
Texture Hardware Assisted Rendering of
Time-Varying Volume Data

Eric B. Lum� Kwan-Liu Ma� John Clyne�

University of California, Davis National Center for Atmospheric Research

Abstract

In this paper we present a hardware-assisted rendering tech-
nique coupled with a compression scheme for the interac-
tive visual exploration of time-varying scalar volume data.
A palette-based decoding technique and an adaptive bit al-
location scheme are developed to fully utilize the texturing
capability of a commodity 3-D graphics card. Using a sin-
gle PC equipped with a modest amount of memory, a texture
capable graphics card, and an inexpensive disk array, we are
able to render hundreds of time steps of regularly gridded
volume data (up to 45 millions voxels each time step) at in-
teractive rates, permitting the visual exploration of large sci-
entific data sets in both the temporal and spatial domain.

Keywords: Compression, high performance computing, out-
of-core processing, PC, scientific visualization, texture hardware,
time-varying data, transform encoding, volume rendering

1 Introduction

High-resolution, four-dimensional data sets are typical of
problems in many areas of science and engineering. Spe-
cific examples include data from the study of neuron exci-
tation, material crack propagation, thunderstorm evolution,
unsteady flow surrounding an aircraft, seismic reflections
from geological strata, and even galaxy merger. These data
sets, rich with detailed information of complex physical or
chemical processes, may be generated either by numerical
simulation or collected through instrumentation. Regardless
of how they are derived, the ability to quickly detect and ex-
plore the complex, dynamic phenomena contained within is
essential to their analysis.

A typical time-varying data set from a computational fluid
dynamics simulation can contain hundreds or even thousands
of time steps and each time step may have millions of grid
points, each potentially containing multiple variables. As a
result, a single data set can easily occupy hundreds of giga-
bytes of storage, creating a formidable challenge for subse-

�CIPIC & Department of Computer Science, University of California,
One Shields Avenue, Davis 95616, {lume,ma}@cs.ucdavis.edu

�National Center for Atmospheric Research, 1850 Table Mesa Dr., Boul-
der, CO 80303, clyne@ncar.ucar.edu

quent analysis. Traditional statistical methods of analysis,
though relatively easy to compute, tend to filter out informa-
tion, computed at great expense, by reducing data to a rela-
tive few numbers. Visual data exploration techniques, such
as direct volume rendering, have arisen as powerful aids to
researchers in the analysis of these vast data sets. Scientific
visualization can greatly facilitate and expedite the explo-
ration of these data sets by exploiting the brain’s ability to
process enormous amounts of visual information.

However, for visualization techniques to be most effective
for enhancing the qualitative understanding of complex be-
havior, or for detection of features of importance, they must
be interactive in every aspect. The ability to change clas-
sification functions and color mappings quickly and easily,
animate forward and backward in time, change viewpoints,
and zoom in and out on features of interest, all at interactive
rates, is essential for maximizing scientific productivity [3].

In this paper, we discuss how time-varying volume data
sets can be efficiently rendered by utilizing a PC, low cost
graphics hardware, and an inexpensive disk array. Transform
encoding of the volume data, followed by compression, not
only reduces storage but also bandwidth requirements. We
also exploit the 2-D texture features of a commodity graphics
card to speed up the rendering as much as possible. The
result is a rendering capability in which all essential aspects
of the visualization process are completely interactive.

We have evaluated an implementation of our design us-
ing a number of time-varying data sets including the quasi-
geostrophic (QG) turbulence data sets provided by scientists
at the National Center for Atmospheric Research (NCAR)
and the University of Colorado. The highly interactive ren-
dering rates achieved by our PC-based system were previ-
ously available to NCAR scientists only through the use of
costly parallel supercomputers or high-end multiprocessor
graphics workstations, thereby greatly limiting their access.
In the following sections, a survey of time-varying data visu-
alization research is followed by a detailed description of our
design. The performance and explorability of the prototype
system we have built are demonstrated with timing results,
images, and a video using three data sets with sufficiently
different characteristics.

2 Previous Work

Time-varying data visualization has been an active research
area. Various approaches have been proposed to reduce the
storage, corresponding I/O, and rendering demands for visu-
alizing time-varying data in a more efficient way.

Using proper encoding and exploiting temporal coherence
or spatial coherence or both, the storage requirements and
rendering cost of the data may be significantly reduced. Shen
and Johnson [19] take advantage of temporal coherence, us-
ing difference encoding to significantly diminish storage and
rendering requirements. Westermann [21] performs wavelet
encoding of each time step separately to generate a com-
pressed multiscale tree structure. Further compression can
be obtained by examining the resulting tree structures and
wavelet coefficients. Ma and Shen [11] discuss how non-
uniform quantization along with octree and difference en-
coding can be employed to speed up rendering of time-
varying volume data. They show that the octrees for con-
secutive time steps can be merged to share subtrees. Conse-
quently, during rendering, partial images built from subtrees
that have not changed over time may be reused in later time
steps.

Wilhelms and Van Gelder [23] design hierarchical data
structures for controlled compression and volume rendering.
They extend octrees and a branch-on-need (BON) subdivi-
sion strategy [22] to handle multi-dimensional data. Sutton
and Hansen [20] propose a temporal branch-on-need tree (T-
BON) as an extension to the 3-D BON tree for time-varying
isosurface extraction. Shen, Chiang, and Ma [18] introduce a
hierarchical data structure, called a Time-Space Partitioning
(TSP) tree, for better utilization of both spatial and temporal
coherence. In essence, the skeleton of a TSP tree is a stan-
dard complete octree, which recursively subdivides the vol-
ume spatially until all subvolumes reach a predefined mini-
mum size. To store the temporal information, each TSP tree
node itself is a binary tree. Every node in the binary time
tree represents a different time span for the same subvolume
in the spatial domain. Most importantly, TSP trees allow the
renderer to use data from subvolumes of different spatial and
temporal resolutions, which is not possible for 4-d octrees.
The TSP tree data structure has been also used to facilitate
large scale volume rendering using 3-D texture hardware [6].

Further speedup of rendering may be made by utilizing
parallel computers or graphics hardware. However, even
though a parallel computer can render images at multiple
frames per second, without high-speed network and paral-
lel I/O support, two bottlenecks can still make it impossible
to achieve interactive viewing. One bottleneck is the need
to stream large volume files throughout the course of the
visualization process. The other is the delay due to trans-
ferring the resulting images over a potentially non-dedicated
network. Ma and Camp [10] developed a post-processing
parallel visualization strategy based on pipelined rendering.
They demonstrate remote visualization of time-varying vol-
ume data on a PC cluster over a wide-area network. Pipelin-

ing and careful grouping of processors are used to hide I/O
time and to maximize processor utilization. Visually loss-
less compression is used to significantly cut down the cost
of transferring output images from the PC cluster to a dis-
play device through a wide-area network. Clyne and Den-
nis [4] employ similar techniques, using double buffering to
help mask both the costs of volume data I/O over a high-
bandwidth channel as well as image transmission over a
TCP/IP network.

The methods introduced in this paper can work equally
well as, and by many metrics better than, most of the afore-
mentioned techniques. Furthermore our methods have the
added advantage running on low-cost, commodity hardware
making them far more accessible to a broad range of re-
searchers.

3 Hardware-Assisted Rendering

Commodity PC graphics cards are capable of performing
rendering that only a few years ago required a high-end
graphics workstation. In particular, the 2-D texture hardware
that helps generate impressive graphics for video games can
also be applied to make effective visualizations. For exam-
ple, commodity PC graphics cards have been used for vol-
ume rendering of static volumetric data [15]. Volume ren-
dering requires the loading of the volumetric data into the
texture memory of the video card prior to rendering. The
size of the volume that can be rendered is often limited by the
amount of video memory the card contains, since the access
and transfer of data from main memory across the graphics
bus is relatively slow compared to the direct access of graph-
ics memory.

3.1 Compression

The interactive rendering of time-varying volumetric data
sets offers a number of challenges because of the sheer size
of the data being visualized. These data sets can be reduced
in size and therefore made more manageable through the use
of compression. The advantages of compressing volumet-
ric data are two-fold. First, it reduces the storage require-
ments needed for the data. This could allow a data set to fit
in main memory that might not fit otherwise, eliminating the
need for transferring data from disk. The reduction in storage
can also be used to fit relatively small compressed data sets
entirely into texture memory, thus eliminating the need for
transferring data across the graphics bus. The other benefit
of compression is a reduction in I/O. If a compressed volume
fits entirely into main memory, the cost of transferring com-
pressed data to the graphics card is much lower than the cost
of transferring uncompressed data. If a data set does not fit
into main memory, the transferring of compressed data from
disk can be substantially faster than with uncompressed data,
allowing for interactive visualization from disk.

Video and main memory can be thought of as a two-level
cache for volume rendering. The compression of volumetric
data not only increases the amount of data that can fit in each
level, but also decreases the I/O costs of transfers between
these levels. Through the use of compression, and careful
management of the time costs associated with the transfers
between levels, it is possible to load texture maps represent-
ing volume data into video memory at rates suitable for in-
teractivity on a commodity PC.

If a compressed volume is to be rendered directly from
video memory, it must also be uncompressed using the
graphics hardware. This is a significant constraint since the
operations supported in graphics hardware are limited com-
pared to those found on a general purpose CPU. Another
constraint is imposed by the desire to encode the scalar voxel
values in terms of their scalar value rather than as a red,
green, blue, alpha (opacity) set. Using scalar values and
color indexed textures allows a scientist to manipulate the
color palette to interactively change the opacity and color
maps, leading to more intuitive visualization of the data.
Storing voxels in terms of RGBA would require recompress-
ing the entire data set when the transfer function is changed,
which can be impractical for very large data sets. In addition,
storing a single scalar value, rather than four color scalars re-
duces the amount of data by a factor of four.

Unfortunately, using indexed values puts a number of lim-
itations on how graphics hardware can be used to decode
data. Most screen and texture combining operations sup-
ported in hardware, such as Register Combiners, work in
terms of the manipulation of RGBA values and not the ma-
nipulation of scalar map index values. In particular, one
might consider a compression method that deals with differ-
ence images or volumes. These differences, however, would
need to be combined in terms of RGBA and not indexed
scalars. This would make the difference images color map
and opacity map dependent, since the difference between
two volumes, in terms of RGBA, depends extensively on the
transfer function being used.

3.2 Palette based decoding

With these limitations in mind, we present a method for
the temporal encoding of indexed volumetric data that can
quickly be decoded in hardware. The method makes ex-
tensive use of hardware support for the changing of color
palettes without the reloading of textures. The cycling of
color palettes can be used to create simple animations from
static images. In our work we use color palette manipula-
tion to allow a single scalar index to represent grid points at
several times steps.

With paletted textures, a single scalar index is used to rep-
resent an RGB or RGBA color. The palette consists of a lim-
ited set of colors that sample the RGBA color space. Each
of these colors is encoded in a single value, often a single
byte. In our approach we encode a sequence of temporally
changing scalar values into a single index. In this way, the

value stored in each texel represents an approximation of a
sequence of scalar values. Each index is therefore a sam-
ple in the space of possible time varying scalar values. The
scalar values that an indexed texel represents is decoded to its
temporally changing values through the frame to frame ma-
nipulation of the palette. For each frame, the color for each
palette entry is set to the color found in the transfer function
for the scalar encoded by that index value during that frame,
as shown in the following pseudocode which renders N time
steps using a single indexed texture. Note that 8-bit indexed
textures are assumed.
{

// stores colormap from the transfer function
Color colormap[256];
// stores the N time varying scalars encoded by each
// of the 256 possible texel values. This array is created
// during the compression process
int decoder[N][256];
// the color palette to be calculated for each time step
Color palette[256];

for each timestep t (0 to N-1)
for each palette entry i (0 to 255) {

palette[i]=colormap[decoder[t][i]];
// set the palette for current frame
setPallette(pallette);
renderTexture();

}
}

The textures are rasterized to the screen using linear in-
terpolation. Linear interpolation occurs in terms of RGBA
values after they have been looked up from the palette. If in-
terpolation occurred in terms of palette indices, the resulting
images would show severe artifacts, since the mapping be-
tween palette indices and decoded scalar values is far from
linear.

3.3 Temporal encoding

The encoding process consists of mapping sequences of
scalars into single scalar indices. This operation can be ap-
proached as a vector quantization problem. We perform this
process using transform encoding, specifically using the Dis-
crete Cosine Transform (DCT) [7, 17]. Transform encoding
is a compression method that transforms data into a set of
coefficients that are then quantized to create a more com-
pact representation. The transform by itself is reversible, and
does not compress the data. Rather, a transform is selected
that puts more energy into fewer coefficients, thus allowing
the less important, lower energy coefficients to be quantized
more coarsely, thus requiring less storage.

The DCT is defined by:

C�u� � α�u�
N�1

∑
x�0

f �x�cos�
�2x�1�uπ

2N
�

21 112 25 64 DCT

Quantization
Window

8bits

Figure 1: DCT-based encoding. In this example, the window
size is 4 and only the first 3 coefficients are stored into an
8-bit value.

and

α�u� �

��
�

�
1
N for u � 0�
2
N for u � 1�2����N�1

where C�u� are the transformed coefficients, N is the num-
ber of input samples, and f �x� are the input samples. We use
the DCT since it is known to have good information pack-
ing qualities and tends to have less error at the boundaries of
a sequence [7]. Boundary performance is important in order
to avoid discontinuities during the transition between blocks.
Since our application compresses temporally, discontinuities
would appear in the form of flashes between compressed se-
quences.

The encoding process is shown in Figure 1. First a window
size is selected, which will be the length of the time sequence
that will be encoded into a single value. The longer the win-
dow size, the greater the compression that can be achieved,
at the expense of temporal accuracy. For each window of
time-evolving scalars the DCT is applied. The result is a
set of coefficients equal in number to the size of the win-
dow used. The first coefficient stores the average value over
the window, and tends to be largest in value. The remaining
coefficients store increasingly higher frequency components
contained in the windowed sequence. These coefficients tend
to represent decreasing amounts of signal as the frequency
gets higher.

These coefficients are then quantized and combined into a
single scalar value. Bits are adaptively allocated for each
coefficient based on the variance of each coefficient [17].
Those coefficients with the highest variance are allocated
more bits than those coefficients with low variance. Using
this technique, bits are allocated based on the temporal char-
acteristics of the windowed sequence of the data set. For ex-
ample, a data set with minimal amounts of movement would
use fewer bits to store the temporal changes in the data, al-
lowing more bits to be used to more precisely represent the
stationary values in the sequence. On the other hand, a se-
quence with high speed motion (low temporal coherence)

would use more bits to encode this motion at the expense
of precision for the static values.

Once bit allocation for the transformed coefficients is de-
termined, the coefficients are quantized to their respective
precision. Uniform quantization is not well suited for quan-
tizing these coefficients since they often have fairly non-
uniform distributions. Instead, quantization is performed us-
ing Lloyd-Max quantization [9, 12], which adaptively selects
quantization levels that minimize mean square error. The
quantized coefficients are then combined into a single scalar
which is stored as an index in a paletted texture. Each en-
coded value represents a sequence of time-varying scalars
that can be determined using the inverse DCT. Rather than
using the inverse DCT, however, each palette entry is mapped
to the average scalar value that the index represents for each
time step. The encoding process is repeated for every win-
dow in time.

3.4 2-D texture & sub-volume optimizations

As described in the previous section, the quantization step is
adapted based on the characteristics of the transformed co-
efficients. Since the temporal properties of a data set can
vary widely across a volume, it is advantageous to adaptively
quantize small sections of the volume at a time. Our volume
rendering implementation uses axis aligned 2-D textures. To
minimize the amount of error introduced in the quantization
step, we encode each texture slice independently. This al-
lows bit allocation to vary based on the temporal character-
istics of each slice, as well as allowing for the quantization
levels to vary based on the characteristics of the coefficients
for each slice. We have found per-slice encoding shows no-
ticeably fewer compression artifacts for a given bit rate. One
negative effect of this process is that an uncompressed scalar
value can be encoded into different compressed values de-
pending on the slice in the volume. In practice, however,
we have found this effect to be minimal, in part because
quantization occurs in slices that are nearly perpendicular to
the viewing direction, thus variations from slice to slice of a
scalar value are softened by the volume rendering integral.

Usually, when bit allocation occurs, most bits are used for
storing the average value over a windowed sequence. As a
result, when the transition occurs between two compressed
sequences, the shift in average value can cause a perceived
jump in the animation. We therefore interleave the starting
times of the windows for each slice. Figure 2 shows such an
interleaving scheme. This decorrelates temporal transitions
so the jump occurs during every frame but for interleaved
slices in the volume, rather than the whole volume. This is
analogous to interlaced video, except rather than being inter-
laced vertically, the textures are interleaved along the view-
ing direction. As with per slice quantization, the volume ren-
dering integral helps to soften the interleaving effect.

For a transform window of length N, without interleaving
an entire new compressed volume must be loaded every N
frames. Since the loading of data across the graphics bus

Time

9 10 11

10−13

7−10

8−11

9−12
10−13

7−10

10−13

Slices
along the
view direction

6−9

7−10

8−11

9−12

11−14

6−9

7−10

Figure 2: When 2-D texture interleaving is utilized, for every
time step, every Nth 2-D texture is replaced starting with the
t modulo Nth texture slice, where t is the time step and N
is the compression ratio. In this example, N is four. The
numbers on each slice indicate which time steps the texture
stores. The shaded slice is the slice that is updated at time t.

Table 1: Three Test Data sets.
data set time steps spatial resolution

Turbulent vortex flow 100 1283

Quasi-geostrophic 1492 2563

turbulent flow
Shock-bubble flow 265 640�256�256

is relatively slow, this can cause a substantial drop in frame
rate every N frames. This problem can be solved by loading
1
N of the next compressed volume every frame, but requires
storing a copy of the next volume in texture memory. This,
however, is not necessary if the textures are interleaved, since
for every frame 1

N of the volume can be flushed from texture
memory and replaced with a new texture. Thus by amor-
tizing data movement costs, interleaving allows for a more
consistent frame rate without the expense of needing the tex-
ture memory to store a second compressed volume.

4 Test Results

Using our compression method we are able to render large,
time-varying volumetric data sets at interactive rates. Ta-
ble 1 lists the three data sets that have been used for our
study. Color Plate 1 shows one frame from each data set. An
animation of the turbulent vortex jets data displays a fairly
random pattern over time as the vortices spread through the
whole domain. In the QG turbulent flow data, we witness the
formation of coherent turbulent structures akin to Jupiter’s
red spot. The shock-bubble flow data exhibits a slowly de-
veloping structure starting from one end of the domain and
eventually reaching the other end of the domain.

Tables 2 and 3 show frame rates for different compression
cases using the NCAR’s quasi-geostrophic data set and the
LBL’s shock-bubble data set, respectively. We obtained these
results with an AMD 1.2 GHz Athlon with 768 megabytes of

Table 2: Frame rates for rendering the QG data with different
compression levels.

fps (time steps rendered)compression ratio
in-core out-of-core

8� 31.6 (280) 13.4 (1492)
4� 25.8 (140) 6.8 (1492)
2� 17.3 (70) 3.5 (1492)
1� 11.5 (35) 2.0 (1492)

Table 3: Frame rates for rendering the Shock-Bubble data
with different compression levels.

fps (time steps rendered)compression ratio
in-core out-of-core

8� 11.7 (112) 5.8 (265)
4� 9.3 (56) 3.1 (265)
2� 6.3 (28) 1.6 (265)
1� 4.4 (14) 0.9 (265)

main memory and a NVIDIA GeForce3 based graphics card
with 64 megabytes of texture memory. Figure 3 displays the
storage configuration of our current testbed. Compressing
each time step of a 2563 data set takes between 5 and 15
seconds depending on the level of compression. Our imple-
mentation uses eight-bit paletted textures, although our tech-
nique could be applied to hardware that supports higher pre-
cision textures for encoding strategies that allocate more bits
to each transformed coefficient. The results were obtained
when rendering the volume to a 512�512 window with the
volume occupying approximately 1

3 of the window area.
If a compressed data set fits entirely in main memory, then

the bottleneck in the rendering process is the transfer of tex-
tures from main memory to the graphics card. Compression
helps with both of these limitations, increasing not only the
number of time steps that fit in main memory, but also de-
creasing the amount of time necessary for transferring data
across the graphics bus. If only one set of axis aligned tex-
tures is stored in main memory, then the number of time steps
that can be stored in memory increases by a factor of three
at the expense of the user not being able to view the data set
from an arbitrary angle without swapping from disk.

One example of a large volumetric data set that we can
render at interactive rates is the QG turbulent flow data set.

Table 4: Frame rates for rendering the 100 time steps of the
Turbulent vortex flow data in-core with different compres-
sion levels.

compression ratio fps
8� 76.1
4� 70.7
2� 51.6
1� 28.7

4x45GB IDE Hard Disk RAID

768 MB PC 133 SDRAM

ATA 100

���
���
���

����
����
����

����
����
����

4x AGP

GeForce 3 64 MB DDR memory

Figure 3: Storage configuration for a PC-based system for
rendering large-scale time-varying data.

The QG calculations simulate large-scale motions in the
Earth’s atmosphere and oceans and are representative in size
and complexity of many Eart Sciences turbulent fluid flow
simulations. We can render 140 time steps of a 2563 vol-
umetric data set compressed by a factor of four at approxi-
mately 25.8 frames per second using 256 axis aligned tex-
tured polygons. If 128 axis aligned textured polygons are
used, which requires transferring and drawing only half the
data, the frame rate doubles and we can render 280 time
steps.

Without compression, the same 140 time steps no longer
fit in into main memory and would need to be swapped into
main memory in an out-of-core manner. A subset of this
uncompressed data that does fit in into main memory can
be rendered at about 11.5 frames per second, compared to
the 25.8 frames per second with compression. Although the
amount of data transferred with compression is one fourth of
that without, the frame rate does not scale linearly. This is
caused by the time required to rasterize the textured polygons
to the screen. The performance would scale more linearly if
a graphics card with a higher fill-rate were used, or if the
rendered volume were displayed at lower screen resolution.

Often a data set is too large to fit the desired number of
time steps into main memory even with compression. In this
case it is necessary to load and render the volume from disk.
Compression can substantially decrease the amount of data
that must be loaded for each frame, resulting in a noticeably
higher frame rate, as shown in Table 2. For example, all
1492 time steps of the 2563 QG data set can be rendered at
13.4 fps when compressed by a factor of 8 versus only 2.0
frames per second when rendered uncompressed from disc.
Once the user finds a shorter temporal region of interest, that
data can then be loaded into main memory and rendered at
a faster frame rate, or higher image fidelity. Color Plate 3

Table 5: NCAR quasi-geostrophic data set error
compression ratio MAX MIN AVG
2x 0.000109 0.000005 0.000015
4x 0.000369 0.000009 0.000037
8x 0.000875 0.000012 0.000075

Table 6: Vortex data set error
compression ratio MAX MIN AVG
2x 0.000199 0.000061 0.000136
4x 0.000423 0.000169 0.000304
8x 0.001147 0.000510 0.000856

shows visualizations of the QG data set for the same time
step using different transfer functions defined through inter-
active exploration.

By changing the window size used in the encoding step,
the compression ratio and quality can be varied. Tables 5, 6,
and 7 show the minimum, maximum, and average mean
square error for each data set where scalar values have been
normalized to be between 0 and 1. Color Plate 2 shows vol-
umes that have been rendered using varying degrees of com-
pression. As the amount of compression increases, some of
the more subtle features as well as the faster moving features
can become blurred. Thus, there is a distinct trade off be-
tween the compression ratio and rendering performance ver-
sus the quality of the compressed volume. This gives users a
degree of flexibility in choosing compression ratios that best
meet their needs. For example, if a scientist is interested in
viewing a short time sequence at high quality, a lower com-
pression ratio can be used. On the other hand, to view a very
long sequence of data at high speeds, a higher compression
rate can be selected. The scientist can combine compression
ratios to preview a data set at a coarser temporal resolution
and then view a specific time sequence of interest with less
compression.

4.1 Discussion

Although our implementation does not use volumetric tex-
tures, our temporal encoding method does apply to 3-D vol-
umetric textures. In particular we expect our method would
work well with hardware that supports volumetric indexed
textures with more than 256 entries. The use of 2-D textures
has the limitation that for a volume to be viewable from an
arbitrary angle, three copies of the textures must be stored

Table 7: LBL shock bubble data set error
compression ratio MAX MIN AVG
2x 0.000017 0.000009 0.000013
4x 0.000040 0.000023 0.000032
8x 0.000082 0.000046 0.000065

for each of the principle viewing directions. However, this
limitation is tempered by the fact compression can reduce
the amount of texture storage required by beyond a factor of
3. When a volume is viewed out-of-core, storing extra com-
pressed copies of the data set becomes much less of an issue
since these copies are stored on disk. In addition, the use of
2-D textures provides a natural way to decompose a volume
for adaptive quantization.

Since our system can render volumes from disk at inter-
active rates we feel it is very scalable with respect to the
size of a data set temporally. With regards to size of the
data set in the spatial domain, the amount of texture mem-
ory can be a limiting factor. Since our work compresses
temporally, it does not reduce the amount of texture mem-
ory utilized to below what would be required to render a
single static volume. With next generation graphics cards
having increasingly larger amounts of texture memory, this
limitation should become diminished. For out-of-core ren-
dering, the cost of swapping textures from the graphics card
to main memory is much lower than the cost of reading from
disk, thus texture memory capacity restraints become less of
a concern.

The use of compression by our methods presents two po-
tential shortcomings that are worth addressing. First, since
our compression scheme is lossy there is the potential for
modest, but noticeable, image quality degradation that in-
creases with the degree of compression. However, a mod-
erate loss of image fidelity due to compression or other op-
timization strategies is an acceptable tradeoff for enabling
interactive exploration of many temporal data sets, provided
that the gross features of evolving structures is preserved as
it is in our test cases [14, 2]. It is worth noting that many
NCAR researchers commonly perform crude data reduction
using simple zero-order subsampling in order to accommo-
date interactive exploration with the tools presently available
to them. In essence, they have already demonstrated a will-
ingness to sacrifice image quality to gain interactive explo-
ration capabilities that are essential to maximizing scientific
productivity [3]. Once a feature of importance is detected in
the reduced data set, the full resolution data may be further
analyzed if necessary. Second, compression requires addi-
tional storage (for maintaining both the raw and compressed
versions of the data), and it takes time to perform the en-
coding. Similarly to loss of image fidelity, researchers are
already bearing these costs by their use of subsampled data
to achieve interactive rendering.

TSP Tree based methods reduce the amount of texture
memory utilized by exploiting temporal and spatial coher-
ence to reuse textures [18, 6]. They represent several similar
textures as a single static texture. Our DCT based encoding
method stores several time slices in terms of lower precision
averages and differences stored in a single texel. Through
palette manipulation, these texels dynamically represent sev-
eral time slices. This compressed encoding comes at the ex-
pense of the numerical precision used to store these averages

and differences. The method exploits temporal coherence by
using more bits to represent the average value over a set of
slices, but also reserves bits for storing the change over a set
of slices. Our method could be combined with TSP based
techniques to store textures at varying degrees of both spa-
tial and temporal resolution.

Our method differs from compression methods supported
in hardware like those supported with DXTC or S3TC [5]
in that those methods compress 32-bit RGBA data, not 8-bit
index data. Since these methods do not apply to paletted tex-
tures, it would be necessary to recompress the volume when
changes to the color or opacity map are made. This stands
in contrast to the use of paletted textures that allow for the
interactive changing of the opacity and color map with no
effect on frame rate. In addition, these methods compress
RGBA texels by up to a factor of eight using four-bits per
texel, while our method starts with eight-bit paletted textures
and compresses them into four, two or one bits per texel, per
frame.

5 Conclusions

We have presented a hardware texture assisted technique
for rendering time-varying volume data, and demonstrated it
with experimental results. This technique is very attractive to
the scientists with whom we are working because of its low
cost and interactive rendering rates. It is now feasible to put
such a PC-based system on every scientist’s desktop, mak-
ing interactive data exploration accessible to a far broader
group of scientists and engineers. Researchers can browse
through data in a highly interactive manner, efficiently filter-
ing unimportant from important features, to obtain valuable
qualitative information about their data content. The com-
pression scheme used is controllable and results in visualiza-
tions suitable for interactive data exploration.

We plan to improve our hardware-assisted technique in
many ways. One important goal is to make it possible for the
scientists to conduct interactive exploration of data obtained
from even larger data sets than those discussed, such as the
5123 Earth Sciences turbulence calculations many of our re-
searchers are beginning to investigate. Furthermore, 10243

problem domain calculations are on the horizon. To address
these extremely large data sets we plan to investigate an ex-
tension of our hardware-assisted rendering technique with a
PC cluster, develop more intuitive data interaction mecha-
nisms in both the spatial and temporal domains, and design
effective hardware-assisted shading techniques.

Acknowledgements

This work has been sponsored by the National Science Foun-
dation under contracts ACI 9983641 (PECASE Award) and
ACI 9982251 (LSSDSV). The quasi-geostrophic turbulent
flow data set were generated by Jeffrey Weiss and Clive Bail-

lie at University of Colorado at Boulder, James McWilliams
at University of California at Los Angeles, along with Irad
Yavneh at Technion. The shock-bubble flow data set was
provided by scientists at the Lawrence Berkeley National
Laboratory. We obtained the turbulent vortex flow data set
through the VIZLAB of CAIP at Rutgers University. The
authors are grateful to them for providing data sets for our
study.

References

[1] Ext_shared_texture_palette, September 1997. OpenGL
Extension Registry,

http://oss.sgi.com/projects/ogl-
sample/registry/EXT/shared_texture_palette .txt.

[2] BRUMMELL, N. Senior Research Associate at the Uni-
versity of Colorado, Personal Communication, 2001.

[3] CLYNE, J., SCHEITLIN, T., AND WEISS, J. Vol-
ume Visualizing High-Resolution Turbulence Compu-
tations. Theoretical and Computational Fluid Dynam-
ics (1998), pp. 195–211.

[4] CLYNE, J., AND DENNIS, J. Interactive direct volume
rendering of time-varying data. In In Proceedings of
Data Visualization ’99 (May 1999), pp. 109–120.

[5] DOMINE, S. Using texture compression in OpenGL,
May 2000. http://www.nvidia.com.

[6] ELLSWORTH, D., CHIANG, L., AND SHEN, H.-W.
Accelerating time-varying hardware volume rendering
using tsp trees and color-based error metrics. In Pro-
ceedings of 2000 Symposium on Volume Visualization
(2000), ACM SIGGRAPH, pp. 119–128.

[7] GONZALEZ, R., AND WOODS, R. Digital Image Pro-
cessing. Addison Wesley, 1992.

[8] HAIMES, R. Unsteady visualization of grand challenge
size cfd problems: Traditional post-processing vs. co-
processing. In Proceedings of the ICASE/LaRC Sympo-
sium on Visualizing Time-Varying Data (1996), pp. 63–
75. NASA Conference Publication 3321.

[9] LLOYD, S. P. Least squares quantization in
PCM. IEEE Transactions on Information Theory IT-
28 (March 1982), 129–137.

[10] MA, K.-L., AND CAMP, D. High performance visu-
alization of time-varying volume data over a wide-area
network. In Proceedings of Supercomputing 2000 Con-
ference (November 2000).

[11] MA, K.-L., AND SHEN, H.-W. Compression and ac-
celerated rendering of time-varying volume data. In

Proceedings of the 2000 International Computer Sym-
posium - Workshop on Computer Graphics and Virtual
Reality (December 2000), pp. 82–89.

[12] MAX, J. Quantizing for minimum distortion. IRE
Transactions on Information Theory IT-6 (March
1960), pp. 7–12.

[13] PARKER, S. G., AND JOHNSON, C. R. SCIRun:
A Scientific Programming Environment for
Computational Steering. In Proceedings of
the 1995 Supercomputing Conference (1995).
http://scxy.tc.cornell.edu/sc95/proceedings/.

[14] RAST, M. Scientist at the National Center for Atmo-
spheric, Personal Communication, 2001.

[15] REZK-SALAMA, C., ENGEL, K., BAUER, M.,
GREINER G., AND ERTL, T. Interactive volume ren-
dering on standard pc graphics hardware using multi-
textures and multi-stage rasterization. In Proceed-
ings of SIGGRAPH/Eurographics Graphics Hardware
Workshop 2000 (2000).

[16] ROWLAN, J., LENT, E., GOKHALE, N., AND BRAD-
SHAW, S. A distributed, parallel, interactive volume
rendering package. In Proceedings of the Visualization
’94 Conference (1994), pp. 21–30.

[17] SAYOOD, K. Introduction to Data Compression, sec-
ond ed. Morgan Kaufmann Publishers, Inc., 2000.

[18] SHEN, H.-W., CHIANG, L., AND MA, K.-L. A fast
volume rendering algorithm for time-varying field us-
ing a time-space partitioning (tsp) tree. In Proceedings
of Visualization ’99 (1999), pp. 371–377, IEEE Com-
puter Society Press, Los Alamitos, CA.

[19] SHEN, H.-W., AND JOHNSON, C. Differential volume
rendering: A fast volume visualization technique for
flow animation. In Proceedings of the Visualization ’94
Conference (October 1994), pp. 180–187.

[20] SUTTON, P. AND HANSEN, C. D. Isosurface extrac-
tion in time-varying fields using a temporal branch-on-
need tree (T-BON). In Proceedings of IEEE Visualiza-
tion ’99 Conference (October 1999), pp. 147-153.

[21] WESTERMANN, R. Compression domain rendering of
time-resolved volume data. In Proceedings of the Visu-
alization ’95 Conference (1995), pp. 168–174.

[22] WILHELMS, J., AND VAN GELDER, A. Octrees for
faster isosurface generation. ACM Transactions on
Graphics 11, 3 (July 1992), pp. 57–62.

[23] WILHELMS, J., AND VAN GELDER, A. Multi-
dimensional trees for controlled volume rendering and
compression. In Proceedings of the 1994 Symposium
on Volume Visualization (October 1994), pp. 27–34.

Color Plate 1: One selected frame for each data set.

Color Plate 2: Visualizations of the quasi-geostrophic data set at difference compression levels. As the level of compression
increases, some of the finer features become blurred. Top row: time step 980. Bottom row: time step 210. Left to right: 1x 2x
4x 8x compression

Color Plate 3: Selected visualizations of the quasi-geostrophic data set produced by varying transfer functions.

