rule learning. This model

straddles the boundary between the algorithmic and implementational levels in Marr’s

(1982) hierarchy. It is neurobiologically informed in the sense that all but one of its

modules are mapped onto brain regions and are linked together in a circuit that specifies

the inputs and outputs of each region. Furthermore, given that this model straddles the

boundary between the algorithmic and implementational level, the modeling principles

of CCN were influential throughout its creation. However, because the model does not

neatly fall into either the algorithmic or implementational levels, I have developed ad-

ditional modeling insights that informed its construction. I will discuss these in more

detail in the general discussion section.

1.2.3 How does the neural architecture of the brain implement

an algorithm that causes an agent to modulate its learning

rate in a changing environment?

Chapter 4 presents a neurocomputational model for the modulation of dopamine

for adaptive learning (MODAL). MODAL is an implementational level model in that

all of the entities in the model are represented by phenomenological models of single

neurons. Given input about the current state of the environment (represented by un-

certainty, volatility, contingency, or any other modulating variable) interactions between

model neurons in MODAL are able to modulate the release of dopamine in the brain in

response to rewards or punishments. Furthermore, given that this model is located at

7
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the implementational level, the modeling principles of CCN were particularly influential

throughout its creation.

1.2.4 Relationship among models

In addition to being linked by the underlying theory of how to understand information

processing systems, the models presented in this dissertation are also linked by their

function and neural architecture. MODAL was created as an implementational level

model of how dopamine release is modulated in a changing environment to adapt the

rate of learning. Interestingly, the experimental paradigm modelled in chapter 3 relies on

a changing environment. Therefore, the flexible rule learning model presented in chapter

3 must modulate dopamine release in response to changes in its environment. In this

flexible rule learning model, modulation is implemented by a very simple mathematical

model. In a more detailed and fully implementational level composite model, MODAL

would be used to modulate the amount of dopamine released in the neural network.

Additionally, although the GRT model for identifying an ideal stimulus is at the

algorithmic level and does not rely on any reference to the brain, it is highly likely that

the underlying neural architecture of a implementational version of this model would

have significant overlap with the other models presented in this dissertation. Learning

one’s preferences over a lifetime would likely depend on the brain’s dopamine system as

modelled by MODAL, and on areas that encode value such as the orbitofrontal cortex

and core of the nucleus accumbens. These regions are key modules in the model of flexible

rule learning.

8
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1.3 Permissions and Attributions

1. The content of chapter 2 and appendix A is the result of a collaboration with F.

Gregory Ashby and James Bird. It has been submitted to Attention, Perception,

& Psychophysics.

2. The content of chapter 3 is the result of a collaboration with F. Gregory Ashby.

3. The content of chapter 4 is the result of a collaboration with Vivian V. Valentin

and F. Gregory Ashby, and has previously appeared in Computational Brain &

Behavior (Inglis, Valentin, & Ashby, 2021). Reprinted by permission from Springer

Nature Customer Service Centre GmbH: Springer Nature, Computational Brain

& Behavior. Modulation of Dopamine for Adaptive Learning: a Neurocomputa-

tional Model. Jeffrey B. Inglis, Vivian V. Valentin, F. Gregory Ashby. Society for

Mathematical Psychology 2020.
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Chapter 2

A General Recognition Theory

Model for Identifying an Ideal

Stimulus

This chapter and appendix A is the result of a collaboration with F. Gregory Ashby and

James Bird, which has been submitted to Attention, Perception, & Psychophysics.

2.1 Introduction

Hedonic responses about a novel object are often based on the sensory characteristics

of that object. Is the color pleasing? Does the curry have the right amount of heat? A

popular model of such responses, called the unfolding model, was proposed more than

50 years ago by Coombs (1964). The unfolding model assumes that when judging one’s

hedonic responses to a set of objects – for example, foods, beverages, or paintings – the

observer imagines their ideal object within that category and then compares each object

in the set to this imagined ideal. The objects are then ordered by preference according to

10



A General Recognition Theory Model for Identifying an Ideal Stimulus Chapter 2

their similarity to the ideal. So the most preferred object is the one that is most similar

to the imagined ideal and the least preferred is the one that is least similar to the ideal.

The unfolding model has been generalized in a variety of different ways (e.g., Borg, 2018;

DeSarbo & Rao, 1984; De Soete, Carroll, & DeSarbo, 1986; Schönemann & Wang, 1972;

Zinnes & Griggs, 1974; Mullen & Ennis, 1991; Ennis, 1993; Ennis & Johnson, 1994), and

applied successfully in a wide variety of different domains (e.g., Andrich, 1989; Davison,

1979; DeSarbo, Young, & Rangaswamy, 1997; Ennis & Rousseau, 2020; J. S. Roberts,

Donoghue, & Laughlin, 2000).

The unfolding model provides an accurate account of preference orderings, but it

is less successful at identifying the sensory characteristics associated with the imagined

ideal. Some multidimensional versions of the model produce a multidimensional scaling

(MDS) solution that situates each of the to-be-judged objects and the hypothetical ideal

as a single point or probability distribution in a multidimensional space (e.g., De Soete

et al., 1986; Zinnes & Griggs, 1974). However, as in traditional MDS, no information

is provided about the nature of these dimensions. Sometimes, by noting which stimuli

are situated at one extreme on a dimension and which stimuli are situated at the other

extreme, it is possible to speculate about the nature of one or more dimensions. For

example, if an MDS representation of odors places lemon and cedar at opposite ends of

some dimension then one might infer that that dimension measures arousal. But with

many dimensions, no such obvious ordering will emerge, and whatever inferences are

made are generally impossible to test.

One experimental method for estimating the sensory characteristics of a stimulus,

which is popular within the field of perception, is called the concurrent-ratings task.

In this paradigm participants rate the magnitude of each stimulus simultaneously on

a number of sensory dimensions, and then the observed ratings are used to estimate

the participant’s sensory, perceptual, or cognitive impressions of the stimulus (Hirsch,

11
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Hylton, & Graham, 1982; Olzak, 1986). For example, consider an experiment in which

participants first taste cups of coffee that were prepared using different amounts of ground

coffee and different amounts of sugar. Next, the participants are asked to rate each cup

on its sweetness and on the richness of its aroma (e.g., on a 1 to 7 scale). In this case

the ratings would be used to estimate the sweetness and aroma of each cup, and these

representations could be used to judge whether sweetness interacts with aroma, and

to understand the psychophysical transformations from amount of sugar to perceived

sweetness and amount of ground coffee to aroma.

When stimuli are rated on a single sensory dimension – most commonly sensory

magnitude – the resulting data often can be modeled accurately by a signal-detection

theory analysis. In fact, this is a popular experimental method for estimating a re-

ceiver operating characteristic (ROC) curve (e.g., Ashby & Wenger, in press). When

ratings are collected on multiple sensory dimensions, then the percepts are multivariate,

rather than univariate, so the multidimensional generalization of signal-detection theory

called general recognition theory (GRT; Ashby, 1988; Ashby & Townsend, 1986) is more

appropriate. This analysis assumes that (1) the unobservable perceived values have a

trial-by-trial (or participant-by-participant) multivariate normal distribution across the

relevant sensory dimensions, (2) the participant establishes a set of criteria or cut-points

on each rated dimension that partitions that dimension into intervals, and (3) a different

numerical rating is assigned to each interval (Ashby, 1988; Wickens, 1992). This model

assumes that on each trial, the participant determines in which interval the percept is in

on each rated dimension and then selects the associated ratings.

Ashby and Ennis (2002) combined the unfolding model and the signal detection model

of the ratings task to account for simultaneous sensory and liking ratings. This model

used the participant’s sensory ratings to estimate the sensory representation of the ideal.

However, the model was only developed and applied to situations in which the various

12
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stimuli all varied on a single sensory dimension. This article extends the model of Ashby

and Ennis (2002) to more complex real-world stimuli that vary on many sensory di-

mensions. The resulting model estimates the distribution of imagined ideals (i.e., across

trials and participants) by identifying the ideal mean on each rated sensory dimension

and estimating the variance-covariance matrix of the ideal distribution across all rated

dimensions.

The new model, which we call the GRT-unfolding model, is described in the next

subsection. We then describe general methods for applying the model to data from an

experiment that collects ratings on multiple sensory dimensions or attributes and on

some hedonic dimension, such as liking. The methods and results sections describe an

empirical test of the GRT-unfolding model against data from a new experiment. Finally,

we discuss implications of our results and close with some brief conclusions.

2.2 The GRT-Unfolding Model

This section develops the GRT-unfolding model. An intuitive illustration of the as-

sumptions underlying the model is provided in Figure 2.1 for one hypothetical trial of a

coffee-tasting experiment similar to the one described earlier. The only difference is that

in this experiment participants are asked to rate: 1) the sweetness of the coffee; 2) the

richness of the aroma; and 3) how much they like the coffee – all on a 1 to 4 rating scale.

The figure depicts hypothetical events on a trial in which the participant rates sweetness

and liking, but not aroma. The circle in the top panel is a contour of equal likelihood from

the bivariate normal distribution that represents all possible percepts that are elicited

by the specific cup of coffee that the participant tastes on this trial. The star labeled xi

represents the specific percept experienced by the participant when tasting the current

cup of coffee – that is, the specific perceived sweetness and aroma of the current cup,

13
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Figure 2.1: A schematic illustrating the GRT-unfolding model for a hypothetical trial
in which a participant tastes a cup of coffee and then provides ratings (from 1 to 4)
on the coffee’s sweetness and on liking. The circle and ellipse in the top panel are
contours of equal likelihood from the sensory and ideal distributions, respectively. The
participant’s responses on this trial are “3” on sweetness and “2” on liking.

which is the ith cup of coffee in the experiment. Let x1 denote the perceived sweetness

and x2 the richness of the aroma (i.e., so xi = [x1,x2]
′). The percept xi is assumed to

be a random sample from the bivariate normal distribution that describes all possible

percepts elicited by this cup. Note that the perceived sweetness of this particular cup

(i.e., x1) falls in the interval assigned to a rating of 3, so in this hypothetical example,

the participant responds with a rating of 3 when asked to judge sweetness.

The model assumes that if the participant had been asked to rate the richness of the

coffee’s aroma, rather than its sweetness, then the participant would have evaluated the

position of the percept x2 relative to the positions of three criteria established on the

aroma dimension (i.e., denoted X2,1, X2,2 and X2,3, respectively). These are not shown
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in Figure 2.1 to keep the figure as simple as possible.

The tilted ellipse in the top panel of Figure 2.1 is a contour of equal likelihood from

the imagined ideal cup of coffee. Note that on average the imagined ideal coffee is sweeter

and has a richer aroma than the current cup. The star labeled y denotes the sensory

values of the imagined ideal on this trial, which again is assumed to be a random sample

from the bivariate normal distribution that describes all possible imagined ideals. So

note that the model predicts that because of a variety of different sources of variability

(e.g., in preference and memory), the imagined ideal changes from trial to trial. The

model assumes that to respond with a liking rating, the participant imagines the ideal

cup of coffee, computes the distance (or similarity) of the current cup to this imagined

ideal, and then responds with a rating based on this distance, with greater distances (or

lower similarities) eliciting lower levels of liking and therefore smaller ratings. In Figure

2.1, the distance falls in the interval assigned to a rating of 2 (see the bottom panel), so

the participant responds with a liking rating of 2 on this trial.

More generally, consider an experiment in which participants are presented with N

stimuli (one per trial) and each stimulus varies on D sensory dimensions. The goal is to

collect ratings from 1 to r for each stimulus on the sensory strength for all D dimensions

and on liking or some other hedonic response (with r representing maximum strength

or maximum liking). In this general experiment, the GRT-unfolding model makes the

following assumptions.

1) The sensory value on a trial when stimulus i is presented is represented by a

D × 1 random vector xi in which x′
i = [x1,x2, ...,xD], where xd represents the sensory

magnitude on stimulus dimension d. Because of stimulus and perceptual noise and in-

dividual difference, xi varies randomly over trials and participants. We assume xi has

a multivariate normal distribution with mean vector µ
i
and variance-covariance matrix

Σi.
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Note that the variance-covariance matrix Σi contains D(D − 1)/2 covariances and

D variances. For example, in the next section we consider an application of the GRT-

unfolding model to an experiment in which participants rate the stimuli on 6 sensory

dimensions. In this case, each Σi includes 15 covariances and 6 variances. If these are

all free parameters then the model would include 27 parameters for each stimulus (15

covariances, 6 variances, and 6 means). These would require an enormous amount of

data for accurate estimation. Furthermore, estimation of the covariances would require

simultaneous ratings on all possible pairs of dimensions, plus the assumption that all of

these ratings are based on the same sensory sample of the stimulus. Unfortunately, this

assumption seems untenable. For example, if a participant is asked to rate a stimulus

on 6 different dimensions then it seems likely that the participant would re-examine the

stimulus one or more times before responding with all 6 ratings. According to the model,

the sensory representation of the stimulus after each examination is represented by a new

random sample xi. If ratings on two dimensions are based on different xi samples then

the correlation (e.g., across trials) between the ratings will not reflect the correlation

between sensory dimensions.

For these reasons, we only consider applications of the model to experimental paradi-

gms in which a single one of the D + 1 ratings are requested on each trial, and each

stimulus is presented to every participant on at least D+1 different trials to ensure that

all the necessary ratings are collected. In this case, no information about covariances is

available, and as a result, we assume that all covariances equal 0 and therefore that Σi

is diagonal. Furthermore, we also assume, without loss of generality, that all variances

equal 1. This just serves to set the arbitrary unit of measurement on each dimension.

Collectively, these assumption mean that, for all stimuli, Σi = I, where I is the identity

matrix.

2) When asked to rate the sensory magnitude of the stimulus on dimension d, the
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participant constructs r − 1 response criteria, denoted Xd,1, Xd,2, ...Xd,r−1, and responds

with rating j if and only if Xd,j−1 < xd ≤ Xd,j, where Xd,0 = −∞ and Xd,r = ∞. Note

that in the Figure 2.1 example, the perceived value of stimulus i on dimension 1 of this

hypothetical trial (i.e., x1) lies between X1,2 and X1,3 and therefore the participant rates

the sensory magnitude of this stimulus on dimension 1 as 3.

3) To generate a liking rating, the participant first imagines an ideal stimulus, which

is represented by the D × 1 random vector y. Because of variability in the imagining

process (e.g., due to variability in memory and affective state) and individual difference,

y varies randomly over trials and participants. We assume y has a multivariate normal

distribution with mean vector µ
Y
and variance-covariance matrix ΣY .

In the Figure 2.1 example, note that the imagined ideal distribution has greater

variance on sweetness than on aroma, and that the values on these two dimensions have

a slight positive correlation. The greater sweetness variance indicates that sweetness is

less critical to liking than aroma because when participants imagine their ideal cup of

coffee they are more consistent in their imagined aroma than in their imagined ideal level

of sweetness.

4) The participant computes the Mahalanobis distance ∆Y,Xi
between the imagined

ideal y and the sensory value xi (from step 1). As we will see, this is just regular

Euclidean distance except each dimension is weighted by its psychological importance

to the ideal. So for example, if a participant cares more about sweetness than aroma,

then the Mahalanobis distance between the current percept and the imagined ideal would

weight differences between the perceived sweetness of the current cup of coffee and the

imagined ideal cup more heavily than differences in aroma.

5) The participant constructs r− 1 response criteria, denoted XI,1, XI,2, ...XI,r−1, and

responds with rating j if and only if XI,j < ∆Y,Xi
≤ XI,j−1, where XI,0 = ∞ and XI,r = 0.

Note that in the Figure 2.1 example, the distance between the imagined ideal and the
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perceived stimulus (i.e., ∆Y,Xi
) lies between XI,2 and XI,1 and therefore the participant

responds with a liking rating of 2.

2.2.1 Fitting the Model to Data

For each stimulus, the data can be collected as a (D+1)×r matrix in which the entry

in row d and column j is the frequency that participants assigned rating j to the stimulus

on dimension d, where row D + 1 is liking. Note that each matrix has (D + 1)× (r − 1)

degrees of freedom, since there is one constraint per row (i.e., each row sum equals the

number of trials that participants rated the stimulus on the attribute associated with that

row). There is one such matrix for each of the N stimuli, so overall, the data include

N × (D + 1)× (r − 1) degrees of freedom.

The model predicts that the probability that rating j is assigned to stimulus i on

sensory dimension d equals the area under the dimension d marginal pdf of xi between

Xd,j−1 and Xd,j. Because these marginal distributions are all normal, each of these

probabilities can be computed via straightforward z transformations and appeal to the

cumulative z distribution function.

Computing the predicted probabilities of various liking ratings is considerably more

difficult. The predicted probability that participants assign stimulus i a liking rating of

j equals

PL(j|Si) = P (XI,j < ∆Y,Xi
≤ XI,j−1), (2.1)

where, as before, ∆Y,Xi
is the Mahalanobis distance between the imagined ideal y and

the sensory value xi. Since ∆Y,Xi
is nonnegative, note that

PL(j|Si) = P (XI,j < ∆Y,Xi
≤ XI,j−1)

= P (X2
I,j < ∆2

Y,Xi
≤ X2

I,j−1). (2.2)
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Now

∆2
Y,Xi

= (y − xi)
′Σ−1

Y (y − xi)

= w′Σ−1
Y w, (2.3)

where w = y−xi is a multivariate normally distributed random vector with mean vector

µ
W

= µ
Y
− µ

i
and variance-covariance matrix ΣW = ΣY + I.

The random variable ∆2
Y,Xi

defined by Eq. 2.3 has the distribution of a weighted sum

of D non-central χ2 random variables, each with one degree of freedom (Scheffé, 1999).

In the application described in the next section, D = 6, which is large enough so that

this weighted sum could be considered approximately normally distributed. Therefore,

to implement the normal approximation to the Eq. 2.2 probability, we need only to

compute the mean and variance of ∆2
Y,Xi

.

The Appendix shows that the Eq. 2.3 random variable has mean

µ∆2 = D + trace(Σ−1
Y ) + (µ

Y
− µ

i
)′Σ−1

Y (µ
Y
− µ

i
) (2.4)

and variance

σ2
∆2 = 2D + 4trace(Σ−1

Y ) + 2trace(Σ−2
Y ) + 4(µ

Y
− µ

i
)′Σ−1

Y (I + Σ−1
Y )(µ

Y
− µ

i
). (2.5)

Therefore, we can approximate the predicted probability that rating j is assigned to

stimulus i on the liking dimension by computing the area between X2
I,j and X2

I,j−1 under

the pdf of a normal distribution with mean and variance specified by Eqs. 2.4 and 2.5,

respectively.
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Figure 2.2: The 20 planets shown to each participant.

2.2.2 An Empirical Application

As an empirical test of the model, we ran an experiment in which 29 participants rated

the 20 images of hypothetical planets shown in Figure 2.2 on six sensory dimensions and

on an hedonic dimension. Specifically, participants were told to imagine that they were

in a spaceship traveling through deep space, and that their mission was to rate planets

they encountered (from 1 to 7) on the prominence of a number of sensory dimensions

(water, clouds, rings, moons, blue-green, red-yellow) and on how important it was to

retain a photograph of the planet and send it back to earth.

2.3 Methods

2.3.1 Stimuli

All images were gathered using SpaceEngine (SpaceEngine.org), a universe simulator

that randomly generates a plethora of astronomical objects. The procedural generation
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process creates 3-dimensional rendered planets, which are captured with extreme detail

using a 3840×2160 4K resolution and resulting in over 8 million pixels per image. Due to

the stochastic nature of each image, the options for planetary features and combinations

are nearly limitless. The stimuli used in this experiment are displayed in Figure 2.2.

2.3.2 Participants

Twenty-nine students at the University of California, Santa Barbara participated in

an (approximately) one-hour experiment in exchange for course credit. All participants

had normal color vision. All relevant ethical regulations were followed and the study pro-

tocol was approved by the Human Subjects Committee at UCSB. Informed consent was

obtained from all participants, and every participant was allowed to quit the experiment

at any time for any reason and still receive credit.

2.3.3 Procedure

Participants were told to imagine that they were in a spaceship traveling through deep

space and that the ship automatically takes photos of planets that it encounters. They

were also told that their mission was to rate each planet on a number of physical attributes

and on how important they thought it was to send the image back to earth so that the

rest of humanity would know of that planet’s existence. Participants were presented the

images in 5 phases. During each phase, the 20 images were displayed one-at-a-time in

a random order. In phase 1, participants passively observed the images. In phases 2-5,

each image was displayed with a ratings bar that ranged from 1 to 7 and participants

were instructed to move the mouse and click the integer on the ratings bar that agreed

with their rating. During phases 2 and 4, the image and ratings bar were accompanied by

a word cue that specified the physical attribute to be rated, such as“water”. Participants
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rated 6 different attributes (or dimensions) and each attribute/image combination was

presented once per phase, resulting in a total of 240 sensory judgments during phases 2

and 4 (2 sensory judgments per planet per dimension). During phases 3 and 5, the image

and ratings bar were accompanied by the word cue “importance”. Prior to each phase,

participants were reminded that their job was to use the mouse to click the value on the

scale that best reflected the prominence of the feature indicated by the word cue, with

1 being least prominent and 7 being most prominent. Each image was presented once

during phases 3 and 5, resulting in 2 importance judgments per planet.

A few participants were not sufficiently engaged in some phases of the experiment.

These participants tended to repeat the same rating, over and over. Therefore, any

importance phase (3 and 5) in which the participant emitted 3 or fewer unique ratings

was excluded from analysis. Six liking phases were excluded, leaving 52 liking phases for

analysis. Additionally, any sensory phase (2 and 4) in which the participant gave the

same rating on any dimension to all images was excluded from analysis. One sensory

phase was excluded resulting in 57 sensory phases for analysis.

2.4 Results

The data from this experiment were aggregated across participants and then recorded

in a 20 (planets) × 7 (dimensions) × 7 (ratings) frequency array, where importance was

included as one of the 7 dimensions. The importance ratings for each planet are shown

in Figure 2.3. For each planet and dimension, the frequency sum across the 7 ratings

equals the number of trials participants were asked to rate that planet on that dimension.

Therefore, the data include 6 degrees of freedom for each planet and dimension, and so

the entire data set includes 840 degrees of freedom (i.e., 20 × 7 × 6).

The GRT-unfolding model was fit to these data. The model included a total of 183
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Figure 2.3: Importance ratings for each of the 20 planets.

free parameters. Without loss of generality, we fixed the mean vector for planet N, µ
N
, to

the zero vector. In addition, as described earlier, to limit the number of free parameters

we fixed the variance-covariance matrices of all sensory distributions to Σi = I. The

following parameters were all free to vary:

1) The remaining 19 mean vectors, µ
i
for all i ̸= N . Each µ

i
is 6× 1, so there were

a total of 114 free mean parameters (i.e., 19 × 6).

2) Six criteria, Xd,j, on each of the 6 sensory dimensions, resulting in an additional

36 parameters.

3) Six means for the ideal distribution, µ
Y
,

4) The 6 × 6 ideal variance-covariance matrix, ΣY (21 free parameters).

5) Six criteria, XI,j, on the squared-distance-to-ideal dimension.

All parameters were estimated via constrained optimization by linear approximation

(COBYLA; Powell, 1994) using SciPy (Virtanen et al., 2020) in Python (Van Rossum
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& Drake, 2011) by minimizing the sum of squared errors between the predicted and

observed response frequencies.

Overall, the GRT-unfolding model accounted for 95.27% of the variance in the data

(r2). Although the model included 183 free parameters, because the data had 840 degrees

of freedom, after parameter estimation, there were still 657 degrees of freedom left to test

the model (i.e., 840−183). So accounting for 95% of the variance in these 657 proportions

seems impressive. Not surprisingly, however, the model was more successful at accounting

for the sensory ratings than the liking ratings. Specifically, the GRT-unfolding model

accounted for 96.09% of the variance in the sensory ratings data and 73.67% of the

variance in the liking ratings.

Figure 2.4 shows estimated sensory distributions for each planet on each dimension

as well as the estimated criteria. Note that, except for rings, the planets vary fairly con-

tinuously on all sensory dimensions. Not surprisingly, the perceived prominence of rings

is approximately bimodal with some planets displaying prominent rings (e.g., planets A,

C, and F) and other planets showing a prominent absence of rings (e.g., planets B, D,

and S).

Table 2.1 shows the variance-covariance matrix of the estimated ideal distribution.

The variances provide an inverse measure of how important each dimension is to the

ideal. Note that the smallest variance is on the clouds dimension and the next smallest is

on water. The small variances suggest that when ideal planets are imagined on different

trials, participants always tend to imagine a planet with similar values on the water and

cloud dimensions. In contrast, the variances on the red-yellow and moons dimensions

are large, suggesting that the different imagined ideals vary widely on the red-yellow and

moons dimensions. Therefore, for example, if the imagined ideal sometimes has a moon

and sometimes does not, then the presence or absence of a moon is not an important

attribute of the ideal planet.
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Figure 2.4: Estimated sensory distributions from the best-fitting version of the
GRT-unfolding model, along with the estimated criteria on each dimension that par-
ticipants used to assign ratings.

Figure 2.5 shows the ideal distribution and the mean of each planet distribution pro-

jected onto the plane defined by the two most important sensory dimensions – namely,

water and clouds. The ellipses denote the contours of equal likelihood of the ideal dis-

tribution, so the ideal mean lies at the center of these ellipses. Note from Table 2.1 that

water and clouds are negatively correlated in the ideal distribution, which is the reason

that the ellipses in Figure 2.5 have a negative orientation. This makes sense because as

cloud cover increases there is less available surface to display water. Note that planet B

is closest to the ideal mean, closely followed by planets A and C, and that planets R,

S, and T are furthest (i.e., see Figure 2.2 for ordering relative to the ideal when consid-
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Table 2.1: Variance-covariance matrix of the ideal distribution from the best-fitting
version of the GRT-unfolding model.

Water Clouds Rings Moons Blue-Green Red-Yellow
Water 33.65 -20.46 33.27 29.46 30.45 -10.09
Clouds 23.09 -23.32 -10.77 1.46 1.78
Rings 191.14 245.11 83.73 21.00
Moons 558.85 113.26 66.89

Blue-Green 145.61 20.25
Red-Yellow 214.29

ering all dimensions). Therefore, these data suggest that the ideal planet would have a

greater prominence of cloud cover and water than any of the planets that were shown to

participants.

2.5 Discussion

The GRT-unfolding model uses sensory ratings to build a probabilistic, multidimen-

sional representation of the sensory experiences elicited by exposure to each stimulus. If

participants rate the stimuli on D sensory dimensions then the sensory representations

built by the model will be D dimensional. And the model will also build a representation

of the ideal stimulus in this same space. It then attempts to account for hedonic ratings

by measuring differences between the presented stimulus and the imagined ideal on each

of these D sensory dimensions. This approach can only hope to account for the hedonic

responses of participants if the rated sensory dimensions include all stimulus attributes

that significantly affect the hedonic response. To take an extreme example, consider an

experiment in which participants rate a set of stimuli on D sensory dimensions but that

the participants’ hedonic responses to those stimuli depend exclusively on some other,

unrated sensory dimension. In this case, their hedonic responses will be independent of
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Figure 2.5: Contours of equal likelihood of the ideal distribution from the best-fitting
version of the GRT-unfolding model (i.e., the ellipses) and the sensory means of each
planet projected onto the plane defined by the water and cloud dimensions.

the stimulus value on any of the rated dimensions, and therefore a comparison of the

stimulus to the ideal values on the D rated dimensions will not predict the participant’s

hedonic response. So the efficacy of the GRT-unfolding model depends strongly on the

ability of the experimenter to identify all sensory dimensions that could significantly

affect the hedonic responses of participants to the selected stimuli.

Given this, the default expectation should be that the model will account for sensory

ratings better than it accounts for hedonic ratings. In the experiment described here, the

GRT-unfolding model accounted for 96% of the variance in the sensory ratings and 74%
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of the variance in the hedonic ratings. Therefore, we believe that one plausible account

for this difference is that participants based their hedonic responses, at least in part,

on some unrated dimension or attribute of the planets. Traditional multidimensional

unfolding models that lack any sensory data could just add more unspecified dimensions

to the model until goodness-of-fit is maximized (e.g., exactly as in MDS). Even so, note

that a better fit by such a model would provide only vague information about the sensory

qualities of the ideal. Given that the GRT-unfolding model provides precise estimates

of the sensory qualities of the ideal on all rated sensory dimensions, we believe that

accounting for 74% of the variance in the hedonic ratings is impressive, especially since the

model was provided no information about how participants might make these judgments.

As described earlier, a number of multivariate generalizations of the unfolding model

have been proposed (Zinnes & Griggs, 1974; De Soete et al., 1986; Mullen & Ennis, 1991;

Ennis, 1993; Ennis & Johnson, 1994). Despite the theoretical value of these models,

Ennis and Ennis (2013) suggested three reasons why these generalizations have not had

a greater practical impact. First, the models require pairwise comparisons that can

be expensive to obtain (e.g., “which do you prefer, A or B?”). The GRT-unfolding

model avoids this criticism because it only requires hedonic and sensory ratings on single

stimuli. For example, with the 20 planets used in our experiment, pairwise comparisons

would require collecting ratings on 190 different pairs (i.e., (20 × 19)/2), whereas the

GRT-unfolding model only requires ratings on the 20 individual planets. Therefore, the

GRT-unfolding model requires far fewer trials than previous models, and the data it

does require can be readily collected remotely via any of several widely available current

software packages.

Second, Ennis and Ennis (2013) noted that previous models are mathematically com-

plex, which makes them difficult to apply. In contrast, the GRT-unfolding model is simple

to apply due to the normal approximation to the squared Mahalanobis distance between
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the sensory representation of the stimulus and the imagined ideal. This approximation

reduces the complexity of the model significantly since the probability of the various

sensory and liking ratings can be computed via straightforward z transformations and

appeal to the cumulative z distribution function. Hopefully, these advantages will lead

to more applications of the GRT-unfolding model to academic and industry data sets.

Third, Ennis and Ennis (2013) noted that another reason that previous multidimen-

sional unfolding models are not more popular is because they do not generate individual-

level ideal representations. This is largely due to the enormous amount of data they

require (e.g., because they rely on paired-comparison experiments). As we just noted,

the GRT-unfolding model requires much less data and therefore is much less susceptible

to this problem. Nevertheless, because the GRT-unfolding model requires ratings on each

identified sensory dimension, the amount of data it requires increases (linearly) with the

number of rated sensory dimensions. Therefore, whereas individual ideal representations

should be straightforward to estimate in applications where only a few sensory dimen-

sions require ratings, estimating individual ideal representations is more problematic

when many sensory dimensions are required. For example, in our empirical application

to planets, we collected ratings on 6 sensory dimensions, which was too many to allow

the model to be fit to individual participant data when each participant completed only

a single 50-minute experimental session.

If individual ideal representations are desired, then there are several options. One, of

course, is to collect sufficient data from each participant to allow the model to be fit to

individual-participant data – either by increasing the length of the experimental session

or increasing the number of sessions. A second option is to reduce the number of rated

sensory dimensions, which would increase the number of ratings that could be collected

on each dimension in a single session. The trick here is to eliminate dimensions that do

not affect the participant’s hedonic response. One approach might be to run an initial
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group experiment with many dimensions, fit the model to the group data, and then use

these results to identify the key sensory dimensions. For example, the variances listed

in Table 2.1 indicate that in our experiment, Moons had little or no effect on hedonic

ratings, and Rings and Red-Yellow had at most a minimal effect. Therefore, a follow-up

experiment that asked for ratings only on the Water, Clouds, and Blue-Green sensory

dimensions might be able to collect enough data to allow estimation of individual ideals

at the cost of only a minimal decrease in goodness-of-fit. Another approach to reducing

the number of sensory dimensions is to consult someone with expertise with the stimuli

(e.g., a Master Sommelier in the case of wines).

Finally, a third option is to estimate an ideal representation, not for individual par-

ticipants, but for groups of similar participants. This requires a separate experiment for

each identified group, but each participant in these experiments only needs to complete a

single experimental session. This approach seems especially relevant for product design,

since industries do not create unique products for each individual, but they might create

a product that is tailor-made for one particular segment of consumers.

As an empirical test of the GRT-unfolding model, we chose the planets shown in

Figure 2.2 because they are interesting, real-world objects. However, the GRT-unfolding

model could be applied to any stimuli. Because the model estimates the sensory values

of the ideal stimulus, it has the potential to greatly benefit product development. In

many cases, the sensation elicited by a stimulus on an identified sensory dimension is

directly related to some underlying physical quantity. For example, the sweetness of a

Merlot wine is related to its residual sugar content (among other factors). Therefore,

identifying the ideal sweetness of a Merlot could facilitate the efforts of vintners to create

more popular wines.
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Chapter 3

A Neurocomputational Model of

Flexible Rule Learning

The content of chapter 3 is the result of a collaboration with F. Gregory Ashby.

3.1 Introduction

Humans have a remarkable ability to adapt flexibly to changes in the environment.

This flexibility is crucial for successful performance in tasks that are diverse as choosing

the appropriate hunting grounds based on prey availability to abiding by appropriate

social norms in different social settings. Flexible decision making has been studied ex-

tensively and significant progress has been made in understanding how flexible behavior

is implemented in the brain.

The standard paradigm for investigating behavioral flexibility is reversal learning

(A. Roberts, 2006; Izquierdo, Suda, & Murray, 2004; Murray & Wise, 2010; Dias, Rob-

bins, & Roberts, 1996; Rygula, Walker, Clarke, Robbins, & Roberts, 2010; Monosov &

Rushworth, 2021). In typical reversal-learning experiments, the animal must initially
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learn stimulus-reward associations, which at some point then reverse. Often only one

reversal occurs but some paradigms include repeated reversals.

Many human behaviors are rule guided – that is, they depend on a set of explicit

instructions that can be generalized to a variety of different stimuli or scenarios (e.g.,

counting to add two numbers). Flexibility with respect to rule-guided behaviors is also

critical. Perseverating with an old rule after an environmental change can have deadly

consequences.

The goal of this article is to better understand how flexibility in rule-guided behaviors

is implemented at the neural level. Toward this end, we propose a novel neurocompu-

tational model of flexibility in rule learning and use. The model is constructed from

highly simplified building blocks that each represent a different brain region and that

implement win-stay and lose-switch signals, as well as compute and represent predicted

rewards. However, as we will see, despite its simplicity, the model gives an impressively

accurate qualitative and quantitative account of some challenging behavioral and neural

data.

3.1.1 TheWisconsin Card Sorting Test (WCST) and its Analogs

The Wisconsin Card Sorting Test (WCST; Heaton, 1981) is among the most widely

used experimental paradigms for studying the flexibility of rule-guided behaviors. The

WCST is a well-known neuropsychological assessment that was designed originally to

detect frontal dysfunction (e.g., Kimberg, D’Esposito, & Farah, 1997). Stimuli in this

task are cards containing geometric patterns that vary in hue, shape, and the number of

symbols that are depicted. The participant’s task is to use trial-by-trial feedback to learn

to assign each card to its correct category. In all cases, the correct strategy is a simple

one-dimensional rule (e.g., choose the response that matches the hue of the symbols
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on the stimulus card). The paradigm assesses flexibility because at certain times, and

without any warning to the participant, the correct classification rule changes.

Simplified versions of the WCST have been developed for use with nonhumans –

especially nonhuman primates (Mansouri & Tanaka, 2002; Mansouri, Matsumoto, &

Tanaka, 2006; Buckley et al., 2009). In these WCST analogs, the animal must use

feedback to switch among alternative abstract rules. Critically, no cues are presented

that signal a change in the rewarded rule and these rules are abstract, that is, they are

independent of the features of the stimuli. Therefore, this task is similar to traditional

reversal-learning paradigms, in that the rewarded abstract rule reverses at some point

during the experiment, but it differs in that it does not rely on associative learning.

An example of a WCST analog that was reported by Buckley et al. (2009) is illustrated

in Figure 3.1. On each trial of this experiment, one of two possible abstract rules was

active (rewarded). The animal’s task was to match either the shape or the hue of the

sample. There were 36 stimuli, each of which was constructed from one of 6 possible hues

and one of 6 possible shapes. At the beginning of each trial, the animal was presented

with a single randomly selected stimulus in the center of the screen, called the sample.

After the animal touched the sample, 3 additional stimuli were then presented. One of

these had the same hue as the sample, another had the same shape, and the third did

not match the sample on hue or shape. If the animal selected the correct stimulus – that

is, the stimulus that matched the sample on hue or shape depending on which rule was

active, then a food reward was delivered and the correctly chosen stimulus remained on

the screen for 1 second. If the animal chose incorrectly then no reward was delivered, the

stimuli were removed from the screen, and a white circle remained on the screen for 1

second. The intertrial interval lasted 12 seconds following an error and 6 seconds following

a correct response. The active rule changed when the animal reached an accuracy of 85%

correct on the previous 20 trials.
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Figure 3.1: WCST analog. See text for details. Figure is adapted from Buckley et al. (2009).

Buckley et al. (2009) trained 14 macaque monkeys in this task. Each animal was

initially trained for 15 daily sessions of 300 trials each. After these preoperative ses-

sions, the animals were split into a variety of different groups. For our purposes, the

most important groups were the dlPFC group (n = 3), which received aspiration lesions

bilaterally to the principal sulcus within the inferior dorsolateral prefrontal cortex, the

ACC group (n = 4), which received aspiration lesions bilaterally to the anterior cingulate

cortex sulcus within the medial frontal cortex, the OFC group (n = 3), which received

aspiration lesions bilaterally to the orbitofrontal cortex, and the control group (n = 6),

which were not operated on.1 For detailed information on all aspects of the experiment,

see the supplementary information from Buckley et al. (2009).

1There were also two other groups. One received aspiration lesions bilaterally to the superior dorso-
lateral prefrontal cortex, and the other received bilateral lesions to the ventrolateral prefrontal cortex.
We did not model results from either of these groups. We excluded the former group because there was
no effect of these lesions on any performance measures, and the latter group was excluded because these
animals only completed a task in which the rule changed at the beginning of each daily session and
did not change within a session. Furthermore, although Buckley et al. (2009) stated that ventrolateral
PFC lesions impaired the ability of the animals to implement rules they had learned during preoperative
training, no data documenting this impairment were provided that we could model.
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Buckley et al. (2009) reported detailed behavioral results from all these different

groups, which included the total number of rule switches, the proportion of perseverative

errors, the average proportion of perseverative errors in the three trials following each rule

change, the proportion correct after an error, and the proportion correct after a string of

consecutive correct responses (where the length of the string could take any value from 1

to 7). As a result, these data form an excellent testbed for any neurobiologically oriented

model of flexible rule learning, and later in this article, we will test the validity of the

new model we propose by examining its ability to account for this detailed data set.

3.2 A Neurocomputational Model of the WCST

This section describes a new neurocomputational model of the context-dependent rule

learning that occurs in the WCST and especially in the simplified version illustrated in

Figure 3.1.

The general problem for any agent trying to perform well in the Figure 3.1 task is

as follows. On any trial, the agent can choose one of two possible categorization rules

– either select the stimulus that matches the shape of the sample or matches the hue.2

Call the rule in which the agent matches the shape MS and the rule in which the agent

matches the hue MH . Also on each trial, the environment can be in one of two possible

contexts – a reward is delivered if the agent selects the stimulus that matches the sample

on either shape or hue. Call the former context CS and the latter CH . So the agent must

learn which context is active on each trial and which rule is optimal in each context.

Figure 3.2 describes the architecture of the model, which includes five modules; the

Spread-of-Effect Learning (SEL) module, the Context-Dependent Rule Learning (CDRL)

2Logically, other rules are possible. For example, the agent could guess randomly, or choose the
stimulus that does not match the sample on hue or shape. However, in the Buckley et al. (2009)
experiment, such choices were rare – even during pre-op training.
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Figure 3.2: Model Architecture. SEL = spread of effect learning module, HS =
heuristic strategy module, CDRL = context-dependent rule learning module, WM
= working memory module, RC = rule choice module, ACC = anterior cingulate
cortex, BLA = basolateral amygdala, Area 47/12o = an area in ventolateral prefrontal
cortex, OFC = orbitofrontal cortex, NAcc = nucleus accumbens, dlPFC = dorsolateral
prefrontal cortex, R(t) = obtained reward on trial t, MS(t + 1) = a choice to match
the shape of the trial t+1 sample, MH(t+1) = a choice to match the hue of the trial
t+ 1 sample. See the text for a description of the other inputs and outputs.

module, the Heuristic Strategy (HS) module, the Working Memory (WM) module, and

the Rule Choice (RC) module.

The model uses the feedback from the current trial to: 1) select a strategy (either stay

with the current context, or switch contexts), 2) estimate the context that will be active

during the next trial, 3) update the weights associated with each rule in both contexts,

and 4) select the rule to apply on the next trial. In brief, the HS module learns which

context is currently active, and the CDRL module learns which rule to apply in each

context. The SEL module computes the predicted reward on each trial and attempts

to bias the HS module’s decision about which context is currently active. The WM
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module holds the current context in working memory during all delay periods, and the

RC module uses the current context to select and implement a categorization rule.

The model straddles the boundary between the algorithmic and implementational

levels in Marr’s (1982) hierarchy. It is neurobiologically informed in the sense that all

but one of its modules are mapped onto brain regions and are linked together in a circuit

that specifies the inputs and outputs of each region.

The following subsections describe each module in detail. The main focus is to de-

scribe the computations performed by each module. We also give a brief justification

of our neurobiological assumptions. However, these latter assumptions are considered in

more detail in the general discussion.

3.2.1 Spread of Effect Learning (SEL) Module

The SEL module tracks reward according to the Rescorla-Wagner rule:

RPE(t) = R(t)− P (t), (3.1)

P (t+ 1) = P (t) + λRPE(t), (3.2)

where RPE(t) is the reward prediction error on trial t, R(t) is the obtained reward on

trial t, P (t) is the predicted reward on trial t, and λ is the learning rate. We assume that

R(t) = 1 on rewarded trials and R(t) = 0 on non-rewarded trials. As a result, note that

P (t) can also be interpreted as the predicted probability of reward.

The SEL module has two outputs. The first, which is input to the HS module, is a

strategy signal, SSEL(t+1), that recommends either staying with the current context or

switching contexts on the subsequent trial (i.e., on trial t + 1). Following the feedback
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received on trial t, the SEL module computes P (t+1) according to Eq. 3.2. If P (t+1) < q

then the module sets SSEL(t+1) = stay with probability P (t+1) and SSEL(t+1) = switch

with probability 1−P (t+1), and projects this value to the HS module, where it attempts

to bias ongoing decision making. If P (t + 1) ≥ q then there is no output from the SEL

module to HS. The strategy signal SSEL(t + 1) models a spread of effect, such that

decisions to stay or switch are made by integrating historical rewards, rather than solely

on the basis of feedback from the most recent trial. The length of the memory for past

rewards is determined by λ of Eq. 3.2.

The second output of the SEL module, which is sent to the CDRL module, is

α |RPE(t)| – that is, the absolute value of the RPE modulated by a learning rate α.

This value, which measures the surprise of the trial t outcome, is used by the CDRL

module to update the rule weights. The SEL module has three free parameters (q, λ,

and α; P (0) = 0.5 was fixed prior to fitting the model).

We assume the SEL module is mediated within the BLA and the ACC. The amyg-

dala has been shown to play a role in a number of computational processes that are of

relevance to flexible behavior in the WCST, including noncontingent learning (Jocham et

al., 2016; Chau et al., 2015) and the encoding of lose-switch signals (Chau et al., 2015).

Furthermore, the amygdala also plays a central role in learning from surprise (Pearce-

Hall learning; Holland & Schiffino, 2016; Roesch, Esber, Li, Daw, & Schoenbaum, 2012).

For example, learning rate changes in response to surprise were eliminated by BLA le-

sions (Stolyarova & Izquierdo, 2017). In addition, lesions to the BLA facilitate reversal

learning in rats (Izquierdo et al., 2013).

The assumption that the SEL module learns according to the Rescorla-Wagner rule

is consistent with the role of the amygdala in Pavlovian conditioning. One output of the

SEL module is the α weighted absolute RPE which is later used by the CDRL module

(OFC-NAc core synapses) to gate the amount of learning that occurs at OFC-NAc core
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synapses. This is consistent with results showing that the amygdala may be tracking

the value of associability, which is used to gate future learning (Li, Schiller, Schoenbaum,

Phelps, & Daw, 2011; Holland & Schiffino, 2016; Roesch et al., 2012). Additionally, some

evidence suggests that the ACC represents environmental volatility (Behrens, Woolrich,

Walton, & Rushworth, 2007), which some models assume modulates the learning rate

(Mathys, Daunizeau, Friston, & Stephan, 2011). The ACC also has a role in integrating

feedback over time (Kennerley, Walton, Behrens, Buckley, & Rushworth, 2006). Further-

more, the amygdala has been shown to encode unsigned prediction errors that are then

propagated to ACC where these errors are equipped with a sign and propagated back to

the amygdala (Klavir, Genud-Gabai, & Paz, 2013). The other output of the SEL module

is the strategy signal, Ssel(t+ 1). This is consistent with findings that the BLA encodes

win-stay, lose-shift signals (Chau et al., 2015). Importantly, however, Chau et al. (2015)

reported that these BLA win-stay, lose-shift signals seemed to be driven primarily by

the lose-shift signal and only on trials when accuracy was below 70 percent (averaged

over the previous 5 trials). To model this finding we set the threshold, q, to 0.7 and the

win-stay, lose-shift signal generated by the SEL module is only transmitted to the HS

module on trials in which predicted accuracy does not exceed q.

3.2.2 Context Dependent Rule-Learning (CDRL) Module

The CDRL module learns which rule to apply in each context by tracking rewards

using a Pearce-Hall/Rescorla-Wagner hybrid model that updates rule values within the

context that the WM module assumes is currently active. The Pearce-Hall component

of the model enables the CDRL module to use surprise to modulate the amplitude of

prediction errors, where surprise is defined as the absolute value of the RPE from the

previous trial as computed by the SEL module (modulated by α; so surprise equals
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α |RPE(t− 1)|).

Let WIJ(t) denote the weight of rule MI (I = S or H) in context CJ (J = S or H) on

trial t. Without loss of generality, we assume that WSJ(t) +WHJ(t) = 1 for J = S and

for J = H, and for all t. We set the initial weights to WSS(0) = WHH(0) = 0.7 to reflect

the fact that prior to surgery, the macaques underwent extensive training in which they

were able to learn the value of the rules in each context (see supplementary materials in

Buckley et al., 2009).

If the WM module predicts that the current context is CWM(t) = CS then upon

receiving feedback, the CDRL module updates the rule weights as follows:

WSS(t+ 1) = WSS(t) +R(t)α |RPE(t− 1)| [1−WSS(t)], (3.3)

and

WHH(t+ 1) = WHH(t)− β WHH(t). (3.4)

Alternatively, if WM predicts that the current context is CWM(t) = CH then upon

receiving feedback the CDRL module updates the weights as follows:

WHH(t+ 1) = WHH(t) +R(t)α |RPE(t− 1)| [1−WHH(t)], (3.5)

and

WSS(t+ 1) = WSS(t)− β WSS(t). (3.6)

In other words, the rules associated with the active context are updated via a Pearce-

Hall/Rescorla-Wagner hybrid rule, but only when the reward is positive (because R(t) =

0 on error trials).3 Therefore, negative reward is interpreted as evidence that the agent’s

3These equations assume that R(t) always equals 0 or 1 because reward magnitude was not varied in
the Buckley et al. (2009) experiment. In applications to experiments with variable reward magnitudes,
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assumption about the active context is wrong rather than its choice about the rule within

that context. This is reasonable given the extensive prior training that allowed the

animals to learn that both rules are valuable if used in the appropriate context. The

weight of the correct rule associated with the inactive context decays at rate β. In

the Buckley et al. (2009) experiment the active rule changes fast enough that WSS(t)

and WHH(t) rarely decay to a value below 0.5 (the weights fell below 0.5 on 0.01%,

0.025%, 0.18%, and 0.006% percent of trials for the Control, OFC, ACC, and DLPFC

lesion groups, respectively). In an experiment in which the environment is more stable,

equations 3.4 and 3.6 should be modified so that when the context is inactive for a

sufficiently long period the weights converge to 0.5. This would imply that the agent has

forgotten the association between the rules and the inactive context.

The outputs of the CDRL are the four rule weights (two for each context). The CDRL

module has two free parameters [β and the value of WSS(0) = WHH(0)].

The CDRL can be viewed as representing an actor-critic architecture. The actor is im-

plemented by OFC-NAc core synapses, whereas the critic is implemented by a separate

neural network that generates the dopamine required for strengthening the OFC-NAc

core synapses. Support for the hypothesis that circuits within OFC and NAc core repre-

sent the actor comes from studies suggesting that these regions play a role in encoding

prediction errors (Hart, Rutledge, Glimcher, & Phillips, 2014; Rutledge, Dean, Caplin,

& Glimcher, 2010), value (Schoenbaum, Takahashi, Liu, & McDannald, 2011; Corbit,

Muir, & Balleine, 2001), and rules (Sleezer, Castagno, & Hayden, 2016). Previous mod-

els also proposed that mappings between values and states are encoded in the PFC-NAc

synapses (Takahashi, Schoenbaum, & Niv, 2008) and that OFC plays a role in separating

states, such that only rules within the active context are updated (Wilson, Takahashi,

however, R(t) can be any value on the real line. As a result, in such applications, Eqs. 3.3 and 3.5 would
need to be modified so that the second term is positive on all reward trials and 0 on negative reward
trials.
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Schoenbaum, & Niv, 2014). We previously proposed a neurocomputational model of the

critic, called the Modulation Of Dopamine For Adaptive Learning (MODAL) network

(Inglis et al., 2021). Computations carried out by MODAL rely on the ventral subiculum,

NAc shell, ventral pallidum, pendunculopontine nucleus, and lateral habenula.

3.2.3 Heuristic Strategy (HS) Module

The HS module learns which context is active by implementing a win-stay, lose-shift

strategy, which is subject to interference from the strategy input that comes from the

SEL module [i.e., from SSEL(t+ 1)].

If the agent’s trial t response is rewarded (i.e., if R(t) = 1) then the HS module

initially sets the strategy for the next trial to SHS(t + 1) = stay. Alternatively, if

R(t) = 0 then HS sets SHS(t + 1) = switch. In addition to implementing this win-stay,

lose-shift strategy, the HS module must also suppress input from the SEL module that

is possibly task irrelevant. In other words, input from the SEL module could change

the value of SHS(t + 1). The final value of SHS(t + 1) remains at its initial value with

probability h and changes to SHS(t + 1) = SSEL(t + 1) with probability 1 − h. Note

that h models the ability of the HS module to suppress input from the SEL module; if

h = 1 then SEL input is completely suppressed and the HS module is in full control of

the strategy choice. Alternatively, if h = 0 then SEL input overwhelms the HS module

and takes full control of the strategy choice. Additionally, if there is no output from SEL

(trials in which P (t) ≥ q) then the HS module has full control over the strategy decision.

If the final value SHS(t + 1) = stay and CWM(t) = CS (CH) then the module sets

CHS(t + 1) = CS (CH). Alternatively, if SHS(t + 1) = switch and CWM(t) = CS (CH)

then HS sets CHS(t+ 1) = CH (CS). Finally, the output of the HS module, CHS(t+ 1),

projects to the WM module, where it is held throughout the delay period (intertrial
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interval) until a decision is required. The HS module has one free parameter (h).

The HS module generates win-stay, lose-shift signals about the currently active con-

text and uses them to generate a prediction for the context that will be active on the

subsequent trial. Area 47/12o has been shown to encode win-stay, lose-shift signals in

object discrimination paradigms (Chau et al., 2015), ventral area 12 has been shown

to display switching signals (Fascianelli, Ferrucci, Tsujimoto, & Genovesio, 2020), and

lesions to regions that include area 12 cause deficits in implementing strategies (Bussey,

Wise, & Murray, 2001; Baxter, Gaffan, Kyriazis, & Mitchell, 2009). Finally, Area 47/12o

has been shown to play a role in contingent learning (Rudebeck, Saunders, Lundgren, &

Murray, 2017; Jocham et al., 2016), and in suppressing noncontingent learning (Jocham

et al., 2016; Noonan, Chau, Rushworth, & Fellows, 2017; Chau et al., 2015).

3.2.4 Working Memory (WM) Module

The WM module receives the HS prediction for the active context on the next trial as

input [i.e., CHS(t+1)], attempts to maintain this value in working memory until a decision

is required, and at the end of the delay period, it outputs its own prediction of which

context is active on the next trial, which we denote as CWM(t+ 1). The model assumes

that the memory of CHS(t+1) is maintained throughout the delay period with probability

p × v, and lost with probability 1 − pv, where larger values of p model greater working

memory capacity (dlPFC lesions result in diminished working memory capacity), and

larger values of v model shorter delay periods and/or reduced working memory demands.

In the model fits described below, v = 0.55 following an error trial (modeling the 12

second intertrial interval) and v = 1 following a correct trial (modeling the shorter 6-

second delay). If the memory of CHS(t + 1) is retained then CWM(t + 1) = CHS(t + 1).

However, if the memory of CHS(t + 1) is lost then CWM(t + 1) is set to the contrasting
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context (the context opposite to CHS(t + 1); recall that in this application there are

only two contexts).4 Lastly, the output of the WM module, CWM(t + 1), projects to

the RC, HS, and CDRL modules. As input to the RC module, it is used to specify the

subset of rule weights (context CS or context CH) to use to make the rule choice on

trial t + 1 (details in the following section). As input to the HS module, it is used to

implement the win-stay, lose-shift strategy following feedback on trial t + 1. Finally, as

input to the CDRL module, it is used to specify the context under which the weights are

updated following feedback on the next trial. The WM module has 3 free parameters

(p, v = 0.55, v = 1).

There is substantial evidence that WM is mediated by a broad neural network cen-

tered in the PFC (for a review, see e.g., Lara & Wallis, 2015), but extending to many

other regions including the caudate nucleus (e.g., Hikosaka, Sakamoto, & Usui, 1989),

globus pallidus (e.g., Mushiake & Strick, 1995), medial dorsal nucleus of the thalamus

(e.g., Fuster & Alexander, 1971), and regions of posterior cortex (e.g., Constantinidis &

Steinmetz, 1996).

3.2.5 Rule Choice (RC) Module

The RC module receives CWM(t+1) from the WM module and the associated weights

of each rule in each context (from the CDRL module) as input. If the WM input is

CWM(t+ 1) = CS then the agent chooses rule MS with probability WSS(t+ 1) and rule

MH with probability WHS(t + 1) = 1 − WSS(t + 1). Alternatively, if the WM input is

CWM(t+ 1) = CH then the RC module chooses rule MS with probability WSH(t+ 1) =

1−WHH(t+1) and rule MH with probability WHH(t+1). The RC module has zero free

4Logically, it makes more sense that the WM module would guess the context on trials when it
failed to maintain CHS(t+ 1). However, note that this guessing version of the model is mathematically
equivalent to the version we implemented (in the sense that it makes identical predictions). The only
difference is that the two versions have different values of the parameter p.
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parameters.

3.3 Methods

The proposed model was evaluated using numerical simulations. The parameters

for each model fit are shown in Table 3.1. The goal of the simulations was to test the

architecture of the model, rather than our ability to optimize parameter estimation.

Hence, it is important to note that although this model includes 9 free parameters,

the majority of these were fixed after modeling the control data. It is noteworthy that

only one parameter each was changed from the control condition to fit the dlPFC and

ACC lesion data and only two parameters were changed to fit the OFC lesion data

(with one exception being the data summarized in Figure 3.8). Furthermore, these

modifications provide insight into the consequences of the various prefrontal lesions for

task performance. In order to fit the ACC lesion data, α was decreased relative to the

control condition, modeling a reduced learning rate. In order to fit the dlPFC lesion data,

p was decreased relative to the control condition, modeling a decrease in working memory

capacity. In order to fit the OFC lesion data, α was decreased relative to the control

condition, once again modeling a reduced learning rate, and h was decreased relative

to the control condition, modeling a decreased ability of the HS module to suppress

the noncontingent strategy signal from the SEL module. Finally, to fit the model to

performance following a short interrupt (Figure 3.8), a single additional parameter was

modified for all conditions (v = 0.64) to model the 11-second intertrial interval.

Each simulation included 300 trials of post-operative performance. We did not model

preoperative learning, since all monkeys performed similarly and it is likely that different

mechanisms are at play during initial learning. On postoperative trial 1, the model chose

a context at random, and then, given this context, chose a rule according to the initial rule
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Table 3.1: Model Parameters. Bold text represents parameter values that changed
relative to the control condition

Parameter CON DLPFC ACC OFC
λ 0.35 0.35 0.35 0.35
q 0.7 0.7 0.7 0.7
α 0.27 0.27 0.12 0.16
β 0.008 0.008 0.008 0.008
WSS(0),WCC(0) 0.7 0.7 0.7 0.7
h 1 1 1 0
p 1 0.85 1 1
v (error trials) 0.55 0.55 0.55 0.55
v (reward trials) 1 1 1 1
v (unfilled delay) 0.64 0.64 0.64 0.64

weights. Also on postoperative trial 1, the objectively correct rule was chosen at random

and once the model achieved 85% correct on the previous 20 trials, the correct rule

changed. The model was run for 2000 simulations of 300 trials per condition (comparable

to approximately 133 monkeys undergoing 15 daily sessions of 300 trials).

3.4 Results

The results for the CON, dlPFC, ACC, and OFC groups are shown in Figures 3.3-

3.9, along with predictions of the model.5 These results are particularly difficult to

model for at least two salient reasons. First, the sheer volume of empirical data from a

single experiment implies that all results from a single condition must be fit by a single

parameter set. Second, in accordance with presenting a neurocomputational model, the

model architecture and the changes in parameter values between conditions must be

neurobiologically justified. This constrains the space of possible parameterizations for

fitting such a wide range of data.

5The results from Buckley et al. (2009) presented in Figures 3.3-3.9 were derived directly from the
published manuscript using WebPlotDigitizer (Rohatgi, 2021).
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The results that consist of one data point per lesion group (Figures 3.3,3.5,3.6,3.7,3.9)

are summarized in the following text. All lesion groups exhibited less rule switches per

daily session (300 trials) relative to the CON group but there were no differences in

number of rule switches between lesion groups (Figure 3.3). There were no differences

between groups regarding perseveration following a rule switch (Figure 3.5). The OFC

lesion group shows a performance deficit relative to all other groups on trials following

a single correct response (Figure 3.6). According to Buckley et al. (2009) there were no

differences between preoperative and post-operative performance for any group on trials

following a single error and all groups performed near 50% accuracy (Figure 3.7)6. On

select trials, once the monkey reached 85% accuracy a short unfilled delay was imple-

mented which caused a performance deficit for the DLPFC lesion group relative to the

CON group but not relative to ACC or OFC lesion groups. Furthermore, there were no

differences in performance between the CON, ACC and OFC lesion groups for the delay

manipulation. Note that any parameter change that is used to fit the results from one

of the scenarios above cannot interfere with the model’s ability to fit to the results from

one of the other scenarios. For example, if we change a parameter of the model to fit the

performance deficit for the OFC lesion group in Figure 3.6 then this parameter change

must not significantly change OFC performance in Figure 3.5. It is impressive that the

model was not only able to fit the qualitative features of this data but it was also able to

generate good quantitative fits to the data in almost all scenarios - all while manipulating

only one or two parameters per condition7.

The same parameter choices that were used to fit the results consisting of a single

data point per lesion group must also fit the empirical results from the fine-grained

accuracy analysis in Figure 3.8. Buckley et al. (2009) reported accuracy for each group

6Note that we do not model preoperative performance but the model simulations do result in post
operative performance that is close to 50% accuracy for all groups.

7With one exception being figure 3.9 which required a single parameter change across all conditions.

47



A Neurocomputational Model of Flexible Rule Learning Chapter 3

on trials that followed an error (E) and then anywhere between 1 and 7 succeeding correct

responses. They referred to these trials as ECn, where n denotes the number of correct

responses following the error. The DLPFC and ACC lesion groups both appear to have

a generalized deficit relative to the control group across all n in the fine-grained accuracy

analysis. Alternatively, the OFC lesion group appears to have a deficit relative to the

control group for low n but seems to mostly recover as n increases suggesting that the

OFC is necessary for integrating positive feedback early in learning but becomes less

important once a new context is sufficiently well established. In order to fit the OFC

lesion data in Figure 3.8 the model must treat positive feedback differently depending

on whether the preceding trial resulted in positive or negative feedback. One could

simply prescribe that in order for learning to occur in the CDRL module the agent must

receive 2 consecutive trials of positive feedback but this seems arbitrary, post-hoc and

neuroscientifically unjustified. The OFC deficits on display in Figures 3.6 and 3.8 emerge

naturally from our neurocomputational model. For trials EC1 and EC2 the average

predicted reward generated by the SEL module is below 0.7 and therefore a strategy

signal, SSEL, is sent to the HS module. For trials EC1 and EC2 the percentage of trials

in which SSEL = switch is approximately 40% and 13%, respectively. Alternatively, the

percentage of trials in which SHS = switch is 0% for each of these trials. The SSEL signal

has no effect on CON, DLPFC, and ACC lesion groups because they have an intact HS

module that is able to suppress the non-contingent strategy signal from the SEL module.

On the other hand, the OFC lesion group has a compromised HS module that is not

able to suppress the non-contingent signal and the SEL strategy signal overrules the

HS strategy signal until the predicted reward generated by the SEL module exceeds the

threshold. Recall that trial EC1 represents accuracy on trials following the sequence

“Error, Correct”. Also note that on trial EC1 the correct strategy is stay8. Therefore,

8Assuming that the agent choose the correct context on the rewarded trial.
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Figure 3.3: Rule switching data (black bars) from Buckley et al. (2009) and model
simulations of the same experiment (gray bars). CON = control, dlPFC = dorsal lat-
eral prefrontal cortex, ACC = anterior cingulate cortex, OFC = orbitofrontal cortex.
Error bars represent standard error of the mean.

the application of a switch signal on approximately 40% of trials implies that in order

to choose correctly the agents that choose to switch must also choose the wrong rule

within the wrong context9. Importantly, this neurobiologically informed solution does

not interfere with the models ability to fit all of the other empirical data. In the following

sections we provide more details on the model fits to the empirical data.

3.4.1 Number of Rule Switches

Figure 3.3 shows the number of post-op rule switches per session as a percentage

of pre-op switches for each animal in the four conditions of the Buckley et al. (2009)

experiment. The model assumed identical pre-op performance for all groups, so the pre-

9Also note that a large proportion of these errors will occur early in learning and therefore some
portion the of the correct stay trials will also result in incorrect rule choices and lead to the low accuracy
for EC1 shown in Figures 3.6 and 3.8.
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Figure 3.4: Perseverative error data (black bars) from Buckley et al. (2009) and model
simulations of the same experiment (gray bars) for each of the 20 trials following a rule
change. CON = control, dlPFC = dorsal lateral prefrontal cortex, ACC = anterior
cingulate cortex, OFC = orbitofrontal cortex.

op baseline was the same for all groups. Note that dlPFC, ACC, and OFC lesions all

decreased the number of rule switches, and that the model accurately accounts for this

effect. In paricular, the model fits all fall within the standard error of the mean in every

condition.

3.4.2 Distribution of Perseverative Errors Following a Rule

Change

We fit the model to the post-op distribution of perseverative errors for each of the 20

trials following a rule change. These data and model fits are shown in Figure 3.4.10 The

model fits the data from all of these conditions reasonably well, although note that it

10In the case of the Control group, these data are pre-operative since Buckley et al. (2009) reported
there were no significant performance differences between the pre- and post-operative (unoperated)
control monkeys.
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Figure 3.5: Perseverative error data (black bars) from Buckley et al. (2009) and
model simulations of the same experiment (gray bars) averaged over the first 3 trials
following a rule change. CON = control, dlPFC = dorsal lateral prefrontal cortex,
ACC = anterior cingulate cortex, OFC = orbitofrontal cortex.

tends to over predict the number of perseverative errors on trials that occur long after the

switch – especially in the dlPFC and OFC conditions. These consistent over predictions

suggest that the animals may have used some compensatory strategy that the model fails

to include. For our purposes, however, the most important feature of these data occur

on trials 2, 3, and 4 following the rule change. The results from these three trials are

summarized in Figure 3.5. A key finding from Buckley et al. (2009) was that none of

the groups made more perseverative errors on these trials than the control group. The

model provides an impressive fit to the data from these trials, suggesting that it correctly

accounts for the failure of dlPFC, ACC, and OFC lesions to cause more perseverative

errors.
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Figure 3.6: Proportion correct after a single correct response from Buckley et al.
(2009) (black bars) and model simulations of the same experiment (gray bars). CON
= control, dlPFC = dorsal lateral prefrontal cortex, ACC = anterior cingulate cortex,
OFC = orbitofrontal cortex. Error bars represent standard error of the mean.

3.4.3 Performance Following a Single Correct Response

Third, we fit the model to accuracy data for trials that immediately followed a single

correct response. The first 3 trials following a rule switch were excluded from this analysis.

These data and model fits are shown in Figure 3.6. Note that OFC lesions severely

impaired performance on trials that followed a single correct response. Also note that

the model accurately accounts for this effect, and it also provides good fits to the data

from the other conditions. Specifically, for all four groups, the model fits fall within the

standard error of the mean of the experimental data.

3.4.4 Performance Following a Single Error

Fourth, we fit the model to accuracy data from trials that immediately followed a

single error. These results and model fits are shown in Figure 3.7. Note that all groups
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Figure 3.7: Proportion correct after a single error from Buckley et al. (2009) (black
bars) and model simulations of the same experiment (gray bars). CON = control,
dlPFC = dorsal lateral prefrontal cortex, ACC = anterior cingulate cortex, OFC =
orbitofrontal cortex. Error bars represent standard error of the mean.

performed near chance on these trials (i.e., 50% correct), and therefore there were no

significant differences among groups. This may have been a floor effect, but regardless,

note also that the model accurately accounts for the results from all four groups.

3.4.5 EC Analysis

Our fifth test of the model was against a more fine-grained accuracy analysis. Specif-

ically, Buckley et al. (2009) reported accuracy for each group on trials that followed an

error (E) and then anywhere between 1 and 7 succeeding correct responses. They referred

to these trials as ECn, where n denotes the number of correct responses following the

error. In other words, EC3 denotes the sequence ECCC – that is, an error followed by

3 successive correct responses. So the values depicted at n = 3 are average accuracies

on the trial that succeeded the sequence ECCC. The first 3 trials following a rule switch
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Figure 3.8: Fine-grained accuracy analysis from Buckley et al. (2009) (black bars) and
model simulations of the same experiment (gray bars). Values plotted at n = i (for
i = 1, ..., 7) are average accuracies on trials that succeeded a sequence of i+1 trials in
which the first response was an error and the next i responses were correct. CON =
control, dlPFC = dorsal lateral prefrontal cortex, ACC = anterior cingulate cortex,
OFC = orbitofrontal cortex. Error bars represent standard error of the mean.

were excluded from this analysis. Results for each group, and fits of the model are shown

in Figure 3.8. Note that the model provides extremely accurate accounts of these data

for all groups.

3.4.6 Performance Following a Short Unfilled Interrupt

As a final test of the model, we examined its ability to account for accuracy after a

short, unfilled interrupt that Buckley et al. (2009) introduced after each animal reached

85% accuracy. In these conditions, rather than changing the correct rule after criterion

accuracy was reached, Buckley et al. (2009) increased the delay before the next trial

began by 5 seconds, which previous research had shown was long enough to impair
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Figure 3.9: Proportion correct following a short unfilled interrupt (black bars) from
Buckley et al. (2009) and model simulations of the same experiment (gray bars). CON
= control, dlPFC = dorsal lateral prefrontal cortex, ACC = anterior cingulate cortex,
OFC = orbitofrontal cortex. Error bars represent standard error of the mean.

working memory. So the goal of this manipulation was to assess the contribution of

each lesioned area to the ability of the animals to maintain the current rule in working

memory.

For each 300 trial session by collecting the trials in which a switch occurred and

reinitialized the model with the conditions at the time of the switch. We then simulated

the subsequent trial without a switch and with a 5 second additional delay (11 second

intertrial interval, v = 0.64). Mean performance was calculated for each session and

overall average performance was calculated from these values. The results and model

predictions for each group are shown in Figure 3.9. As expected, the dlPFC group

performed worst on these extended delay trials, which is consistent with the prominent

role that the PFC is known to play in working memory (e.g., Lara & Wallis, 2015). Note

that the model slightly underestimates the performance of the control group and slightly
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overestimates the performance of the dlPFC lesion group. Even so, it correctly predicts

that the poorest performance is by the dlPFC group, and its predicted accuracy falls

nearly within the standard error of the mean for each condition.

3.5 Discussion

This article proposed a new neurocomputational model of flexibility in rule-guided

behavior. The model includes five interacting modules that determine the current en-

vironmental context and then select an appropriate explicit rule to guide behavior. We

tested the model against a wide variety of detailed behavioral and neuroscientific data

from a simplified version of the WCST that was reported by Buckley et al. (2009). The

model gave an impressive account of the varied behavioral results from this study and it

successfully predicted the effects of selective lesions to dlPFC, ACC, and OFC on each

behavioral measure.

Buckley et al. (2009) proposed that their findings provide evidence supporting the

hypotheses that the dlPFC helps mediate the maintenance of abstract rules in working

memory, that the OFC helps mediate the representation and rapid updating of the value

of abstract rules based on feedback, and that the ACC helps mediate response selection

and the degree to which recent feedback should be integrated to influence future deci-

sions. Our results find significant support for these hypotheses. Furthermore, as the next

subsection describes, the neuroanatomical assumptions of our model are also bolstered

by a variety of results that were reported after the publication of Buckley et al. (2009).
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3.5.1 The Role of the OFC and Area 47/12o in Flexible

Behavior

The role of OFC in flexible behavior has become particularly controversial. OFC

lesions impair performance in reversal paradigms, a standard test of behavioral flexibil-

ity (Clark, Cools, & Robbins, 2004; A. Roberts, 2006; Izquierdo et al., 2004; Murray &

Wise, 2010; Dias et al., 1996; Rygula et al., 2010), but only when the lesions are made by

aspiration (Kazama & Bachevalier, 2009; Rudebeck & Murray, 2011; Rudebeck, Saun-

ders, Prescott, Chau, & Murray, 2013). Neurotoxic lesions have not been found to cause

impairments. These findings suggest that impairments from aspiration lesions are not

caused by a loss of function in traditional OFC regions, but are instead a result of damage

to passing fibers from nearby regions (Kazama & Bachevalier, 2009; Monosov & Rush-

worth, 2021; Rudebeck & Murray, 2011; Rudebeck et al., 2013). The most likely such

region is lateral to the lateral orbitofrontal sulcus (Monosov & Rushworth, 2021). This

region is often included in the ventrolateral prefrontal cortex and sometimes referred to

as lateral OFC or area 47/12o (Carmichael & Price, 1994; Mackey & Petrides, 2010;

Monosov & Rushworth, 2021; Saleem, Miller, & Price, 2014). Area 47/12o has strong

connectivity to other PFC regions and aspiration lesions to OFC compromise this con-

nectivity (by destroying white matter tracts), even when such lesions spare area 47/12o

itself (Sallet et al., 2020). In summary, evidence suggests that aspiration lesions of central

OFC may compromise the ability of area 47/12o to mediate the computations necessary

for successful performance in discrimination reversal-learning tasks.11

Recent research has implicated area 47/12o in a number of findings that are partic-

11Even so, it is important to note that Rudebeck et al. (2017) found that object discrimination reversal
learning was not impaired following fiber-sparing lesions of OFC and vlPFC (including area 47/12o),
and as a result, they suggested that reversal learning may depend on disconnection of a number of
regions from the PFC, including medial striatum and medial dorsal thalamus (H. Clarke, Dalley, Crofts,
Robbins, & Roberts, 2004; H. F. Clarke, Robbins, & Roberts, 2008; Groman et al., 2013; Iversen &
Mishkin, 1970).
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ularly relevant to our model. First, area 47/12o has been shown to represent win-stay

and lose-switch signals in object discrimination reversal paradigms (Chau et al., 2015).

Second, area 11, ventral area 12, and area 13 have also been shown to display switching

signals when the switch was cued by the experimenter (Fascianelli et al., 2020). Third,

Bussey et al. (2001) lesioned a region that included areas 11, 12, 13, and 45 and showed

a deficit in implementing abstract strategies. Fourth, vlPFC lesions (including area 12)

but not OFC lesions (areas 11, 13 and 14) have been shown to be crucial for successful

performance in a strategy implementation task (Baxter et al., 2009). Taken together, this

research seems to suggest that although the encoding of strategy signals may be spread

widely throughout OFC and vlPFC, it appears that area 47/12o may be a crucial locus

for strategy representation and implementation. Finally, area 47/12o has been shown

to have a role in credit assignment by encoding the contingency between feedback and

choice (Rudebeck et al., 2017; Jocham et al., 2016) and suppressing noncontingent learn-

ing or Thorndike’s “spread of effect”, that is, statistical learning in which current choices

may be influenced by feedback and choices from trials before and after the current trial

(Jocham et al., 2016; Noonan et al., 2017; Chau et al., 2015).

When the Buckley et al. (2009) article was published, the distinction between the

effects of aspiration and neurotoxic lesions to OFC had not been discovered. We propose

that the OFC lesions performed by Buckley et al. (2009) likely caused two different types

of impairment. The intentional lesions of OFC (areas 11, 13 and 14) caused a decreased

rate of learning from positive feedback (Murray & Wise, 2010; Rudebeck & Murray,

2008; Stolyarova & Izquierdo, 2017), whereas the unintended disruption of processing in

area 47/12o compromised the animals’ ability for contingent learning and reduced their

ability to suppress statistical learning information coming from the BLA (Jocham et al.,

2016; Noonan et al., 2017; Chau et al., 2015).
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3.5.2 Predictions and Future Experiments

The model proposed here makes a number of novel predictions. First, it proposes that

impairments in the rapid updating of rule values could occur for two separate reasons;

intentional lesions to OFC cause an overall reduction in the learning rate, whereas any

unintentional disruption of processing in area 47/12o interferes with its ability to suppress

spread of effect input from BLA. Therefore, the model predicts that lesions of area 47/12o

should result in similar impairments to those reported by Buckley et al. (2009) (though

possibly more dramatic). Although it is likely that the aspiration lesions of vlPFC

performed by Buckley et al. (2009) may have included some of area 47/12o, a more

targeted lesion of area 47/12o is necessary to test this prediction.

Second, the model predicts that neurotoxic lesions of OFC should impair performance

by reducing the learning rate. Since neurotoxic lesions should not disrupt area 47/12o,

such lesions should not impair the animal’s ability to suppress BLA activity. This should

result in a performance profile that resembles the Buckley et al. (2009) ACC lesioned

animals, rather than the OFC lesioned animals.

Third, our model proposes a role for amygdala in propagating spread of effect in-

formation, which can interfere with performance if it is not suppressed. Therefore, the

model predicts that amygdala lesions may improve performance on the WCST analog.

Another possibility is that the effect of OFC aspiration lesions (or the predicted ef-

fect of area 47/12o lesions) on performance could be reversed by amygdala lesions. In

fact, Stalnaker, Franz, Singh, and Schoenbaum (2007) have already demonstrated this

in rats performing a reversal-learning task. These researchers showed that BLA lesions

eliminated the impairment caused by OFC lesions. Although these experiments used a

discrimination reversal-learning task, our model predicts that BLA lesions should cause a

similar reduction in WCST impairments that occur after lesions of OFC (or area 47/12o).
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3.5.3 Relation to Other Models

A number of models have been developed to account for results of experiments with

the WCST, and some of these include considerable biological detail (e.g., Amos, 2000;

Bishara et al., 2010; Dehaene & Changeux, 1991; Monchi, Petrides, Petre, Worsley, &

Dagher, 2001; Moustafa & Gluck, 2011; Steinke, Lange, & Kopp, 2020). Even so, to our

knowledge, none have enough detail to fit all of the behavioral results described in Figures

3.3 – 3.9, and most of them are more than 20 years old and therefore, do not incorporate

the interesting findings regarding area 47/12o and its interactions with the amygdala.

Furthermore, the current model is simpler than the biologically detailed WCST models,

and despite this simplicity, provides a comprehensive account of performance on the

WCST analog in healthy and lesioned animals.

Another related model proposed that the OFC serves as a cognitive map of task space

(Wilson et al., 2014). This is not a model of the WCST, but it has been tested against

reversal-learning data. In these applications, the model uses the Rescorla-Wagner rule for

learning and the Luce choice rule for response selection. In reversal-learning tasks there

are two contexts; one in which the single rewarded option is A and the other in which

option B is rewarded. The Wilson et al. (2014) model assumes that OFC lesions impair

the ability to learn which context is currently active. Therefore, the model predicts that

prior to a reversal, control and OFC lesioned animals should perform similarly. However,

following a reversal, the control animals will recognize that the context has changed,

whereas OFC lesioned animals will not.

Our model could be viewed as an extension of the Wilson et al. (2014) model to the

WCST. In fact, the CDRL module is almost identical to the Rescorla-Wagner learning

algorithm assumed by Wilson et al. (2014), except that the CDRL module modulates

the effect of RPEs by the absolute value of the prediction error on the previous trial
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(i.e., according to the Rescorla-Wagner/Pearce-Hall hybrid learning rule). Both models

also only update the rule weights for the active context. Our model uses a separate

HS module that implements the win-stay, lose-shift strategy to change the agent’s belief

about the current context, which is subject to interference from the SEL module and must

be maintained by the WM module throughout any delays. In contrast, the Wilson et

al. (2014) model uses the temperature parameter in the Luce choice model to determine

how long it takes to reverse its behavior.

Although there are a number of differences between our model and the Wilson et al.

(2014) model, perhaps the most crucial is the proposed effect of OFC lesions. Wilson et

al. (2014) proposed that OFC lesions cause the animal to become incapable of separating

contexts. Alternatively, we propose that OFC lesions reduce the learning rate from

positive feedback and make it impossible to suppress noncontingent learning (due to the

unintended disruption of area 47/12o caused by aspiration lesions to OFC). In the Buckley

et al. (2009) experiment, the animals received extensive training prior to surgery, during

which time they became adept at identifying the active context. It is unclear whether or

not the Wilson et al. (2014) model would predict that this ability would be lost following

OFC lesions. If the ability to identify context was lost, it seems unlikely that the model

would be able to account for the Buckley et al. (2009) results. For example, under these

conditions, it seems that the model would predict that the animal would have to unlearn

and relearn action values repeatedly following reversals. If so, then one would expect

that Figure 3.5 should show a significant difference between the OFC group and other

groups (i.e., in the frequency of perseverative errors), which it does not. On the other

hand, if the ability to identify context is not lost, then the model would predict no effect

of OFC lesions on any dependent measure, which conflicts with the results shown, for

example, in Figure 3.6.
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3.5.4 Future Modeling Considerations

Our model gave an impressive account of the varied behavioral results from this study

and it successfully predicted the effects of selective lesions to dlPFC, ACC, and OFC on

each behavioral measure. As previously mentioned, our model straddles the boundary

between the algorithmic and implementational levels in Marr’s (1982) hierarchy. It is

neurobiologically informed in the sense that all but one of its modules are mapped onto

brain regions and are linked together in a circuit that specifies the inputs and outputs

of each region. However, the model is not composed of model neurons or synapses and

as a result there are no within trial dynamics, hence the only data from Buckley et

al. (2009) that our model was not applied to was reaction time data. A more detailed

implementational level version of our model that generates intratrial dynamics should be

able to account for reaction time data. Furthermore, this lower level model should be

able to account for single-cell and population level neural data. Nonetheless, our model

should be regarded as laying the foundation for an even better explanation that could

emerge from the more fine-grained lower implementational level model.

In modeling the data presented in this paper we viewed our task as constructing the

simplest possible model architecture that maintains a reasonable mapping from param-

eters to neural circuit entities. We do not necessarily believe that this is the appropriate

level of analysis for the flexible learning of abstract rules but we do believe that it pro-

vides a clear road map for the invention of lower level implementational models. This

can be made clear by superficially considering how one might approach this task. Note

that this model is primarily composed of modules that predict reward probabilities and

implement win-stay/low-switch strategies that must be maintained in working memory.

It is not difficult to construct neural networks that compute these values and strategies

via activation patterns and synaptic weights. Additionally, recurrent neural networks
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can be constructed that hold strategies in working memory throughout delay periods.

These networks can be substituted for the modules that we’ve presented in our model

and could be tested against additional neuroscientific and behavioral data in an effort to

make progress toward a satisfying explanation of flexible abstract rule learning.
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Chapter 4

Modulation of Dopamine for

Adaptive Learning: a

Neurocomputational Model

The content of chapter 4 is the result of a collaboration with Vivian V. Valentin and F.

Gregory Ashby, and has previously appeared in Computational Brain & Behavior (Inglis

et al., 2021). Reprinted by permission from Springer Nature Customer Service Centre

GmbH: Springer Nature, Computational Brain & Behavior. Modulation of Dopamine for

Adaptive Learning: a Neurocomputational Model. Jeffrey B. Inglis, Vivian V. Valentin,

F. Gregory Ashby. Society for Mathematical Psychology 2020.

4.1 Introduction

Normative and machine-learning models of learning have been integral to development

and progress in a wide range of fields, including computer science (Sutton & Barto,

1998), neuroscience (Maia, 2009; Dayan & Abbott, 2001), and psychology (Rescorla &
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Wagner, 1972; Bush & Mosteller, 1951; Berridge, 2000). For example, reinforcement

learning algorithms have provided successful models of how predicted reward estimates

are updated when new rewards are encountered in the environment. In these models, the

amount of learning on each trial is proportional to the reward prediction error (RPE),

which is defined as the obtained reward (R) minus the predicted reward (P).

The standard assumption is that dopamine (DA) neurons in the ventral tegmental

area (VTA) and the substantia nigra pars compacta (SNpc) encode the RPE via their

response to rewarding events and to cues that predict rewards (Montague, Dayan, &

Sejnowski, 1996; Schultz, Dayan, & Montague, 1997). Even so, it is also well known that

RPE is an imperfect predictor of the DA response. For example, DA neurons also respond

to novel events and to salient stimuli with no reward-related associations (Horvitz, 2002).

In addition, there are large individual differences in the DA response to any given RPE,

which depend, at least in part, on personality type (Pickering & Pesola, 2014).

To account for such variability in the DA response to RPE, reinforcement learning

models typically include an additional learning-rate parameter – denoted by λn in Equa-

tion 4.1 below – that controls the amount of learning that occurs for any given value

of RPE. When fitting reinforcement learning models to data, λn is typically treated as

a free parameter, which allows the models to account for unexplained variability in the

learning effects of any given RPE, albeit only via post hoc curve fitting. A complete

theory of learning must describe a neural account of these changes in λn. This article

takes a significant step towards this goal by describing a neural network that modulates

the DA response to RPE under a wide variety of environmental conditions.

If the learning-rate λn is too small, learning is slower than necessary and the learner

is insensitive to changes in the reward structure of the environment. If λn is too large,

learning is unstable. The optimal value of λn changes adaptively in response to en-

vironmental changes in the statistical structure of rewards (Daw & O’Doherty, 2014;

65



Modulation of Dopamine for Adaptive Learning: a Neurocomputational Model Chapter 4

Dayan, Kakade, & Montague, 2000; Dayan & Long, 1998). Additionally, a number of

investigators have proposed a variety of factors that may affect λn such as expected and

unexpected uncertainty (Dayan & Yu, 2003; Yu & Dayan, 2005), volatility (Behrens et

al., 2007), outcome, informational, and environmental uncertainty (Mathys et al., 2011),

covariance between predictions and past RPEs, estimation, and unexpected uncertainty

(Payzan-LeNestour & Bossaerts, 2011; Preuschoff & Bossaerts, 2007), and state-feedback

contingency (Crossley, Ashby, & Maddox, 2013). For detailed reviews of some of these

taxonomies of uncertainty and the relationships between them, see Bland and Schaefer

(2012) and Soltani and Izquierdo (2019).

In the language of Marr (1982), almost all of these models are computational. Thus,

they make little or no attempt to describe the neural circuitry that implements the

proposed computations. In particular, there are few current hypotheses about the neural

mechanisms that modulate the amount of learning that occurs for any given RPE (for

exceptions see Bernacchia, Seo, Lee, & Wang, 2011; Franklin & Frank, 2015; Iigaya, 2016;

Farashahi et al., 2017).

This article proposes such a mechanism. Specifically, we describe a biologically de-

tailed computational model of how the adaptive learning rate proposed in the models

described above could be implemented at the neural level. We describe the neural cir-

cuit that mediates this modulation and model activity at the level of spiking neurons.

The input to the network is a computed value of some relevant theoretical variable such

as unexpected uncertainty, volatility, or feedback contingency and the output is spiking

activity in a population of DA neurons. The resulting DA release is presumed to then

affect tonic and phasic DA levels in target brain regions. The model is agnostic about

which factors modulate learning rates and how they are computed. The neuroanatomy

of the network we propose is consistent with many of the alternative proposals about

how learning rates are modulated. Thus, the proposed model should be of widespread
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interest.

Furthermore, the model can be applied to a variety of DA mediated tasks, many of

which transcend the experimental phenomena that it was created to address. Potential

applications of the model extend to working memory, creative problem solving, cognitive

flexibility, and category learning. The general applicability of the model to paradigms

that extend beyond the implementation of learning rates in simple reinforcement learning

tasks follows from the fact that the network predicts changes in tonic and phasic DA in

all brain regions that are targets of VTA DA neurons, and thus is applicable to any model

of behavior that depends on these regions and assigns a specific functional role to DA.

The article begins with a brief review of a simple and common reinforcement learning

algorithm. We then discuss the benefits of an adaptive learning rate and briefly review

many of the factors that have been proposed that influence this rate. We refer to these

factors as modulating variables. Next, we describe our neurocomputational model of

how the modulating variable controls DA neuron firing and therefore also DA release

and learning. The computational principle implemented by the network is to control the

gain on the DA response to any given RPE in addition regulating tonic levels via the

modulating variable. This new theory is formulated as a biologically detailed compu-

tational model that we refer to as the Modulation of Dopamine for Adaptive Learning

(MODAL) model. Finally, we close with a discussion of the relationship between our

implementational-level model and other levels of analysis and possible directions for fu-

ture research.

4.1.1 Reinforcement Learning Algorithms

This article proposes a neural interpretation of learning rates. Virtually all learning

algorithms include a learning rate parameter and the network described below could pro-
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vide a neural interpretation of that parameter in many of these algorithms. To keep the

presentation concrete however, we focus on one simple reinforcement learning algorithm

that is ubiquitous in the literature and that formalizes the notion of a learning rate –

namely, the single-operator model of Bush and Mosteller (1951) (also see Rescorla &

Wagner, 1972).

The single-operator model assumes that the predicted reward value on trial n, denoted

by Pn, equals:

Pn = Pn−1 + λn(Rn − Pn−1)

= Pn−1 + λnRPEn, (4.1)

where Rn is value of the obtained reward on trial n and λn is the learning rate on trial n.

It is well known that in a stable environment, Pn converges asymptotically to the mean

reward value and the rate of convergence increases with λn (i.e., for all λn in the range

0 < λn < 1). So any variable that increases λn, increases the learning rate.

Note that even simple algorithms that set all λn to the same constant value predict a

form of cooling because the magnitude of the RPEs will decrease as learning progresses.

Even so, many algorithms change λn with n (e.g., Sutton, 1992). For example, it is

common to decrease λn as n increases – a process that accelerates cooling. In addition,

there have been many proposals that other factors also dynamically adjust learning rates

in the brain. The remainder of this section briefly reviews various modulating variables

that have been proposed to affect λn.

Although λn is often treated as a free parameter in many applications, its optimal

value can be determined trial-by-trial by considering the iterative updates in reinforce-

ment learning as a statistical problem of how best to integrate previous estimates with
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new evidence. Taking a Bayesian approach, it has been shown that under certain as-

sumptions, the optimal way to integrate past predictions with new data is to set the

learning rate to (Daw & O’Doherty, 2014; Dayan & Long, 1998; Dayan et al., 2000):

λn =
σn

σn + V ar(R)
, (4.2)

where σn represents the variance or uncertainty in our current estimate of the predicted

reward and V ar(R) represents the variance in the reward values. Therefore, if the ob-

tained reward values are not changing very much (i.e., V ar(R) is small), then λn should

be large, which will cause the predicted reward estimate to converge quickly to the

(mean) obtained reward value. On the other hand, if the obtained reward values are

noisy (i.e., V ar(R) is large) then we should set λn to be small to avoid over-reacting to

an unexpectedly large or small reward value.

Several researchers have argued that learning rates in the brain are also affected by

volatility – that is, by how quickly the reward contingencies change in the environment

(Behrens et al., 2007; Mathys et al., 2011). The idea is that increases in volatility should

increase λn because agents should learn faster in a rapidly changing environment in order

to track the fluctuations. Alternatively, when the environment is stable, the agent should

learn more slowly to ensure it uses as much data as possible in order to converge upon

the true stable reward probabilities.

Dayan and Yu proposed that learning rates depend on what they called expected and

unexpected uncertainty (Yu & Dayan, 2005; Dayan & Yu, 2003). Expected uncertainty

arises as a result of the unreliability of the cue that signals reward and the agent should

suppress the use of the cue when expected uncertainty is high. Unexpected uncertainty

is similar to the Behrens et al. (2007) notion of volatility and the Mathys et al. (2011) no-

tion of environmental uncertainty, that is, unexpected uncertainty is high when the agent
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is confident in their top-down model but these expectations are nonetheless violated by

the bottom-up sensory data. This may be an indication that although the model was ac-

curate, the environment has changed and therefore learning from bottom-up data should

be more heavily weighted than the top-down model. However, according to Bland and

Schaefer (2012), unexpected uncertainty differs from volatility in that volatility is related

to the frequency with which stimulus-response-outcome (SRO) contingencies change. For

example, in a probabilistic reversal task where SRO contingencies reverse every 30 trials,

unexpected uncertainty will increase following the reversal. Furthermore, this environ-

ment would be characterized as having higher volatility relative to an environment in

which the SRO contingencies only reversed every 100 trials.

Payzan-LeNestour and Bossaerts (2011) proposed that λn depends on unexpected un-

certainty and estimation uncertainty and that prediction risk scales the RPE (Preuschoff

& Bossaerts, 2007). Prediction risk is the irreducible uncertainty due to outcome uncer-

tainty. Estimation uncertainty is measured as the entropy of the posterior distribution

(similar to the uncertainty of the prior in the above equation), whereas unexpected uncer-

tainty is high when SRO contingencies change abruptly, as described above. Preuschoff

and Bossaerts (2007) also proposed that the covariance between past predictions and

reward prediction errors may contribute to λn, as derived from least-squares learning

theory.

Finally, empirical evidence suggests that state-feedback contingency, defined as the

covariance between rewards and predictions, has a significant effect on the learning rate

(Ashby & Vucovich, 2016; Crossley et al., 2013). The intuition here is that a measure

of the covariance between rewards and predictions enables a parsimonious method for

the agent to infer the degree to which its actions play a role in determining its rewards.

If state-feedback contingency is high, the agent recognizes that its behavior plays a sig-

nificant role in determining its rewards and takes advantage of this by increasing the
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Figure 4.1: Neural architecture of the proposed MODAL model of how DA activity is
regulated by one of the modulating variables described in the previous section. RPE
= reward prediction error; vSub = ventral subiculum; NAcc = nucleus accumbens;
VP = ventral pallidum; PPTN = pedunculopontine tegmental nucleus; RMTN =
rostromedial tegmental nucleus; VTA = ventral tegmental nucleus; SNpc = substantia
nigra pars compacta

learning rate. Alternatively, if state-feedback contingency is low, the agent recognizes

that its behavior does not play a significant role in determining its rewards and therefore

it can conserve resources and preserve previous learning by decreasing the learning rate.

The next section proposes a neural network that could implement any of these mod-

ulating effects on learning rate.

4.1.2 Neuroanatomy of MODAL

Reward and feedback processing recruit diverse brain networks that include the lim-

bic system and prefrontal and sensory cortices (Liu, Hairston, Schrier, & Fan, 2011;

Watabe-Uchida, Zhu, Ogawa, Vamanrao, & Uchida, 2012; Tian & Uchida, 2015; Haber,
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2016; Faget et al., 2016; Takahashi, Langdon, Niv, & Schoenbaum, 2016). Multiple

brain regions respond to reward and compute predicted rewards (Sesack & Grace, 2010;

Bromberg-Martin, Matsumoto, & Hikosaka, 2010; Humphries & Prescott, 2010), and

this redundancy inspired many alternative theories of how DA neuron firing is modu-

lated by RPE (Houk, Adams, & Barto, 1995; Schultz et al., 1997; Sutton & Barto, 1998;

Schultz, 1998; Tan & Bullock, 2008; Kawato & Samejima, 2007; Morita, Morishima,

Sakai, & Kawaguchi, 2013; Brown, Bullock, & Grossberg, 1999; Hazy, Frank, & O’Reilly,

2010; Joel, Niv, & Ruppin, 2002; Stuber et al., 2008; Contreras-Vidal & Schultz, 1999;

O’Reilly, Frank, Hazy, & Watz, 2007). In contrast to all this work, we do not know of any

neurocomputational models that attempt to account for any modulating effects of the

DA response to RPE. We propose that dynamic changes in learning rate are mediated

by changes in the size of the population of tonically firing DA neurons. As the size of

this population grows, more DA neurons become available to respond to any given RPE,

which has the computational effect of increasing the learning rate.

The neural architecture of the model is described in Figure 4.1. The inputs to the

network are from regions that compute RPE and the value of the relevant modulating

variable. Whereas the alternative modulating variables that have been proposed might

recruit somewhat different neural networks, they all depend on temporal integration

or continuous updating of feedback and reward information. Therefore, they are likely

to depend on similar networks that include regions in orbitofrontal, medial prefrontal,

anterior cingulate, parahippocampal, and entorhinal cortices. We make no attempt to

describe this network in detail, but we assume that it sends a prominent projection to the

ventral subiculum (vSub), which is the main output structure of the hippocampus. vSub

receives input from a variety of regions, including CA1 of the hippocampus (Fanselow

& Dong, 2010), parahippocampal cortex, and entorhinal cortex (Kerr, Agster, Furtak, &

Burwell, 2007). The entorhinal cortex encodes general properties of the current context
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(Jacobs, Kahana, Ekstrom, Mollison, & Fried, 2010), and the parahippocampal cortex

has a general role in contextual binding (Aminoff, Kveraga, & Bar, 2013). Additionally,

the entorhinal cortex receives almost all of its cortical inputs from polymodal association

areas, including cingulate, orbitofrontal, and parahippocampal cortices, making it well

situated for integrating diverse inputs (Insausti, Amaral, & Cowan, 1987). Given the

positioning of the vSub as an interface between the contextual information processing in

the hippocampus and cortical and subcortical regions implicated in reward processing,

learning, and motivation (Quintero, Dı́az, Vargas, de la Casa, & López, 2011), we propose

that the vSub is a likely target of the complex neural networks that mediate processing

of the alternative modulating variables that have been proposed.

The right half of the Figure 4.1 network instantiates the standard RPE model. The

idea is that reward sensitive units in regions such as prefrontal and orbitofrontal cortex

contribute to the RPE DA signal by providing excitatory inputs to the pedunculopontine

tegmental nucleus (PPTN) (Hong & Hikosaka, 2014; Kobayashi & Okada, 2007; Okada &

Kobayashi, 2013) and lateral habenula (LH) (Tian & Uchida, 2015; Hong, Jhou, Smith,

Saleem, & Hikosaka, 2011; M. Matsumoto & Hikosaka, 2007, 2009). Through these

circuits, positive RPEs excite VTA DA neurons via the PPTN, whereas negative RPEs

inhibit VTA DA activity via the LH [and the rostromedial tegmental nucleus (RMTN)].

The more novel features of the Figure 4.1 model are presented in the left half of the

figure. First, factors thought to influence the modulating variable are integrated in the

vSub, which results in an output signal to the NAcc that is proportional to the value of

the modulating variable.

The next component of the model builds on the work of Grace, Floresco, Goto, and

Lodge (2007), who proposed that the pathway vSub → NAcc → VP → VTA controls

the number of VTA DA neurons that fire tonically. The NAcc → VP and VP → VTA

projections are both GABAergic, but the tonic firing rate of VP neurons is much higher
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than the tonic firing rate of NAcc neurons. As a result, many DA neurons in VTA are

silent due to tonic inhibition by VP. Estimates suggest that because of this inhibition, only

about half of VTA DA neurons are spontaneously active under control conditions, and

these tonically firing neurons are the only ones available for phasic bursts when excited by

PPTN (Lodge & Grace, 2006). When the value of the modulating variable is high, vSub

excites NAcc neurons, which inhibit VP neurons. This releases VTA DA neurons from

tonic inhibition, which increases the number of tonically firing VTA DA neurons, thereby

enlarging the pool of DA neurons that can respond to excitatory input from PPTN. In

this way, increasing the value of the modulating variable amplifies the RPE-induced VTA

DA response. Thus, the Figure 4.1 network proposes a neural mechanism via which the

modulating variable can control the gain of the DA response to any given RPE.

To test this theory more rigorously, we built a biologically detailed computational

model of the Figure 4.1 network, and examined its ability to account for RPE and

learning rate effects on DA release. Our model is consistent with known neuroanatomy

and neurophysiology and accurately accounts for neuroscientific data.

4.2 Neurocomputational Details

We built a computational cognitive neuroscience model of the Figure 4.1 network

that includes spiking neurons as the basic units and that obeys the relevant neuroscience

constraints (e.g., Ashby, 2018; Ashby & Helie, 2011). The model was programmed using

the Python programming language (Van Rossum & Drake, 2011).

4.2.1 Model Architecture and Activation Equations

As described earlier, a rough schematic of MODAL is shown in Figure 4.1. Our main

goal was to understand how changes in the value of the modulating variable affect the
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rate of learning via modulations of VTA DA neuron activity. As a result, we made no

attempt to model neural firing in hippocampus or upstream cortical regions. Modeling

these complex structures is beyond the scope of the current project. Furthermore, we

modeled activation in vSub, PPTN, and LH as either on or off (via square waves). Be-

cause our hypothesis is that the value of the modulating variable affects VTA DA neuron

activity via the NAcc → VP → VTA pathway, we modeled activity in all these struc-

tures using spiking-neuron models; specifically Izhikevich (2007) medium spiny neuron

(MSN) models for NAcc, quadratic integrate-and-fire models for VP (Ermentrout, 1996),

and Izhikevich (2003) regular spiking neuron models for VTA. Parameter values for the

Izhikevich units were set equal to the values used by Izhikevich (2007) and parameter

values for the quadratic integrate-and-fire units were identical to those used in Ashby

(2018), except when otherwise noted.1

Postsynaptic effects of a spike were modeled via the α-function (e.g., Rall, 1967).

Specifically, when the presynaptic unit spikes, the input projected to the postsynaptic

unit is (with spiking time t = 0):

α(t) =
t

δ
exp

(
1− t

δ

)
. (4.3)

The parameter δ, which models temporal delays in synaptic transmission, was set to 123

for NAcc and VP units, and 225 for VTA units.

The following subsections describe additional details about how we modeled activity

in NAcc, VP, and VTA. Table 4.1 lists values of all connectivity parameters. These pa-

rameter values were based on biological constraints (e.g., excitatory versus inhibitory).

In its current form, MODAL does not exhibit any synaptic plasticity; therefore, all con-

1However, note that in Izhikevich (2007) and Ashby (2018), the β parameter controls the rate of tonic
spiking. Each region in our model has a different tonic firing rate; therefore, β = 0 in NAcc, β = 20 in
VP, and β = 62 in VTA.
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Table 4.1: Connectivity parameter values between layers of MODAL

Parameter Value
wPPTN→V TAi

125
wLH→V TAi

-125
wNAcci→V Pi

-10
wV Pi→V TAi

-1000

nection weight parameters in this network were fixed throughout the simulations.

NAcc

The NAcc layer was modeled with 100 Izhikevich (2007) MSNs with input to NAcci

(for i = 1, 2, ..., 100):

INAcci(t) = vSub(t), (4.4)

where vSub(t) represents activation in vSub as a square wave with amplitude equal to

the value of the modulating variable. For simplicity, the tonic firing rate of NAcc in the

absence of input was chosen to be 0 Hz, which is reasonable considering that Fabbricatore,

Ghitza, Prokopenko, and West (2009) reported a tonic rate of 0.53 Hz.

Braganza and Beck (2018) hypothesized that the disinhibition motif that characterizes

the basal ganglia plays the computational role of gating. However, in addition to gating

DA via disinhibition, MODAL does this in a continuous fashion such that as the value

of the modulating variable increases, the size of the population of VTA DA neurons

also increases. In other words, whereas the disinhibition motif implements gating at the

single synapse level, at the population level it can implement a gain or amplification

of the signal. The striatal MSNs provide an excellent candidate for implementing the

amplification. The MSNs exhibit bistable dynamics consisting of up and down states. In
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Figure 4.2: Top: spiking behavior of three NAcc medium spiny neurons with low (-93.5
mV, left), intermediate (-75 mV, center) and high (-55 mV, right) resting potentials.
The vertical dashed line represents the time when the current is injected into the
neuron. Bottom: Phase portraits with v and u nullclines and state trajectories for
each of the neurons in the top panel. The v-nullcline is represented by the gray
dashed line (no current) and the black u-shaped curve (current on). The u-nullcline is
represented by the straight black line. When the current is turned on the v-nullcline
shifts upwards. The numbers in the bottom plots correspond to the time points
indicated by the numbers in the plots directly above.

the up state these neurons are responsive to inputs and will fire spikes, while in down

states they tend not to fire in response to inputs.

In MODAL, the NAcc neurons play a critical role in controlling the size of the pop-

ulation of tonically active VTA DA neurons (i.e., partly because of their one-to-one

connectivity through the VP). When a NAcc neuron transitions from its down state to

its up state, the VP neuron it projects to is silenced due to NAcc inhibition. This re-

leases the corresponding VTA neuron from tonic inhibition, causing it to fire tonically

and become responsive to inputs from PPTN and LH. Therefore, although the NAcc

neurons are also responsive to inputs while in their up state, their key role in MODAL

is to determine the appropriate size of the active VTA DA neuron population.

A key property of MODAL is that the size of the population of tonically firing DA
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neurons grows with increases in the value of the modulating variable. This requires

NAcc neurons to transition from their down states to their up states at different levels

of input to the vSub. To implement this property, each NAcc neuron in the model has

a different resting state drawn randomly from a uniform distribution between -93.5 and

-55 mV. Figure 4.2 shows the effect of the different resting states on the nullclines and

state trajectories of three NAcc neurons (for more detail on the application of dynamical

systems theory and phase portraits to neural modeling, interested readers may consult

Izhikevich, 2007 or Ashby, 2018). The top row of Figure 4.2 shows predicted intracellular

voltage levels for three NAcc neurons and the bottom row shows the corresponding phase

portraits. The neurons are all identical, except for their resting membrane potential,

which is low in column 1 (-93.5 mV), medium in column 2 (-75 mV), and high in column

3 (-55 mV). Notice that increasing the level of vSub activation causes all the v-nullclines

to shift upwards. For the neuron with the lowest resting state (-93.5 mV, left), this

upward shift is not sufficient to cause the neuron to undergo a saddle-node bifurcation

(collision and annihilation of its fixed points) and therefore the state moves from the fixed

point (1) to point 2 on the v-nullcline and it slides down the v-nullcline until it reaches

the new fixed point (3) and the down state persists due to insufficient input from vSub

(the neuron does not spike). Alternatively, for the neuron with the intermediate resting

state (-75 mV, center), the upward shift in the v-nullcline is sufficient to cause the neuron

to undergo a saddle-node bifurcation, moving the state from the fixed point (1) to point

2 on the v-nullcline. Due to the ghost of the saddle-node, the state slides slowly along the

v-nullcline until point 3 when it leaves the v-nullcline and the derivative of v goes positive

causing the voltage to increase rapidly, leading to a transition to the up state and spiking

behavior. Once a spike is registered (4), the voltage is reset (5) below the ghost of the

saddle-node leading to shorter latency spikes (6). The neuron with the highest resting

state undergoes similar behavior to the intermediate neuron, except the latency to the
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spike is substantially shorter. This is because the upward shift of the v-nullcline results

in point 2 being below the v-nullcline, immediately leading to a positive derivative of v

and rapid transition to the up state and spiking (3). Furthermore, following a spike the

voltage is reset below the v-nullcline (and the ghost) (4) and therefore subsequent spikes

are rapid (5).

The key result of this network architecture is that there is a continuum where neurons

with lower resting states require substantially more current to undergo the saddle-node

bifurcation, relative to neurons with higher resting states. This has the desired effect of

increasing the size of the VTA DA population as the value of the modulating variable

increases by transitioning more NAcc neurons into their up states.

VP

The VP layer was modeled with 100 quadratic integrate-and-fire units. The input to

VPi (i = 1, 2, ..., 100) was equal to:

IV Pi
(t) = wNAcci→V Pi

× αNAcci(t) (4.5)

where wNAcci→V Pi
is the connection weight between NAcci and VPi and αNAcci(t) is the

integrated α-function generated by spikes in NAcci.

The tonic firing rate for VP units was set to approximately 7 Hz, which is consistent

with measurements reported by Root et al. (2012). Despite NAcc inhibition, the higher

tonic firing rate of the VP units relative to the NAcc units has the effect of ensuring that

the VP units still fire spikes at low values of the modulating variable. As the modulating

variable increases, more NAcc neurons transition to their up states, silencing more VP

units. Each VP unit is connected to one VTA unit.
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VTA

The DA neurons in the VTA were modeled with 100 Izhikevich regular-spiking neu-

rons. Call these units VTAi (i = 1, 2, ..., 100). All 100 units received identical input from

PPTN and LH. In addition, the VTAi unit received input from the corresponding VPi

unit.

The input to unit VTAi was:

IV TAi
(t) =


wV Pi→V TAi

αV Pi
(t)

+wPPTN→V TAPPTN(t) + wLH→V TALH(t)

(4.6)

where wV Pi→V TAi
denotes the synaptic strength between VPi and VTAi, αV Pi

(t) denotes

the output of unit VPi at time t (i.e., the α-function), wPPTN→V TA denotes the synap-

tic strength between PPTN and all VTA neurons and wLH→V TA denotes the synaptic

strength between LH and all VTA neurons.

Activation in PPTN was modeled as follows:

PPTN(t) =


RPE if RPE > 0 and 7000 ≤ t < 7100

0 otherwise

(4.7)

This results in a square wave with amplitude equal to RPE (for positive RPE) lasting

100ms (Bayer, Lau, & Glimcher, 2007). Activation in LH was:

LH(t) =


1 if RPE < 0 and 7000 ≤ t < (7000− 400RPE)

0 otherwise

(4.8)
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This results in a square wave of amplitude equal to 1 (for negative RPE) of varying

duration (0 – 400 ms) that elicits pauses in VTA units with the length of the pause

proportional to the magnitude of the negative RPE2. This formulation of activity in

PPTN and LH produces DA neuron firing that is proportional to RPE (Bayer & Glimcher,

2005) and results in symmetric encoding of positive and negative RPE by extracellular

DA concentrations (Hart et al., 2014).

4.2.2 Single-Neuron Dynamics of MODAL

The dynamics of three neurons in each layer of MODAL are illustrated in Figure 4.3.

The level of input to vSub increases linearly from 0.0001 to 1 in increments of 0.0001.

At the beginning of the 10-second interval, vSub activation is low and all of the NAcc

neurons are in their down state. However, as vSub input increases slightly, the first NAcc

unit from the left transitions to its up state and increases its firing rate, which silences

the first VP unit. This disinhibits the first VTA unit and it begins to fire tonically,

making it possible for this unit to burst or pause in response to input from PPTN or LH.

Similarly, as vSub input increases further, the second (center) and then the third (right)

NAcc units also transition to their up states, which first silences the second and then

the third VP units, respectively. This causes the second and then the third VTA units

to become disinhibited and fire tonically, making them available for bursting or pausing

as well. This network structure creates the desired effect of having a larger pool of VTA

DA units available for bursting and pausing as the level of vSub input rises. The level of

vSub activation that determines the size of the VTA DA neuron population depends on

the preferred resting states of each of the NAcc neurons. The PPTN activation in this

2However, for Figures 4.3, 4.4, 4.5 (left and center), and 4.6, the PPTN square wave lasted 1000ms
and the LH square wave lasted a maximum of 1000ms. This was done to ensure a sufficiently long
interval to extract accurate measurements of firing rate and active population size. Figures showing
dopamine output used the parameters described in the text.
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Figure 4.3: Spike dynamics in the simplified network for a 10 second interval. As
activation in vSub increases this causes more NAcc neurons to transition into their up
state, thereby inhibiting more VP neurons and disinhibiting more VTA neurons. The
result of this architecture is a recruitable pool of VTA DA neurons that can respond
to inputs from PPTN and LH (not shown). See text for more details on the dynamics.
vSub = ventral subiculum, NAcc = nucleus accumbens, VP = ventral pallidum, VTA
= ventral tegmental area, PPTN = pendunculopontine nucleus.

simulation alternates between 0 and 1 for 1000 msec intervals. Notice that as long as

the corresponding NAcc neuron is silent, the VTA neuron is unresponsive to inputs from

PPTN. However, once the NAcc firing rate is high enough to disinhibit VTA neurons,

they now alternate between periods of tonic firing and phasic bursting (or tonic firing

and phasic pausing, not shown in Figure 4.3).
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4.3 Methods

The proposed model was evaluated using numerical simulations on two different types

of data from nonhuman animals: single-unit recordings and fast-scan cyclic voltammetry.

The goal of the simulations was to test the neural architecture of the model, not param-

eter optimization. Hence, it is important to note that although this network includes

a number of parameters, the majority of these were fixed after modeling each level of

experimental data. In particular, the parameters that were estimated when fitting the

single-unit data of Lodge and Grace (2006) then remained fixed at those values in all fu-

ture simulations. This process ensured that the network is able to account simultaneously

for experimental data at many levels of analysis and implicitly implements a significant

degree of inflexibility into the model’s structure by constraining it by the lower levels of

analysis. The key parameters that were modified will be described in each section. For

all simulations, the voltage for each unit was estimated for each msec of a 10,000-msec

trial.

In the neural simulations, there was no learning and noise was minimal; therefore,

results are from a single simulation. We ran the neural network through simulations with

100 levels of the value of the modulating variable (from 0.01 to 1 by increments of 0.01)

and 201 values of RPE (from -1 to 1 by increments of 0.01). The amount of DA released

by the network was computed for each combination of learning rate and RPE, resulting

in a total of 20,100 DA measurements.

4.4 Results

MODAL was subjected to three neural benchmark tests. First, we explored whether

it could account for the Lodge and Grace (2006) results showing that vSub activation

83



Modulation of Dopamine for Adaptive Learning: a Neurocomputational Model Chapter 4

increases the number of tonically active VTA DA neurons, whereas activation of the

PPTN induces burst firing of VTA DA neurons. Second, we examined whether the

model was consistent with the data of Bayer and Glimcher (2005), which showed that

DA neuron firing increases linearly with RPE between minimal and maximal values.

Third, we tested whether the model could account for the data of Hart et al. (2014),

which showed that DA release (i.e., extracellular DA concentration) is a linear function

of RPE and that positive and negative RPEs are encoded symmetrically.

4.4.1 Neural Tests of MODAL

Benchmark test 1: Distinct pathways in PPTN and NAcc

Lodge and Grace (2006) provided evidence that distinct interacting pathways exhibit

differential influences on VTA DA neurons. In this experiment, they activated vSub,

PPTN, or both structures via NMDA infusion, and then they counted the number of

VTA DA neurons that were firing tonically (i.e., per electrode track), and they also

estimated the average firing rate of all VTA DA neurons. Their results are shown in the

left column of Figure 4.4. Note that vSub activation increased the number of tonically

active VTA DA neurons but did not affect the population firing rate. On the other

hand, activation of the PPTN caused an increase in the population firing rate as a result

of burst firing, but did not affect the size of the tonically active population. Finally,

simultaneous activation of vSub and PPTN caused a significant increase in both burst

firing and the size of the tonically active population.

MODAL fits are shown in the right column of Figure 4.4. We simulated the control

condition of Lodge and Grace (2006) by setting the square-wave activations of vSub, LH,

and PPTN to 0.27, -0.31, and 0, respectively. Activation of vSub by NMDA infusion was

simulated by changing the amplitude of the square wave activation of vSub to 1. Acti-
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Figure 4.4: Benchmark Test 1. Left panel: Experimental data (left) from Lodge and
Grace (2006). Right panel: MODAL simulations of the same experiment. Plots of the
experimental data are reprinted and modified from Lodge and Grace (2006). vSub =
ventral subiculum, PPTN = pedunculopontine nucleus.

vation of PPTN was simulated by changing the amplitude of the square-wave activation

of PPTN to 0.05. Note that the model accurately captures all qualitative features of

the data. It should also be noted that the connection weights between PPTN and the

VTA units were set so that excitatory input from PPTN to a tonically firing VTA neuron

was sufficient to result in burst firing according to the criteria used by Lodge and Grace

(2006) [i.e., an interspike interval (ISI) of ≤ 80ms and bursting that persists until the ISI

exceeds 160 ms; Grace & Bunney, 1983].

Figure 4.5 shows heat-maps that depict the number of active neurons and population

firing rate as a function of vSub activation and RPE (Figure 4.5 left and center, respec-

tively). These plots show that the overall qualitative behavior reported by Lodge and

Grace (2006) is implemented in MODAL across a wide range of input values for vSub

activation and RPE. The population size of tonically firing DA neurons increases with
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Figure 4.5: Heatmaps showing the number of tonically active DA neurons (left),
average population firing rate (center) and normalized DA release as a function of
vSub input and RPE (right).

vSub activation, but is relatively independent of RPE, and therefore of PPTN/LH acti-

vation while population firing rate increases with PPTN/LH activation but is relatively

independent of vSub activation. Furthermore, Figure 4.5 (right) shows the predicted

extracellular DA concentration for the Lodge and Grace (2006) experiment, with mini-

mal DA release when both vSub and PPTN activation are low, limited DA release when

only one of vSub or PPTN has high activation, and maximal DA release for concurrent

high activity in vSub and PPTN. We assumed extracellular DA concentrations would be

proportional to the total postsynaptic effects of all DA units in the model and so we esti-

mated extracellular DA concentrations as the integral of each VTA neuron’s α-function

for a 1-second period following reward and summed over all neurons in the population.

Benchmark test 2: Single-unit recordings from DA neurons

Bayer and Glimcher (2005) recorded from single midbrain DA neurons (VTA and

SNpc) while monkeys performed a task that required them to learn to make appropriately

timed eye movements. Correct responses were rewarded with a small amount of juice.

Bayer and Glimcher (2005) found that the response of the midbrain DA neurons was

proportional to an estimate of the RPE (the difference between obtained reward value

and a weighted average of previous reward values). Their results from a population of

86



Modulation of Dopamine for Adaptive Learning: a Neurocomputational Model Chapter 4

Figure 4.6: Benchmark Test 2. Left panel: Firing rate of a population of midbrain DA
neurons as a function of RPE (from Bayer & Glimcher, 2005). Right panel: MODAL
simulations of the same experiment. Plots of experimental data are reprinted and
modified from Bayer and Glimcher (2005).

midbrain DA neurons are shown in the left panel of Figure 4.6. Note that the increase

in firing rate is linear after RPE exceeds a minimum value (i.e., of around -0.1).

Simulations of the model under similar conditions are shown in the right panel of

Figure 4.6. Note that the model accurately captures the qualitative properties of the

data. In these simulations we set the tonic firing rate of VTA neurons to approximately

5 Hz (to match data reported by Bayer et al., 2007). For simplicity, the LH → VTA and

PPTN → VTA connection weights were set to be equal, which was sufficient to cause

VTA neurons to pause in response to negative RPEs. The right panel of Figure 4.6 shows

the average firing rate of the VTA population.

Benchmark test 3: Extracellular DA levels in NAcc

The DA neuron firing-rate data shown in Figure 4.6 suggest a more limited dynamic

range for encoding negative as opposed to positive RPEs. In particular, the amount

87



Modulation of Dopamine for Adaptive Learning: a Neurocomputational Model Chapter 4

of increase in firing rate observed for positive RPEs was considerably greater than the

amount of decrease seen for negative RPEs. Bayer and Glimcher (2005) speculated that

negative RPEs might also be encoded by pause duration, and Bayer et al. (2007) later

reported evidence supporting this hypothesis. Of course, synaptic effects of DA are more

closely related to extracellular DA levels than to DA neuron spiking. For this reason,

Hart et al. (2014) used fast-scan cyclic voltammetry to examine how extracellular DA

levels in the rat NAcc varied as a function of RPE. Their results are summarized in

the left panel of Figure 4.7. Note that the phasic bursting and pausing of midbrain DA

neurons results in symmetric encoding of positive and negative RPEs in extracellular DA

concentrations.

Our third benchmark test was to ask whether a model constrained by benchmark

tests 1 and 2 could also account for the symmetric encoding of positive and negative

RPEs shown in Figure 4.7. Therefore, we simulated performance of the model in the

Hart et al. (2014) experiment by choosing the maximum duration of LH activation to

be 400ms (see Equation 4.8). All other parameter estimates from benchmark tests 1

and 2 were fixed. As in benchmark 1, we assumed that extracellular DA concentrations

would be proportional to the total postsynaptic effects of all VTA units in the model and

so we estimated extracellular DA concentrations as the integral of each VTA neuron’s

α-function for a 1-second period following reward and summed over all neurons in the

population.

The results are shown in the right panel of Figure 4.7 for a variety of different levels

of vSub activation. Note that MODAL accounts for the symmetric encoding of positive

and negative RPEs seen in the Hart et al. (2014) data, and it does this for all levels of

vSub activation. But note that the model also makes an important novel, and to our

knowledge, untested prediction – decreasing the level of vSub activation (via decreases

in the value of the modulating variable) should decrease the slope of the regression line
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Figure 4.7: Benchmark Test 3. Left panel: Experimental measurements of extracellu-
lar DA concentrations in NAcc as a function of RPE (from Hart et al., 2014). Right
panel: MODAL simulations of the Hart et al. (2014) experiment for a variety of dif-
ferent levels of feedback contingency.

that best fits the observed extracellular DA concentrations.

The Hart et al. (2014) results shown in the left panel of Figure 4.7 were averaged

across results from three conditioning tasks – two that used probabilistic feedback and

one that used deterministic feedback. Note that for many of the proposed modulating

variables, probabilistic and deterministic feedback would likely lead to predictable differ-

ences. Therefore, our model predicts that the linear relationship evident in Figure 4.7 is

likely a result of averaging across three distinct linear curves.

Although not evident in Figure 4.7, note that MODAL also predicts that decreases in

vSub activation should result in a downward shift in baseline or tonic concentrations of

extracellular DA. This is because a reduction in vSub activation reduces the number of

VTA units that are tonically firing, which reduces the number of VTA units contributing

to the baseline concentration of extracellular DA.
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4.5 Discussion

This article proposed a neurobiologically detailed spiking neural network model that

varies the size of the population of tonically firing DA neurons in response to environ-

mental changes. The model makes specific quantitative predictions about how changes

in the size of this population alter baseline DA levels and the gain on the DA response to

any given RPE. This new model successfully accounts for two single-cell recording data

sets and results from a fast-scan cyclic voltammetry study.

A strong theory should make novel predictions. We highlighted two novel predictions

of the model proposed here. First, any experimental change that reduces the value of

the modulating variable should reduce the magnitude of change in NAcc extracellular

DA concentrations for any given change in RPE. This prediction is illustrated in Figure

4.7. Second, the model predicts that decreasing the value of the modulating variable

should decrease tonic extracellular DA levels due to the decreased size of the active VTA

DA neuron population. To our knowledge neither of these predictions of MODAL have

been tested. It should be noted however, that recent evidence suggests that testing this

latter prediction may be complicated by effects of local mechanisms on extracellular DA

concentrations (Berke, 2018).

4.5.1 Behavioral Applications

The MODAL network illustrated in Figure 4.1 includes no motor units, nor any units

associated with motor planning or decision making. As a result, in its current form,

MODAL produces no behavior and therefore, without some significant augmentation,

it cannot be tested against behavioral data. Even so, MODAL makes strong predic-

tions about how DA levels will vary trial-by-trial in any brain region that is a target of

VTA DA neurons. This includes regions such as prefrontal cortex, hippocampus, amyg-
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dala, ventral striatum and the most anterior portions of the dorsal striatum (e.g., head

of the caudate nucleus). Therefore, MODAL could be combined with any model that

accounts for behavior with a neural network that includes these regions and assigns a

functional role to DA. The result should be a more powerful model of the behavior that

can dynamically adjust tonic and phasic DA release in response to environmental changes

in some modulating variable such as volatility, environmental uncertainty, or feedback

contingency. Many such models have been proposed – far too many to review here.

Furthermore, because DA projections are diffuse, rather than synapse specific, MODAL

should be able to interface with a wide variety of computational models – not just those

that include a high level of biological detail.

This section briefly discusses three qualitatively different types of behavioral applica-

tions of MODAL: 1) to models of value learning that could benefit from a more accurate

model of reward-driven phasic DA firing; 2) to models of executive function that posit

a modulatory role for cortical DA; and 3) to models of procedural learning in which

synaptic plasticity depends on DA neuron activity in the substantia nigra pars compacta

(SNpc).

The primary motivation for the creation of MODAL is to provide a neurocomputa-

tional mechanism for how changes in the environment can modulate the learning rate

(i.e., λn in Eq. 4.1). Takahashi et al. (2008) proposed a model in which the ventral

striatum encodes state values similar to those generated by Eq. 4.1. MODAL could be

conjoined with this model since the ventral striatum is a primary target of VTA DA

neurons. Furthermore, it has also been reported that the ventral striatum plays a key

role in probabilistic reversal learning (Cools, Clark, Owen, & Robbins, 2002). Behrens

et al. (2007) proposed a Bayesian model of reversal learning in which the learning rate

changes with the volatility of the environment. Their model is purely computational and

makes no attempt to describe any of the underlying neural circuitry. Therefore, MODAL
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could be integrated with the Behrens et al. (2007) model to produce a more biologically

detailed model of reversal learning.

Within the striatum, DA is quickly cleared from synapses by DA active transporter

(DAT) and, as a result, the temporal resolution of DA in the striatum is high enough

so that DA levels roughly track phasic DA neuron firing. Unlike the striatum however,

DAT concentrations in frontal cortex are low (e.g., Seamans & Robbins, 2010). As a

result, cortical DA levels change slowly – too slowly to track phasic DA activity. Even

so, MODAL could be used in conjunction with almost any model of executive function

that assigns a functional role to cortical DA levels. For example, Ashby, Valentin, and

Turken (2002) proposed a connectionist network model of creative problem solving that

mapped loosely onto the anterior cingulate, prefrontal cortex, and head of the caudate

nucleus. Although the model included little neuroanatomical detail, it made specific

quantitative predictions about the effects of changing DA levels on cognitive flexibility

and creative problem solving. No model of DA release was included, so MODAL could

be used to fill this role.

Although MODAL could be used to predict changes in DA levels in any VTA DA

target region and in virtually any task, it is important to note that how these changes

affect behavior might be task and brain-region dependent. For example, in some tasks

that depend on executive function, performance is an inverted U-shaped function of DA

level. This includes creative problem solving and cognitive flexibility (Ashby, Isen, &

Turken, 1999; Cools & D’Esposito, 2011; Cools & Robbins, 2004; Cools, 2006). Cools

(2006) suggested that optimal levels of prefrontal DA facilitate the maintenance of sta-

ble representations, whereas optimal levels of striatal DA underlay cognitive flexibility.

Therefore, changing global levels of DA can have different implications for task per-

formance depending on local dynamics. Accordingly, although MODAL modulates DA

input to these regions, the implications of changing global DA levels for behavior and
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performance will require region-specific models that consider local baseline DA levels,

re-uptake mechanisms, receptor dynamics, and interactions between regions.

A more challenging goal is to extend MODAL to the DA neurons in the substan-

tia nigra pars compacta (SNpc). The vSub → NAcc → VP pathway shown in Figure

4.1 projects to VTA but not to SNpc, so accounting for changes in SNpc DA firing

when environmental uncertainty or feedback contingency changes requires a different

neuroanatomical model. This problem is complicated by recent evidence suggesting that

despite many similarities, VTA and SNpc DA have dissociable roles (Keiflin, Pribut,

Shah, & Janak, 2019). Furthermore, VTA and SNpc DA neurons project to different (but

overlapping) targets. In particular, the dorsal striatum receives its DA projection almost

exclusively from the SNpc (e.g., Smith & Kieval, 2000). This is important because there

is overwhelming evidence that procedural learning is mediated within the basal ganglia,

and especially at cortical-striatal synapses in the dorsal striatum (e.g., Ashby & Ennis,

2006; Houk et al., 1995; Mishkin, Malamut, & Bachevalier, 1984; Willingham, 1998).

Therefore, to interface MODAL with models of the dorsal striatum and/or models of

procedural learning, the model must be generalized to include the SNpc. One possibility

is to model the spiraling architecture of the basal ganglia that enables activity in the

ventral striatum (i.e., the NAcc) to influence the central striatum, which then influences

the dorsolateral striatum (Takahashi et al., 2008; Haber, Fudge, & McFarland, 2000; Be-

lin & Everitt, 2008). In fact, an existing actor-critic model of the basal ganglia already

relies on this spiraling architecture (Takahashi et al., 2008).

4.5.2 Relation to RPE Models

The model proposed here describes how changes in some modulating variable affect

the DA response to RPE. But note that the model makes no assumptions about the
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neural networks that compute RPE. Many models of these circuits have been proposed

(Brown et al., 1999; Cohen, Haesler, Vong, Lowell, & Uchida, 2012; Contreras-Vidal &

Schultz, 1999; Eshel et al., 2015; Hazy et al., 2010; Houk et al., 1995; Joel et al., 2002;

Humphries & Prescott, 2010; Kawato & Samejima, 2007; Morita, Morishima, Sakai, &

Kawaguchi, 2012; Morita et al., 2013; O’Reilly et al., 2007; Salum, da Silva, & Pickering,

1999; Schultz et al., 1997; Schultz, 1998; Stuber et al., 2008; Sutton & Barto, 1998;

Tan & Bullock, 2008; Vitay & Hamker, 2014). MODAL does not generate behavior;

therefore, rather than compute RPE using one of these proposed circuits, we chose to

project hypothetical values of RPE (ranging from -1 to +1) to the VTA units via the

PPTN or LH. This network architecture is consistent with accounts that midbrain DA

neurons receive the signals necessary for computing RPE from upstream regions via the

PPTN (Hong & Hikosaka, 2014; Kobayashi & Okada, 2007; Okada & Kobayashi, 2013),

LH (Tian & Uchida, 2015; Hong et al., 2011; M. Matsumoto & Hikosaka, 2007, 2009),

and RMTN (Jhou, Fields, Baxter, Saper, & Holland, 2009).

We chose not to model the neural networks that compute RPE in an effort to provide

a stronger test of the hypothesis that effects of the modulating variable on the DA

response to RPE are mediated by a circuit that includes vSub, NAcc, and VP. Adding

neural structures to compute RPE would increase the complexity of the model, thereby

making it more difficult to attribute a success or failure of the overall network to one

specific subnetwork. Even so, one advantage of the modeling approach followed here

is the potential to develop ’plug-and-play’ models of different neural networks (Ashby,

2018; Cantwell, Riesenhuber, Roeder, & Ashby, 2017). Because MODAL is consistent

with known neuroanatomy and neurophysiology, it should be possible to wire it into

an existing similarly constrained model of the networks that compute RPE or networks

that compute the modulating variable. This exercise is beyond the scope of the current

application.
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4.5.3 Relation to Existing Neural Models of Learning Rates

Several alternative neural accounts of how learning rates are modulated have been

proposed. None of these include DA neurons however, and thus, to our knowledge, none

can account for any of the neural data we considered in our benchmark tests. This

section briefly discusses the more prominent of these alternative accounts, with a special

emphasis on their relation to MODAL.

Bernacchia et al. (2011) reported single-unit recording results from monkeys that

showed evidence that different neurons in ACC, PFC, and lateral intraparietal cortex

are differentially sensitive to the time since the last reward. Based on these results, they

proposed a neural network model in which a reservoir of such neurons could be used

to dynamically alter learning rates, depending on how quickly environmental reward

probabilities are changing.

Similarly, Farashahi et al. (2017) proposed that the ACC adjusts learning rates in

response to environmental changes in reward probabilities via synaptic metaplasticity,

which is a synaptic change that alters the plasticity of the synapse to future events,

without altering the efficacy of current synaptic transmission. Specifically, they proposed

that the ACC may be endowed with metaplastic synapses that can switch between strong

and weak meta states, effectively changing the learning rate.

It is important to note, however, that neither of these proposals made any attempt

to describe how the learning rate selected from the reservoir or computed in the ACC

via metaplasticity, modulates neural plasticity in other brain networks. Thus, rather

than competing with MODAL, these models could be viewed as candidate models for

the network (or part of the network) that computes the modulating variable that serves

as input to vSub in MODAL.

In contrast, a model that more directly competes with MODAL was proposed by
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Franklin and Frank (2015). According to this account, the pause duration of tonically

active cholinergic neurons (TANs) in the striatum signals uncertainty and modulates

learning by controlling the activity of the MSN population through a feedback loop. In

this model, the TAN pauses are driven by input from the striatal MSNs. High entropy

in the MSN population leads to long TAN pauses, which result in fast initial learning,

whereas low entropy in the MSN population leads to short pauses, which result in slow

initial learning. The result is a neural network that implements a dynamic learning rate

that enables rapid learning after a reversal.

This is an interesting hypothesis that deserves further testing. Even so, it faces several

significant challenges. First, Franklin and Frank (2015) acknowledged that they are

unaware of any empirical support for the claim that TAN pause durations are modulated

by MSN activity. Second, their model omits the strongest excitatory glutamatergic inputs

to the TANs, which come from the caudal intralaminar nuclei of the thalamus (Cornwall &

Phillipson, 1988; Sadikot, Parent, & Francois, 1992). Furthermore, simultaneous single-

unit recordings from these thalamic neurons and from TANs show that thalamic activity

is required for the TANs to pause (N. Matsumoto, Minamimoto, Graybiel, & Kimura,

2001). Third, there is evidence (acknowledged by Franklin & Frank, 2015) that DA also

modulates the duration of TAN pauses (Deng, Zhang, & Xu, 2007; Doig, Magill, Apicella,

Bolam, & Sharott, 2014; Ding, Guzman, Peterson, Goldberg, & Surmeier, 2010).

An alternative account of TAN activity was proposed by Ashby and Crossley (2011),

who hypothesized that the main functional role of the TANs is to serve as a gate between

cortex and the striatum. The TANs tonically inhibit cortical inputs to the striatum, so

the default state of the gate is closed. However, environmental cues that signal reward

cause the TANs to pause (via excitatory input from thalamus), which opens the gate and

allows cortical-striatal plasticity. Furthermore, Crossley et al. (2013) proposed a model

that included this role for the TANs, which protects cortical-striatal synapses when state-
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feedback contingency is low (e.g., as when the feedback is random), by eliminating the

TAN pause to cues that formerly predicted reward (and thereby closing the gate). In

this model, decreases in DA are necessary for the TANs to unlearn the pause response.

Crossley et al. (2013) made no attempt to describe a neural circuit via which state-

feedback contingency could modulate the amount of DA released, so MODAL could be

combined with the Crossley et al. (2013) model to provide a more complete description

of these contingency-related phenomena.

In summary, there are few true competitors to MODAL, but many models that could

be combined with MODAL to produce a more powerful model than any that currently

exists. Models in this latter class are of two types. One type, which includes the models

of Bernacchia et al. (2011) and Farashahi et al. (2017), could be used to compute the

value of the modulating variable that is the input to vSub in MODAL (see Figure 4.1).

Another type, which includes the Crossley et al. (2013) model, could use MODAL to

compute the amount of DA released to feedback during each trial of some learning task.

When combined in this way, MODAL would act as the critic, and the other model as the

actor in an actor-critic architecture.

4.5.4 Neural Basis of Modulating Variables

MODAL proposes a neural account of how some modulating variable could affect the

DA response to RPE and therefore learning rates in the brain. Many such variables have

been proposed. MODAL does not require that the computation of all these putative

variables are mediated by the same neural network, but it does require that the variable,

whatever it is, is mediated by a network that sends a prominent projection to the vSub.

Fortunately, almost all hypothesized modulating variables seem to meet this requirement.

For a review of the numerous brain regions involved in coding uncertainty, see Soltani
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and Izquierdo (2019).

The vSub receives dense projections from the hippocampal CA1 subfield and from

entorhinal cortex (Kerr et al., 2007), and these regions receive input from many areas

of frontal cortex, including large portions of PFC, orbitofrontal cortex, and ACC (e.g.,

Gloor, 1997). For example, entorhinal cortex receives almost all of its cortical inputs

from polymodal association areas, including cingulate, orbitofrontal and parahippocam-

pal cortices (Insausti et al., 1987; Jones & Witter, 2007).

Almost all modulating variables are thought to depend on one or more of these regions.

For example, the ACC seems to play a significant role in encoding volatility (Behrens

et al., 2007), uncertainty (Rushworth & Behrens, 2008), and valence-specific uncertainty

(Monosov, 2017). Activity in orbitofrontal cortex has been shown to correlate with

uncertainty (Jo & Jung, 2016; O’Neill & Schultz, 2010) and additional evidence suggests

that it may play a role in unexpected uncertainty and volatility (Riceberg & Shapiro,

2012).

The encoding of unexpected uncertainty has been found in the posterior cingulate cor-

tex, a portion of the postcentral gyrus and posterior insular cortex, the left middle tem-

poral gyrus, the left hippocampus and the locus coeruleus (Payzan-LeNestour, Dunne,

Bossaerts, & O’Doherty, 2013). The encoding of estimation uncertainty has been found

in the ACC extending to the posterior dorsomedial PFC, bilateral dorsolateral PFC and

a portion of the inferior parietal lobule (Payzan-LeNestour et al., 2013). The encoding of

risk was found in the inferior frontal gyrus (Payzan-LeNestour et al., 2013; Huettel, Song,

& McCarthy, 2005) and a portion of the lingual gyrus (Payzan-LeNestour et al., 2013),

the adjacent anterior insula (Huettel et al., 2005; Preuschoff, Quartz, & Bossaerts, 2008)

and the ACC (Christopoulos, Tobler, Bossaerts, Dolan, & Schultz, 2009). Preuschoff

et al. (2008) found that activation in the insula encodes risk and risk prediction errors

and Jo and Jung (2016) found that the anterior insula encodes signals related to reward
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uncertainty. Activity in the hippocampus has been found to correlate with uncertainty

(Harrison, Duggins, & Friston, 2006; Vanni-Mercier, Mauguiere, Isnard, & Dreher, 2009;

Strange, Duggins, Penny, Dolan, & Friston, 2005). Furthermore, Payzan-LeNestour et

al. (2013) noted the similarity between unexpected uncertainty and novelty detection

and therefore the role played by the hippocampus in novelty detection (Rutishauser,

Mamelak, & Schuman, 2006) may be relevant. This proposal is particularly interesting

when considering how the role of the hippocampus in mismatch detection may relate to

the detection of changes in the environment (Kumaran & Maguire, 2006). Dayan and

Yu (2003) proposed that the effects of expected and unexpected uncertainty are medi-

ated in cortex by acetylcholine and norepinephrine, respectively (Yu & Dayan, 2005).

This is relevant because Lipski and Grace (2013) showed that norepinephrine and locus

coeruleus activation can modulate the activity of neurons in vSub and Bortz and Grace

(2018) showed that the modulation of VTA DA population size depends on cholinergic

mechanisms in vSub. Additionally, lesions to the ventral striatum in monkeys have been

shown to reduce learning rates in stochastic tasks, which is consistent with the role of

NAcc in our model (Taswell, Costa, Murray, & Averbeck, 2018). Finally, the medial

septum has been shown to play a role in reversal learning in rats by controlling the size

of active midbrain DA neurons and this effect was mediated via projections from medial

septum to vSub (Bortz, Gazo, & Grace, 2019).

The architecture of MODAL implies that tonic DA encodes the learning rate. There-

fore, our model is consistent with the proposal by Friston et al. (2012) suggesting that

tonic DA encodes precision, that is, the learning rate in Bayesian models of learning under

uncertainty (Mathys et al., 2011). Furthermore, using precision as a modulating variable

in MODAL would enable our network to implement precision-weighted prediction errors.

Niv, Daw, Joel, and Dayan (2007) proposed that tonic DA levels encode the average

rate of reward in free-operant tasks. In the data used to test this model, pigeons and rats
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were trained in steady-state environments in which reward contingencies did not vary.

Thus, the main modulating variables considered in this article, including uncertainty,

volatility, and feedback contingency, are likely to have remained constant as well. As a

result, more research is needed to distinguish between the average-reward-rate hypothesis

and MODAL. Another possibility, however, is that average reward rate could be treated

as a modulating variable that serves as input to MODAL.

4.5.5 The Benefit of Multiple levels of Analysis and Future

Research

We proposed an implementational-level model of how any of a variety of different mod-

ulating variables could control the gain on the DA response to RPE, and therefore imple-

ment dynamic learning rates. Although computational and algorithmic levels of analysis

have been successful in accounting for behavioral phenomena, moving to the implemen-

tational level allows us to further constrain the models by the underlying neuroanatomy

and neurophysiology, and brings to light questions that may not have been proposed at

higher levels of analysis. Some questions that arise due to the implementational-level

modeling are: (1) what are the various computations encoded in cortical circuits that

may act as inputs to MODAL? (2) In neural models of RPE, tonic DA levels often rep-

resent zero RPE; however, what happens when the tonic DA levels change? Note that

MODAL predicts that increases in the value of the modulating variable should increase

tonic concentrations of extracellular DA, even though it will not increase tonic firing

rates in active DA neurons (however, note that local control mechanisms may also need

to be considered; Berke, 2018). To our knowledge, this prediction is untested and there-

fore should be investigated in detail. (3) What is the cellular or molecular mechanism

that causes silent DA neurons to begin firing tonically? We modeled this transition
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by assuming there is variability in the resting state potential across the population of

NAcc neurons. Topologically, this assumption caused some neurons to be further from a

saddle-node bifurcation, and therefore to require more input current for the fixed points

to collide and annihilate. However, because the Izhikevich MSNs are phenomenological

models of neural spiking, there are other possible mechanisms that could lead to similar

dynamical behavior. Future research should test our proposed mechanism and investigate

other possibilities.

Modeling at the implementational level has significant implications for disease states.

Knowledge of the neurophysiology of disease can lead to hypotheses for models at the

computational and algorithmic levels. For example, empirical evidence indicates that in

schizophrenia, the DA system is in overdrive due to aberrant regulation of midbrain DA

neurons by the vSub (Grace, 2010). If the predictions of MODAL are considered, this

kind of knowledge has implications for performance in a variety of behavioral tasks in

people with schizophrenia.

Future research should extend our model upwards by investigating how MODAL could

be integrated with the various circuits that have been proposed to monitor contextual

and statistical aspects of the environment (e.g., as in Bernacchia et al., 2011; Farashahi

et al., 2017). Greater specification of these circuits will enable us to take full advantage of

the computational cognitive neuroscience approach by combining the circuits in a plug-

and-play fashion. Finally, the model presented here was derived from neurobiological

principles and meant to account for neurophysiological data and to serve as a foundation

for the successful application of the model to behavioral data. Accordingly, future work

should explore the application of the model to a variety of behavioral paradigms in which

performance relies on DA levels, such as working memory, creative problem solving,

reversal learning, task-set switching, category learning, and instrumental conditioning.
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General Discussion

Three computational models were presented that advance our understanding of how the

brain generates some of our most intimate subjective experiences, and how it solves some

of the most interesting problems posed by our environment. The first model accounted for

sensory ratings by building a probabilistic, multidimensional representation of the sensory

experiences elicited by exposure to each stimulus. It also builds a similar representation

of the hypothetical ideal stimulus in this same space and generates hedonic ratings by

measuring the Mahalanobis distance between the presented stimulus and the imagined

ideal. The second model accounted for results from a flexible abstract rule learning

experiment using a model that combines highly simplified building blocks that implement

win-stay and lose-switch signals, as well as compute and represent predicted rewards.

The third model uses a network of spiking neurons to represent activity within a neural

circuit that implements adaptive learning rates by modulating the gain on the dopamine

response to reward prediction errors. This model was able to account for a wide array of

neuroscientific data.

I have gained some insights in the process of building these models, and in the fol-

lowing section I will provide some commentary on the process of model invention. I will
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follow this with some practical advice that may help with future model development.

5.1 Behind the Scenes of Model Invention

Each of the models presented in this dissertation resulted from a long and arduous

process that is rarely discussed in any scientific publications (for an excellent exception

consult Shiffrin and Nobel (1997)). Throughout this process, countless nonviable models

are disposed of in the process of inventing the models that are finally published. In this

section I discuss the process of inventing models and give some practical tips to make

this process less arduous. This section is particularly relevant to implementational level

models, such as MODAL, and models that straddle the boundary between implementa-

tional and algorithmic levels, such as the model of flexible rule learning. Nonetheless,

much of this advice is still applicable to models at the algorithmic level, such as the GRT

model for identifying an ideal stimulus.

Deutsch (2011) compares the evolution of scientific theories with the successive im-

provements that occur in biological evolution. He discusses two significant differences

that I consider crucial for understanding how models are invented. First, in biological

evolution, random mutations from one generation to the next only result in slight devi-

ations from the dominant strain. The evolution of scientific theories is similarly gradual

but the vast majority of the invention and falsification of bad explanations takes place

within the brain of the scientist. The gradual improvements in science rarely meet the

high bar of publication, and thus, when one of these improvements is published the

process by which it was invented seems obscure. Second, while random mutations in evo-

lution must improve the fitness of the organism in order to increase the likelihood that

they will propagate to the next generation, this is not a requirement for the mutations

of scientific theories. The countless models invented in the intermediate stages between
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good explanations do not have any viability requirements at all.

Shiffrin and Nobel (1997) note that the vast majority of effort put forth by the theorist

requires skills that are “highly abstract and subjective, and these are seldom discussed

in the literature” (p. 6). They estimate that in the timeline of model development

perhaps 1% of the theorists time is spent on parameter estimation and analysis of the

final model, and simulation of programs for other viable model variations. They suggest

that the remaining 99% of the time is occupied by other “stuff”. This stuff is the creation

of intermediate nonviable models.

The creation of these nonviable models results from a continuous interaction between

the theorist’s intuitions, the simulation results, and the empirical and theoretical litera-

ture. For example, assume the theorist already has a vague idea of a candidate model

and decides to program and simulate it for the phenomena of interest. At this point

the model should be consistent with other empirical data and theory. The theorist will

run the simulation with a very limited search of the parameter space. The purpose of

this simulation is not to fit the empirical data for the phenomena in question; it is to

understand how the components of the model interact and what kinds of behavior it

may produce. Upon inspecting the results, the theorist may decide to change something

about the model (either parameter values or structure) because they have some intuition

and a prediction about how this change will alter the results of the simulation. However,

prior to implementing this change the theorist will reference the literature to determine

whether the parameter or structural change is empirically supported. For example, they

may want to change a synaptic connection parameter from positive to negative, thus

changing the nature of the connection from excitatory to inhibitory. In order to justify

this change the theorist would likely have to change the structure (architecture) of the

model so that it includes different brain regions that are connected by an inhibitory

synapse. If justification is found the theorist runs the modified simulation. In fact, if
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justification is not found, the theorist probably still runs the simulation because they will

undoubtedly learn something about the behavior of the model.

This process - generating an idea for modification, justifying (or not) the modification,

running the modified simulation, inspecting and contemplating the resulting behavior,

and generating a new idea for modification - repeats itself until the model architecture and

parameter values converge to a refined model. The refined model is understood logically

rather than intuitively by the theorist, it is justified by other empirical and theoretical

research, and, based on the theorists intuition, could potentially fit the empirical data.

Finally, after all this “stuff” is done, the model parameters may be optimized to fit the

data. It’s quite likely that the model fit will be unsatisfactory and the theorist will return

to searching through nonviable models with better tuned intuitions.

5.2 Practical Advice for Model Invention

A number of tutorials have been written on computational cognitive neuroscience

(Ashby, 2018; Ashby & Helie, 2011). These outline the principles and tools of the field

and are indispensable in the creation of CCN models. In the following section I will

present some practical tips and heuristics that can accompany the CCN principles and

tools. This advice is in the form of rules of thumb and as such there will be many

exceptions. However, I do believe keeping them in mind at the onset of model invention

can save time and frustration even if one decides to eventually ignore them.

5.2.1 Stop simulating models in one’s head

The model architecture first emerges in the theorists head and at some point they

write it down with rough box and arrow diagrams. As soon as these diagrams exist the

theorist should start planning and writing a simulation program. I would estimate that
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I have created thousands of box and arrow diagrams on paper throughout my graduate

studies, and that does not include the thousands of diagrams I have created in my head.

The reason one should start running simulations on a computer as soon as possible is

that when one thinks about a model or writes it on paper it is a simulation in the theorists

head. Brain simulations, that is, simulations that run on human brains, are prone to error

due to constraints on working memory, long term memory, and computational resources.

5.2.2 Balance the pursuit of justified and unjustified parameter

or structure changes

Occasionally, a theorist will have some intuition about a change in parameters or

structure that may cause the model to produce interesting behavior. It can be quite time

intensive to find justification for a change, especially if that change causes the theorist

to have to comb through unfamiliar literature. If justification is not found it could be

because it does not exist or it could be because the theorist has not found it. Therefore,

sometimes it is best to explore changes in parameters or structure even if they are not

justified because most changes create nonviable models anyway, and the model can be

discarded without consulting the literature. This saves time and enables the theorist to

generate more intuition about the model. Of course, this is a balancing act because the

theorist could spend an extensive amount of time exploring a model that is not justified

by empirical data - ultimately, this model will fail to meet the principles of CCN.

5.2.3 Avoid adding noise unless absolutely necessary

Sometimes the presence of random variation in model entities (e.g. spiking neurons)

is necessary for the explanation or even to fit data. However, especially early on in model

development, it would be wise to keep the noise out of the model for as long as possible.
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Recall that the search through nonviable models is strongly dependent on the theorist’s

intuitions. If random variations causes changes in model behavior that obscure the effects

of changes to parameters or structure chosen by the theorist, then it will be incredibly

difficult for the theorist to generate any intuition about the model. If noise is absolutely

necessary, consider adding it after some intuition has been developed and add as little as

possible.

5.2.4 Use particle swarm optimization while simulating

intermediate models

Consider using particle swarm optimization (PSO) (Clerc, 2012) while simulating

intermediate level models because it can enable the theorist to quickly get some intuition

for the model’s behavior. Importantly, these parameter searches do not need to be

exhaustive as they will undoubtedly be more efficient than tuning the parameters by hand.

PSO feels conducive to ‘human-in-the-loop’ (Rothrock & Narayanan, 2011) computing

which is absolutely crucial when the invention of these models depends so heavily on

the interaction between human intuition and computer simulation. Furthermore, when

running PSO the theorist should consider making use of virtual machines on cloud servers

that scale computing resources to meet the demands of the simulations.

5.2.5 Straddle the boundary between algorithmic and

implementational levels throughout the model invention

process

I recommend an integrated approach to algorithm and implementational level model

design. That is, one should not search for candidate algorithms and spend years attempt-
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ing to justify these models by fitting them to the data that they are well-suited to fit

(while ignoring the data that they cannot explain). Start by constructing the simplest

possible model architecture that maintains a reasonable mapping from parameters to

neural circuit entities. If one already has an algorithmic model in mind then the goal

should already be to find an implementational level model architecture that will imple-

ment the algorithm. If one does not explicitly have an algorithmic model in mind (it

is there implicitly), then one will emerge from this simplest possible model architecture.

This will happen because the simplest possible model is likely going to model functions

of brain regions rather than the activity of neural populations. Accordingly, the resulting

model will likely straddle the boundary between algorithmic and implementational levels,

as is the case for the model of flexible rule learning.

This simple model architecture will provide a clear road map for the invention of lower

level implementational models because entities in the model map to brain regions. Each

of these brain regions will be performing some function in the model and lower level neural

networks can be created that implement these functions via activation patterns, recurrent

activity, and synaptic weights. Eventually, these lower level neural networks can be

substituted into the simple model. Let’s refer to the simplest possible model architecture

that straddles the boundary between algorithmic and implementational levels as the

superordinate model and to the detailed neural network models as subordinate models.

Once the superordinate model exists, the parameter estimation and model fitting

process can be made substantially simpler for the subordinate models. This is because

they can be fit to the outputs of each module in the superordinate model prior to fitting

the entire subordinate model to the empirical data. If the subordinate networks can

mimic the outputs generated by the superordinate modules given similar inputs, then

they will likely require minimal parameter tuning in order to fit the empirical behavioral

data. Once these subordinate networks are created it should be possible to fit them to a

108



General Discussion Chapter 5

wide variety of data; from the behavioral and lesion data presented in this dissertation to

fMRI and EEG data, and neural recordings. A failure of the subordinate model to predict

neural data could be viewed as a failure of the chosen neural implementation (that is,

there are many subordinate network architectures that could generate the superordinate

level circuit outputs), or it could suggest that the superordinate level model should be

modified. Therefore, the creation and testing of these subordinate and superordinate

models would ideally occur in parallel in an effort to make progress toward a satisfying

explanation of flexible abstract rule learning.

5.3 Closing Remarks

This dissertation presented three models of phenomena in psychology and cognitive

neuroscience that exist at and between the algorithmic and implementational levels of

analysis. Each one represents an incomplete explanation of the phenomena in question

due to the fact that the models are only a component of an explanation that should

span all levels of analysis. A model that has reached the stage at which it is ready

for publication is simply a statement about it being sufficiently viable. By sufficiently

viable I simply mean that its mechanisms are clear enough and its fits to data are good

enough for it to escape the theorists brain and make its way to the rest of the scientific

community. These models will be falsified and discarded entirely or modified accordingly.

My only hope for them is that they remain sufficiently viable long enough to point in the

direction of better explanations.
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Appendix A

Derivation of mean and variance for

the normal approximation

The mean of the Eq. 2.3 random variable is (e.g., (Khatri, 1980; Paolella, 2018))

µ∆2 = trace(Σ−1
Y Σw) + µ′
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Furthermore, if we let λi denote the ith eigenvalue of ΣY , then Eq. 2.4 reduces to

µ∆2 = D +
D∑
i=1

λ−1
i + (µ

Y
− µ

i
)′Σ−1

Y (µ
Y
− µ

i
). (A.2)

Note that the last term is just the squared Mahalanobis distance between the means of

the two distributions.
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The variance of the Eq. 2.3 random variable is (e.g., (Khatri, 1980; Paolella, 2018))
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If expressed in terms of the eigenvalues of ΣY , then Eq. 2.5 becomes

σ2
∆2 = 2D + 4
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Therefore, we can approximate the predicted probability that rating j is assigned to

stimulus i on the liking dimension by computing the area between X2
I,j and X2

I,j−1 under

the pdf of a normal distribution with mean and variance specified by Eqs. A.1 and A.3,

respectively (or alternatively, by Eqs. A.2 and A.4, respectively).
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