
UC Berkeley
UC Berkeley Previously Published Works

Title
Bayesian Meta-analysis of Multiple Continuous Treatments with Individual Participant-Level 
Data: An Application to Antipsychotic Drugs.

Permalink
https://escholarship.org/uc/item/1hd088ns

Journal
Medical Decision Making, 39(5)

Authors
Spertus, Jacob
Horvitz-Lennon, Marcela
Normand, Sharon-Lise

Publication Date
2019-07-01

DOI
10.1177/0272989X19856884
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1hd088ns
https://escholarship.org
http://www.cdlib.org/


Bayesian Meta-Analysis of Multiple Continuous Treatments with 
Individual Participant-Level Data: An Application to 
Antipsychotic Drugs

Jacob Spertus1, Marcela Horvitz-Lennon2,3, Sharon-Lise T. Normand1,4

1Department of Health Care Policy, Harvard Medical School, Boston, MA

2Cambridge Health Alliance, Harvard Medical School, Cambridge, MA

3RAND Corporation, Santa Monica, CA

4Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA

Abstract

Modeling dose-response relationships of drugs is essential to understanding their safety effects on 

patients under realistic circumstances. While intention-to-treat analyses of clinical trials provide 

the effect of assignment to a particular drug and dose, they do not capture observed exposure after 

factoring in non-adherence and dropout. We develop a Bayesian method to flexibly model dose-

response relationships of binary outcomes with continuous treatment, permitting multiple evidence 

sources, treatment effect heterogeneity, and non-linear dose-response curves. In an application, we 

examine the risk of excessive weight gain for patients with schizophrenia treated with the second 

generation antipsychotics paliperidone, risperidone, or olanzapine in 14 clinical trials. We define 

exposure as total cumulative dose (daily dose×duration) and convert to units equivalent to 100mg 

of olanzapine (OLZ doses). Averaging over the sample population of 5891 subjects, median dose 

ranged from 0 (placebo randomized participants) to 6.4 OLZ doses (paliperidone randomized 

participants). We found paliperidone to be least likely to cause excessive weight gain across a 

range of doses. Compared to 0 OLZ doses, at 5.0 OLZ doses, olanzapine subjects had a 15.6% 

(95% CrI: 6.7, 27.1) excess risk of weight gain; corresponding estimates for paliperidone and 

risperidone were 3.2% (1.5, 5.2) and 14.9% (0.0, 38.7) respectively. Moreover, compared to non-

black participants, black participants were associated with a 6.8% (1.0, 12.4) greater risk of 

excessive weight gain at 10.0 OLZ doses of paliperidone. Nevertheless, our findings suggest that 
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paliperidone is safer in terms of weight gain risk than risperidone or olanzapine for all participants 

at low to moderate cumulative OLZ doses.

Introduction

Patients, clinicians, and other decision-makers need to know which treatments are most 

effective and safe. For pharmacological treatments, a key feature potentially affecting both is 

drug dosing. For example, while dose-finding studies provide valuable information in early 

phase trials, in later phase randomized controlled trials (RCTs), patients may not fully 

comply with their treatment assignments or remain on treatment throughout the trial. 

Moreover, most trials are insufficiently powered and of insufficient duration to assess a 

treatment dose-response relationship with safety outcomes. Antipsychotic drug trials for the 

treatment of schizophrenia are no exception. Because antipsychotic drugs are associated 

with significant metabolic risk and most patients with schizophrenia must remain on these 

drugs for a lifetime, characterizing the relationship of observed total cumulative dose, 

defined as daily dose multiplied by duration on treatment, with meaningful safety outcomes 

is critical1-4. Additionally, understanding if and how patient characteristics modify efficacy 

or safety outcomes, a phenomenon known as treatment effect heterogeneity (TEH), is 

necessary for optimal treatment decisions in diverse patient populations.

We present a case study of methods to estimate dose-response functions and dose-dependent 

TEH using clinical trial data, which we motivate with an application in psychiatry. We use 

individual participant-level data (IPD) from more than a dozen RCTs assessing outcomes of 

specific antipsychotic drugs. Our safety outcome is excessive weight gain operationalized as 

a binary variable assuming a value of 1 if the participant gained at least 7% of his/her 

baseline weight. The binary endpoint was selected rather than a continuous weight gain 

outcome because the binary outcome captures the rate of clinically relevant weight gain, and 

it is widely used in pharmaceutical trials and is therefore interpretable and meaningful for 

prescribers, researchers, and regulators3,5. Evidence on the association between dose and 

weight gain for people exposed to antipsychotics is inconsistent, and methodological 

considerations limit its value6. Due to the limited and mixed evidence of TEH of 

antipsychotic safety effects, we are also interested in assessing whether race/ethnicity 

moderates the weight effects of antipyschotics and whether this moderating effect varies by 

dose7,8.

The RCT data provide key variables on dosing, outcomes, compliance, and potential 

confounders, and have the advantage of randomization within each trial so that, on average, 

participant measured and unmeasured characteristics should be balanced among treatment 

arms. However, there are at least 4 major challenges to dose-response function estimation in 

this setting. First, actual total cumulative dose taken is not randomized and is therefore 

confounded by baseline variables. Second, because TEH is crucial to providing guidance for 

decision makers dealing with diverse populations and single trials are rarely powered to 

detect TEH, combining data from multiple trials to characterize dose-response relationships 

is necessary. Third, dose-response relationships are likely to be non-linear and necessitate 

the application and interpretation of flexible regression techniques. Fourth, although pooling 
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information from multiple RCTs is essential, meta-analysis is complicated in this setting 

because interest centers on curves (e.g., dose-response) characterized by multiple parameters 

rather than means (e.g., average outcome at one specific dose).

We meet these challenges through the use of a Bayesian hierarchical model as this naturally 

incorporates multiple levels of heterogeneity, while posterior parameters of interest can be 

summarized flexibly and intuitively. We adjust for confounding by including controls in an 

outcome model and baseline patient covariates. We permit estimation of flexible dose-

response functions through the use of splines, where the coefficients are distributed 

hierarchically to partially pool information across trials. Curves can be estimated for 

multiple distinct treatment drugs. By combining evidence across trials and using flexible 

hierarchical splines to model the dose-response relationship, we provide an important 

approach to assessing dose-response functions. We further define TEH for a binary 

moderator, allowing separate curves to be estimated for two subgroups. We introduce and 

discuss some inferential tools that can provide powerful and intuitive interpretation of results 

in this complex setting. To our knowledge, there has been limited discussion of Bayesian 

approaches in the multiple continuous treatment setting, a gap we aim to fill in this paper.

Methods

YODA and CATIE Trials

To illustrate methods, we estimate dose-response curves describing second generation 

antipsychotics’ (SGA) effect on weight gain by combining evidence from multiple 

individual participant-level clinical trial datasets. The model to estimate the curves is 

described below. We use data from 13 clinical trials obtained from the Yale Open Data 

Access (YODA) project and supplement them with data from the Clinical Antipsychotic 

Trials of Intervention Effectiveness (CATIE) trial. These trials were designed to assess 

efficacy/effectiveness of antipsychotic in people with schizophrenia, primarily on the basis 

of the Positive and Negative Syndrome Scale (PANSS) score, a widely used measure of 

severity of schizophrenia symptoms, but also assessed weight gain and other safety 

outcomes. Trials varied in duration, from 6-weeks (six YODA trials) to 18-months (CATIE). 

We include adult patients randomized to 1 of 3 SGAs or to placebo (N= 5891) (see Table 1). 

The outcome variable is a binary indicator of whether a participant gained more than 7% of 

their baseline body weight. We calculate total cumulative dose by summing prescribed daily 

doses over the duration of treatment (accounting for dropout). Adherence data in the form of 

pill counts or injections are also incorporated when available. For pill trials, even those with 

adherence data available, there is inherently some uncertainty in exposure because subjects 

were not always monitored and may not have taken all of their assigned dose. Injection trials 

have no exposure uncertainty as treatment was fully administered at trial centers. In a prior 

study, we found no substantial differences due to the form of treatment and do not account 

for such differences here9.

Because the potency of different SGAs varies, we place them on the same scale by 

converting to doses equivalent to 100mg of olanzapine (OLZ doses), a scaling approach in 

psychopharmacology supported by empirical research10-12. We include information from 

placebo arms to permit more precise estimation of the intercepts and coefficients for 
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confounders. As baseline confounders, we include age, race, sex, body mass index (BMI), 

and the total PANSS score. These clinically relevant variables were available in all trials 

(Table 1). Further details of our selection and handling of these trials can be found in Spertus 

et al (2018)9.

Causal Assumptions

Because total cumulative dose is not randomized, we make some additional assumptions for 

causal inference. Imai and van Dyke detailed these assumptions in the context of a (single) 

continuous treatment regime13. For our results to be interpreted causally, these assumptions 

must hold both within and between trials. First, we assume the stable unit treatment value 

assumption (SUTVA) holds in that total cumulative dose for a given subject does not affect 

weight gain for any other subject. Second, we assume strong ignorability such that the 

potential outcomes are independent of treatment received conditional on measured 

confounders. Random assignment of drugs within trials helps satisfy this assumption. 

However, cumulative dose taken was not randomized and we rely on adjusting for measured 

confounders to satisfy this assumption. Finally, we assume positivity meaning that any 

participant could receive any drug at any (non-negative) dose within groups of individuals 

defined by their confounders. We note that positivity with a continuous exposure is not 

empirically verifiable, that is, if treatment is modeled as a continuous variable, it is generally 

impossible for two patients to have the same dose. However, because trial participants were 

randomized to drug doses and had similar inclusion criteria, positivity is valid by design.

Model

We use a fully Bayesian hierarchical model to estimate dose-response curves for each drug 

while allowing heterogeneity across trials. Specifically, let j ∈ {1,…J} index trials, i ∈ {1, 

…I} index subjects, and k ∈ {1, …K} index treatments. Let Yij be a binary outcome for 

subject i in trial j, Tij = (Tij1, Tij2 ⋯ TijK) be a length K vector of exposure intensities with 

Tijk the amount of drug k taken, and Xij be a length P vector of potential confounders. We 

posit a hierarchical logistic regression of Yij on treatment and confounders:

Y i j~Bernoulli logit−1 α j + ∑
k = 1

K
f jk(T i jk) + ∑

p = 1

P
βpXijp . (1)

αj is a trial specific intercept and βp is a population-level linear term for confounder p. Thus 

we assume that confounder effects are linear on the logit scale, additive, and the same across 

trials. In contrast, the dose-response functions fjk(Tijk) are modeled non-linearly and 

hierarchically.

We model the functions fjk using B-splines with different numbers of knots, where the 

coefficients for each element are hierarchically modeled to pool information across trials. B-

splines are piecewise polynomials in which the pieces are joined at the knots. Varying 

numbers of knots are tried and are always equally spaced at quantiles of each drug: a model 

with 0-knots is linear in all groups; a 1-knot model is a B-spline with a knot at the median of 

each drug dose; a 2-knot model has knots at the .33 and .66 quantile of each drug dose; and 
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so on14. The number of knots in the final model is chosen based on leave-one-out 

information criterion, a fully Bayesian estimate of out-of-sample fit15.

To complete the specification, we place weakly informative priors on every parameter 

following best practices in Bayesian data analysis16. Further details are available in the 

appendix (section A).

Treatment Effect Heterogeneity

We expand on the model above in order to account for TEH, i.e. different dose-response 

curves for subgroups of the patient population. We introduce a binary moderator variable to 

investigate potential TEH between two subgroups, although this could be readily expanded 

to more subgroups. Briefly, this involves further splitting the functions fjk so that separate 

curves are defined for each value of the binary moderator. We do this by introducing 

separate coefficients for each level of the moderator, without changing how the underlying 

B-splines are defined. Priors are as above. Interpretation is complicated when there is TEH, 

and we discuss approaches below. For further details on defining a model with TEH see the 

appendix (section B).

Model Fitting and Checking

We use Monte Carlo sampling to estimate posterior quantities of interest implemented via 

Hamiltonian Monte Carlo in Stan that typically requires only a few thousand draws17. We 

use the R wrapper package brms to fit the models18. The quality of the draws is assessed by 

examining trace plots for a few quantities (particularly the log-posterior) to identify any 

pathologies. Convergence is summarized by the Gelman-Rubin R-hat statistic and declared 

achieved when all parameters have an R-hat below 1.116.

To check how well the model captures elements of the data, we examine posterior predictive 

distributions of marginal outcome rates within treatment groups, as well as the maximum 

and minimum marginal outcome rates across trials. These are then compared with the 

corresponding rates observed in the actual trials. If the model fits well, the observed rates 

should fall well within the distribution of posterior predicted rates. Such posterior predictive 

checks are a standard model diagnostic in Bayesian inference16.

Interpretation and Inference

By using a Bayesian approach that returns the posterior distribution for all parameters, 

inference is readily facilitated as appropriate functions of the posterior. However, 

summarizing the posterior in a useful and interpretable way for decision making is non-

trivial because the dose-response effects are non-linear curves defined by multiple 

parameters. We briefly outline these approaches below, for more detail see the appendix 

(section C).

First, we provide plots of the marginal dose-response curves, along with 95% credible 

intervals. Plotting the curves provides the most obvious and intuitive way to interpret the 

posterior. A decision maker can readily see the probability of an adverse outcome over a 

range of doses for specific drugs, providing key evidence to select the most appropriate drug 
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and dose for a given subject. Second, for each drug k we compute the average treatment 

effect at fixed dose a, defined as the expected outcome probability for a subject receiving 

dose a of drug k minus the expected outcome probability if they had received 0 dose. This is 

averaged over subjects and over posterior draws, and uncertainty is summarized by 95% 

credible intervals. Third, we compute rank probabilities, defined as the probability that drug 

k has the smallest effect among all drugs over a range of doses between 0 and A. The rank 

probability provides a single number summary of how likely a drug is to be the “best”, i.e. to 

have the lowest effect on the rate of excessive weight gain.

When considering potential TEH, a different approach is needed. We compute and plot a 

function that we call the “difference curve”, which summarizes the additional treatment risk 

for a given subgroup over a range of doses. The difference curve is defined as the difference 

in average treatment effects between two subgroups at each dose a between 0 and A. It can 

be plotted long with uncertainty intervals and examined, where a substantial difference 

indicates potential TEH at that dose.

Implementation

We implement the model described above for analysis of the YODA and CATIE data. A 

model with linear terms for treatment provides a baseline for comparison, and more complex 

models are built using splines with increasing numbers of knots and compared. Spline bases 

are generated for each treatment using the bs R function, with knots placed at appropriate 

percentiles. We built a model for TEH by including race as a binary moderator variable 

(black, non-black). We test models of increasing complexity (linear, 1 knot, 2 knots…) using 

the leave-one-out information criterion, and stop adding knots when the out-of-sample fit 

worsens.

Results

Data

Table 1 summarizes information on covariates, outcomes, and exposure. Olanzapine and 

risperidone are measured in fewer trials and on fewer subjects than paliperidone, which is 

likely to affect the precision of their estimated dose-response curves. There are some 

imbalances in baseline covariates that may confound unadjusted estimates. The rate of 

excessive weight gain varies considerably between treatments, as does the distribution of 

exposures, with median total cumulative dose highest for paliperidone and lowest for 

risperidone. In addition to the 1368 placebo subjects, 10 olanzapine, 56 paliperidone, and 22 

risperidone subjects have zero exposure. Eight percent of olanzapine, 5% of paliperidone, 

and 19% of risperidone subjects have an exposure of less than 100mg OLZ doses, while 

81% of olanzapine, 41% of paliperidone, and 78% of risperidone subjects have an exposure 

of less than 500mg OLZ doses.

Model

Convergence of our MCMC algorithms is indicated by trace plots and R-hat statistics. The 

LOO-IC suggests that a spline with a single knot provides the best fitting model. Graphical 

posterior predictive checks indicate that the model fits the observed data well in that it 
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replicates key aspects of the observed data. Observed outcome rates within treatment groups 

and trials, as well as the observed maximum and minimum across trials fall well within the 

posterior predictive distributions drawn from the model.

Inference

Table 2 displays average treatment effects of moving from zero dose (no treatment received) 

to dose intensities equivalent to either 100mg or 500mg of olanzapine for all three drugs 

studied, along with 95% credible intervals. It is immediately apparent that higher total 

cumulative doses increase the probability of excess weight gain for all three drugs. While 

olanzapine and risperidone have the largest average effects, there is considerable uncertainty 

in their effect sizes as well.

Treatment effects along a range of exposures from 0 to 800mg OLZ equivalents are 

displayed in Figure 1. Paliperidone has a small positive effect on the risk of weight gain 

across doses. At high total cumulative dose, the effect on weight gain becomes very 

uncertain for olanzapine and risperidone, likely due to the small number of subjects at those 

doses. The effects level off at high exposures, although the high variance in these dose 

regions complicates the interpretation of these results.

Figure 2 depicts paliperidone TEH over the range of exposure by subtracting the curves for 

non-black subjects from the curves for black subjects. If the exposure has a greater effect on 

weight gain for black subjects, the curve will be positive at that total cumulative dose. The 

lower 95% credible limit of the curve rises above 0 starting at around 700mg OLZ 

equivalent doses, though it dips back below again around 1200mg OLZ doses. At high 

doses, the credible limits broaden because there are fewer patients and the curve flattens out, 

possibly indicating a saturation effect. The difference curve provides evidence of potential 

TEH: compared with non-black subjects, black subjects are expected to have an increased 

weight gain rate of about 5% on average at 700mg OLZ equivalents or more of paliperidone. 

For the other two drugs, 95% credible limits cover 0 at all exposures, indicating no evidence 

of TEH, a finding likely due to smaller sample sizes for risperidone or olanzapine.

We compute the posterior probabilities that each drug is the best in terms of having the 

smallest effect on weight gain on average over a range of exposures, from 0 to 500mg OLZ 

equivalents. 500mg OLZ equivalents represents a low average daily dose over 6 weeks 

(about 12 mg/day, given a dose range of 10-20 mg/d), and is near the center of the range of 

doses observed in each treatment group in our data. Probabilities are estimated for both non-

black and black subjects, but subgroups estimates are very similar over this range so we 

refer here to the overall results. Paliperidone has a probability of .85, risperidone has a 

probability of .06, and olanzapine has a probability of .09 of being the best in terms of 

weight effects. Thus, the evidence strongly suggests that paliperidone is least likely to cause 

excessive weight gain over this range of exposures.

Discussion

In this paper we introduced a framework for hierarchical modeling of non-linear treatment 

effects with potential TEH. Our work was motivated by the need to address methodological 
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shortcomings limiting the utility of RCTs to yield dose-response relationships of 

pharmacological treatments accounting for non-compliance, dropout, and differential 

dosing. We characterized the weight effects of three SGAs (olanzapine, paliperidone, and 

risperidone) across a range of exposure assessed through standardized total cumulative doses 

and assessed whether race moderated the observed effects. We chose excessive weight gain 

as our safety outcome because weight gain is associated with poor metabolic outcomes, 

including metabolic syndrome, dyslipidemia, hypertension, and type 2 diabetes, all of which 

are risk factors for cardiovascular disease. This relationship is particularly significant in the 

context of a rapid growth in SGA utilization in the U.S., partly driven by their frequent use 

for off-label indications19.

We found that these commonly used SGAs led to increased probability of weight gain over 

their range of exposures, although olanzapine and risperidone provided very imprecise 

estimates of effect curves. There seemed to be a leveling off of the effects at higher doses, a 

feature that we were able to capture using a non-linear model. Moreover, we found evidence 

that race may moderate the association of paliperidone with excessive weight gain, with 

potentially increased risk of weight gain for black compared to non-black participants at 

moderate doses of paliperidone. At high doses we did not detect significant TEH due to 

fewer subjects and increased uncertainty in that range. Despite potentially increased risk for 

black participants, our results suggest that paliperidone is likely the best among the three 

SGAs for both black and non-black patients. We were unable to detect any moderation of 

race on the effects of risperidone or olanzapine due to high levels of uncertainty.

We believe that our findings are an important contribution to the evidence on the dose-

dependency of safety effects of SGAs and TEH on antipsychotic effects, a body of research 

that has been encumbered by methodological challenges we have sought to address. In terms 

of dose-dependency of antipsychotic weight effects, the evidence is generally inconclusive6. 

While some studies suggest a dose-response relationship for olanzapine, the evidence is 

mixed for risperidone and quetiapine20-24. In terms of race-related TEH for weight effects of 

SGAs, the evidence is limited and mixed and we are not aware of studies that have assessed 

whether race moderation varies by dose25,26.

Additionally, we have expanded on the statistical literature by introducing an IPD meta-

analytic framework for assessing dose-response relationships from multiple continuous 

treatments with potential TEH. For past work in estimating dose-response curves using 

multiple data sources see Gasparini et al (2012) and Bobb et al (2013), both of which 

develop methodology for use in environmental statistics14,27. For a review of meta-analysis 

and its use in medical statistics, see Normand (1999)28. A recent review of TEH and its 

important place in causal inference for medical applications can be found in Kent et al 

(2018)29. Xie (2013) provides a more formal treatment of TEH in causal inference30. The 

Bayesian hierarchical framework we used, along with many technical points of our data 

analysis are covered well in Gelman et al (2014)16.

We also focused on developing powerful ways to interpret the results of our analysis. Our 

work permits meaningful and actionable inferences from dose-response curves for clinicians 

faced with complex treatment and dosing decisions, and can also inform decisions by 
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administrators and regulators involved in the care of these patients. A Bayesian framework 

facilitated this effort as estimates and credible limits could easily be computed from the 

posterior draws. Plotting non-linear dose-response curves along with credible limits is a 

clear first step in analyzing multiple continuous treatments and can give a rough sense of 

adverse event probabilities over a range of doses while revealing threshold or saturation 

effects. Computing the average treatment effect of moving from 0 dose (off treatment) to a 

given dose for each drug provides a more precise numerical summary of treatment risk 

averaged over the patient population. For a fixed dose and drug, this estimate summarizes 

the likelihood that a subject may experience clinically meaningful weight gain. This 

information may be especially useful for shared clinician-patient decision making where 

trade-offs between expected treatment and efficacy and adverse effects must be weighed 

based on likelihood of risk and patient preferences. Rank probabilities provide a scalar 

summary of the safety or efficacy of a given drug over a range of doses. In this context, a 

decision-maker would generally want to choose the drug that has the highest rank 

probability, the best drug, as this drug is likely to lead to the least adverse effects over the 

analyzed range of doses. Such scores may be particularly useful in a policy setting context.

In order to assess possible TEH, we computed and plotted difference curves, which allow 

visualization of the magnitude and uncertainty of effect differences between groups 

hypothesized to have moderating effects over a range of exposure values. Difference curves 

allow decision-makers to assess whether patients with potentially effect-modifying 

characteristics should be given different treatments. Evidence of meaningful differences in 

treatment effects, whether efficacy or safety-related, should inform decision-making by 

patients and their families, clinicians, administrators, and regulators. As they are complex 

functions of the posterior, caution in interpretation is warranted and decision curves should 

not be treated as authoritative evidence of TEH. They provide evidence that TEH may exist 

and could be especially useful as exploratory tools to indicate drugs and doses that are 

promising for follow-up experiments. A strength of our approach is that it generalizes 

readily to other drug trials and applications outside psychiatry where one or more continuous 

treatments are of interest.

Limitations

In order to assess the rate of excessive weight gain, as opposed to average weight gain, we 

dichotomized our outcome into a binary indicator. Modeling a continuous outcome would 

likely have led to more precise estimates of dose-response curves. We chose to dichotomize 

the outcome to directly model the rate of excessive weight gain. However, future work could 

improve on our estimates by initially modeling a continuous outcome before computing the 

probability of a > 7% increase post hoc, based on the posterior. Another challenge in our 

application, and one that is likely to arise in other multivariate continuous treatment designs, 

is how to standardize exposures. We chose to use olanzapine equivalent doses, but other 

absolute scales such as chlorpromazine equivalents or recommended daily doses may also be 

used. As these standardized doses are themselves estimated, a source of uncertainty is 

ignored in order to make treatments comparable. Another possibility is to scale the 

treatments relatively, e.g. divide the treatment variables so 100 is always the maximum dose, 

but this could introduce problems if certain drugs were included in the original trials at 
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relatively higher doses. Additionally, we had few trials to assess olanzapine and risperidone 

(4 and 2 respectively), leading to high uncertainty in these estimates. We extracted 

meaningful inferences for paliperidone, but many of the results for olanzapine and 

risperidone were so unclear that they will not be very informative for decision makers. An 

exception is the rank probabilities, which provided relatively strong evidence that 

paliperidone was superior to both olanzapine and risperidone. Nevertheless, we 

demonstrated the power of our methods to make decisions when multiple drugs and doses 

are involved. As more individual participant level trial data is made available, it will be 

possible to use our framework with additional information to make more precise inferences 

on more drugs and better understand optimal treatments for diverse subjects. Another 

potential limitation is that our confounders do not include comorbidities and concurrent use 

of other drugs (or services) potentially associated with weight changes. Although this may 

have affected our results, their impact is likely to be minimal since all patients were 

randomized to the study drugs.

Conclusion

We believe this paper contains important scientific as well as methodological contributions. 

Our findings are scientifically valuable because we have expanded the evidence of dose-

dependency and race-based moderation of the weight effects of SGAs, a widely used class of 

antipsychotics that is associated with elevated metabolic risk. Methodologically, we 

provided a way to draw inferences on the impacts of multiple continuous treatments 

measured in multiple trials with potential TEH. In addition to describing a Bayesian model 

to accommodate these features, we developed a number of ways to summarize the posterior 

distribution that can lead to relevant and interpretable insights for decision-makers.
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Appendix

A Model Details

Under the B-spline formulation for fjk, the exposures for each drug k are expanded into 

recursively defined power bases with local support1. The bases are defined by boundary 
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points and fixed knots placed within the range treatment. After expansion into a dimension-

L B-spline basis with elements ηkl(Tk) we express each treatment function as a weighted 

sum of its basis:

f jk(T ijk) = ϕ jk1T ijk + ∑
l = 2

L
ϕ jklηkl(T ijk) . (1)

Equation (1) asserts that all between trial differences in treatment are expressed through ϕjkl, 

after adjusting for participant confounders.

To complete the model, we specify priors on the confounder coefficients βp and hierarchical 

priors on the intercept and coefficients of fjk in Equation (1). For the confounder 

coefficients, βp, we simply specify the weakly informative prior: βp ~ t5(0, 2.5), which 

places most of the prior mass in the interval [−5,5]. This is a reasonable range on the log-

odds scale when confounders are binary or scaled to unit variance2. We let ϕj = (ϕj1…ϕjK) = 

(ϕj11, … ϕj1L, …ϕjK1…ϕjKL), denote the length K × L concatenation of all spline 

coefficients for each treatment function in trial j; the overall mean across trials of the 

intercept be the scalar μα; and the mean treatment coefficients be μϕ = (μ11, …μ1L, …μK1…
μKL). The hierarchical prior is specified as:

α j

ϕ j
T ~

iid
𝒩KL + 1

μα

μϕ
T , Σ where Σ = D(σ)ΩD(σ) . (2)

Here the (KL + 1) × (KL + 1) covariance matrix Σ is decomposed into the product of a 

diagonal matrix, D(σ), defined by a (KL + 1) vector of standard deviations σ, and a (KL + 1) 

× (KL + 1) correlation matrix Ω. The entries of σ = (σα, σ11, …σ1L, …σK1, …σKL) 

represent the between trial variability of each hierarchically specified parameter.

Finally, the prior distributions for the hierarchical parameters are specified as:

μα~𝒩(0, ∞); μϕkl~t5(0, 2.5); σkl~C+(0, 0.1); and Ω~ LKJ(3) . (3)

The prior on the intercept μα, is completely non-informative. The t5(0, 2.5) priors for μϕkl 

are made to be weakly informative given the binary outcome and the scaling of the exposure 

(see Table 1 of the main paper)2. The half-Cauchy prior on σkl is slightly regularizing in the 

sense that it pulls σkl towards zero and thus the trial specific estimates towards their group 

means, μα or μϕkl
3. With C+ (0, 0.1) about 95% of the prior mass is below 1.3, which pools 

the estimates when there is little information at the trial level but permits substantial 

variation if the data are informative. The correlation matrix, Ω, is a priori distributed 

according to a Lewandowski, Kurowicka, Joe (LKJ) distribution, determined by a single 

hyperparameter, which we set equal to 3 to put slightly more prior weight on the identity 
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matrix4,5. This leads to a regularized covariance matrix, Σ, which is necessary when sparse 

data inform the elements of ϕj, for example, if all drugs are not studied in all trials.

B Treatment Effect Heterogeneity Details

We accommodate treatment effect heterogeneity by estimating separate curves within patient 

subgroups. Specifically, let the moderators M ⊂ X denote a subset of the covariates that may 

modify the effect of dose on outcome. In our study, we posit that M = M is a single binary 

moderator indicating if the participant is black versus non-black. The additive treatment 

effects within levels of Mij are of primary interest. We introduce a new parameter θ = (θ1…
θK) = (θ11, …θ1L, …θK1…θKL), which parameterizes additional dose-response functions 

for each treatment for subjects with Mij = 1, fixed across trials. The models for curves within 

moderator levels are:

f jk(T ijk, Mi j = 0) = ϕ jk1T ijk + ∑
l = 2

L
ϕ jklηkl(T i jk) (4)

f jk(T ijk, Mi j = 1) = ϕ jk1T ijk + θk1T ijk + ∑
l = 2

L
{ϕ jklηkl(T i jk) + θklηkl(T ijk)} . (5)

As above, the prior on θkl is %(0, 2.5). Note that θ does not vary by trial, which implies that 

the moderating effect is constant across trials so that all trial level heterogeneity is still 

expressed through ϕj. We also assume the basis coordinates ηkl(Tijk) are the same for both 

subgroups.

For conciseness, we denote the set of all parameters as Υ. Draws from the posterior are 

indexed by q = {1,…,Q} and Υq indicates a single draw from the joint distribution of all 

parameters.

C Interpretation and Inference Details

We define several approaches to assess differences in drugs across doses, drug types, and 

potential moderators after model fitting is complete. We compute point-wise 95% credible 

intervals to express uncertainty. First, we determine the dose-response curve for the 

“typical” subject by setting the confounders to 0. The posterior mean curve is plotted along 

with 95% credible intervals. We also determine the average treatment effect at fixed doses. 

We consider the risk difference, Δ(k, a) which is defined as the expected outcome if all 

subjects were treated with treatment k at dose a minus the expected outcome if all subjects 

were treated at no dose. A distribution on the risk difference is obtained by computing it for 

each draw from the posterior:

Δq(k, a) = 𝔼X{𝔼(Y ∣ Tk = a, X, Υq) − 𝔼(Y ∣ Tk = 0, X, Υq)} .
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The posterior mean and credible intervals for Δ(k, a) are computed from the Q draws 

obtained. We summarize comparisons by integrating over a range of dose intensities and 

averaging over draws. For example, we calculate the probability that drug 1 has the smallest 

effect among all drugs over a range of intensities a ∈ (0, A):

ℙ{Δ(k = 1) = minkΔ(k)} = 1
Q ∑

q = 1

Q ∫
0

A
I{Δq(k = 1, a) = minkΔq(k, a)} da, . (6)

The integral can be computed numerically by making a discrete mesh over the range of 

doses (0, A). This quantity may be useful as a scalar summary of the treatment effects that 

can be used for decision making. It is straightforward to compute the probability that a drug 

has the greatest effect merely by taking the maximum instead of the minimum in (6).

A different approach is needed for interpreting treatment effect heterogeneity. We estimate 

subgroup-specific effects by taking local average treatment effects across subgroups. Letting 

M be a binary moderator of interest, we let Δq(M = 1, Tk = a) represent the risk difference in 

stratum M = 1 at dose a of treatment Tk, and calculate the distributions within subgroups as:

Δq(M = 1, Tk = a) = 𝔼X{𝔼(Y ∣ Tk = a, M = 1, X, Υq) − 𝔼(Y ∣ Tk = 0, M = 1, X, Υq)} (7)

Δq(M = 0, Tk = a) = 𝔼X{𝔼(Y ∣ Tk = a, M = 0, X, Υq) − 𝔼(Y ∣ Tk = 0, M = 0, X, Υq)} . (8)

Comparisons within drugs but across subgroups are then facilitated by appropriate functions 

of Δq(M = 1, Tk = a) and Δq(M = 0, Tk = a). A particularly useful function is the difference 

curve which we define as: Δq(M = 1, Tk = a) – Δq(M = 0, Tk = a). We simplify computation 

of the difference curve by ignoring the covariates X which change the intercept. This has the 

effect of setting all covariates to their default values (assuming centered covariates) and 

allows computation of a single representative curve. The posterior mean and credible 

intervals are defined at each dose a, and the entire difference curve is graphed. TEH can be 

assessed by examining the plotted difference curve, where deviation from 0 indicates there 

may be TEH at that dose.
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Figure 1. 
Draws of estimated dose-response curves for black and non-black participants, by drug. Thin 

grey curves represent a single draw from the posterior, thick black curves are the posterior 

mean, dotted black lines bound the 95% credible region for the curves, black points above 

and below curves mark observed exposures and outcomes. Exposure is on the x-axis and 

ranges from 0 to 800mg olanzapine equivalent. The y-axis is probability of >7% weight 

gain. Wide credible intervals for risperidone and olanzapine reflect the fact that they were 

measured in very few trials and there is evidence inconsistency across trials.
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Figure 2. 
Draws of estimated TEH for paliperidone showing difference between expected outcome for 

black and non-black participants over a range of exposures to paliperidone (x-axis). Thin 

grey lines are individual draws from the posterior, solid black line is posterior mean curve, 

and dashed black lines bound 95% credible interval. Curves above 0 indicate black 

participants taking paliperidone have are more likely to experience excessive weight gain 

compared to non-black participants for specific total cumulative dose. The y-axis is the 

estimated probability of weight gain for black participants minus non-black participants.
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Table 1:

Characteristics of data by treatment group. %ile = percentile; OLZ = olanzapine equivalent dose; PANSS = 

positive and negative syndrome scale (higher scores imply more severe illness); SD = standard deviation; BMI 

= body mass index in kg/m2.

Treatment Group

Placebo Paliperidone Olanzapine Risperidone

Number of Subjects (N) 1368 3462 527 534

Number of Trials (J) 12 13 4 2

Outcome and Exposure

% > 7% Weight Gain 4.8 10.4 17.1 11.2

50th (99th) %ile 100mg OLZ 0.0 (0.0) 6.4 (26.7) 4.2 (8.4) 2.6 (20.3)

Baseline Covariates

Mean Age (SD) 39.7 (11.9) 39.4 (11.7) 38.6 (11.1) 40.8 (11.8)

Mean PANSS (SD) 89.0 (15.1) 89.3 (13.8) 87.5 (17.0) 79.7 (14.7)

Mean BMI (SD) 27.0 (6.4) 26.9 (6.3) 27.7 (7.1) 28.7 (6.2)

% Female 37.6 38.0 31.0 34.6

% Black 18.3 17.7 15.4 9.6
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Table 2:

Risk differences for percent probability of 7% weight gain under various drugs and OLZ equivalent doses. 

OLZ = olanzapine.

Olanzapine Paliperidone Risperidone

Overall

0 to 100mg OLZ Equivalents 1.9 (−0.8, 5.6) 0.4 (−0.4, 1.1) 5.8 (−0.5, 13.6)

0 to 500mg OLZ Equivalents 15.6 (6.7, 27.1) 3.2 (1.5, 5.2) 14.9 (0.0, 38.7)

Non-Black Participants

0 to 100mg OLZ Equivalents 1.5 (−0.9, 4.9) 0.5 (−0.3, 1.2) 4.9 (−0.7, 12.1)

0 to 500mg OLZ Equivalents 15.2 (6.2, 26.0) 3.1 (1.4, 5.0) 14.6 (0.3, 37.7)

Black Participants

0 to 100mg OLZ Equivalents 4.5 (−3.9, 18.6) −0.3 (−3.1, 1.8) 11.5 (−3.0, 34.7)

0 to 500mg OLZ Equivalents 17.1 (2.2, 37.3) 4.1 (−1.2, 9.6) 16.0 (−5.3, 53.7)
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