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ABSTRACT
Mutations in epidermal growth factor receptor (EGFR) are found in approximately 10% of lung cancers.
Treatment with EGFR inhibitors, although promising, has surprisingly resulted in greater than 90% tumor
reduction in only 5% of cases, prompting us to investigate the mechanism of innate drug resistance.
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Lung cancer is the leading cause of cancer death in the US and
other countries. Of the 2 major histologic types, small cell lung
cancer and non-small cell lung cancer (NSCLC), the latter is by
far the more prevalent (~85%). Approximately 14% of NSCLCs
harbor mutations in the gene encoding epidermal growth factor
receptor (EGFR), a receptor tyrosine kinase (RTK). Despite the
fact that treatment of these mutated NSCLCs with EGFR tyro-
sine kinase inhibitors (TKIs) has shown remarkable progress, a
recent randomized Phase 3 clinical trial with erlotinib found
tumor reduction greater than 90% in only 5% of patients.1

Although the remainder also responded, the response was only
partial even though they too had TKI-sensitive EGFR muta-
tions—either exon 19 deletions or the L858R missense muta-
tion in exon 21. This limited primary response could be
attributable to resistance inherent in the tumor cells rather
than resistance acquired over the course of treatment.

RTK ligands secreted through paracrine, autocrine, and
endocrine mechanisms in the tumor microenvironment are
important determinants of therapeutic responses to anticancer
kinase inhibitors. Indeed, hepatocyte growth factor (HGF)-
mediated activation of the RTK MET is the most likely cause of
innate resistance to EGFR TKIs in NSCLC cells.2 However, the
precise contribution of MET activation remains unclear. Given
that causes of acquired resistance to EGFR TKIs are multiple
and complex, the innate resistance of NSCLC cells may likewise
be heterogeneous.

We recently investigated the molecular mechanism by which
the RAS/mitogen-activated protein kinase (MAPK) pathway is
activated after EGFR inhibition despite blockade of RTK

activity in NSCLC cells (Fig. 1).3 EGFR TKIs suppressed both
MAPK and AKT protein kinase pathways for a short time, after
which the RAS/MAPK pathway became reactivated. AKT inhi-
bition selectively blocked the transcriptional activation of
ETS1, which in turn inhibited its target gene, dual specificity
phosphatase 6 (DUSP6), a negative regulator specific for
MAPK3 (best known as ERK1) and MAPK1 (best known as
ERK2). As a result, ERK1/2 was activated.4 Furthermore, ele-
vated SRC (best known as c-SRC) stimulated Ras GTP-loading
and activated RAF and MEK kinases. These observations sug-
gested that not only ERK1/2, but also AKT activity, is essential
to maintain the ETS1 transcription factor in an active state.
Therefore, despite high levels of ERK1/2, ETS1 target genes
including DUSP6 and CCND1, CCND3, and CCNE2 (best
known as cyclin D1, cyclin D3, and cyclin E2) remained sup-
pressed after EGFR inhibition. The reduction in DUSP6 com-
bined with c-SRC to renew activation of the RAS/MAPK
pathway, resulting in increased cell survival by accelerating
protein turnover of BCL2L11 (best known as BIM).5 Thus,
EGFR TKIs evoked innate drug resistance by preventing AKT
activity and inactivating ETS1 function in NSCLC cells.

To our knowledge, our report was the first to highlight ETS1
transcription factor at the juncture of the AKT and MAPK
pathways and to reveal its contribution to innate resistance to
EGFR TKIs (Fig. 1).3 We demonstrated that synthesis of ETS1
and transactivation of its target genes require AKT and ERK1/2
kinase activities. For this reason, although ERK1 and ERK2
were more active after EGFR inhibition, they could not transac-
tivate ETS1 target genes. The outcome of persistent inactivation
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of ETS1 is quiescence and survival of the NSCLC cells; quies-
cence is triggered by reduction of the cyclins and cell survival is
enhanced when sustained activation of ERK1/2 after DUSP6
inhibition accelerates BIM protein turnover.4,5 Thus, our
insights into the regulation of ETS1 target genes reveal a new
point of convergence of AKT and MAPK signaling and eluci-
date a previously unidentified aspect of the innate resistance to
EGFR TKIs in the absence of growth factors, without activation
of RTKs.

We found that addition of a MEK inhibitor enhances
programmed cell death by rewiring apoptotic signaling.3

Therefore, we can reduce the probability of emergent resis-
tance to EGFR TKIs in NSCLCs by combined TKI and
MEK inhibitor treatment. Recent reports from other labora-
tories have also proposed this novel combined therapy,
which is thought to be effective not only in innate resis-
tance, but also in acquired resistance with T790M second-
site EGFR mutation.6,7 In fact, ERK1/2 reactivation was
similarly observed with DUSP6 reduction after L858R/
T790M EGFR-selective inhibition in originally TKI-resistant
NSCLC cells.8 Thus, whether drug resistance is innate or
acquired, our study has provided a compelling rationale for
combination treatment in EGFR-mutated NSCLCs.

Given that EGFR TKIs synergize with MEK inhibitors in
EGFR-dependent NSCLCs for growth inhibition and emer-
gence of drug resistance, the question arises of why administra-
tion of single-agent MEK inhibitor is rarely considered. One
possible explanation could be that in past clinical trials to test
MEK inhibitors, NSCLC patients were selected on the basis of
KRAS (best known as K-RAS) status and not EGFR mutations
in their tumors, and thus no objective responses were found in
the cohort.9,10 If the researchers had chosen an EGFR-mutated
subset the results might have been different.7

In summary, our study demonstrated that the discrepant
responses to EGFR TKIs among NSCLC tumors harboring
EGFRmutations could be attributable to innate drug resistance.
We found that EGFR inhibition evokes innate resistance by
preventing AKT activity and thus inactivating ETS1 function.
The result is paradoxical ERK1/2 activation. Because we found
that addition of a MEK inhibitor enhances programmed cell
death by rewiring apoptotic signaling, we may be able to reduce
the probability of emergent resistance to EGFR TKIs by com-
bined TKI and MEK inhibitor treatment. A randomized dou-
ble-blind trial is necessary before this novel therapy can be
integrated into the management of EGFR-mutated NSCLCs in
the clinical setting.
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