
UC Irvine
UC Irvine Previously Published Works

Title
Accelerating exact and approximate inference for (distributed) discrete optimization 
with GPUs

Permalink
https://escholarship.org/uc/item/1hc296d4

Journal
Constraints, 23(1)

ISSN
1383-7133

Authors
Fioretto, Ferdinando
Pontelli, Enrico
Yeoh, William
et al.

Publication Date
2018

DOI
10.1007/s10601-017-9274-1

Copyright Information
This work is made available under the terms of a Creative Commons Attribution 
License, available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1hc296d4
https://escholarship.org/uc/item/1hc296d4#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Noname manuscript No.
(will be inserted by the editor)

Accelerating Exact and Approximate Inference for
(Distributed) Discrete Optimization with GPUs?

Ferdinando Fioretto · Enrico Pontelli ·
William Yeoh · Rina Dechter

Received: date / Accepted: date

Abstract Discrete optimization is a central problem in artificial intelligence. The op-
timization of the aggregated cost of a network of cost functions arises in a variety of
problems including Weighted Constraint Programs (WCSPs), Distributed Constraint
Optimization (DCOP), as well as optimization in stochastic variants such as the tasks
of finding the most probable explanation (MPE) in belief networks. Inference-based
algorithms are powerful techniques for solving discrete optimization problems, which
can be used independently or in combination with other techniques. However, their
applicability is often limited by their compute intensive nature and their space re-
quirements.

This paper proposes the design and implementation of a novel inference-based
technique, which exploits modern massively parallel architectures, such as those
found in Graphical Processing Units (GPUs), to speed up the resolution of exact and
approximated inference-based algorithms for discrete optimization. The paper stud-
ies the proposed algorithm in both centralized and distributed optimization contexts.

? This journal article is an extended version of an earlier conference paper [26]. It includes (i) a
parallelized design and implementation of Mini-Bucket Elimination with GPUs on WCSPs; (ii) a more
detailed description of the GPU operations to ease reproducibility; (iii) a significantly more comprehensive
empirical evaluation with additional WCSP benchmarks and different GPU devices.

Ferdinando Fioretto
Industrial and Operations Engineering, University of Michigan
Ann Arbor, MI, USA
E-mail: fioretto@umich.edu

Enrico Pontelli, William Yeoh
Computer Science, New Mexico State University
Las Cruces, NM, USA
E-mail: {epontell,wyeoh}@cs.nmsu.edu

Rina Dechter
School of Information and Computer Science, University of California, Irvine
Irvine, CA, USA
E-mail: dechter@ics.uci.edu

ar
X

iv
:1

60
8.

05
28

8v
2 

 [
cs

.A
I]

  1
6 

Ju
n 

20
17



2 F. Fioretto et al.

The paper demonstrates that the use of GPUs provides significant advantages in
terms of runtime and scalability, achieving up to two orders of magnitude in speedups
and showing a considerable reduction in execution time (up to 345 times faster) with
respect to a sequential version.

Keywords GPU ·WCSP ·MPE · DCOP · (Mini-)Bucket Elimination · (A)DPOP

1 Introduction

The importance of constraint optimization is outlined by the impact of its application
in a wide range of domains, such as supply-chain management (e.g., [55,33]), roster
scheduling (e.g., [1,11]), combinatorial auctions (e.g., [59]), bioinformatics (e.g., [2,
13,24]), multi-agent systems (e.g., [21]) and probabilistic reasoning (e.g, [50]).

In Constraint Satisfaction Problems (CSPs), the goal is to find a value assign-
ment for a set of variables that satisfies a set of constraints [4,56]. The assignments
satisfying the problem constraints are called solutions. In Weighted Constraint Satis-
faction Problems (WCSPs) the goal is that of finding an optimal solution, given a set
of preferences expressed by means of cost functions [61,60,8].

When the problems involve uncertainty, we recur to the notion of belief or
Bayesian networks (BNs) [50]. This framework aims at modeling natural phenom-
ena and exogenous uncertainty through probabilistic reasoning. In BNs the goal is
that of answering queries given partial beliefs under conditions uncertainty. Common
tasks over BNs include finding the most probable explanation (MPE), also known as
maximum a posteriori hypothesis (MAP), that is finding the assignment with largest
probability to all unobserved variables given some observed variables [16]. Belief
networks are widely applied to a variety of applications, such as, diagnosis [43] and
linkage analysis [31,32].

When resources are distributed among a set of autonomous agents and communi-
cation among the agents is restricted, WCSPs take the form of Distributed Constraint
Optimization Problems (DCOPs) [47,53,67]. In this context, agents coordinate their
value assignments to minimize the overall sum of resulting constraint costs. DCOPs
have been employed to model various distributed optimization problems, such as
meeting scheduling [45,66], resource allocation [23,68], power network manage-
ment problems [38,34,30], and coordination of appliances in smart homes [29,57].
We will refer to WCSPs and DCOPs as discrete optimization problems.

Algorithms to solve discrete optimization problems can be classified as exact and
approximated. Exact algorithms are guaranteed to find optimal solutions. However,
since solving WCSPs and DCOPs is NP-hard [56], optimally solving these problems
results in prohibitive runtime and/or use of resources, such as memory or network
load. In contrast, approximated algorithms trade solution optimality for shorter run-
time and a more efficient use of the available resources.

Furthermore, discrete optimization algorithms can adopt two main paradigms:
search or inference. Search-based methods rely on the use of non-deterministic
branching rules to explore different value assignments to variables. These rules are
applied recursively until all problem variables are assigned. This process defines a
search tree (typically traversed in a depth-first fashion), which has the advantage of



Accelerating Exact and Approximate Inference Algorithms with GPUs 3

requiring only polynomial space. However, the practical efficiency of these methods
relies on their ability to prune redundant or sub-optimal subtrees. Inference-based
methods are inspired from dynamic programming (DP) techniques. These methods
apply a sequence of transformations to reduce the problem size at each step while
preserving its semantics. A well known inference-based approach is Bucket Elimi-
nation (BE) [15]. BE iterates over the variables of the problem, reducing the size of
the problem at each step, by replacing a variable and its related cost functions with a
single new function, derived by optimizing over the possible values of the eliminated
variable. The Dynamic Programming Optimization Protocol (DPOP) [53] is one of
the most efficient inference-based DCOP solvers, and it can be seen as a distributed
version of BE, where agents exchange newly introduced cost functions via messages.

The importance of inference-based approaches arises in several optimization
fields including constraint programming [4,56]. For example, several propagators
adopt DP-based techniques to establish constraint consistency. For instance, (1) the
knapsack constraint propagator proposed by Trick applies DP techniques to establish
arc consistency on the constraint [65]; (2) the propagator for the regular constraint
establishes arc consistency using a specific digraph representation of the DFA, which
has similarities to dynamic programming [51]; (3) the context free grammar con-
straint makes use of a propagator based on the CYK parser that uses DP to enforce
generalized arc consistency [54].

The main drawback of inference-based methods, including BE and DPOP, is that
each transformation may introduce cost functions with large arities, requiring expo-
nential time and space in a key structural parameter of a problem, called induced
width. While inference-based approaches may not always be appropriate to solve dis-
crete optimization problems, as their time and space requirements may be prohibitive,
they may be very effective in problems with particular structures, such as problems
where their underlying primal graphs have small induced widths or distributed prob-
lems where the number of messages is crucial for performance, despite the size of
the messages. Additionally, approximated inference methods can be effectively used
to derive lower bounds, which are important components of branch and bound algo-
rithms, as they can be used to prune parts of the search space by detecting dominated
solutions—i.e., solutions whose cost can provably not be lower than the best cost
found so far. Mini-Bucket Elimination (MBE) is an approximated variant of BE that
can be used for this purpose.

Recent developments on external-memory algorithms have shown that the use of
large secondary data storage can be effective to extend the applicability of memory
intensive approaches [22,44,37,63]. However, the computational solving runtime re-
mains a bottleneck.

To contrast this background, we note that the structure exploited by inference-
based approaches in constructing solutions makes it suitable to exploit a novel class of
massively parallel platforms that are based on the Single Instruction Multiple Thread
(SIMT) paradigm—where multiple threads may concurrently operate on different
data, but are all executing the same instruction at the same time. The SIMT-based
paradigm is widely used in modern Graphical Processing Units (GPUs) for general
purpose parallel computing. Several libraries and programming environments (e.g.,



4 F. Fioretto et al.

the Compute Unified Device Architecture (CUDA)) have been made available to allow
programmers to exploit the parallel computing power of GPUs.

In this paper, we propose the design and implementation of both an exact and
an approximated inference-based algorithm that exploits parallel computation using
GPUs to solve WCSPs and DCOPs. Our proposal aims at employing GPU hardware
to speed up the inference process, thus providing an alternative way to enhance the
performance of inference-based discrete optimization approaches.

This paper makes the following contributions: (1) We propose a novel design and
implementation of a centralized and a distributed exact inference-based algorithm, in-
spired by BE and DPOP, to optimally solve WCSPs and DCOPs, which harnesses the
computational power offered by parallel platforms based on GPUs; (2) We introduce
an approximated version of the GPU-based inference-based algorithm, inspired by
MBE; (3) We report an extensive empirical analysis that shows significant improve-
ments in performance with respect to the sequential CPU-based algorithms, reporting
an average speedup of two order of magnitude; and (4) We show the generality of our
approach through empirical evaluations on three different GPU architectures, all pro-
viding significant speedups. While the description of the techniques proposed in this
paper focus on discrete optimization tasks, they also applies to other key problems in
probabilistic graphical models, such as, MPE.

2 Background: Weighted Constraint Satisfaction Problems

A weighted constraint satisfaction problem (WCSP) [40,61] is a tuple 〈X,D,C〉,
where X = {x1, . . . , xn} is a finite set of variables, D = {Dx1

, . . . , Dxn
} is a set

of finite domains for the variables in X, with Dxi
being the set of possible values for

the variable xi, and C is a set of weighted constraints (or cost functions). A weighted
constraint fi ∈ C is a function that maps tuples defined on the set of variables relevant
to fi into R+ ∪ {∞}, where∞ is a special value denoting that a given combination
of values is not allowed. The set of variables relevant to fi is referred to as the scope
of fi, and denoted as xi ⊆ X. Formally, fi : "xj∈xi Dxj

→ R+ ∪ {∞}.1 A solution
is a value assignment for a subset ρ of variables from X that is consistent with their
respective domains; i.e., it is a partial function θ : X →

⋃n
i=1Dxi such that, for

each xj ∈ X, if θ(xj) is defined (i.e., xj ∈ ρ), then θ(xj) ∈ Dxj
. The cost of an

assignment ρ is the sum of the evaluation of the constraints involving all the variables
in ρ. A solution is complete if it assigns a value to each variable in X and has finite
cost (i.e., different from∞). We will use the notation σ to denote a complete solution,
and, for a set of variables V = {xi1 , . . . , xih} ⊆ X, σV = 〈σ(xi1), . . . , σ(xih)〉 is
the projection of σ to the variables in V, where i1 < · · · < ih. The goal of a WCSP
is to find a complete solution σ∗ with minimal cost, i.e.,

σ∗=argmin
σ∈Σ

∑
fi∈C

fi(σxi), (1)

where Σ is the state space, defined as the set of all possible complete solutions.

1 For simplicity, we assume that tuples of variables are built according to a predefined ordering.



Accelerating Exact and Approximate Inference Algorithms with GPUs 5

Given a WCSP P , GP =(X, EC) is the primal graph of P , where {x, y} ∈ EC

iff ∃fi ∈ C such that {x, y} ⊆ xi. Given an ordering o on X, we say that a variable
xi has lower priority w.r.t. a variable xj , denoted xi ≺o xj , if xi precedes xj in o.

Definition 1 (Induced Graph, Induced Width [16]) Given the primal graph GP
and an ordering o on its nodes, the induced graph G∗P on o is the graph obtained
from GP by connecting nodes, processed in descending order of priority, to all their
preceding neighbors. Processing a node xi results in the addition of edges connecting
pairs of preceding neighbors of xi. Given a graph and an ordering of its nodes, the
width of a node is the number of edges connecting it to its preceding nodes in the
ordering. The induced width w∗o of GP is maximum width over all nodes of G∗P
along the ordering o.

(a) (b) (c)

 xi  xj      Costs
0   0        2
0   1        0
1   0        1
1   1        3

for  i < j
x1

x2 x3

x4

x1

x2

x4

x3

x1

x2

x4

x3

(d)

Fig. 1: Example of a WCSP : (a): Primal graph. (b): Cost functions. (c): A possible
induced graph. (d): A possible pseudo-tree.

Example 1 Fig. 1(a) illustrates the primal graph of a simple WCSP instance with 4 bi-
nary variables, x1, x2, x3, and x4, and 5 constraints, f(x1, x2), f(x1, x4), f(x2, x3),
f(x2, x4), f(x3, x4). Fig. 1(b) illustrates the constraints costs of the WCSP, which
associate a cost value for each combination of values for the variables in the scope
of the constraints. Fig. 1(c) shows the induced graph G∗P obtained along the ordering
o = 〈x1, x2, x3, x4〉. Its induced width is 3.

Definition 2 (Pseudo-tree [17]) Given a primal graph GP and an ordering o on its
nodes, a DFS pseudo-tree arrangement for GP is a rooted directed tree T = 〈X, ET 〉
of GP such that if fi ∈C and {x, y} ⊆ xi, then x and y appear in the same branch
of T . The root of T is the node associated to the variable with lower priority in o.
Edges of GP that are in (resp. out of) ET are called tree edges (resp. backedges).
The tree edges connect parent-child nodes, while backedges connect a node with its
pseudo-parents and its pseudo-children.



6 F. Fioretto et al.

Example 2 Fig. 1(d) shows one possible pseudo-tree T = 〈X, ET 〉 associated to the
primal graph shown in Fig. 1(a), with ET = {f(x1, x2), f(x2, x3), f(x3, x4)}, and
order o = 〈x1, x2, x3, x4〉. The node labeled x1 is the root node; it has a pseudo-
child, node x4. The node labeled x4 has two pseudo-parents nodes: x2 and x1. The
solid lines describe tree edges, while the dotted lines represent backedges.

Definition 3 (Projection) The projection of a cost function fi on a set of variables
V ⊆ xi is a new cost function fi|V : V → R+ ∪ {∞}, such that for each possible
assignment θ ∈ "xj∈VDxj , fi|V(θ) = min

σ∈Σ,σV=θ
fi(σxi).2

In other words, fi|V is constructed from the tuples of fi, removing the values of
the variable that do not appear in V and removing duplicate values by keeping the
minimum cost of the original tuples in fi.

Definition 4 (Concatenation) Let us consider two assignments θ′, defined for vari-
ables V , and θ′′, defined for variables W , such that for each x ∈ V ∩W we have
that θ′(x) = θ′′(x). Their concatenation is an assignment θ′ · θ′′ defined for V ∪W ,
such as for each x ∈ V (resp. x ∈ W ) we have that θ′ · θ′′(x) = θ′(x) (resp.
θ′ · θ′′(x) = θ′′(x)).

We define two operations on cost functions:
• The aggregation of two functions fi and fj , is a function fi + fj : xi ∪ xj →

R+ ∪ {∞}, such that ∀θ′ ∈ "xk∈xi Dxk
and ∀θ′′ ∈ "xk∈xj Dxk

, if θ′ · θ′′ is
defined, then we have that

(fi + fj)(θ
′ · θ′′)=fi(θ′) + fj(θ

′′).

• The elimination of a variable xj ∈ xi from a function fi, denoted as π−xj
(fi),

produces a new function with scope xi \ {xj}, and defined as the projection of fi
on xi \ {xj}, i.e.,

π−xj
(fi)=fi|xir{xj}.

While the aggregation and elimination operators are defined on summation and
minimization, respectively, for discrete optimization problems, several tasks in belief
networks can be solved by using variants of the aggregation and elimination opera-
tors [16].

2.1 Bucket Elimination

Bucket Elimination (BE) [15,16] is a complete inference algorithm that can be used
to find the optimal solutions of a WCSP. Algorithm 1 illustrates its pseudocode. BE
operates in the following two phases:

2 For simplicity, we also use θ to represent the tuple 〈θ(xi1 ), . . . , θ(xih )〉 where {xi1 , . . . , xih} is
the domain of θ.



Accelerating Exact and Approximate Inference Algorithms with GPUs 7

Algorithm 1: BUCKET ELIMINATION

/* Variable Elimination Phase */
1 for i← n downto 1 do
2 Bi ← {fj ∈ C | xi ∈ xj ∧ i = min{k | xk ∈ xj}}
3 f̂i ← π−xi

(∑
fj∈Bi

fj

)
4 X← X \ {xi}
5 C← (C \Bi) ∪ {f̂i}
/* Value Assignment Phase */

6 for i← 1 to n do
7 xi ← di s.t. di ∈ Dxi and di is the best extension of x1, . . . , xi−1 w.r.t. Bi

8 return f̂1

• Variable Elimination Phase. BE operates from the highest to lowest priority vari-
able. When operating on variable xi, it creates a bucket Bi, which is the set of all
cost functions that involve xi as the highest priority variable in their scope (line 2).
The algorithm then computes a new cost function f̂i by aggregating the functions
in Bi and eliminating xi (line 3). Thus, xi can be removed from the set of vari-
ables X to be processed (line 4) and the new function f̂i replaces in C all the cost
functions that appear in Bi (line 5). Thus, a bucket Bi contains both the original
WCSP functions as well as the functions placed in it during the variable elimina-
tion process. In this work, we refer to the f̂i functions as the bucket functions.

• Value Assignment Phase. Once the variable with the lowest priority has been pro-
cessed, the algorithm considers variables in increasing order of priority. For each
variable xi, it generates an optimal assignment by selecting a value di ∈ Dxi

that
minimizes the cost of the functions in Bi given the assignments of all the other
variables appearing in the scope of the functions in Bi.

As a byproduct, and without additional overhead, BE can compute the number of
consistent solutions of the problem (see [16], for details). The time and space com-
plexity of BE is exponential on the induced width of the underlying primal graph,
which captures the maximum arity of the f̂i functions (line 3).

Example 3 In our WCSP example of Fig. 1, during the Variable Elimination Phase,
BE operates, in order, on the variables x4, x3, x2, and x1. When x4 is pro-
cessed, the bucket B4 = {f(x1, x4), f(x2, x4), f(x3, x4)} is generated, and high-
lighted in Fig. 2(a)(top) by red edges. The resulting bucket function f̂4 is shown
in Fig. 2(a)(bottom), where the rightmost column shows the values for x4 af-
ter its elimination. BE, hence, updates the sets X = {x1, x2, x3} and C =

{f(x1, x2), f(x2, x3), f̂4}, as shown in the primal graph of Fig. 2(b)(top), where the
function f̂4 is displayed as a dotted line. When x3 is processed,B3={f(x2, x3), f̂4},
and f̂3 is shown in Fig. 2(b)(bottom). Thus, X= {x1, x2} and C= {f(x1, x2), f̂3},
as shown in Fig. 2(c)(top). Next, x2 is processed, and B2 = {f(x1, x2), f̂3}, and
f̂2 is illustrated in Fig. 2(c)(bottom). Thus, X = {x1} and C = {f̂2}, as shown in
Fig. 2(d)(top). Lastly, the algorithm processes x1, sets B1 = {f̂2}, and f̂1 is mini-
mized when x1=0, as shown in Fig. 2(d)(bottom). Next, BE starts the Value Assign-



8 F. Fioretto et al.

 x1  x2  x3                      Costs
0   0   0     min(2+2+2, 1+1+1) = 3
0   0   1     min(2+2+1, 0+0+3) = 3
0   1   0     min(2+1+2, 0+3+0) = 3
0   1   1     min(2+1+1, 0+3+3) = 4
1   0   0     min(1+2+2, 3+0+0) = 3
1   0   1     min(1+2+1, 3+0+0) = 4
1   1   0     min(1+1+2, 3+3+0) = 4
1   1   1     min(1+1+1, 3+3+3) = 3

x4

1
1
1
0
1
0
0
0

(a)

(b)

(d)

(c)

 x1                Costs
0     min(3+2, 4+0) = 4
1     min(4+1, 5+3) = 5

x2

1
0

 x1          Costs
      min(4, 5) = 4

x1

0

x1

x2 x3

x4 x1

x2 x3

x1

x2

f3

f4̂ ^

f4̂

 x1  x2                Costs
0   0     min(3+2, 3+0) = 3
0   1     min(3+1, 4+3) = 4
1   0     min(3+2, 4+0) = 4
1   1     min(4+1, 3+3) = 5

x3

1
0
1
0

f3̂ f2̂

x1f2̂

Fig. 2: Bucket Elimination steps for the WCSP of Fig. 1 .

Algorithm 2: MINI-BUCKET ELIMINATION(z)
/* Variable Elimination Phase */

1 for i← n downto 1 do
2 Bi ← {fj ∈ C | xi ∈ xj ∧ i = min{k | xk ∈ xj}}
3 Let {Bi1 , . . . , Bim} be a partition of Bi s.t.

∣∣∣⋃fj∈Bik
xj
∣∣∣ ≤ z, for each k = 1, . . . ,m

4 foreach k ∈ {1, . . . ,m} do
5 f̂ik ← π−xi

(∑
fj∈Bik

fj

)
6 C← (C \Bik ) ∪ {f̂ik}
7 X← X \ {xi}
/* Value Assignment Phase */

8 for i← 1 to n do
9 xi ← di s.t. di ∈ Dxi and di is the best extension of x1, . . . , xi−1 w.r.t. Bi

10 return f̂1

ment Phase, which operates, in order, on the variables x1, x2, x3, and x4. First, it
selects the value that minimizes f̂1, (x1 = 0). Thus, it processes x2, and selects the
value x2 = 1, as it minimizes f̂2 when x1 = 0, as illustrated in Fig. 2(c)(bottom).
Similarly, when BE processes x3, it selects the value x3=0, as it minimizes f̂3 when
x1 = 0 and x2 = 1, illustrated in Fig. 2(b)(bottom). Finally, BE processes the last
variable x4 and assigns it the value 1, since it minimizes f̂4 when x1=0, x2=1, and
x3 =0, illustrated in Fig. 2(a)(bottom). Thus, σ∗= 〈0, 1, 0, 1〉 is an optimal solution
to the problem, with cost 4.



Accelerating Exact and Approximate Inference Algorithms with GPUs 9

2.2 Mini-Buckets

The memory complexity and time complexity of BE depend on the arity of the func-
tions f̂ produced during the variable elimination step. Such requirements can quickly
become infeasible for problems with large induced widths. To overcome this lim-
itation, Dechter and Rish proposed an incomplete version of the Bucket Elimina-
tion [19]. The Mini-Bucket Elimination (MBE) is an approximated version of the
BE that allows one to bound the arity of the functions f̂i generated during the Vari-
able Elimination Phase. Its pseudocode is illustrated in Algorithm 2. Similarly to BE,
MBE operates in the following two phases:
• Variable Elimination Phase. As in BE, during the variable elimination phase,

MBE operates on the problem variables in decreasing order of priority. However,
rather than creating a single bucket function f̂i whose scope is the union of the
scope of each function in the bucket Bi, it partitions Bi in a set of m “mini”-
buckets {Bi1 , . . . , Bim}, such that the size of the scope of the bucket function f̂ik ,
obtained by aggregating the functions inBik , is bounded by a parameter z, for each
k ∈ {1, . . . ,m} (line 3). Thus, MBE considers each mini-bucket independently,
and computesm new bucket functions f̂ik , by aggregating the functions inBik and
eliminating xi (line 5). These functions replace in C all the functions that appear
in Bik (line 6), and the set of variables is updated as in BE (line 7).

• Value Assignment Phase. This phase is analogous to that of BE (lines 8–9).
Consider the elimination step for a variable xi ∈ X. Since:

m∑
k=1

π−xi

( ∑
fj∈Bik

fj

) ≤ π−xi

( ∑
fj∈Bi

fj

)
eliminating xi using mini-buckets produces a lower bound on the optimal cost for
the bucket Bi. Thus, MBE produces a lower bound on the optimal solution cost.
Running the Value Assignment Phase might hence return a sub-optimal solution,
whose evaluation will be an upper bound on the optimal solution cost.

The time and space complexity of MBE is exponential on the maximal arity of
the aggregated functions in the mini-buckets (line 13), and thus it is bounded by the
parameter z.

Example 4 Consider the WCSP of Fig. 1 solved with MBE using z = 1.
As in BE, during the Variable Elimination Phase MBE operates, in order, on
the variables x4, x3, x2, and x1. When x4 is processed, the bucket B4 =
{f(x1, x4), f(x2, x4), f(x3, x4)}—illustrated by the red edges in Fig. 2(a) top—
would result in aggregated bucket function whose arity is 3, and thus exceeds
the maximal arity allowed. Thus, MBE creates a partition {B41 , B42 , B43} for
B4, whose sets consists of the functions, respectively, f(x1, x4), f(x2, x4), and
f(x3, x4). The resulting functions f̂41 , f̂42 , and f̂43 have arity 1, as illustrated
in Fig. 2(a) bottom. Then, MBE updates the sets X to {x1, x2, x3} and C to
{f(x1, x2), f(x2, x3), f̂41 , f̂42 , f̂43}, as shown in the primal graph of Fig. 2(b) top.
When x3 is processed, B3 = {f(x2, x3), f̂43}, marked red in Fig. 2(b) top, and the



10 F. Fioretto et al.

(a) (d)

 x1            
      min(2+0, 2+1) = 2

x1

1

 x1           Costs
0     min(2, 0) = 0
1     min(1, 3) = 1

x4

1
0

f4̂1

 x2           Costs
0     min(2, 0) = 0
1     min(1, 3) = 1

x4

1
0

f4̂2

 x3           Costs
0     min(2, 0) = 0
1     min(1, 3) = 1

x4

1
0

f4̂3

(b)

 x2                Costs
0     min(2+0, 0+1) = 1
1     min(1+0, 3+1) = 1

x3

1
0

f3̂1

(c)

 x1                    Costs
0     min(2+0+1, 0+1+1) = 2
1     min(1+0+1, 3+1+1) = 2

x2

1
0

f2̂1

x1

x2 x3

x4 x1

x2 x3

f4̂1

f4̂2

f4̂3

x1

x2

f4̂1

f4̂2

f3̂1

x1f4̂1
f2̂1

Fig. 3: Mini-Bucket Elimination steps for the WCSP of Fig. 1 :

mini-bucket B31 = B3. The resulting bucket function f̂31 is shown in Fig. 2(b)
bottom. Thus, X = {x1, x2} and C = {f(x1, x2), f̂41 , f̂42 f̂31}. Next, x2 is pro-
cessed; B2 = B21 = {f(x1, x2), f̂42 , f̂31}, and f̂21 is illustrated in Fig. 2(c) bot-
tom. Thus, X = {x1} and C = {f̂41 , f̂21}. Lastly, the algorithm processes x1, sets
B1 = B11 = {f̂41 , f̂21}, and f̂11 is minimized when x1 = 1, as shown in Fig. 2(d)
bottom. The Value Assignment Phase is analogous to the process carried by BE,
except that when processing variable x4 MBE assigns it the value 1, since it min-
imizes f̂41 + f̂42 + f̂43 when x1 = 0, x2 = 1, and x3 = 0 (Fig. 2(a) bottom). Thus,
σ∗=〈0, 1, 0, 1〉 is the reported solution to the problem, with a lower bound cost of 2.

3 Background: Belief Networks and Most Probable Explanation

A belief network (BN) [50] is a tuple 〈X,D,P〉, where X = {x1, . . . , xn} is a
set of ordered variables defined over finite domains D = {Dx1 , . . . , Dxn}, with o an
ordering of the variables in X, and P is a set of conditional probability tables (CPTs).
A CPT fi = {Pr(xi|pai)} of P denotes the join probability of xi with respect to the
variables in pai, and pai ⊆ {xj ∈ X|xi ≺o xj} is the set of variables with higher
priority of xi in the ordering o, also called parent variables of xi. A BN B represents
the probability distribution over the variables in X:

PrB(σ) =
n∏
i=1

Pr(xi|pai),

where σ is a complete assignment for the variables in X. The scope of a CPT fi ∈ P
is the set xi = {xi} ∪ pai. An evidence set σE is an assigned subset of variables
E ⊆ X.



Accelerating Exact and Approximate Inference Algorithms with GPUs 11

A BN B is represented through a directed acyclic graph GB = (X, EP ), where
(y, xi) ∈ EP iff ∃fi ∈ P such that y ∈ pai. In other words, EP is the set of all
directed arcs from each parent variable of xi to xi, for every xi ∈ X. The primal
graph of a BN is called moral graph and it connects any two variables appearing in
the same CPT.

(a) (b)

 x1  x4  Pr(x3|x1)
0   1      0.3
1   1      0.9

x1

x4 x3

x2

(c)

x1

x4 x3

x2

Flu Allergy

SinusFever

 x1  x2 x3  Pr(x4|x1,x2)
0   0   0        0.1
0   1   1        0.8
1   0   1        0.9
1   1   1        0.7

Fig. 4: Example of a Belief Network : (a): Belief Network: Pr(x4, x3, x2, x1) =
Pr(x4|x1)Pr(x3|x1, x2)Pr(x2)Pr(x1). (b): conditional probability tables. (c): Its
moral graph.

Example 5 Fig. 4(a) illustrates a simple belief network with 4 binary variables:
x1, x2, x3 and x4, representing respectively the observations for a patient to have
flu, allergy, fever, and sinus infection, and 4 CPTs, each associated to a node and
its parent nodes. For example, the CPT table illustrated in Fig. 4(b) (top), describes
the probability the patient has fever given that she/he does has have flu. The condi-
tional probability for x4 = 0 is implied since the probabilities need to sum up to 1.
Similarly, the CPT table of Fig. 4(b) (bottom) describes the probabilities the patient
has sinus infection for each combination of outcomes for flu and allergy. The BN
represents the joint probability distribution:

∀x1, x2, x3, x4, P r(x4, x3, x2, x1) = Pr(x4|x1)Pr(x3|x1, x2)Pr(x2)Pr(x1).

Its moral graph is illustrated in Fig. 4(c).

One of the main tasks posed over belief networks is that of finding the maximum
probably explanation (MPE). Given a BN B, and an evidence set E, finding the
MPE correspond to finding a complete assignment for the variables of B that has the
maximal probability given the evidence E. More formally, the goal of the MPE is
that of finding a complete assignment σ∗ such that:

σ∗ = argmax
σ∈Σ

∏
fi∈P

Pr(xi|σpai , E) (2)

where σpai is the projection of σ to the variables in pai.
This problems can be solved with small variations of the Bucket Elimination al-

gorithm presented in section 2.1. Bucket Elimination can be adapted to solve MPE



12 F. Fioretto et al.

tasks on belief networks where the min operator in the projection within the elimina-
tion operation is substituted by max operator and the summation in the aggregation
operator is substituted by the product (for more details we refer the reader to [16]).

4 Background: Distributed Constraint Optimization Problems (DCOPs)

In a Distributed Constraint Optimization Problem (DCOP) [47,53,67], the variables,
domains, and cost functions of a WCSP are distributed among a collection of agents.
A DCOP is defined as 〈X,D,C,A, α〉, where X,D, and C are defined as in a
WCSP, A = {a1, . . . , ap} is a set of agents, and α : X → A maps each vari-
able to one agent. Following common conventions, we assume that α is a bijection:
Each agent controls exactly one variable. Thus, we will use the terms “variable” and
“agent” interchangeably and assume that α(xi) = ai. In DCOPs, solutions are de-
fined as for WCSPs, and many solution approaches emulate those proposed in the
WCSPs literature. For example, ADOPT [47] is a distributed version of Iterative
Deepening Depth First Search, and DPOP [53] is a distributed version of BE. The
main difference is in the way the information is shared among agents. Typically, a
DCOP agent knows exclusively its domain and the functions involving its variable.
It can communicate exclusively with its neighbors (i.e., agents directly connected
to it in the primal graph3), and the exchange of information takes the form of mes-
sages. Given a DCOP P , and a DFS pseudo-tree T for the primal graph GP , we use
N(ai)= {aj ∈A | {xi, xj}∈EC} to denote the neighbors of agent ai; and sep(ai)
to denote the separator of agent ai, which is the set of ancestor agents that are con-
strained (i.e., they are linked inGP ) with agent ai or with one of its descendant agents
in the pseudo-tree T .

Example 6 Fig. 1(a–b) illustrate an example of a DCOP instance with 4 agents, ai
(i ∈ {1 . . . , 4}), each controlling one variable, xi. The problem variables, domains
and constraints are analogous to those of the WCSP of Example 1. Fig. 1(d) shows
one possible pseudo-tree for the DCOP instance, where the agents a1 and a2 have
one pseudo-child: a4. The dotted lines represent backedges.

4.1 Dynamic Programming Optimization Protocol (DPOP)

DPOP [53] is a dynamic programming based DCOP algorithm that is composed of
three phases:
• Pseudo-tree Generation Phase. In this phase the agents coordinate the construc-

tion of a pseudo-tree, realized through existing distributed pseudo-tree construc-
tion algorithms [35].

• UTIL Propagation Phase. Each agent, starting from the leaves of the pseudo-tree,
computes the optimal sum of costs in its subtree for each value combination of
variables in its separator set. The agent does so by aggregating the costs of its

3 The primal graph of a DCOP is equivalent to that of the corresponding WCSP.



Accelerating Exact and Approximate Inference Algorithms with GPUs 13

functions with the variables in its separator and the costs in the UTIL messages
received from its child agents, and then eliminating its own variable.

• VALUE Propagation Phase: Each agent, starting from the root of the pseudo-tree,
determines the optimal value for its variable. The root agent does so by choosing
the value of its variable from its UTIL computations—selecting the value with the
minimal cost. It sends the selected value to its children in a VALUE message. Each
agent, upon receiving a VALUE message, determines the value for its variable that
results in the minimum cost given the variable assignments (of the agents in its
separator) indicated in the VALUE message. Once determined, such assignment
is further propagated to the children via VALUE messages.

Example 7 In our example problem, after coordinating to construct the pseudo-tree
(Fig. 1(d)), agent a4, being the leaf of the pseudo-tree, starts the UTIL propagation
phase, by computing the optimal cost for each value combination of variables x1, x2,
and x3 (Fig. 2(a)(bottom)), and sending the costs to its parent agent a3 in a UTIL
message. Upon receiving the UTIL messages from each of its children, agents a3 and
a2 follow an analogous process. When the root agent a1 receives the UTIL message
from each of its children, it computes the minimum cost of the entire problem, and
starts the VALUE propagation phase. It selects the value for its variable that minimizes
the problem cost (Fig. 2(d)(bottom)) and sends this value down to the pseudo-tree to
its child, a3, in a VALUE message. Upon receiving a VALUE message from its parent,
each agents follows the same process.

The time and the space complexities of DPOP are dominated by the UTIL Prop-
agation Phase, which is exponential in the size of the largest separator set sep(ai)
for all ai ∈ A. The other two phases require a polynomial number of linear sized
messages (in the number of variables of the problem), and the complexity of the local
operations is at most linear in the size of the domain [53].

Observe that the UTIL Propagation Phase of DPOP emulates the Variable Elimi-
nation Phase of BE in a distributed context [10]. Given a pseudo-tree and its ordering
o, the UTIL message generated by each DPOP agent ai is equivalent to the aggregated
and projected function f̂i in BE when xi is processed according to the ordering o.

4.2 Approximate Distributed Pseudotree Optimization

Analogously to how DPOP emulates BE in the distributed context, the Approximate
Distributed Pseudotree Optimization (ADPOP) algorithm emulates MBE to solve
DCOPs [52]. ADPOP has the same three phases as DPOP, and given a pseudo-tree
and its ordering o, the content of the UTIL messages generated by each ADPOP
agent ai is equivalent to the bucket functions f̂ij (j ∈ {1, . . . , im}) in MBE when xi
is processed according to the ordering o.

The complexity of ADPOP is exponential in the input parameter z, while its
VALUE Propagation Phase has the same order complexity of the VALUE Propa-
gation Phase in DPOP.



14 F. Fioretto et al.

HOST
GLOBAL MEMORY

CONSTANT MEMORY

Shared 
memory

Thread Thread

regs regs

Block

Shared 
memory

Thread Thread

regs regs

Block

GRID
S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

L2 Cache

S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

DR
AM

DR
AM

Ho
st

 In
te

rfa
ce

DR
AM

DR
AM

DR
AM

DR
AM

In
st

ru
ct

io
n 

Ca
ch

e

W
AR

P
sc

he
du

le
r

W
AR

P
sc

he
du

le
r

Re
gi

st
er

s 
(3

2K
)

core core core core core core core core

core core core core core core core core

core core core core core core core core

core core core core core core core core

Sh
ar

ed
 M

em
or

y
L1

 C
ac

he
 (6

4K
B)

SFU SFU SFU SFU
HOST

GLOBAL MEMORY

CONSTANT MEMORY

Shared 
memory

Thread Thread

regs regs

Block

Shared 
memory

Thread Thread

regs regs

Block

GRID
S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

L2 Cache

S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

DR
AM

DR
AM

Ho
st

 In
te

rfa
ce

DR
AM

DR
AM

DR
AM

DR
AM

In
st

ru
ct

io
n 

Ca
ch

e

W
AR

P
sc

he
du

le
r

W
AR

P
sc

he
du

le
r

Re
gi

st
er

s 
(3

2K
)

core core core core core core core core

core core core core core core core core

core core core core core core core core

core core core core core core core core

Sh
ar

ed
 M

em
or

y
L1

 C
ac

he
 (6

4K
B)

SFU SFU SFU SFU

Fig. 5: Fermi Hardware Architecture (left) and CUDA Logical Architecture (right)

5 Background: Graphical Processing Units (GPUs)

Modern Graphics Processing Units (GPUs) are massive parallel architectures, offer-
ing thousands of computing cores and a rich memory hierarchy to support graphical
processing (e.g., DirectX and OpenGL APIs). NVIDIA’s Compute Unified Device
Architecture (CUDA) [58] aims at enabling the use of the multiple cores of a graphic
card to accelerate general purpose (non-graphical) applications by providing pro-
gramming models and APIs that enable the full programmability of the GPU. The
computational model supported by CUDA is Single-Instruction Multiple-Threads
(SIMT), where multiple threads perform the same operation on multiple data points
simultaneously.

A GPU is constituted by a series of Streaming MultiProcessors (SMs), whose
number depends on the specific characteristics of each class of GPU. For example, the
Fermi architecture provides 16 SMs, as illustrated in Fig. 5(left). Each SM contains a
number of computing cores, each of which incorporate an ALU and a floating-point
processing unit. Fig. 5(right) shows a typical CUDA logical architecture. A CUDA
program is a C/C++ program that includes parts meant for execution on the CPU
(referred to as the host) and parts meant for parallel execution on the GPU (referred
as the device). A parallel computation is described by a collection of GPU kernels,
where each kernel is a function to be executed by several threads. When mapping a
kernel to a specific GPU, CUDA schedules groups of threads (blocks) on the SMs.
In turn, each SM partitions the threads within a block in warps4 for execution, which
represents the smallest work unit on the device. Each thread instantiated by a kernel
can be identified by a unique, sequential, identifier (Tid), which allows to differentiate
both the data read by each thread and code to be executed.

4 A warp is typically composed of 32 threads.



Accelerating Exact and Approximate Inference Algorithms with GPUs 15

. . .

. . .

Aligned segment

0 1 2 30 31 32. . .Tid Wrap of threads

. . .

Global Memory

. . .

. . .

Aligned segment

0 1 2 30 31 32. . .Tid Wrap of threads

. . .

Global Memory

Fig. 6: Coalesced (left) and scattered (right) data access patterns.

5.1 Memory Organization

GPU and CPU are, in general, separate hardware units with physically distinct mem-
ory types connected by a system bus. Thus, in order for the device to execute some
computation invoked by the host and to return the results back to the caller, a data
flow needs to be enforced from the host memory to the device memory and vice
versa. The device memory architecture is quite different from that of the host, in that
it is organized in several levels differing to each other for both physical and logical
characteristics.

Each thread can utilize a small number of registers,5 which have thread lifetime
and visibility. Threads in a block can communicate by reading and writing a com-
mon area of memory, called shared memory. The total amount of shared memory
per block is typically 48KB. Communication between blocks and communication
between the blocks and the host is realized through a large global memory. The data
stored in the global memory has global visibility and lifetime. Thus, it is visible to all
threads within the application (including the host), and lasts for the duration of the
host allocation.

Apart from lifetime and visibility, different memory types have also different di-
mensions, bandwidths, and access times. Registers have the fastest access memory,
typically consuming zero clock cycles per instruction, while the global memory is
the slowest but largest memory accessible by the device, with access times rang-
ing from 300 to 600 clock cycles. The shared memory is partitioned into 32 logical
banks, each serving exactly one request per cycle. Shared memory has an extremely
small access latency, provided that multiple thread memory accesses are mapped to
different memory banks.

5.2 Bottlenecks and Common Optimization Practices

While it is relatively simple to develop correct GPU programs (e.g., by incrementally
modifying an existing sequential program), it is nevertheless challenging to design an
efficient solution. Several factors are critical in gaining performance. In this section,
we discuss a few common practice that are important for the design of efficient CUDA
programs.

5 In modern devices, each SM allots 64KB for registers space.



16 F. Fioretto et al.

Memory bandwidth is widely considered to be an important bottleneck for the
performance of GPU applications. Accessing global memory is relatively slow com-
pared to accessing shared memory in a CUDA kernel. However, even if not cached,
global accesses covering a contiguous 128 Bytes data are fetched at once. Thus, most
of the global memory access latency can be hidden if the GPU kernel employs a
coalesced memory access pattern. Fig. 6(left) illustrates an example of coalesced
memory access pattern, in which aligned threads in a warp accesses aligned entries
in a memory segment, which results in a single transaction. Thus, coalesced mem-
ory accesses allow the device to reduce the number of fetches to global memory for
every thread in a warp. In contrast, when threads adopt a scattered data accesses
(Fig. 6(right)), the device serializes the memory transaction, drastically increasing its
access latency.

Data transfers between the host and device memory is performed through a sys-
tem bus, which translates to slow transactions. Thus, in general, it is convenient to
store the data onto the device memory. Additionally, batching small memory trans-
fers into a large one will reduce most of the per-transfer processing overhead [58].

The organization of the data in data structures and data access patterns play a fun-
damental role in the efficiency of the GPU computations. Due to the computational
model employed by the GPU, it is important that each thread in a warp executes
the same branch of execution. When this condition is not satisfied (e.g., two threads
execute different branches of a conditional construct), the degree of concurrency typ-
ically decreases, as the execution of threads performing separate control flows can
be serialized. This is referred to as branch divergence, a phenomenon that has been
intensely analyzed within the High Performance Computing (HPC) community [36,
14,20].

6 GPU-based (Distributed) Bucket Elimination (GPU-(D)BE)

Our GPU-based (Distributed) Bucket Elimination (GpuBE) framework, extends BE
and MBE (DPOP and ADPOP, respectively) by exploiting GPU parallelism within
the aggregation and elimination operations. These operations are responsible for the
creation of the functions f̂i in BE and f̂ik in MBE (lines 3 and 5 of Algorithms 1
and 2, respectively) and the UTIL tables in DPOP and ADPOP (UTIL Propagation
Phase), and they dominate the complexity of the algorithms. Thus, we focus on the
details of the design and the implementation relevant to such operations. The key
observation that allows us to parallelize these operations is that the computation of
the cost for each value combination in a bucket function is independent of the com-
putation in the other combinations. The use of a GPU architecture allows us to ex-
ploit such independence, by concurrently exploring several value combinations of
the bucket function, computed by the aggregation operator, as well as concurrently
eliminating out variables.

Due to the equivalence of BE (resp. MBE) and DPOP (resp. ADPOP), we will
refer to the bucket functions f̂ and UTIL tables resulted by the aggregation and elimi-
nation operations of Algorithms 1 and 2, as well as variables and agents, interchange-
ably.



Accelerating Exact and Approximate Inference Algorithms with GPUs 17

6.1 GPU Data Structures

In order to fully capitalize on the parallel computational power of GPUs, the data
structures need to be designed in such a way to limit the amount of information
exchanged between the CPU host and the GPU device, minimizing the accesses to the
(slow) device global memory, while ensuring that the data access pattern enforced is
coalesced. To do so, we store into the device global memory exclusively the minimal
information required to compute the bucket functions, which are communicated to the
GPU once at the beginning of the computation of each bucket or mini-bucket. This
allows the GPU kernels to communicate with the CPU host exclusively to exchange
the results of the aggregation and elimination processes.

We introduce the following concept:

Definition 5 (Bucket-table) A bucket-table is a 4-tuple, T = 〈S,R, χ,≺〉, where:
• S ⊆ X, is a list of variables denoting the scope of T .
• R is a list of tuples of values, each tuple having length |S|. Each element in

this list (called row of T ) specifies an assignment of values for the variables in
S that is consistent with their domains. We denote with R[i] the tuple of values
corresponding to the i-th row in R, for i = {1, . . . , |R|}.
• χ is a list of length |R| of cost values corresponding to the costs of the assignments

in R. In particular, the element χ[i] represents the cost of the assignment R[i] for
the variables in S, with i = {1, . . . , |R|}.
• ≺ denotes an ordering relation used to sort the variables in the list S. In turn, the

value assignments, and cost values, in each row of R and χ, respectively, obey to
the same ordering.

As a technical note, a bucket table T is mapped onto the GPU device to store exclu-
sively the cost values χ, not the associated variables values. We assume that the rows
of R are sorted in lexicographic order—thus, the i-th entry χ[i] is associated with the
i-th permutation R[i] of the variable values in S, in lexicographic order. This strat-
egy allows us to employ a simple perfect hashing to efficiently associate row numbers
with variables’ values. We will elaborate on this topic in Section 6.3. Additionally, all
the data stored on the GPU global memory is organized in mono-dimensional arrays,
so as to facilitate coalesced memory accesses.

6.2 Algorithm Overview

Algorithm 3 illustrates the pseudocode of GpuBE, where z is an input parameter de-
noting the maximal mini-bucket size to be processed. We use the following notations:

– Starred line numbers denote those instructions that are executed concurrently by
both the CPU and the GPU.

– The symbols← and ⇔ denote sequential and parallel (i.e., multiple GPU threads)
operations, respectively.

– If a parallel operation requires a copy from host (device) to device (host), we write
D←H
⇔ (

H←D
⇔ ). Host to device (device to host) memory transfers are performed

immediately before (after) the execution of the GPU kernel.



18 F. Fioretto et al.

Algorithm 3: GPUBE(z)
/* Variable Ordering Phase (Pseudo-Tree Construction) */

1 X̄← Sort X w.r.t. ≺T ordering
/* Variable Elimination Phase */

2 for i← n downto 1, with xi ∈ X̄ do
3 Bi ← CPU::CONSTRUCTBUCKET(C, xi, z)

4 Let {Bi1 , . . . , Bim} be a partition of Bi s.t.
∣∣∣⋃fj∈Bik

xj
∣∣∣ ≤ z, for each k = 1, . . . ,m

5 foreach k ∈ {1, . . . ,m} do
6 Tik = 〈Bik ,Rik , χik ,≺T 〉⇔ GPU::RESERVE(|Rik |)
7 foreach fj ∈ Bik do

8* Tj = 〈xfj ,Rj , χj ,≺T 〉
D←H
⇔ GPU::RESERVE(|Rj |)

9* Tik ⇔ GPU::AGGREGATE(Tik , Tj)

10 f̂ik
H←D
⇔ GPU::ELIMINATE(Tik , xi)

/* Variable Assignment Phase */

11 for i← 1 to n, with xi ∈ X̄ do
12 xi ← CPU::FINDBESTASSIGNMENT(x1, . . . , xi−1)

13 return f̂1

GpuBE is composed of three phases: (1) Variable Ordering, (2) Variable Elimina-
tion, and (3) Variable Assignment. Let us considerN(xi)={xj ∈X |{xi, xj}∈EC},
defined analogously as for the agents’ case. During the first phase (line 1), the prob-
lem variables are sorted according to a pseudo-tree ordering relation; in particular,
we apply the following heuristics in the construction of the pseudo-tree: xi ≺T xj
iff |N(xi)| < |N(xj)|, for every xi, xj ∈ X. For the distributed case, this phase
is identical to that of (A)DPOP, where the agents coordinate the construction of a
pseudo-tree, using an off-the-shelf message-passing algorithm [35].

In the second phase, the algorithm processes each variable, in descending order,
according to the relation ≺T , and proceeds as in (M)BE:
• The function CPU::CONSTRUCTBUCKET constructs the bucketBi as illustrated in

Algorithm 1, line 2. The algorithm proceeds in creating a partition of this bucket, if
required (i.e., if z < w∗). This phase differs slightly in the distributed case, where
each agent, upon receiving a new bucket function from its descendant agents, in-
serts it into its bucket set Bi.

• For each mini-bucket Bik (k = 1, . . . ,m), GpuBE determines and reserves the
amount of global memory to be assigned to each associated bucket-table Tik
(line 6). After the GPU::RESERVE function is invoked, a space sufficient to store
the bucket-table is allocated, and its cost values χik are initialized to 0.

• Thus, GpuBE aggregates the bucket-table Tj associated to each function fj in the
mini-bucket with the bucket-table Tik (lines 7–9). To do so, it first creates a bucket-
table Tj that encodes the cost values of the bucket function fj , reordering them, if
necessary, according to the order on its scope specified by the pseudo-tree relation
≺T (line 8). This procedure requires a memory transfer from the CPU host to the
GPU device global memory. Then, it adds the values χj of the aggregating bucket-
table Tj into the corresponding entries of the bucket-table Tik (line 9). We will



Accelerating Exact and Approximate Inference Algorithms with GPUs 19

further discuss the details of this function, as well as the other kernel functions, in
the next sections.

• Finally, the algorithm invokes a GPU call to eliminate the variable xi from the
bucket-table Tik , thereby constructing the bucket function f̂ik , which is, finally,
copied back to the CPU host memory (line 10).

In the distributed case, each agent processes lines 3–6 in parallel without prior co-
ordination. Starting from the leaves of the pseudo-tree, the agents build their UTIL
messages containing the bucket functions (lines 5–10), and send them to their par-
ents. Thus, each agent waits to receive the UTIL messages from all of its children
before performing the aggregation and elimination operations (lines 7–9 and line 10,
respectively) for each mini-bucket. By the end of this phase (line 10), the root agent
knows the overall cost for each values of its variable xi. Thus, it chooses the value
that results in the minimum cost, and it starts the third phase by sending to each child
agent the value of its variable xi.

In the centralized case, when space is not a concern, there is no need of copying
the bucket tables back to the host, after the variable elimination step (line 10). Thus,
two memory transfer transactions are avoided for each variable being processed.

In the third phase, the algorithm proceeds analogously to as done in (M)BE. For
the distributed case, the agents select the values for their variables that minimize their
bucket functions costs, given the assignments of their ancestor agents, and send them
in VALUE messages to their children. These operations are repeated by every agent
receiving a VALUE message until the leaf agents are reached.

While we described the case in which the underlying problem primal graph is
connected, our implementation allows us to handle disconnected graphs. This is done
by solving the sub-problems in each connected subgraph independently from other
subproblems, and retrieving the problem cost by aggregating the costs stored in the
root of each pseudo-tree associated to the connected graphs.

6.3 GPU-based Constraint Aggregation

We now describe the implementation of the constraint aggregation GPU kernel. This
operation, takes as input two bucket-tables: Tik and Tj , and aggregates the cost values
in χj to those of χik for all the corresponding assignments of the shared variables in
the scope of the two bucket-tables. We refer to Tik and Tj as to the output and input
bucket-tables, respectively.

Consider the example in Fig. 7, the cost values χj of the input bucket-table Tj
(right) are aggregated to the cost values χik of the output bucket-table Tik (left)—
which where initialized to 0. The rows of the two tables with identical value assign-
ments for the shared variables x2 and x3 are shaded with the same color.

To optimize performance of the GPU operations and to avoid unnecessary data
transfer to/from the GPU global memory, we only transfer the list of cost values χ for
each bucket-table that need to be aggregated, and employ a simple perfect hashing
function to efficiently associate row numbers with variables’ values. This allows us
to compute the indices of the cost vector of the input bucket-table relying exclusively



20 F. Fioretto et al.

 x1  x2  x3                   !
0   0   0     0 + 2 
0   0   1     0 + 0
0   1   0     0 + 1
0   1   1     0 + 3
1   0   0     0 + 2
1   0   1     0 + 0
1   1   0     0 + 1
1   1   1     0 + 3

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]

 x2  x3   !
       [0]

[1]
[2]
[3]

0   0     2
0   1     0
1   0     1
1   1     3

Tik Tj jik

+
+
+
+
+
+
+
+0

1
2
3
4
5
6
7

Tid

Fig. 7: Example of aggregation of two tables on GPU.

on the information of the thread ID and, thus, avoiding accessing the scope S and
assignment vectors R of the input and output bucket-tables.

We now discuss how this process can be efficiently handled on the GPU kernels.
Let T out = 〈Sout,Rout, χout,≺out〉 be the output bucket-table, whose scope is Sout =
{xout

1 , . . . , xout
m }. Let T in = 〈Sin,Rin, χin,≺in〉 be the input bucket-table, whose scope

is Sin = {xin
1 , . . . , x

in
s }, and such that Sin v Sout, where A v B denotes that A is a

subsequence of B, and with s ≤ m. Additionally, let xout
m = xin

s , i.e., the last variable
of the input and output bucket-table scopes coincides. The latter is the variable to
be eliminated; We will explain this design choice in the next section, where we will
discuss the variable elimination process on a GPU. Finally, let φout : N → N be a
mapping from input bucket-table scope variables indexes to output bucket-table scope
variable indexes, such that φout(i) = j iff xin

i = xout
j . For instance, in our example of

Fig. 7, φout(0) = 1, as the variable Sj [0] = Sik [1] = x2. Hence, given a row index
rout for the output bucket-table χout, the corresponding row index rin associated to the
input bucket-table cost array χin is given by:

rin =

s−1∑
k=1



 s∏
j=k+1

|Dxin
j
|


︸ ︷︷ ︸

mul[k]

·


b

rout
m∏

j=φout(k)+1

|Dxout
j
|

︸ ︷︷ ︸
div [k]

c mod |Dxin
k
|︸ ︷︷ ︸

mod[k]




+ rout mod |Dxin

s
|︸ ︷︷ ︸

mod[s]

(3)

Each term in the summation of Equation (3) represents the contribution of the k-th
variable’s value in Rout[rout], as an offset to the index rin in the array Rin.

The vectors mul , div , and mod are data structures employed to compute effi-
ciently the rin indices on the GPU. The values mul [k], div [k], and mod [k] (and
mod [s]) can be efficiently computed in O(s), O(n), and O(1), respectively, for
each k = {1, . . . , s − 1}, and copied onto the GPU global memory with one copy
transaction—we allocate them as a single mono-dimensional array.

In order to exploit the highest degree of parallelism offered by the GPU device,
we (1) map one GPU thread Tid to one element of the output bucket-table rout and
(2) adopt the ordering relation ≺T for each input and output bucket-table processed.



Accelerating Exact and Approximate Inference Algorithms with GPUs 21

Procedure GPU::AGGREGATE(Tik , Tj )
1 rik ← the thread’s entry ID (Tid)
2 rj ← 0 /* holds the value of the index entry of χj */
3 s← |Sj |
4 〈mul , div ,mod〉 ← COPYTOSHAREDMEMORY()
5 for `← (1 . . . s−1) do
6 rj ← rj +mul [`] ·

(
b
rik

div [`]
c)%mod [`]

)
7 rj ← rj +

(
rik%mod [s]

)
8 χik [rik ]← χik [rik ] + χj [rj ]

Adopting such techniques allows each thread to be responsible of performing ex-
actly two reads and one write from/to the GPU global memory. Additionally, the
ordering relation enforced on the bucket-tables allows us to exploit the locality of
data and to encourage coalesced data accesses. As illustrated in Fig. 7, this paradigm
allows threads (whose IDs are identified in red by their Tid’s) to operate on contigu-
ous chunks of data and, thus, minimizes the number of actual read (from the input
bucket-table, on the right) and write (onto the output bucket-table, on the left) opera-
tions from/to the global memory performed by a group of threads with a single data
transaction.6

The constraint aggregation GPU kernel is described in Procedure
Gpu::Aggregate, which is computed in parallel by a number of threads equal
to the number of rows of the output bucket-table. Each thread identifies its row
index rik within the output bucket-table cost values array χir based on its thread ID
(line 1), and it initializes a variable that will contain the input bucket-table row index
to 0 (line 2). It then copies into the shared memory the static entities mul , div , and
mod associated to the aggregation of the the bucket-tables being processed (line 4).
A further inspection to the Gpu::Aggregate procedure reveals how it makes use of
the auxiliary data structures above to efficiently implement the hash function of
equation (3), and retrieve the entry index of the input bucket-table associated to the
variables value permutation of the output bucket-table Rik [rik ] (lines 5–7). Finally,
the instruction in line 8 aggregates the corresponding input bucket-table value to the
output bucket-table χik [rik ].

Note that this algorithm highly fits the SIMT paradigm adopted by GPUs; the
thread ID and the auxiliary mul , div , and mod arrays are used to retrieve and update
all the data necessary to compute the output bucket-table. Additionally, the accesses
to the global memory are minimized, as the auxiliary arrays are copied into the shared
memory.

We illustrate the above process in the following example.

Example 8 Consider the operation of aggregating the input bucket-table Tj with the
bucket-table Tik of Fig. 7 corresponding, respectively, to the bucket-table represent-
ing the constraint f23 and the bucket-table f̂3 (before eliminating the variable x3) in
Fig. 2(b). With the Equation (3) notation, s = 2, m = 3 and, thus, the index k of the

6 Accesses to the GPU global memory are cached into cache lines of 128 Bytes, and can be fetched by
all requiring threads in a warp.



22 F. Fioretto et al.

summation ranges from 1 to s− 1 = 1. Therefore:

mul [0] =
∏2
j=2 |Dxj | = 2 div [0] =

∏2
j=φout(1)+1=2 |Dxj | = 2

mod [0] = |Dx2 | = 2 mod [1] = |Dx3 | = 2

Therefore, the mapping from the thread IDs (or, equivalently, the output bucket-table
row indices rik ) to the input bucket-table row indices rj is:

Tid = 0 ⇒ rj = 2 · (b 02c) + 0 mod 2 = 0

Tid = 1 ⇒ rj = 2 · (b 12c) + 1 mod 2 = 1

Tid = 2 ⇒ rj = 2 · (b 22c) + 2 mod 2 = 2

Tid = 3 ⇒ rj = 2 · (b 32c) + 3 mod 2 = 3

Tid = 4 ⇒ rj = 2 · (b 42c) + 4 mod 2 = 0

Tid = 5 ⇒ rj = 2 · (b 52c) + 5 mod 2 = 1

Tid = 6 ⇒ rj = 2 · (b 62c) + 6 mod 2 = 2

Tid = 7 ⇒ rj = 2 · (b 72c) + 7 mod 2 = 3

As a technical detail, the bucket-tables are created and processed so that the vari-
ables in their scope are sorted according to the order ≺T . This means that the vari-
ables with the highest priority appear first in the scope list, while the variable to be
eliminated always appear last. We will see, in the next section, that such detail allows
us to efficiently encode the elimination operation on the GPU.

CPU
(Host)

GPU
(Device)

Reserve

H    D  

Tj #1

Aggregate
Reserve

Kernel #1

H    D  

Tj #2

Aggregate

Kernel #3

Aggregate
Reserve

Kernel #2

H    D  

Tj #3

Fig. 8: Concurrent computation between host and device.

To fully capitalize on the use of the GPU, we exploit an additional level of
parallelism, achieved by running GPU kernels and CPU computations concurrently
(lines 8–9 of Algorithm 3). This is possible when the Tj bucket-tables can be par-
titioned in multiple chunks. Fig. 8 illustrates this operation. After transferring the
first bucket-table chunk (Tj #1) into the device memory, the process starts the execu-
tion of the Gpu::Aggregate() kernel, which operates on this portion of the bucket
table (called Kernel #1 in Fig. 8). Thus, the control immediately returns to the
CPU host, which enforces the next data transfer onto the device memory, through
a call to a GPU::RESERVE(Tj #2). A host-device synchronization point is imposed
after each memory transfer (except the first one), to ensure that no overlapping
Gpu::Aggregate() GPU kernels are enforced.



Accelerating Exact and Approximate Inference Algorithms with GPUs 23

0
0
1
1
2
2
3
3

 x1  x2  x3                  
[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]

0   0   0     5 
0   0   1     3 
0   1   0     4
0   1   1     7
1   0   0     5
1   0   1     4
1   1   0     5
1   1   1     6

Tik
 !ik  x1  x2  

       [0]
[1]
[2]
[3]

0   0     3
0   1     4
1   0     4
1   1     5

TikTid

min

min

min

min

 !ik

Fig. 9: Example of aggregation of two tables on GPU.

6.4 GPU-based Variable Elimination

We now describe the implementation of the variable elimination GPU kernel. This
operation takes as input a bucket-table Tik and a variable xi ∈ Sik and removes this
variable from the bucket-table’s scope, optimizing over its cost rows. As a result, the
output bucket-table rows list the unique assignments for the value combinations of
Sik \ {xi} in the input bucket-table Rik which minimizes the costs values for each
d ∈ Dxi

.
Fig. 9 illustrates this process, where the variable x3 is eliminated from the bucket-

table Tik . The column being eliminated is highlighted yellow in the input bucket-
table. The different row colors identify the unique assignments for the remaining
variables x1, x2, and exposes the high degree of parallelization that is associated to
such operation. To exploit this level of parallelization, we adopt a paradigm similar to
that employed in the aggregation operation on GPU, where each thread is responsible
of the computation of a single output element.

Procedure GPU::ELIMINATE(Tik , xi)
1 rik ← the thread’s entry ID (Tid)
2 rj ← rik · |Dxi | /* holds the value of the index entry of χik */
3 c∗ ← χik [rj ]
4 for `← (1 . . . |Dxi |−1) do
5 c∗ ← min{c∗, χik [rj + `]}
6 χik [rik ]← c∗

The variable elimination GPU kernel is described in Procedure Gpu::Eliminate,
which is computed in parallel by a number of threads equal to the number of rows
of the output bucket-table. Each thread identifies its row index rik within the output
bucket-table cost values χik (line 1), given its thread ID. It hence sets an input row
index rj to the value of the first χik input bucket-table row to analyze (line 1), and
it stores in c∗ its associated cost. Note that, as the variable to eliminate is listed last



24 F. Fioretto et al.

in the scope of the bucket-table, it is possible to retrieve each unique assignment
for the projected output bucket table, simply by offsetting rik by the size of Dxi .
Additionally, all elements listed in χik [rj ], . . . , χik [rj + |Dxi

|] differ exclusively on
the value assignment to the variable xi (see Fig. 9). Thus, the GPU kernel evaluates
the input bucket-table cost values associated to each element in the domain of xi, by
incrementing the row index rj , |Dxi

|− 1 times, and chooses the minimum cost value
(lines 4–5). At last, it saves to the associated output row the best cost found (line 6).

Note that each thread reads |Dxi | adjacent values of the vector χik , and writes one
value in the same vector. Thus, this algorithm (1) perfectly fits the SIMT paradigm,
(2) minimizes the accesses to the global memory as it encourages a coalesced data
access pattern, and (3) uses a relatively small amount of global memory, as it recycles
the memory area allocated for the input bucket-table, to output the cost values for the
output bucket-table.

The ordering ≺T adopted by the bucket-tables makes this procedure effective,
by forcing the variables to be eliminated to be always listed as last. Additionally,
we note that reordering the bucket-tables scope may be necessary exclusively when
constructing the bucket-table associated to the constraints in C. Indeed, the bucket-
tables constructed by the algorithm preserve this ordering over their scope, since all
the problem variables are processed according to the same ordering relation≺T , guar-
anteeing that the variables being eliminated are those with lower priority with respect
to ≺T . Therefore, no reordering will be required in the bucket functions during the
process.

Finally, to reduce the memory transfer time, in addition to the technique described
in the previous section, we unrolled the for-loop in lines 7–9 of Algorithm 3. Doing
so allows us to process all the bucket-tables within a mini-bucket in a single GPU
kernel and to copy them to the device using a single transaction.

7 Theoretical Analysis

We report below a theoretical analysis on the runtime and memory complexity of our
GpuBE(z) algorithms. For the distributed case, we report results on the network load
and messages size complexity provided by the proposed algorithms. The network
load and messages size are defined, respectively, as the total number of messages ex-
changed by the agents and as the size of the largest message exchanged by the agents
during problem resolution. Since our algorithms rely on an inference-based proce-
dure, the agent’s complexity (i.e., the maximal number of operations performed by
the agents while solving the problem) is equivalent to the size of the largest message
exchanged. In turn, the latter corresponds to the memory complexity of the algorithm.
We use GpuBE(w∗) and GpuDBE(w∗) to denote our GPU versions of BE and DPOP,
respectively, and GpuBE(z) and GpuDBE(z) to denote our GPU versions of MBE
and ADPOP, respectively, with mini-bucket size z.

Theorem 1 For a problem P , given an ordering ≺T on the primal graph GP ,
the (mini-)bucket tables (resp. UTIL messages) constructed by GpuBE(z) (resp. the
GpuDBE(z) agents) are identical to those constructed by (M)BE (resp. the (A)DPOP
agents), for z ≤ w∗.



Accelerating Exact and Approximate Inference Algorithms with GPUs 25

Proof The proof follows from the observation that GpuBE(z) and (M)BE are exe-
cuted on the same induced graph G∗P . Thus, the problem variables are processed in
the same order by both versions of the algorithms—lines 1 and 6 of Algorithm 1 (1
and 8 of Algorithm 2) for (M)BE, and lines 2 and 11 of Algorithm 3 for GpuBE(z).
Analogously, in GpuDBE(z) and (A)DPOP, agents operate on the same pseudo-tree
ordering.

For the centralized case, during the Variable Elimination Phase, the bucket con-
struction and mini-bucket partitioning operations of GpuBE(z) (lines 3–4 of Algo-
rithm 3) are identical to those of MBE (lines 2–3 of Algorithm 2). For each mini-
bucket Bij in MBE, the operations to create the bucket function f̂ik are identical
in both algorithms: the effect of invoking the Gpu::Aggregate(Tik , Tj) routine, in
GpuBE, for each bucket-table Tik , corresponding to the bucket function fik (lines 7–
9 of Algorithm 3), is analogous to the aggregation operations performed in MBE:
F =

∑
fj∈Bik

fj (line 5 of Algorithm 2, in parenthesis), and the effect of the
Gpu::Eliminate(Tik , xi) routine, which projects the variable xi onto the scope of
Tij , produces the bucket function f̂ik , which in turn correspond to the elimination
operation performed by MBE: π−xi(F ) (line 5 of Algorithm 2). For the distributed
cases, both ADPOP and GpuDBE(z) agents perform the same operations described
above—during the UTIL Propagation Phase—and populate the UTIL messages they
send to their parent. The equivalence between the Variable Elimination and UTIL
Propagation Phases of BE and DPOP, with the respective phases in GpuBE(w∗) and
GpuDBE(w∗), respectively, follows from the process described above differing ex-
clusively in that partitioning Bi produces a single bucket with the same functions as
those listed in Bi.

The operations performed during the Variable Assignment Phases for (M)BE and
GpuBE(z) (lines 5-7, Algorithm 1, for BE , lines 8–9, Algorithm 2, for MBE, and
lines 11–12, Algorithm 3, for GpuBE(z)) are identical. Additionally, the variables
are processed in the same order in both algorithms. Thus, the solution assignment
for the problem variables returned by (M)BE and GpuBE are identical. Similarly,
for the distributed case, (A)DPOP and GpuDBE(z) agents perform the same VALUE
Propagation phase. �

Corollary 1 For a given z ≤ w∗, the time and memory (message size) requirements
of Gpu(D)BE(z) are, in the worst case, in O(dz+1), and O(dz), respectively, where
d = maxxi∈XDxi

.

Proof This result follows from the equivalence of the Variable Elimination Phases
of (M)BE and GpuBE(z), and of the UTIL Propagation Phases of (A)DPOP and
GpuDBE(z). During these phases, the construction of the (mini)-buckets requires to
save, in the worst case, all possible combinations for the value assignments of the
bucket-function with bounded arity z. Thus, they require O(dz) space. Similarly, for
the distributed case, due to the equivalence of (A)DPOP and GpuDBE(z), the largest
message exchanged by the agents has size O(dz).

Additionally, the total amount of operations (or, equivalently, bucket-tables rows)
that can be processed in parallel during the GPU-based Constraint Aggregation and
GPU-based Variable Elimination steps, is bounded by a constant value which de-



26 F. Fioretto et al.

pends on the GPU card characteristic. Thus, the time complexity of GpuDBE(z) is in
O(dz+1). �

Corollary 2 The network load required for GpuDBE(z) is equivalent to the network
load required by (A)DPOP.

Proof This result follow from the equivalence of DPOP with GpuDBE(w∗) and
ADPOP(z) with GpuBE(z) (Theorem 1). Since (A)DPOP requires each agent to send
one UTIL message to its parent and one VALUE message to each of its children, there
are a total of n− 1 UTIL/VALUE messages exchanged—one through each tree-edge
of the pseudo-tree TP . Thus, the network load required by (A)DPOP and GpuDBE(z)
is in O(n). �

Corollary 3 Gpu(D)BE is correct and complete.

Proof The correctness and completeness of GPU-(D)BE(w∗) follow from the cor-
rectness and completeness of BE [15] and DPOP [53], and Theorem 1. �

8 Experimental Results

In this section, we evaluate our GPU implementations of BE and MBE (GpuBE) as
well as our GPU implementations of DPOP and ADPOP (GpuDBE) and compare
them with their CPU counterparts.7

Experiments for GpuDBE and (A)DPOP are conducted using a multi-agent
DCOP simulator that simulates the concurrent activities of multiple agents, whose
actions are activated upon receipt of a message. All algorithms use the same variable
ordering in the centralized case and pseudo-tree in the distributed case. Performance
of the centralized algorithms are evaluated using the algorithms’ wallclock runtime,
while the performance of distributed algorithms are evaluated using the simulated
runtime metric [64]. The main focus of the evaluation is on runtime and speedup
achieved by the GPU implementations with respect to their CPU counterparts. Ad-
ditionally, to compare the quality of the solution bounds reported by the incomplete
algorithms, we also report the best solution quality found within the given time lim-
its by toulbar2 [3], an optimized, exact centralized solver for WCSPs. Toulbar2 is a
state-of-the-art solver that uses a depth-first branch-and-bound process to identify a
minimum cost assignment and employs the notion of soft local consistency to prune
the search space using the problem lower bound.

Our experiments are conducted on an AMD Opteron 6276 with a 2.3GHz CPU
and is equipped with a GPU device GeForce GTX TITAN with 14 multiprocessors,
2688 cores, with a clock rate of 837MHz, and 6GB of global memory.

We performed our experiments on both randomly generated instances on differ-
ent networks topologies and on standard WCSP benchmarks.8 We first analyze the

7 Our source code is available at https://github.com/nandofioretto/GpuBE, and
https://github.com/nandofioretto/GpuDBE

8 Downloadable from http://costfunction.org/en/benchmark/ and http:
//graphmod.ics.uci.edu/group/Repository

https://github.com/nandofioretto/GpuBE
https://github.com/nandofioretto/GpuDBE
http://costfunction.org/en/benchmark/
http://graphmod.ics.uci.edu/group/Repository
http://graphmod.ics.uci.edu/group/Repository


Accelerating Exact and Approximate Inference Algorithms with GPUs 27

runtimes of the CPU and GPU versions of BE and DPOP on randomly generated
instances, where we report the runtimes and lower bounds of the GPU and CPU ver-
sions of MBE and ADPOP at varying of the bucket size z. Then, to ensure that the
speedups are not due to a specific GPU device configuration, we compare the CPU
and GPU speedups achieved on 3 distinct GPU architectures, characterized by dif-
ferent clock rates, number of SMs, and memory sizes. Finally, we report the solving
time and lower bounds of our GpuBE on an extensive set of WCSP benchmarks to
verify the generality of the speedups across different domains. Each solver has 1-hour
timeout of wallclock time in the centralized case and a 1-hour timeout of simulated
time in the distributed case. Additionally, they have a memory limit of 32GB to solve
each problem instance. Results are averaged over all instances. If a solver fails to
solve an instance is due to either memory limits (labeled oom) or timeout (labeled
oot).

8.1 Binary Random Networks

The instances for each binary network topology are generated as follows:
• Random: We create an n-node network, whose density p1 produces bn (n−1) p1c

edges in total. We do not bound the tree-width, which is based on the underlying
graph and randomly generated.

• Scale-free: We create an n-node network based on the Barabasi-Albert model [6].
Starting from a connected 2-node network, we repeatedly add a new node, ran-
domly connecting it to two existing nodes. In turn, these two nodes are selected
with probabilities that are proportional to the numbers of their connected edges.
The total number of edges is 2 (n− 2) + 1.

• Grid: We create an n-node network arranged as a rectangular grid, where each
internal node is connected to four neighboring nodes, while nodes on the grid
perimeter are connected to three neighboring nodes unless they are at the corner of
the grid, in which case they are connected to two neighboring nodes.

We generate 50 instances for each topology, ensuring that the underlying graph is
connected. The cost functions are generated using random integer costs in [0, 100],
and the constraint tightness (i.e., ratio of entries in the cost table that have a cost of
∞) p2 is set to 0.5 for all experiments. We set the following as default parameters: For
the random and scale-free topology, n=10, d=maxDi∈D |Di|=10, and p1 =0.3,
and for the grid topology,

√
n=10.

Tables 1–3 report the runtime, in seconds, for random, scale-free, and grid topolo-
gies, respectively, varying the number of variables (resp. agents) for the centralized
(resp. distributed) algorithms, the size of the variables domains, and the constraint
tightness of the primal graph. The first four (three) columns of Table 1, (2 and 3)
describe the problem setting adopted for each experiment. The induced width w∗ is
averaged across all instances. All other columns report the average runtime and GPU
vs. CPU speedup in parenthesis. We make the following observations:
• The GPU-based inference-algorithms are consistently faster that their CPU coun-

terparts, with speedups of up to 307x. Only two exceptions arise for the random
networks, where in the small instances with n = 10, d = 5, p1 = 0.3, and n = 10,



28 F. Fioretto et al.

Problem BE DPOP
n d p1 w∗ CPU GPU speedup CPU GPU speedup
10 10 0.3 2.9 0.019 0.002 10.5 0.007 0.001 7.20
11 10 0.3 3.2 0.031 0.002 13.6 0.013 0.001 13.0
12 10 0.3 3.6 0.069 0.003 25.7 0.028 0.001 28.5
13 10 0.3 4.3 0.413 0.005 79.4 0.210 0.002 116
14 10 0.3 4.4 0.631 0.006 98.6 0.214 0.002 134
15 10 0.3 5.3 4.190 0.026 158 1.609 0.009 187
16 10 0.3 5.8 32.29 0.189 171 9.848 0.049 202
17 10 0.3 6.4 65.41 0.328 200 28.14 0.138 204
18 10 0.3 7.5 206.1 0.944 218 103.0 0.483 213
19 10 0.3 8.0 602.1 2.541 237 470.2 2.019 233
20 10 0.3 8.5 675.3 3.145 215 508.9 2.160 236
10 5 0.3 3.0 0.001 0.002 0.56 0.001 0.001 0.80
10 10 0.3 2.9 0.019 0.002 10.5 0.007 0.001 7.20
10 25 0.3 2.8 0.227 0.004 55.4 0.092 0.001 92.3
10 50 0.3 2.9 24.81 0.095 262 13.99 0.048 291
10 100 0.3 2.9 67.59 0.220 308 35.22 0.118 299
10 10 0.2 2.0 0.001 0.001 0.62 0.001 0.001 0.94
10 10 0.3 2.9 0.019 0.002 10.5 0.007 0.001 7.20
10 10 0.4 3.8 0.094 0.002 40.7 0.042 0.001 42.5
10 10 0.5 4.5 0.525 0.005 105 0.234 0.002 130
10 10 0.6 5.4 3.378 0.019 176 1.941 0.011 176
10 10 0.7 5.9 14.86 0.072 205 10.00 0.053 189
10 10 0.8 6.7 56.23 0.246 228 31.29 0.147 213
10 10 0.9 7.6 72.32 0.312 232 42.47 0.201 211

Table 1: Random networks.

d = 10, p1 = 0.2, the GPU versions of the algorithms are slower than their CPU
counterparts.

• The speedup increases with the problem size. In particular, the speedup increases
with increasing induced width and with increasing domain size of the problem vari-
ables. Both these factors influence the size of the bucket-tables to be processed.9

This observation corroborates the effectiveness of the GPU parallelism exploited
in the construction of these tables.

• As expected, the inference-based algorithms are unable to process instances char-
acterized by large induced widths or large domain sizes, as the size of the bucket-
tables become intractable with the memory limitations. This is evident in the scale-
free and grid networks, where the solvers run out of memory for instances with
n ≥ 16 and d ≥ 50, respectively.

• The simulated runtimes of the DCOP algorithms are consistently smaller than the
wallclock runtimes of the WCSPs ones. This is due to the fact that agents in dif-
ferent branches of the pseudo-tree can compute their bucket-tables independently
from each other.

• Finally, the speedup trends of the distributed algorithms are similar to those of the
centralized algorithms.

9 Recall that BE needs to process bucket-tables whose number of rows is in O(dw
∗
).



Accelerating Exact and Approximate Inference Algorithms with GPUs 29

Problem BE DPOP
n d w∗ CPU GPU speedup CPU GPU speedup
10 10 6.3 22.99 0.111 207 13.78 0.064 215
11 10 6.0 25.57 0.120 212 13.21 0.057 231
12 10 6.0 27.96 0.132 212 14.60 0.072 203
13 10 5.9 80.14 0.370 217 36.21 0.174 208
14 10 6.9 78.36 0.339 231 32.50 0.145 223
15 10 8.2 189.4 0.887 213 66.86 0.340 197
16 10 9.2 oom oom - oom oom -
17 10 9.5 oom oom - oom oom -
18 10 10 oom oom - oom oom -
19 10 11 oom oom - oom oom -
20 10 12 oom oom - oom oom -
10 5 6.8 0.322 0.004 74.8 0.175 0.001 145
10 10 6.3 22.99 0.111 207 13.78 0.064 215
10 25 6.6 242.5 0.888 273 127.9 0.593 216
10 50 6.4 oom oom - oom oom -
10 100 6.4 oom oom - oom oom -

Table 2: Scale-free networks.

Problem BE D-BE√
n d w∗ CPU GPU speedup CPU GPU speedup

5 10 3.3 0.259 0.005 44.7 0.022 0.001 21.8
6 10 3.7 0.267 0.008 33.4 0.022 0.001 22.6
7 10 3.7 0.515 0.012 42.9 0.037 0.001 30.8
8 10 3.6 0.848 0.018 47.1 0.041 0.001 29.6
9 10 3.9 1.460 0.028 52.0 0.049 0.001 33.7

10 10 4.0 1.881 0.035 34.4 0.054 0.002 31.7
11 10 3.7 1.934 0.040 48.3 0.073 0.002 38.4
12 10 3.8 2.174 0.042 48.4 0.089 0.002 38.7
13 10 3.9 2.430 0.045 42.2 0.102 0.003 37.8
14 10 4.0 2.996 0.055 54.5 0.127 0.003 39.7
15 10 4.0 3.785 0.071 53.3 0.151 0.004 38.7
10 5 3.7 0.043 0.020 2.21 0.001 0.001 1.00
10 10 4.0 1.881 0.035 34.4 0.054 0.002 31.7
10 25 3.9 97.29 0.388 251 2.930 0.011 266
10 50 4.0 oom oom - oom oom -
10 100 4.0 oom oom - oom oom -

Table 3: Grid networks.

Next, we analyze the performance of the individual kernels that implement the
constraint aggregation and the variable elimination processes described, respectively,
in Sections 6.3 and 6.4. Figure 10 illustrates the average speedup obtained by the
GPU-based constraint aggregation, and the GPU-based variable elimination with re-
spect to their CPU-based counterparts when considering the largest bucket processed
in each instance of the random, scale-free, and grid network instances. The reported
average speedup for the constraint aggregation operations range from 363x (in scale



30 F. Fioretto et al.

Constraint aggregation Variable elimination

S
pe

ed
−

up
 G

P
U

 v
s 

C
P

U

0
100
200
300
400
500
600
700
800
900

1000
Random networks Scale−free networks Grid networks

Fig. 10: Analysis of the average speedup obtained by the GPU-based constraint ag-
gregation, and GPU-based variable elimination w.r.t. their CPU-based counterparts
in the random, scale-free, and grid network instances.

free networks) to 613x (in random networks). The variable elimination operations
achieve an even higher speedup, ranging from 830x (for grid networks) to 911x (for
scale free networks). This is due to the high locality of data exploited by the GPU-
based variable elimination kernel, which encourages coalesced data accesses, and
through memory reuse, where we overwrite the input bucket-table of the variable
elimination process with the resulting bucket-table from the same process.

Next, we compare our centralized and distributed versions of GpuBE with
MBE [15] and ADPOP [53] at varying of the mini-bucket size z ∈ {2, . . . , 10},
on binary constraint networks with random, scale-free, and grid topologies, using
the same settings described in the previous section. The instances for each topology
are generated as described above. Fig. 11(a–c) illustrate the speedup of the CPU and
GPU versions of MBE, respectively, on random networks with n = 20, d = 25,
p1 = 0.3, on scale-free networks with n = 20, d = 25, and on grid networks with√
n = 10, d = 25. The intensity of the color illustrates the solution quality of the

bound returned (darker color denotes better solution quality). We make the following
observations:
• The speedup obtained by the GPU vs. CPU solvers increases as the size of the mini-

buckets increases. This observation is consistent with the previous observation that
the speedup increases with increasing induced widths.

• The speedup saturates when z = 7 in all benchmarks, reporting maximal speedups
of 235x, 274x, and 156x, for random, scale-free, and grid networks, respectively.
This phenomena occurs when the maximum concurrent number of GPU threads
are scheduled and executed simultaneously by all the GPU SMs—i.e., when there
is enough work to saturate the GPU maximal occupancy.

• As for the previous experiment, the speedup trends of the distributed algorithms
are similar to those of the centralized algorithms. The correlation10 of the CPU

10 We use the Pearson product-moment correlation coefficient.



Accelerating Exact and Approximate Inference Algorithms with GPUs 31

Mini−bucket Size (z)

S
pe

ed
−

up
 G

P
U

 v
s 

C
P

U

2 3 4 5 6 7 8 9 10

0

50

100

150

200

250

300

N
or

m
al

iz
ed

 Q
ua

lit
y

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Mini−bucket Size (z)

S
pe

ed
−

up
 G

P
U

 v
s 

C
P

U

2 3 4 5 6 7 8 9 10

0

50

100

150

200

250

300

N
or

m
al

iz
ed

 Q
ua

lit
y

0.3

0.4

0.5

0.6

0.7

0.8

(a) (b)

Mini−bucket Size (z)

S
pe

ed
−

up
 G

P
U

 v
s 

C
P

U

2 3 4 5 6 7 8 9 10

0

50

100

150

200

250

300

N
or

m
al

iz
ed

 Q
ua

lit
y

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
T

ita
n

T
E

S
LA

T
ita

n 
X

T
ita

n

T
E

S
LA

T
ita

n 
X

T
ita

n

T
E

S
LA

T
ita

n 
X

Mini−bucket Size (z)

N
or

m
al

iz
ed

 W
al

lc
lo

ck
 T

im
e

0%

20%

40%

60%

80%

100%

4 6 8

Data Transfer Time (%) Kernel Execution Time (%)

Fig. 11: (a) MBE Results on Random Networks: n = 20, d = 25, p1 = 0.3; (b) MBE
results on Scale-free Networks: n = 20, d = 25; (c) MBE results on Grid Networks:√
n = 10, d = 25; (d) Normalized data allocation and transfer times (blue) vs. kernel

times (white) on different GPUs.

vs. GPU speedup between the centralized and the distributed solutions are 0.93,
0.95, and 0.99, respectively for the grid, random, and scale-free network topolo-
gies.

Table 5 illustrates a comparison of the speedups obtained with three different
GPU hardware configurations: TESLA M2075, GeForce GTX Titan and GeForce GTX
Titan X, whose specifics are summarized in Table 4.11

Among the three GPU devices, the TESLA M2075 achieve the lowest maximal
speedups, which range from 117.8x to 213,7x. Additionally, the speedup saturates
when z = 5 for grid networks and z = 7 for random and scale-free networks. This is

11 In all other experiments we used the GeForce GTX Titan, as this is the best, most affordable card at
our disposal.



32 F. Fioretto et al.

TESLA M2075 GeForce GTX Titan GeForce GTX Titan X
CUDA Capability 2.0 3.5 5.2
Global Memory Size 5375 MB 6137 MB 12286 MB
Number of SMs 14 14 24
Cores per SM 32 192 128
GPU Max Clock Rate 1.15 GHz 0.88 GHz 1.08 GHz
Memory Clock Rate 1566 Mhz 3004 Mhz 3505 Mhz
L2 Cache Size 786 KB 1572 KB 3145 KB
Max Number of Threads per SM 1536 2048 2048
Concurrent copy and execution yes yes yes

Table 4: GPU device specifics.

Grid Random Scale-Free
z TESLA Titan Titan X TESLA Titan Titan X TESLA Titan Titan X
2 0.22 0.85 0.49 0.21 0.28 0.60 0.27 0.43 0.57
3 1.54 3.05 2.80 1.42 1.99 3.25 1.48 2.42 1.61
4 21.9 29.1 33.0 10.7 11.6 16.1 12.2 7.46 12.0
5 117 150 232 60.6 49.8 66.4 59.3 51.3 66.8
6 117 143 237 144 145 223 163 159 285
7 117 152 235 198 207 392 208 244 435
8 118 153 241 198 235 645 211 274 627
9 115 156 238 197 234 620 oom oom oom
10 117 155 235 199 233 628 oom oom oom

Table 5: CPU vs. GPU speedup on different GPU devices.

due to the fact that this card can schedule the smallest number of cores per each SMs
(32). Since each core can run concurrently a wrap (32 threads), its maximal level of
concurrency is 14× 32× 32 = 14, 336 threads (and is thus the maximum number of
parallel aggregation operations). In contrast, the speedup obtained by our GpuBE is
the highest on the GeForce GTX Titan X—obtaining a maximal speedup of 646.9x—
and saturates when z = 8 in all networks. The maximum number of threads that can
run concurrently on this card is 24 × 128 × 32 = 98, 304. The speedups obtained
by our solver on the GeForce GTX Titan, used in the rest for the experiments in this
paper, are larger than those obtained on the TESLA but smaller than those obtained
on the GeForce GTX Titan X. This card can run up to 86, 016 threads. In addition to
the number of threads than can run concurrently, the GPU clock rate and L2 cache
size play a substantial role in the GPU performance.

Finally, Fig. 11(d) illustrates the time spent by the GPU devices while executing
the kernel functions (in white) in contrast to the time used for memory transfers
and allocations (in blue), at varying mini-bucket size z = {4, 6, 8}. These times
are averaged among all instances for the three network topologies examined and are
normalized with the respect to the wallclock runtime. The results show that the time
spent by the device in performing actual computations increases, with the respect to
the memory transfer time, as the mini-bucket size increase. Allocations and memory
transfers on the Titan device are slower than on the TESLA and the GTX Titan X.
Finally, these times account for the 36% to 55%, 18% to 34%, and 8% to 18% of the
total time, respectively for the mini-bucket sizes 4, 6, and 8.



Accelerating Exact and Approximate Inference Algorithms with GPUs 33

8.2 WCSPs Benchmarks

We now report the evaluation of our GpuBE on the following standard WCSPs bench-
marks:
• Celar: Radio link frequency assignment problems.
• Coloring: Graph coloring instances cast into minimum coloring instances.
• Iscas89: WCSPs derived from digital circuits.
• Pedigree: Instances from the genetic linkage analysis domain that is associated

with the task of haplotyping.
• Spot: Instances of the daily photograph scheduling problem of Earth observation

satellites.
Tables 6–9, tabulate the results for the above benchmarks. In each table and for

each instance, we report, in order, the instance name—as appearing in the original
benchmark—the number of variables n of the problem, the maximum size of their
domains d, the number of constraints c, the graph density p1, and the induced width
w∗ of the underlying primal graph. In each table, the top row shows the runtimes in
seconds of GpuBE(z) at varying bucket size z and GpuBE. The bottom row shows
the returned solutions’ qualities, where for GpuBE(z), we report the lower bound it
returned. When GpuBE failed to report a solution (due to memory limits), we re-
port the solution quality found by toulbar2 (shown in parenthesis) or a dash sym-
bol, if toulbar2 did not terminate within the time limit. The speedup of GpuBE(z)
and GpuBE w.r.t. their CPU counterparts are shown in parentheses. For each in-
stance, we vary the bucket size z from 2 to 20, and report the minimum bucket
size zmin, which is the largest constraint arity of the instance, the maximum bucket
size zmax = min{wz, 20}, where wz is defined as the maximal bucket size that can
be processed within the hardware memory limits, and the intermediate bucket sizes
z2 = zmin + 1

3 (zmax − zmin) and z3 = zmin + 2
3 (zmax − zmin).

Consistent with our previous observations, the algorithms’ speedups and solution
qualities increase as the bucket size increases. Additionally, for several large prob-
lems instances (e.g., scen06-24reduc—scen06reduc in the Celar benchmark), our
GPU implementation of MBE can report good lower bounds quickly (within a few
seconds), whereas solving the entire problem with the most competitive soft consis-
tency technique in toulbar2 requires from 6 to 48 minutes. For other large instances
(e.g., in the Spot benchmark), we observe that toulbar2 ran out of time for the major-
ity of the instances, while our GpuBE(z) can quickly find lower bounds, which could
be used in a AND-and-OR search type as proposed by Marinescu and Dechter [46].

9 Related Work

The use of GPUs to solve difficult combinatorial problems has been explored by sev-
eral proposals in different areas of constraint optimization. For instance, Meyer et
al. [39] proposed a multi-GPU implementation of the simplex tableau algorithm that
relies on a vertical problem decomposition to reduce communication between GPUs.
In constraint programming, Arbelaez and Codognet [5] proposed a GPU-based ver-
sion of the Adaptive Search algorithm, which explores several large neighborhoods



34 F. Fioretto et al.

Problem n d c p1 w∗
GpuBE(z) GpuBE

zmin z2 z3 zmax w∗

CELAR6-SUB0 16 44 207 0.47 7 0.116 (1.26x) 0.116 (13.5x) 0.31 (182x) 0.31 (182x) oom
0 13 13 13 (159)

CELAR7-SUB1-20 14 20 300 0.98 9 0.111 (3.37x) 0.129 (42.8x) 0.451 (215x) 5.1 (313x) oom
20102 40931 71023 81433 (132538)

CELAR6-SUB1-24 14 24 300 0.82 9 0.188 (0.59x) 0.122 (4.81x) 0.161 (71.8x) 0.837 (279x) oom
0 280 598 772 (2656)

CELAR7-SUB0 16 44 188 0.66 9 0.173 (0.63x) 0.157 (10.1x) 0.317 (187x) 0.317 (187x) oom
0 104 10001 10001 (10310)

CELAR6-SUB1 14 44 300 0.82 9 0.201 (1.25x) 0.317 (10.6x) 0.723 (171x) 0.723 (171x) oom
0 308 626 626 (2669)

CELAR7-SUB1 14 44 300 0.82 9 0.295 (1.03x) 0.316 (10.5x) 0.593 (210x) 0.593 (210x) oom
0 21523 51123 51123 (142640)

CELAR6-SUB2 16 44 353 0.77 10 0.254 (1.3x) 0.328 (12.6x) 0.82 (188x) 0.82 (188x) oom
0 231 387 387 (2746)

CELAR7-SUB2 16 44 353 0.77 10 0.407 (0.54x) 0.254 (16.4x) 0.95 (164x) 0.95 (164x) oom
0 20420 40931 40931 (173252)

CELAR6-SUB3 18 44 421 0.71 10 0.375 (1.08x) 0.304 (16.1x) 0.975 (188x) 0.975 (188x) oom
0 265 452 452 (3079)

CELAR7-SUB3 18 44 421 0.71 10 0.449 (0.97x) 0.46 (10.8x) 1.002 (178x) 1.002 (178x) oom
0 20615 51434 51434 (203460)

scen06-30reduc 81 14 399 0.11 10 0.071 (2.65x) 0.068 (10.3x) 0.325 (155x) 1.738 (278x) oom
285 690 975 1447 (2080)

scen06-30 99 14 1178 0.09 10 0.19 (1.5x) 0.189 (14.2x) 1.313 (238x) 13.3 (345x) oom
450 411 1201 1100 (2080)

CELAR6-SUB4-20 22 20 477 0.82 11 0.197 (4.09x) 0.232 (49.6x) 1.021 (225x) 11.29 (344x) oom
494 598 732 1359 (2716)

CELAR7-SUB4-22 22 22 473 0.67 11 0.221 (0.69x) 0.211 (3.54x) 0.158 (82.4x) 0.922 (286x) oom
0 40104 60214 31530 (202342)

CELAR6-SUB4reduc 20 44 149 0.77 11 0.106 (2.01x) 0.213 (10.9x) 0.357 (241x) 0.357 (241x) oom
0 44 283 283 (202342)

CELAR6-SUB4 22 44 477 0.65 1 0.387 (0.73x) 0.343 (17.4x) 1.013 (229x) 1.013 (229x) oom
0 170 405 405 (3230)

CELAR7-SUB4 22 44 477 0.65 1 0.347 (0.82x) 0.344 (18.1x) 1.24 (188x) 1.24 (188x) oom
0 30118 31442 31442 (242443)

scen06-24reduc 81 20 403 0.12 12 0.099 (4.76x) 0.101 (57.9x) 0.375 (217x) 4.001 (303x) oom
278 599 634 1411 (2857)

scen06-22reduc 81 22 404 0.12 12 0.164 (0.68x) 0.091 (5.87x) 0.122 (67.1x) 0.52 (243x) oom
0 453 717 793 (3159)

scen06-20reduc 82 24 409 0.12 12 0.203 (0.68x) 0.095 (7.53x) 0.142 (86.1x) 0.838 (277x) oom
0 447 717 794 (3163)

scen06-18reduc 82 26 409 0.12 12 0.221 (0.76x) 0.194 (4.7x) 0.303 (56x) 1.189 (292x) oom
0 458 718 796 (3263)

scen06-24 99 20 1203 0.10 12 0.25 (0.52x) 0.236 (3.97x) 0.278 (47.1x) 0.867 (233x) oom
0 437 319 900

scen06-16reduc 82 28 409 0.12 12 0.22 (0.45x) 0.113 (10.4x) 0.235 (101x) 1.695 (304x) oom
0 458 717 812

scen06-22 99 22 1210 0.10 12 0.271 (0.58x) 0.26 (4.93x) 0.358 (56.3x) 1.415 (256x) oom
0 437 403 803

scen06-20 100 24 1215 0.10 12 0.306 (1.2x) 0.263 (6.37x) 0.371 (78.2x) 1.979 (291x) oom
0 437 352 804

scen06-18 100 26 1221 0.10 12 0.352 (0.83x) 0.299 (7.54x) 0.457 (94.4x) 2.995 (303x) oom
0 437 327 813

scen06-16 100 28 1222 0.1 12 0.36 (1.34x) 0.389 (7.12x) 0.537 (122x) 4.382 (317x) oom
0 437 328 813

scen06reduc 82 44 409 0.12 14 0.343 (0.68x) 0.306 (15.1x) 0.787 (204x) 0.787 (204x) oom
0 137 318 318

Table 6: Celar Benchmark: Runtime (in seconds) of GpuBE, at varying of the
bucket size z and GpuBE(w∗) (top), and solution quality (bottom). The speedup of
GpuBE(z) and GpuBE(w∗) w.r.t. their CPU counterparts are shown in parenthesis.

in parallel, resulting in a speedup factor of 17. Campeotto et al. [12] proposed a GPU-
based framework that exploits both parallel propagation and parallel exploration of
several large neighborhoods using local search techniques, leading to a speedup fac-
tor of up to 38. The combination of GPUs with dynamic programming has also been
explored to solve different combinatorial optimization problems. For instance, Boyer
et al. [9] proposed the use of GPUs to compute the classical DP recursion step for
the knapsack problem, which led to a speedup factor of 26. Pawłowski et al. [49] pre-



Accelerating Exact and Approximate Inference Algorithms with GPUs 35

Problem n d c p1 w∗
GpuBE(z) GpuBE

zmin z2 z3 zmax w∗

GEOM40-2 40 2 78 0.12 5 0.004 (0.25x) 0.004 (0.25x) 0.004 (0.25x) 0.004 (0.25x) 0.004 (0.25x)
22 22 22 22 22

GEOM40-3 40 3 78 0.12 5 0.009 (0.44x) 0.009 (0.44x) 0.009 (0.44x) 0.009 (0.44x) 0.009 (0.44x)
7 7 7 7 7

GEOM40-4 40 4 78 0.12 5 0.004 (4.25x) 0.004 (4.25x) 0.004 (4.25x) 0.004 (4.25x) 0.004 (4.25x)
3 3 3 3 3

GEOM40-5 40 5 78 0.12 5 0.005 (10.8x) 0.005 (10.8x) 0.005 (10.8x) 0.005 (10.8x) 0.005 (10.8x)
1 1 1 1 1

GEOM40-6 40 6 78 0.12 5 0.011 (5.73x) 0.011 (5.73x) 0.011 (5.73x) 0.011 (5.73x) 0.011 (5.73x)
0 0 0 0 0

GEOM30a-3 30 3 81 0.2 6 0.014 (0.21x) 0.024 (0.5x) 0.011 (1.73x) 0.024 (0.79x) 0.003 (2.67x)
0 10 11 11 11

GEOM30a-4 30 4 81 0.2 6 0.028 (0.14x) 0.024 (2.25x) 0.012 (10.3x) 0.012 (10.2x) 0.003 (14.7x)
0 4 4 4 4

GEOM30a-5 30 5 81 0.2 6 0.029 (0.21x) 0.012 (16x) 0.012 (21.3x) 0.012 (20.2x) 0.004 (21.8x)
0 1 1 1 1

GEOM30a-6 30 6 81 0.2 6 0.03 (0.17x) 0.013 (35.3x) 0.028 (31.6x) 0.015 (68.8x) 0.006 (50.3x)
0 0 0 0 0

queen5-5-3 25 3 160 0.87 18 0.031 (0.19x) 0.034 (48.2x) 0.471 (203x) 2.899 (250x) oom
6 18 23 25 (29)

queen5-5-4 25 4 160 0.87 18 0.031 (1x) 0.038 (53.3x) 0.158 (169x) 1.355 (238x) oom
0 1 4 5 (12)

queen5-5-5 25 5 160 0.87 18 0.031 (2.19x) 0.121 (97x) 1.031 (247x) 4.659 (267x) oom
0 0 0 0 (0)

myciel5g-3 47 3 236 0.44 20 0.033 (2.58x) 0.069 (27.2x) 1.999 (201x) 11.97 (308x) oom
0 3 9 12 (16)

myciel5g-4 47 4 236 0.44 20 0.031 (1.03x) 0.045 (52.6x) 0.23 (143x) 7.852 (293x) oom
0 0 0 0 (4)

myciel5g-5 47 5 236 0.44 20 0.072 (0.92x) 0.051 (62.7x) 0.41 (160x) 6.513 (278x) oom
0 0 0 0 (1)

myciel5g-6 47 6 236 0.44 20 0.035 (3.57x) 0.069 (5.39x) 0.123 (91x) 1.636 (220x) oom
0 0 0 0 (0)

DSJC125.1.4 125 4 736 0.72 72 0.241 (0.62x) 0.168 (19.4x) 0.477 (96.5x) 3.551 (197x) oom
0 0 0 0 –

DSJC125.1.5 125 5 736 0.72 72 0.285 (1.1x) 0.17 (4.43x) 0.393 (38.8x) 1.801 (191x) oom
0 0 0 0 (0)

le450-5a-2 450 2 5714 0.81 344 1.725 (0.18x) 1.611 (1.46x) 2.934 (40.7x) 10.21 (67.3x) oom
618 734 833 878 –

le450-5a-3 450 3 5714 0.81 344 1.728 (0.19x) 1.847 (2.39x) 2.042 (17.6x) 7.207 (44.4x) oom
42 55 57 58 –

le450-5a-4 450 4 5714 0.81 344 1.422 (0.44x) 1.549 (1.29x) 2.088 (13.7x) 6.517 (68.6x) oom
0 0 4 1 –

le450-5a-5 450 5 5714 0.81 344 1.67 (0.98x) 1.844 (3.7x) 3.505 (39.3x) 10.23 (65.1x) oom
0 0 0 0 –

Table 7: Coloring Benchmark: Runtime (in seconds) of GpuBE, at varying of the
bucket size z and GpuBE(w∗) (top), and solution quality (bottom). The speedup of
GpuBE(z) and GpuBE(w∗) w.r.t. their CPU counterparts are shown in parenthesis.

sented a DP-based solution for the coalition structure formation problem on GPUs,
reporting up to two orders of magnitude of speedup. In a recent work, Bistaffa et
al. [7] study the parallelization of an inference-based algorithm to solve COPs using
GPUs, albeit exclusively in the centralized case. Silberstein et al. [62] study a GPU-
based kernel for the sum-product operations that arise in marginalize a product of
functions (MPF) problems. The authors report an average speedup factor of 15 for
random benchmarks and Bayesian networks and higher average speedups (up to two
orders of magnitude) for log domains due to the difference in performance of the
log2f and exp2f functions on the CPU and GPU.

In the distributed constraint optimization context, GPU parallelism has been ap-
plied to speed up several DCOP solving techniques. Fioretto et al. [28] proposed a
multi-variable agent decomposition strategy to solve general DCOPs with complex
local subproblems, which makes use of GPUs to implement a search-based and a



36 F. Fioretto et al.

Problem n d c p1 w∗
GpuBE(z) GpuBE

zmin z2 z3 zmax w∗

s386 172 2 172 0.04 19 0.054 (0.28x) 0.051 (2.55x) 0.053 (16.1x) 0.185 (71.9x) 0.129 (82.8x)
29 29 29 29 29

s1423 748 2 748 0.06 38 0.184 (0.12x) 0.182 (1.08x) 0.189 (6.05x) 0.546 (57.8x) oom
231 231 231 231 (231)

c499 499 2 499 0.01 42 0.133 (0.89x) 0.131 (1.08x) 0.141 (9.72x) 0.391 (78.1x) oom
111 111 111 111 (111)

c432 432 2 432 0.01 54 0.225 (0.33x) 0.237 (0.72x) 0.270 (7.93x) 0.622 (69.6x) oom
101 101 101 101 –

s1494 661 2 661 0.01 57 0.238 (0.19x) 0.222 (1.14x) 0.249 (17.1x) 1.285 (101x) oom
32 32 32 32 (32)

s1488 667 2 667 0.01 62 0.232 (0.13x) 0.219 (1.07x) 0.244 (16.7x) 1.268 (98.5x) oom
32 32 32 32 (32)

c880 880 2 880 0.04 68 0.245 (0.11x) 0.241 (0.69x) 0.295 (8.86x) 1.1 (91.7x) oom
162 162 162 162 –

s1196 561 2 561 0.01 92 0.19 (0.27x) 0.185 (0.93x) 0.305 (10.6x) 1.049 (101x) oom
95 95 95 95 (95)

s953 440 2 440 0.01 93 0.234 (0.13x) 0.139 (1.62x) 0.262 (11.2x) 0.781 (98.8x) oom
124 124 124 124 (124)

s1238 540 2 540 0.01 95 0.195 (0.28x) 0.184 (1.04x) 0.21 (16.8x) 0.964 (94.6x) oom
95 95 95 95 (95)

Table 8: Iscas-89 Benchmark: Runtime (in seconds) of GpuBE, at varying of the
bucket size z and GpuBE(w∗) (top), and solution quality (bottom). The speedup of
GpuBE(z) and GpuBE(w∗) w.r.t. their CPU counterparts are shown in parenthesis.

Problem n d c p1 w∗
GpuBE(z) GpuBE

zmin z2 z3 zmax w∗

eye 36 21 53 0.09 2 0.048 (3.83x) 0.045 (3.67x) 0.045 (2.2x) 0.045 (4.13x) 0.006 (12.7x)
1 1 1 1 1

wijsmanguo 49 36 68 0.06 3 0.278 (2.15x) 0.279 (2.18x) 0.278 (2.21x) 0.278 (2.15x) 0.012 (18.8x)
1 1 1 1 1

cancer 49 36 68 0.06 3 0.304 (2.34x) 0.28 (2.91x) 0.291 (2.44x) 0.278 (2.55x) 0.012 (18.8x)
1 1 1 1 1

sobel 7 6 8 0.61 3 0.002 (0.5x) 0.002 (1x) 0.001 (2x) 0.001 (2x) 0.001 (1x)
0 0 0 0 0

connell 12 6 15 0.39 3 0.004 (0.25x) 0.004 (1.5x) 0.002 (2.5x) 0.001 (6x) 0.001 (4x)
0 1 1 1 1

pedck60-L2 60 10 106 0.08 5 0.017 (1.71x) 0.052 (78x) 0.052 (77x) 0.051 (82.6x) 0.02 (144x)
2 2 2 2 2

pedck60-L1 60 10 108 0.08 5 0.016 (1.56x) 0.033 (125x) 0.044 (94.1x) 0.033 (124x) 0.02 (137x)
2 2 2 2 2

pedck60-L12 60 10 108 0.08 5 0.023 (1.26x) 0.033 (124x) 0.033 (127x) 0.033 (126x) 0.02 (143x)
6 6 6 6 6

saudiarabia 37 15 43 0.16 5 0.015 (4.13x) 0.267 (231x) 0.286 (211x) 0.282 (210x) 0.187 (212x)
0 0 0 0 0

parkinson 37 15 43 0.16 5 0.015 (3.4x) 0.292 (206x) 0.265 (223x) 0.274 (223x) 0.186 (237x)
0 0 0 0 0

pedck350l3 350 10 578 0.03 24 0.092 (2.13x) 0.094 (7.23x) 0.109 (35.7x) 0.192 (112x) oom
0 0 0 0 (0)

pedck350l2 350 10 578 0.03 24 0.091 (1.02x) 0.131 (4.21x) 0.109 (32.9x) 0.235 (81.1x) oom
0 0 1 1 (1)

pedck350 350 10 580 0.03 26 0.099 (1.04x) 0.139 (3.89x) 0.117 (27.9x) 0.252 (114x) oom
0 0 2 2 (2)

sheep4r-4-3 2662 10 5021 0.00 38 1.16 (0.98x) 1.173 (5.83x) 1.551 (29.9x) 3.139 (110x) oom
0 0 0 1 (1)

sheep4r-4-2 2172 10 4026 0.00 46 0.874 (0.96x) 1.3 (4.11x) 1.145 (29.9x) 2.339 (110x) oom
1 0 0 0 (1)

sheep4r-4-1 641 10 1196 0.05 63 0.273 (0.96x) 0.291 (5.92x) 0.36 (35.7x) 0.782 (120x) oom
0 0 0 0 (0)

sheep4r-4-0 1541 10 2941 0.03 108 0.76 (0.95x) 0.786 (5.93x) 1.066 (31.3x) 1.066 (31.3x) oom
0 0 0 0 (0)

pedck1000 928 6 1736 0.09 126 0.368 (0.34x) 0.393 (1.32x) 0.399 (4.46x) 0.447 (20.1x) oom
15 15 12 16 (19)

Table 9: Pedigree Benchmark: Runtime (in seconds) of GpuBE, at varying of the
bucket size z and GpuBE(w∗) (top), and solution quality (bottom). The speedup of
GpuBE(z) and GpuBE(w∗) w.r.t. their CPU counterparts are shown in parenthesis.



Accelerating Exact and Approximate Inference Algorithms with GPUs 37

Problem n d c p1 w∗
GpuBE(z) GpuBE

zmin z2 z3 zmax w∗

8 8 4 15 0.28 2 0.003 (0.33x) 0.001 (1.0x) 0.002 (1.5x) 0.003 (1.33x) 0.003 (2.0x)
2 2 2 2 2

1502 209 4 411 0.01 5 0.082 (0.32x) 0.039 (1.18x) 0.08 (0.57x) 0.079 (0.61x) 0.029 (0.66x)
28042 28042 28042 28042 28042

54 67 4 271 0.15 11 0.037 (0.92x) 0.036 (1.86x) 0.036 (7.31x) 0.045 (53.7x) 0.027 (46.1x)
31 32 35 37 37

503 143 4 635 0.07 12 0.088 (0.74x) 0.085 (2.88x) 0.088 (18.3x) 0.203 (31.9x) 0.044 (59.9x)
7093 9106 11111 11113 11113

29 82 4 462 0.17 14 0.085 (0.11x) 0.07 (3.71x) 0.147 (97.7x) 7.281 (236x) 3.327 (141x)
7035 8048 8055 8059 8059

404 100 4 710 0.16 19 0.112 (0.6x) 0.207 (5.95x) 0.188 (113x) 0.701 (224x) 0.301 (124x)
76 106 112 114 114

42b 190 4 1140 0.09 19 0.455 (0.13x) 0.358 (0.65x) 0.276 (43.6x) 12.98 (239x) oom
58049 95050 135050 155050 –

505b 240 4 1716 0.06 23 0.392 (0.12x) 0.484 (0.61x) 0.361 (48.6x) 7.531 (238x) oom
6106 11159 15204 19244 –

1504 605 4 4187 0.03 25 1.047 (0.18x) 0.884 (2.41x) 1.221 (55.3x) 12.09 (263x) oom
80104 107175 131227 141251 –

408b 200 4 1843 0.10 29 0.552 (0.14x) 0.309 (2.77x) 0.862 (132x) 5.774 (218x) oom
2104 5162 6206 6215 –

42 190 4 1394 0.11 30 0.295 (0.11x) 0.251 (7.53x) 0.59 (56.9x) 9.419 (241x) oom
60049 97050 105050 133050 –

505 240 4 2242 0.11 30 0.61 (0.09x) 0.547 (1.05x) 0.712 (83.3x) 8.757 (220x) oom
5103 7149 10178 15211 –

408 200 4 2232 0.17 40 0.637 (0.12x) 0.506 (2.14x) 0.816 (96x) 10.2 (265x) oom
2100 3123 4169 5185 –

5 309 4 5621 0.19 44 1.45 (0.14x) 1.18 (1.09x) 1.879 (37x) 6.573 (158x) oom
42 53 86 106 –

412 300 4 4348 0.16 48 1.366 (0.08x) 1.097 (2.05x) 1.228 (41.3x) 7.048 (183x) oom
2106 2131 8176 11258 –

507 311 4 5732 0.18 68 1.788 (0.13x) 1.379 (1.59x) 1.744 (38.2x) 5.343 (140x) oom
6114 5140 7194 10226 –

1506 940 4 15240 0.05 77 4.82 (0.13x) 3.805 (0.82x) 3.929 (8.52x) 16.93 (128x) oom
50122 68152 86172 88235 –

28 230 4 5226 0.42 87 1.397 (0.12x) 1.173 (1.89x) 1.946 (50x) 8.584 (226x) oom
43075 52105 76105 88105 –

509 348 4 8624 0.22 92 2.82 (0.16x) 2.204 (5.56x) 5.664 (75.6x) 10.61 (278x) oom
3105 3217 5191 6157 –

414 364 4 10108 0.24 104 3.61 (0.16x) 2.673 (1.95x) 3.091 (16.7x) 7.608 (80.7x) oom
3113 3120 4195 6141 –

1401 488 4 10963 0.17 105 3.283 (0.16x) 3.047 (1.62x) 3.543 (13x) 13.65 (157x) oom
64057 61066 66071 87071 –

1403 665 4 13616 0.11 105 4.52 (0.14x) 3.829 (1.63x) 4.246 (15x) 10.11 (69.6x) oom
58099 71129 74118 82120 –

1405 855 4 18258 0.09 105 5.708 (0.14x) 4.791 (2.08x) 6.787 (17.3x) 19.98 (74.5x) oom
58099 71129 74118 84177 –

1407 1057 4 21786 0.07 105 7.018 (0.15x) 6.283 (2.21x) 8.931 (19x) 18.15 (53.9x) oom
58127 74180 75164 84202 –

Table 10: Spot Benchmark: Runtime (in seconds) of GpuBE, at varying of the
bucket size z and GpuBE(w∗) (top), and solution quality (bottom). The speedup of
GpuBE(z) and GpuBE(w∗) w.r.t. their CPU counterparts are shown in parenthesis.

sampling-based algorithm to speed up the agents’ local subproblems resolution. Le
et al. [42] studied a GPU accelerated algorithm in the context of stochastic DCOPs—
DCOPs where the values of the cost tables are stochastic. The authors used SIMT-
style parallelism on a DP-based approach, which resulted in a speedup of up to two
orders of magnitude. Recently, a combination of GPUs with Markov Chain Monte
Carlo (MCMC) sampling algorithms has been proposed in the context of solving
DCOPs [27], where the authors adopted GPUs to accelerate the computation of the
normalization constants used in the MCMC sampling process as well as to compute
several samples in parallel, resulting in a speedup of up to one order of magnitude.



38 F. Fioretto et al.

Finally, a parallelization of the AND/OR Branch-and-Bound search with mini-
bucket heuristic has been presented in [41].

Differently from other proposals, our approach aims at using GPUs to exploit
SIMT-style parallelism from DP-based methods to solve general, exact and approxi-
mated, WCSPs and DCOPs.

10 Conclusions and Discussions

Inference-based algorithms are powerful tools for solving discrete optimization prob-
lems. However, their applicability is limited by their high time and space require-
ments. Motivated by the increasing availability of GPUs, in this paper, we proposed
a scheme to speed up the resolution of inference-based methods for centralized and
distributed constraint optimization by exploiting SIMT-style parallelism. We intro-
duced an exact algorithm and an approximated algorithm that are inspired by BE and
MBE for WCSPs and tasks over belief networks (e.g., MPE), and by DPOP and AD-
POP for DCOPs. These procedures make use of multiple threads in the GPU cards
to parallelize the aggregation and elimination procedures, which are responsible for
the high complexity in the inference-based approaches. Additionally, we detailed the
design of the data structures adopted to process cost functions with GPUs, and of the
mapping adopted to associate GPU threads to cost functions’ entries, which allows
us to efficiently exploit the data parallelism (SIMT) supported by GPUs.

Finally, we reported an extensive experimental evaluation of our inference-based
GPU implementations on both centralized and distributed benchmarks. We showed
that the use of GPUs provides significant advantages in terms of runtime and scala-
bility, achieving speedups of up to two order of magnitude, showing a considerable
reduction in runtime (up to 345 times faster) with respect to the serialized version,
and that the speedups increase with the induced width of the problem and with the
size of the domain of the problem’s variables.

The proposed results are significant—the wide availability of GPUs provides ac-
cess to parallel computing solutions that can be used to improve efficiency of WCSPs
and DCOP solvers. Furthermore, GPUs are renowned for their complex architectures
(multiple memory levels with very different size and speed characteristics; relatively
slow cores), which often create challenges to the effective exploitation of parallelism
from irregular applications. The strong experimental results indicate that the proposed
algorithms are well-suited to GPU architectures.

These results hint that our approach could be exploited in the the context of a dy-
namic search that makes use of the mini-bucket elimination method as an heuristic to
infer bounds on the solution quality, potentially allowing dynamic variable orderings.
Indeed, the main drawback of this type of search (and various look-ahead methods)
is that, since the heuristic is (re)computed in various nodes during search process, the
time invested in the heuristic computation may not be cost-effective. Leveraging the
use of GPUs to infer bounds faster during the dynamic search, may therefore produce
dramatic speedup to the whole search process.

While this paper describes the applicability of our approach to (M)BE and
(A)DPOP, analogous techniques can be derived and applied to other inference-based



Accelerating Exact and Approximate Inference Algorithms with GPUs 39

approaches to solve discrete optimization problems (e.g., to implement the logic of
inference-based propagators) and optimization on probabilistic graphical models—
(e.g., in finding maximum probability explanation (MPE) in belief networks). Ad-
ditionally, our work can be extended to solve sum-product problems, also known as
weighted counting, partition function, or probability of evidence. Due to the diffi-
culty of these problems the value of accelerated versions of the bucket elimination
algorithms is especially important. We plan to work in this direction as future work.

We also envision this technology could open the door to efficiently enforcing
higher forms of consistencies than domain consistency (e.g., path consistency [48],
adaptive consistency [18], or the more recently proposed branch consistency for
DCOPs [25]), especially when the cost functions need to be represented explicitly.

Acknowledgements This research is partially supported by the National Science Foundation under grants
1345232, 1550662, 1458595, and 1401639. The views and conclusions contained in this document are
those of the authors and should not be interpreted as representing the official policies, either expressed or
implied, of the sponsoring organizations, agencies, or the U.S. government.

References

1. Abdennadher, S., Schlenker, H.: Nurse Scheduling using Constraint Logic Programming. In: Pro-
ceedings of the Conference on Innovative Applications of Artificial Intelligence (IAAI), pp. 838–843
(1999)

2. Allouche, D., André, I., Barbe, S., Davies, J., de Givry, S., Katsirelos, G., O’Sullivan, B., Prestwich,
S.D., Schiex, T., Traoré, S.: Computational protein design as an optimization problem. Artificial
Intelligence 212, 59–79 (2014)

3. Allouche, D., de Givry, S., Nguyen, H., Schiex, T.: ToulBar2 to solve Weighted Partial Max-SAT.
Tech. rep., INRA (2013)

4. Apt, K.: Principles of constraint programming. Cambridge University Press (2003)
5. Arbelaez, A., Codognet, P.: A GPU implementation of parallel constraint-based local search. In:

Proceedings of the Euromicro International Conference on Parallel, Distributed and network-based
Processing (PDP), pp. 648–655 (2014)

6. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512
(1999)

7. Bistaffa, F., Bomberi, N., Farinelli, A.: CUBE: A CUDA approach for bucket elimination on GPUs.
In: Proceedings of the European Conference on Artificial Intelligence (ECAI), p. to appear (2016)

8. Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint satisfaction and optimization. Jour-
nal of the ACM 44(2), 201–236 (1997)

9. Boyer, V., El Baz, D., Elkihel, M.: Solving knapsack problems on GPU. Computers & Operations
Research 39(1), 42–47 (2012)

10. Brito, I., Meseguer, P.: Improving DPOP with function filtering. In: Proceedings of the International
Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 141–158 (2010)

11. Burke, E.K., De Causmaecker, P., Berghe, G.V., Van Landeghem, H.: The state of the art of nurse
rostering. Journal of scheduling 7(6), 441–499 (2004)

12. Campeotto, F., Dovier, A., Fioretto, F., Pontelli, E.: A GPU implementation of large neighborhood
search for solving constraint optimization problems. In: Proceedings of the European Conference on
Artificial Intelligence (ECAI), pp. 189–194 (2014)

13. Campeotto, F., Palù, A.D., Dovier, A., Fioretto, F., Pontelli, E.: A constraint solver for flexible protein
model. Journal of Artificial Intelligence Research 48, 953–1000 (2013)

14. Chakroun, I., Mezmaz, M.S., Melab, N., Bendjoudi, A.: Reducing thread divergence in a GPU-
accelerated branch-and-bound algorithm. Concurrency and Computation: Practice and Experience
25(8), 1121–1136 (2013)

15. Dechter, R.: Bucket elimination: A unifying framework for reasoning. Artificial Intelligence 113(1),
41–85 (1999)



40 F. Fioretto et al.

16. Dechter, R.: Constraint Processing. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA
(2003)

17. Dechter, R.: Reasoning with probabilistic and deterministic graphical models: Exact algorithms. Syn-
thesis Lectures on Artificial Intelligence and Machine Learning 7(3), 1–191 (2013)

18. Dechter, R., Pearl, J.: Network-based heuristics for constraint-satisfaction problems. Springer (1988)
19. Dechter, R., Rish, I.: Mini-buckets: A general scheme for bounded inference. Journal of the ACM

50(2), 107–153 (2003)
20. Diamos, G.F., Ashbaugh, B., Maiyuran, S., Kerr, A., Wu, H., Yalamanchili, S.: SIMD re-convergence

at thread frontiers. In: Proceedings of the Annual IEEE/ACM International Symposium on Microar-
chitecture, pp. 477–488 (2011)

21. Dovier, A., Formisano, A., Pontelli, E.: Autonomous agents coordination: Action languages meet
CLP() and Linda. Theory and Practice of Logic Programming 13(2), 149–173 (2013)

22. Edelkamp, S., Jabbar, S., Schrödl, S.: External A*. In: Advances in Artificial Intelligence: 27th
Annual German Conference on AI, (KI) 2004, pp. 226–240 (2004)

23. Farinelli, A., Rogers, A., Petcu, A., Jennings, N.: Decentralised coordination of low-power embed-
ded devices using the Max-Sum algorithm. In: Proceedings of the International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS), pp. 639–646 (2008)

24. Fioretto, F., Dovier, A., Pontelli, E.: Constrained community-based gene regulatory network infer-
ence. ACM Trans. Model. Comput. Simul. 25(2), 11 (2015)

25. Fioretto, F., Le, T., Yeoh, W., Pontelli, E., Son, T.C.: Improving DPOP with branch consistency for
solving distributed constraint optimization problems. In: Proceedings of the International Conference
on Principles and Practice of Constraint Programming (CP), pp. 307–323 (2014)

26. Fioretto, F., Le, T., Yeoh, W., Pontelli, E., Son, T.C.: Exploiting GPUs in solving (distributed) con-
straint optimization problems with dynamic programming. In: Proceedings of the International Con-
ference on Principles and Practice of Constraint Programming (CP), pp. 121–139 (2015)

27. Fioretto, F., Yeoh, W., Pontelli, E.: A dynamic programming-based MCMC framework for solving
DCOPs with GPUs. In: Proceedings of the International Conference on Principles and Practice of
Constraint Programming (CP), pp. 813–831 (2016)

28. Fioretto, F., Yeoh, W., Pontelli, E.: Multi-Variable Agent Decomposition for DCOPs. In: Proceedings
of the AAAI Conference on Artificial Intelligence (AAAI), pp. 2480–2486 (2016)

29. Fioretto, F., Yeoh, W., Pontelli, E.: A multiagent system approach to scheduling devices in smart
homes. In: Proceedings of the International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS), pp. 981–989 (2017)

30. Fioretto, F., Yeoh, W., Pontelli, E., Ma, Y., Ranade, S.: A DCOP approach to the economic dispatch
with demand response. In: Proceedings of the International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), pp. 981–989 (2017)

31. Fishelson, M., Geiger, D.: Exact genetic linkage computations for general pedigrees. Bioinformatics
18(suppl 1), S189–S198 (2002)

32. Friedman, N., Linial, M., Nachman, I., Pe’er, D.: Using bayesian networks to analyze expression data.
Journal of computational biology 7(3-4), 601–620 (2000)

33. Gaudreault, J., Frayret, J.M., Pesant, G.: Distributed search for supply chain coordination. Computers
in Industry 60(6), 441–451 (2009)

34. Gupta, S., Yeoh, W., Pontelli, E., Jain, P., Ranade, S.J.: Modeling microgrid islanding problems as
DCOPs. In: North American Power Symposium (NAPS), pp. 1–6. IEEE (2013)

35. Hamadi, Y., Bessière, C., Quinqueton, J.: Distributed intelligent backtracking. In: Proceedings of the
European Conference on Artificial Intelligence (ECAI), pp. 219–223 (1998)

36. Han, T.D., Abdelrahman, T.S.: Reducing Branch Divergence in GPU Programs. In: Proceedings of the
Fourth Workshop on General Purpose Processing on Graphics Processing Units, pp. 3:1–3:8. ACM
Press, New York, NY (2011)

37. Kask, K., Dechter, R., Gelfand, A.E.: Beem: bucket elimination with external memory. arXiv preprint
arXiv:1203.3487 (2012)

38. Kumar, A., Faltings, B., Petcu, A.: Distributed constraint optimization with structured resource con-
straints. In: Proceedings of the International Conference on Autonomous Agents and Multiagent
Systems (AAMAS), pp. 923–930 (2009)

39. Lalami, M.E., El Baz, D., Boyer, V.: Multi GPU implementation of the simplex algorithm. In:
Proceedings of the International Conference on High Performance Computing and Communication
(HPCC), vol. 11, pp. 179–186 (2011)

40. Larrosa, J.: Node and arc consistency in weighted csp. In: Proceedings of the AAAI Conference on
Artificial Intelligence (AAAI), pp. 48–53 (2002)



Accelerating Exact and Approximate Inference Algorithms with GPUs 41

41. Lars, O., Rina, D.: And/or branch-and-bound on a computational grid. Journal of Artificial Intelli-
gence Research ((to appear)) (2017)

42. Le, T., Fioretto, F., Yeoh, W., Son, T.C., Pontelli, E.: ER-DCOPs: A Framework for Distributed Con-
straint Optimization with Uncertainty in Constraint Utilities. In: Proceedings of the International
Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 605–614 (2016)

43. Lerner, U., Parr, R., Koller, D., Biswas, G., et al.: Bayesian fault detection and diagnosis in dynamic
systems. In: AAAI/IAAI, pp. 531–537 (2000)

44. Lim, H., Yuan, C., Hansen, E.A.: Scaling up map search in bayesian networks using external memory.
on Probabilistic Graphical Models p. 177 (2010)

45. Maheswaran, R., Tambe, M., Bowring, E., Pearce, J., Varakantham, P.: Taking DCOP to the real world:
Efficient complete solutions for distributed event scheduling. In: Proceedings of the International
Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 310–317 (2004)

46. Marinescu, R., Dechter, R.: Memory intensive and/or search for combinatorial optimization in graph-
ical models. Artificial Intelligence 173(16-17), 1492–1524 (2009)

47. Modi, P., Shen, W.M., Tambe, M., Yokoo, M.: ADOPT: Asynchronous distributed constraint opti-
mization with quality guarantees. Artificial Intelligence 161(1–2), 149–180 (2005)

48. Montanari, U.: Networks of constraints: Fundamental properties and applications to picture process-
ing. Information sciences 7, 95–132 (1974)

49. Pawłowski, K., Kurach, K., Michalak, T., Rahwan, T.: Coalition structure generation with the graphic
processor unit. Tech. Rep. CS-RR-13-07, Department of Computer Science, University of Oxford
(2104)

50. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA (1988)

51. Pesant, G.: A regular language membership constraint for finite sequences of variables. In: Proceed-
ings of the International Conference on Principles and Practice of Constraint Programming (CP), pp.
482–495 (2004)

52. Petcu, A., Faltings, B.: Approximations in distributed optimization. In: Proceedings of the Interna-
tional Conference on Principles and Practice of Constraint Programming (CP), pp. 802–806 (2005)

53. Petcu, A., Faltings, B.: A scalable method for multiagent constraint optimization. In: Proceedings of
the International Joint Conference on Artificial Intelligence (IJCAI), pp. 1413–1420 (2005)

54. Quimper, C.G., Walsh, T.: Global grammar constraints. In: Proceedings of the International Confer-
ence on Principles and Practice of Constraint Programming (CP), pp. 751–755. Springer (2006)

55. Rodrigues, L., Magatao, L.: Enhancing Supply Chain Decisions Using Constraint Programming: A
Case Study. In: MICAI 2007: Advances in Artificial Intelligence, vol. LNCS 4827, pp. 1110–1121.
Springer Verlag (2007)

56. Rossi, F., van Beek, P., Walsh, T. (eds.): Handbook of Constraint Programming. Elsevier (2006)
57. Rust, P., Picard, G., Ramparany, F.: Using message-passing DCOP algorithms to solve energy-efficient

smart environment configuration problems. In: Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI), pp. 468–474 (2016)

58. Sanders, J., Kandrot, E.: CUDA by Example. An Introduction to General-Purpose GPU Programming.
Addison Wesley (2010)

59. Sandholm, T.: Algorithm for optimal winner determination in combinatorial auctions. Artificial intel-
ligence 135(1), 1–54 (2002)

60. Schiex, T., Fargier, H., Verfaillie, G., et al.: Valued constraint satisfaction problems: Hard and easy
problems. Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI) 95,
631–639 (1995)

61. Shapiro, L.G., Haralick, R.M.: Structural descriptions and inexact matching. IEEE Transactions on
Pattern Analysis and Machine Intelligence 3(5), 504–519 (1981)

62. Silberstein, M., Schuster, A., Geiger, D., Patney, A., Owens, J.D.: Efficient computation of sum-
products on gpus through software-managed cache. In: Proceedings of the 22nd annual international
conference on Supercomputing, pp. 309–318. ACM (2008)

63. Sturtevant, N.R., Rutherford, M.J.: Minimizing writes in parallel external memory search. In: Pro-
ceedings of the International Joint Conference on Artificial Intelligence (IJCAI) (2013)

64. Sultanik, E., Modi, P.J., Regli, W.C.: On modeling multiagent task scheduling as a distributed con-
straint optimization problem. In: Proceedings of the International Joint Conference on Artificial In-
telligence (IJCAI), pp. 1531–1536 (2007)

65. Trick, M.A.: A dynamic programming approach for consistency and propagation for knapsack con-
straints. Annals of Operations Research 118(1-4), 73–84 (2003)



42 F. Fioretto et al.

66. Yeoh, W., Felner, A., Koenig, S.: BnB-ADOPT: An asynchronous branch-and-bound DCOP algo-
rithm. Journal of Artificial Intelligence Research 38, 85–133 (2010)

67. Yeoh, W., Yokoo, M.: Distributed problem solving. AI Magazine 33(3), 53–65 (2012)
68. Zivan, R., Yedidsion, H., Okamoto, S., Glinton, R., Sycara, K.: Distributed constraint optimization

for teams of mobile sensing agents. Journal of Autonomous Agents and Multi-Agent Systems 29(3),
495–536 (2015)


	1 Introduction
	2 Background: Weighted Constraint Satisfaction Problems
	3 Background: Belief Networks and Most Probable Explanation
	4 Background: Distributed Constraint Optimization Problems (DCOPs)
	5 Background: Graphical Processing Units (GPUs)
	6 GPU-based (Distributed) Bucket Elimination (GPU-(D)BE)
	7 Theoretical Analysis
	8 Experimental Results
	9 Related Work
	10 Conclusions and Discussions



