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Abstract

The prevalence and cost of disorders affecting the musculoskeletal system are predicted to rise 

significantly in the coming years due to the aging global population and the increase of associated 

risk factors. Despite being the second largest cause of disability, the clinical options for therapeutic 

intervention remain limited. The clinical translation of cell-based therapies for the treatment of 

musculoskeletal disorders faces many challenges including maintenance of cell survival in the 

harsh in vivo environment and the lack of control over regulating cell phenotype upon 

implantation. In order to address these challenges, the development of bio-instructive materials to 

modulate cell behavior has taken center stage as a strategy to increase the therapeutic potential of 

various cell populations. However, the determination of the necessary cues for a specific 

application and how these signals should be presented from a biomaterial remains elusive. This 

review highlights recent biochemical and physical strategies used to engineer bio-instructive 

materials for the repair of musculoskeletal tissues. There is a particular emphasis on emerging 

efforts such as the engineering of immunomodulatory and antibacterial materials, as well as the 

incorporation of these strategies into biofabrication and organ-on-a-chip approaches.
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1. Introduction

Musculoskeletal injuries and diseases are among the most costly and prevalent conditions 

worldwide. It is estimated that one in two adult Americans live with a musculoskeletal 

condition, comparable to the combined prevalence of cardiovascular and chronic respiratory 

diseases[1]. Musculoskeletal conditions affected more than 126 million adults in 2012 in the 

United States alone[1], the occurrence of which will only increase as the population 

continues to age. Musculoskeletal disorders include many of the most disabling and costly 

healthcare conditions: back and neck pain, fractures, rheumatoid arthritis and 

osteoarthritis[2]. Disorders affecting the musculoskeletal system can be caused by trauma 

(e.g., fractures and sports injuries), genetic conditions (e.g., muscular dystrophy), or by 

autoimmune and degenerative diseases (e.g., rheumatoid arthritis and osteoarthritis). The 

pathologies of these disorders are often interconnected, thereby complicating the treatment 

options and patient recovery[3].

The capacity of the musculoskeletal system to self-repair varies highly among tissues. 

Whereas long bones and skeletal muscle can heal small injuries, the regeneration of large 

defects or injuries to articular cartilage, tendon, and ligament remains clinically challenging. 

Tissue engineering and regenerative medicine (TERM) approaches are under investigation to 

provide durable and stable repair without the limitations associated with tissue grafts. Cell-

based therapies, particularly those leveraging the therapeutic potential of stem and 

progenitor cells, are under widespread investigation. Mesenchymal stem/stromal cells 

(MSCs) from bone marrow and other compartments are primary candidate populations for 

use in cell-based therapies due to their potential to differentiate toward many relevant cell 

types including osteoblasts, chondrocytes, and adipocytes. Despite their multipotential in 
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vitro, limited evidence exists for MSCs directly forming tissues upon implantation in 
vivo[4]. MSCs are thought to contribute to tissue formation and regeneration through their 

potent secretome that acts upon host cells[4]. The lack of FDA-approved stem cell-based 

therapies for musculoskeletal disorders highlights the difficulties faced by TERM 

approaches to be translated from bench to bedside. Many limitations remain including 

effective cell isolation and in vitro expansion, time consuming in vitro maturation of the 

transplant, maintenance of cell viability upon transplantation to the harsh in vivo 
microenvironment, control of cell phenotype upon implantation, and donor variability that 

contributes to variations in the size and quality of neotissues.

Biomaterials have tremendous potential to address these challenges through the development 

and use of bio-instructive scaffolds. Compared to early generation materials that were inert 

in order to limit the inflammatory and immune response, the field has evolved towards 

engineering scaffolds which elicit specific cellular functions[5,6]. Cells are exquisitely 

sensitive to mechanical, biological, chemical, and physical signals within their immediate 

microenvironment (Figure 1). These cues instruct cell adhesion and shape, migration, 

intracellular signaling pathways, and ultimately, gene expression. However, a primary 

challenge remains: What is the best strategy to direct cell function and tissue regeneration, 

and how should one present these cues in biomaterials? This review aims to highlight the 

biochemical and physical strategies for the engineering of bio-instructive materials and their 

application for the repair of clinically challenging musculoskeletal tissues.

2. Strategies for bio-instructive materials

Cells in their native physiological niche are exposed to a complex array of physical and 

biochemical stimuli (Figure 2). Physical cues are comprised of the mechanical stimuli 

transmitted to the cells due to their response to the stiffness of underlying adhesive sites (i.e., 
substrate), an applied mechanical load (i.e., compression or shear stresses), as well as the 

topography and possibly electroconductivity of the local substrate that influences cellular 

organization and physiological function. Biochemical stimuli are the combination of soluble 

signals and insoluble components of the local ECM that guide cell interaction with their 

substrate and allow for the efficient transmission of previously defined physical cues. 

Multiple strategies have been used to incorporate these cues into biomaterials to instruct cell 

function during in vitro culture and in vivo transplantation. In the following sections of this 

review, we have summarized established and innovative approaches to engineer biomaterials 

capable of transmitting physical and biochemical signals for musculoskeletal applications.

2.1. Physical

2.1.1. Mechanical cues—Cells constantly generate and are exposed to forces, which 

may be derived from applied load, hydrostatic forces, or fluid shear stress[7]. In solid tissues 

such as those of the musculoskeletal system, cells are embedded in a dense polymer network 

known as the extracellular matrix (ECM), which may be exposed to various external loading 

regimes that induce tissue deformation or strains. Upon exposure to these mechanical 

stresses, the adaptive ECM evolves to necessary stiffness and elasticity. The cell 

cytoskeleton is connected to the ECM through integrin adhesion receptors that engage with 
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specific ECM ligands[8], and the interplay between intracellular machinery and the ECM 

affects all aspects of cell function[7,9]. When the mechanical properties of the local ECM 

are disrupted due to trauma or disease, the behavior and function of associated cells are also 

altered. Cells in culture also sense changes in their mechanical microenvironment[7,8]. 

Thus, the response of cells to mechanical cues has emerged as an important focus to improve 

our understanding of cell behavior in vivo and assist in the development of strategies to 

instruct cell function using engineered materials.

Substrate mechanics is a significant physical cue to guide cell fate, making it an essential 

design parameter for creating and deploying instructive biomaterials (Figure 3). First 

reported by Pelham and Wang, fibroblast migration has been shown to be dependent on the 

physical properties of the underlying matrix[10]. Engler et al. subsequently demonstrated 

that human MSCs cultured on two-dimensional (2D), tunable polyacrylamide substrates 

could be differentiated toward neurogenic, myogenic, and osteoblastic lineages as a function 

of gel elastic modulus ranging from 0.1 to 40 kPa[9]. These results confirmed that material 

elasticity mimicking those of native tissues (brain, muscle and bone) was an important 

contributor for inducing MSCs towards a specific lineage. MSCs exhibited similar 

responsiveness to substrate elastic modulus when entrapped within three-dimensional (3D) 

microenvironments[11]. Subsequent studies revealed the importance of substrate stiffness on 

cell attachment, spreading, cytoskeletal tension, and nuclear conformation. Cells in soft 

substrates exhibit reductions in spreading and attachment, rounded morphology, and a more 

diffuse actin cytoskeleton, whereas stiffer substrates favor cell attachment through increased 

focal adhesions, and subsequently, higher cytoskeletal tension, stress fiber formation, and 

nuclear deformation[12,13].

Material mechanics can regulate stem cell fate, but this physical characteristic can also 

influence cell proliferation, self-renewal, and senescence[14,15]. Muscle-derived stem cells 

cultured on polyethylene glycol (PEG) hydrogels mimicking the elastic modulus of muscle 

(12 kPa) exhibited self-renewal in vitro and contributed extensively to muscle regeneration 

in vivo[15]. However, these cells lost their differentiation potential and had limited 

regenerative potential when cultured on tissue culture plastic (~106 kPa). Although soft 

substrates are effective for stem cell maintenance and to delay senescence[14,15], human 

MSCs cultured on 0.25 kPa substrates, mimicking the elasticity of bone marrow and adipose 

tissue, exhibited a halt in cell cycle progression[16]. This quiescent state reverted when the 

MSCs were transferred to more rigid substrates (7.5 kPa). Similar stiffness-based 

reprogramming of MSC differentiation was reported when culturing MSCs on soft (0.5 kPa) 

or stiff (40 kPa) hydrogels, followed by transfer to gels of the opposite stiffness[17]. When 

transferred, MSCs first cultured on softer gels switched from a neurogenic phenotype to an 

osteogenic lineage. In contrast, MSCs cultured initially on stiffer substrates retained their 

osteogenic phenotype after a switch to softer gels[17]. These findings confirm that cells have 

an inherent response to the mechanical properties of their environment.

Many strategies have emerged to engineer bio-instructive materials with varied mechanical 

properties to capitalize on the effect of substrate stiffness and elasticity. The most common 

approaches focus on tuning the mechanical properties of polymeric scaffolds and hydrogels 

by varying the crosslinker concentration[14,18], crosslinking time[19], polymer 
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concentration[18] and polymer molecular weight[20]. Non-degradable polymeric networks 

used for tissue engineering applications such as PEG exhibit almost purely elastic 

behavior[21]. Although variations in initial elastic modulus can be produced with these 

materials and used to guide cell behavior, most tissues are viscoelastic, and thus, the 

mechanical stresses of the ECM relax over time upon exposure to load. Alginate gels can be 

formulated to possess elastic or viscoelastic behavior using covalent or ionic crosslinking 

strategies, respectively[21]. Purely elastic substrates store elastic energy in the material and 

possess time-independent storage or elastic moduli, presenting constant resistance to applied 

forces over time. Viscoelastic materials exhibit stress relaxation, or a decrease in the storage 

or elastic modulus over time when a constant strain is applied. Unlike covalently crosslinked 

gels, ionically crosslinked alginate gels undergo stress relaxation due to diffusion of calcium 

ions, and the stress relaxation time of these gels can be tuned by crosslinker and 

composition[22]. MSCs entrapped in viscoelastic gels with faster stress relaxation times 

exhibited enhanced cell adhesion, spreading, proliferation, and osteogenic 

differentiation[21]. Other musculoskeletal cell populations are also responsive to time-

dependent properties of materials. For example, chondrocytes exhibited increased matrix 

production in viscoelastic gels but increased markers of cartilage degeneration when 

entrapped in elastic gels[23]. Murine myoblasts proliferated faster and spread more on 

hydrogels that exhibited stress relaxation[24]. When implanted in a rat critical-sized 

calvarial defect, fast relaxing gels facilitated increased host cell migration into the defect and 

more bone formation compared to slow-relaxing gels[25]. Within matrices exhibiting stress 

relaxation, the resistance to cellular traction forces relaxes over time due to remodeling of 

the matrix, dispersing the energy that cell-generated forces transmitted to the material. These 

findings collectively highlight the ability of a substrate to either store or dissipate cellular 

forces as an important mechanical property in the design of biomaterial systems to instruct 

cells for tissue formation.

2.1.2. Topographical/morphological cues—The native ECM is a fibrous matrix in 

the nanometer range (fibers of 10–100 nm in diameter) presenting a complex mixture of 

pores, ridges and fibers organized into a 3D anisotropic architecture that provides 

topographical signals to cells at the microscale (10–100 μm)[26,27]. The ECM architecture 

at the nanoscale is not static, but instead undergoes constant remodeling in response to tissue 

maturation, external stimuli, damage and repair[28]. ECM organization is tissue-specific and 

can vary locally throughout the tissue. For example, cortical bone is a dense matrix formed 

by repeating osteon units in which the collagen fibers are organized periodically in 

concentric layers around a vascularized central canal. However, trabecular bone is a more 

porous and interconnected substrate with a disorganized collagen network[29]. Similarly, 

tendons possess highly variable topography as a function of distance from the bone, with 

gradients in anisotropy from the enthesis down the length of tissue. Tissue anisotropy can 

also be found in articular cartilage where collagen fibers are aligned parallel to the articular 

surface in the superficial zone and perpendicular to the subchondral bone in the deep 

zone[30].

A number of strategies are under examination to reproduce the nano- and microtopographies 

of ECM within native tissues and to investigate the capacity of substrate topography to 
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regulate cell migration, proliferation, and differentiation. Lithographic methods including 

nanoimprint[31], capillary force lithography[32], photolithography[33] and electron beam 

lithography[34] have been used to fabricate 2D polymeric substrates with topographic 

features. Nanogratings and arrays of nanoposts and nanopits are the most widely tested 

topographic geometries created with these techniques[35]. Nanograting topography can 

promote cellular alignment and elongation in the grating direction. Human MSCs seeded on 

polydimethylsiloxane (PDMS) matrices possessing a nanograting pattern of 250 nm line 

width developed aligned stress fibers that upregulated neurogenic and myogenic 

differentiation pathways[36]. In contrast, cells on nanoposts and nanopits exhibit reduced 

cell spreading[35], and these nanotopographies guide stem cell differentiation via the density 

of the patterned features[37]. MSCs seeded on polyurethane hydrogels patterned with 

variable nanopost (diameter = 700 nm) densities differentiated toward the osteogenic 

pathway at low densities whereas low post-to-post distances favored the adipogenic 

phenotype. MSCs on substrates with low nanopost densities exhibited more cell spreading, 

F-actin expression, stress fiber formation, and cytoskeletal stiffness[37]. This is in good 

agreement with earlier studies wherein MSC differentiation was regulated by controlling cell 

shape and thus cytoskeletal tension[38].

While 2D nano- and microtopography represents an effective strategy to investigate cell 

response as a function of geometry, this approach fails to recapitulate the complexity of the 

3D microenvironment. To address this challenge, fiber anisotropic architecture in 3D 

polymeric scaffolds has been controlled through numerous biofabrication techniques such as 

ionotropic gelation[39], magnetic fields[40], directional freezing[41,42], 3D bioprinting[43], 

and electrospinning[44,45], the latter of which is the most broadly used. Electrospinning 

uses biodegradable polymers to produce scaffolds with fiber diameters in the nano- and 

microscale, mimicking the ECM structure[45,46]. For example, MSCs seeded on aligned 

polycaprolactone (PCL) electrospun fiber scaffolds were oriented parallel to the fibers, while 

cells spread in all directions on randomly-aligned fiber scaffolds[44]. When connective 

tissue growth factor (CTGF) and transforming growth factor beta 3 (TGF-β3) were added to 

the culture media, MSCs in aligned scaffolds developed either a ligamentous or 

chondrogenic phenotype, while osteogenesis was observed in MSCs on randomly aligned 

scaffolds[44].

In addition to fiber alignment, porosity is an important factor for vascular invasion, cell 

viability, migration, proliferation, and differentiation in 3D fibrous scaffolds. Small pore 

sizes may limit host cell infiltration and migration or contribute to rapid death of 

transplanted cells in the interior of the scaffold due to poor oxygen and nutrient 

diffusion[47]. In contrast, larger pore sizes (>300 μm) facilitate increased vascular invasion, 

surface area, and cell attachment[47–49]. Although porosity and pore size enable tissue 

ingrowth, the frequency and size of these voids compromise scaffold structural integrity, 

resulting in lower mechanical properties. To decouple the effect of pore size and substrate 

mechanics on osteogenesis and chondrogenesis of MSCs, Matsiko et al. explored stem cell 

response to collagen-HyA scaffolds with the same mechanical properties but different pore 

sizes[50]. This study showed that MSC differentiation was dependent on pore diameter, with 

chondrogenesis observed in scaffolds with pore sizes of 300 μm compared to a more 

fibroblastic phenotype at 94 and 130 μm[50]. Pore size and fiber architecture are relatively 
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easy to control in fibrous scaffolds using methods such as temperature modulation during 

the freeze drying process[51,52]. However, it is more challenging to generate hydrogels with 

macroporous architecture due to their inherent nanometer-sized pores, which limits cell 

migration and proliferation[50–53]. Pore-forming hydrogels have been investigated through 

the addition of a rapidly-lost sacrificial material to a bulk hydrogel with slower degradation 

kinetics[54,55]. Different combinations of bulk-sacrificial materials such as high molecular 

weight alginate-oxidized alginate[56], alginate-pluronics[54] and alginate-

methylcellulose[55] are promising candidates for use in musculoskeletal regeneration.

2.1.3. Electrical cues—Endogenous electric fields provide signals to control cell 

function during embryonic development, tissue maintenance, and repair[57]. In native 

tissues, voltage gradients occur across the cell membrane (membrane potential) due to 

cellular regulation of intracellular ion concentrations through membrane ion pumps and ion 

channels[57]. To maintain this potential, cells transport ions against concentration and/or 

electrochemical gradients. The membrane potential, typically ranging between 50–100 

mV[58], not only influences cell function at the single cell level but also at the tissue and 

organ level to enable muscle function[58], nerve signaling[58], embryonic development[59] 

and tissue regeneration[60]. In light of its role in tissue development and repair, electrical 

stimulation has been used clinically for the treatment of diabetic ulcers[61], chronic 

musculoskeletal disorders[62], bone fractures[63] and to enhance nerve regeneration[64].

Electrical stimulation is a promising strategy to direct stem cell fate. This phenomenon, 

recently reviewed by Ross et al.[65], is not exclusive for stem cell differentiation into 

myocytes[66], cardiomyocytes[67] and neurons[68]. MSC differentiation can also be 

directed towards the osteogenic[69,70] and chondrogenic[71] lineages using electric 

stimulation. To leverage the potential of electrical stimulation in musculoskeletal TE, hybrid 

materials have been fabricated through the combination of electroconductive materials with 

biocompatible scaffolding materials (Table 1). Electroconductive materials used in these 

hybrids such as metal nanoparticles (iron oxide[72], zinc oxide[73] and gold[74]), 

graphene[66], and electroconductive polymers such as polyaniline[75] and polypyrrole[69] 

have been widely investigated for musculoskeletal tissue engineering. However, the 

application of these materials for TE approaches is limited by slow degradation, possible 

cytotoxicity, and inflammation[76]. The deployment of bio-instructive materials possessing 

both bioelectric and topographical cues represents a promising approach to regenerate highly 

anisotropic tissues such as skeletal muscle. Myotube formation by myoblasts seeded on 

electrospun PCL nanofiber scaffolds functionalized with polyaniline was dependent on 

nanofiber alignment and polyaniline concentration, confirming the synergistic effects of 

electrical and topographical cues[77]. Electroconductive materials have also been explored 

for their antibacterial activity. Biohybrid implants formed of electroconductive collagen-

pristine graphene enhanced the alignment and differentiation of embryonic stem cell-derived 

cardiomyocytes while inhibiting the attachment of S. aureus[78].

How these materials instruct cell behavior and tissue regeneration is poorly understood, 

particularly when no external voltage is applied. In living systems, local electrical fields are 

a consequence of out-of-equilibrium ion concentrations across membranes or interfaces that 

generate a voltage potential across the membrane[79]. Adherence of cardiomyocytes to an 
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electroconductive substrate is of critical importance for electrical cell-to-cell coupling[80]. 

This is because the cleft, representing the interface between a cell and material surface, is 

filled with physiological solution. Tight adhesion is needed to generate a high resistance 

between this cleft and the ground (also called high seal resistance)[79]. Other common 

biophysical parameters such as substrate charge density, wettability, and protein adsorption 

may influence material conductivity when an electrical current is applied[81,82].

2.1.4. Physical cues for immunomodulation and macrophage polarization—
Biomaterials possess intrinsic properties that can activate the immune system, and these 

biomaterial scaffolds must be able to overcome immunological rejection and promote proper 

healing after implantation. Upon implantation of a biomaterial, neutrophils and other innate 

immune cells infiltrate into the implant site and recruit macrophages through the secretion of 

different chemokines and cytokines[89]. Macrophages are a highly plastic cell type that 

undergo polarization from a pro-inflammatory phenotype (M1) to a more anti-inflammatory, 

pro-regenerative phenotype (M2) or related subtypes [89]. Whereas an early inflammatory 

M1 response is required to initiate tissue regeneration after an injury, a shift to the M2 

phenotype is also required to re-establish tissue homeostasis and avoid the destructive effects 

of chronic inflammation.

Macrophage phenotype may be regulated by the physical properties of the implant such as 

matrix stiffness, porosity, and topography. When implanted in vivo, softer RGD-modified 

PEG hydrogels (130 kPa) impaired M1 macrophage polarization and the foreign body 

reaction compared to stiffer gels (840 kPa), suggesting that softer materials may be better for 

tissue regeneration[90]. Importantly, even the softer gels were significantly stiffer than many 

hydrogels used for tissue engineering, necessitating other studies in hydrogels possessing 

more commonly observed mechanical properties. In contrast, macrophage polarization was 

not directly correlated to stiffness when manipulating collagen scaffolds, yet the crosslinker 

used to modulate scaffold stiffness induced significant differences in macrophage 

phenotype[91]. These data highlight the importance of scaffold fabrication method and 

suggest the interplay between protein adhesion, substrate stiffness, and macrophage 

polarization. Surface roughness, particle size, and shape also have an important role in 

macrophage polarization[92–94] and have been manipulated in orthopedic implants to 

promote M2 polarization and enhance implant integration. Additionally, macrophage 

phenotype can be influenced by the porosity of 3D scaffolds. M1 macrophages were more 

prevalent within polyhydroxyethylmethacrylate (pHEMA) scaffolds of small pore sizes (34 

μm) compared to larger diameter pores (160 μm)[95], resulting in improved 

neovascularization within the implant. This study stopped short of characterizing implant 

integration, yet these findings have important implications on the design of biomaterials to 

modulate the polarity of invading macrophages.

Charge may be another important factor to influence the immune response. Zwitterionic 

materials, characterized by balanced pairs of cationic and anionic groups and a net charge 

equal to zero, possess nonfouling properties that resist nonspecific protein adsorption and 

avoid macrophage recognition and foreign body reaction[96,97]. Ultra-low fouling 

poly(carboxybetaine methacrylate) (PCBMA) hydrogels exhibit reduced fibrous capsule 

formation, recruit fewer pro-inflammatory M1 macrophages, and enhance vascularization 
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when implanted in vivo[96]. More recently, the interplay between substrate stiffness and the 

immunomodulatory characteristics of zwitterionic hydrogels was established, with stiff (165 

kPa) hydrogels eliciting increased immune cell adhesion and foreign body reaction[98].

2.2. Biochemical

The mechanical integrity of tissues is dependent upon the ECM, and this dynamic structure 

also has an active role in mediating cell attachment and growth factor presentation. 

Specialized cell surface receptors mediate the interplay between the cell and the biochemical 

signals present in the ECM, which may be soluble or insoluble ligands. The specific 

biochemical reaction between a ligand and its receptor elicits a signaling cascade which may 

ultimately result in a range of cellular actions. Soluble factors such as cytokines, growth 

factors, RNA, and hormones readily diffuse through the cell microenvironment and regulate 

cell-cell signaling, cell differentiation, migration, and proliferation[99,100]. Insoluble 

factors, forming part of the polymeric ECM network, dictate cell adhesion, shape, migration, 

and response to mechanical stimuli. Furthermore, insoluble components directly interact 

with soluble factors to shield them from degradation and control their bioactivity and cell 

presentation[11,101]. To leverage the potential of these biological cues, numerous strategies 

have been investigated to engineer materials for delivery of soluble factors and to 

incorporate insoluble ligands for directing cell function and tissue regeneration.

2.2.1. Delivery of soluble signals

2.2.1.1. Protein and nucleic acid delivery: In musculoskeletal TE, the administration of 

soluble cues including Bone Morphogenetic Protein 2 (BMP-2) and other members of the 

Transforming Growth Factor β (TGF-β) superfamily to instruct cell fate, drive stem cell 

differentiation, and speed repair is an area of particular importance. To achieve the desired 

effect, soluble growth factors and cytokines can be easily incorporated into the biomaterial 

through physical entrapment, non-specific adsorption[102–104] and covalent 

coupling[100,105]. A more physiological alternative is to retain exogenous and cell-

produced cytokines through the incorporation of ECM components or specific ECM 

domains[106]. Negatively-charged glycosaminoglycans (GAGs) and proteoglycans can bind 

cationic cytokines and growth factors, causing oligomerization and increased local 

concentrations. The incorporation of heparin to an alginate hydrogel enabled sustained 

release of encapsulated fibroblast growth factor 2 (FGF-2) over one month compared to the 

one day burst release observed using unmodified hydrogels[107]. However, the use of 

natural glycoproteins to engineer growth factor-sequestering scaffolds is limited by their 

high costs and large batch-to-batch variability[108,109]. Therefore, chemical modification 

of polymers such as poly(lactide-co-glycolide)[110], cellulose[108,111], chitosan[108] and 

alginate[109,112] with sulfate groups to recapitulate the binding affinities of sulfated 

glycoproteins has been explored for bone[108,112] and cartilage[111] repair.

As an alternative to recombinant proteins, gene delivery has been proposed as a promising 

strategy for the cell-mediated production of regulatory factors[100,113,114]. Since the first 

attempts of nucleic acid incorporation into collagen sponges[115], various strategies 

including viruses containing the gene of interest (viral gene delivery) or polymer- or 

nanoparticle-plasmid DNA complexes (non-viral gene delivery) have been explored to 
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maximize gene transfer and cell-mediated protein expression[116,117]. However, safety 

concerns associated with viral vectors[100,118], as well as effects on cell viability and stem 

cell differentiation of commonly used non-viral gene delivery vectors[119,120], continue to 

hamper their translation into the clinic. To overcome these challenges, the delivery of RNA 

may be a safer and more effective alternative[121]. Different types of RNA such as 

messenger RNA (mRNA)[122], microRNA (miRNA)[123], and small interference RNA 

(siRNA)[124] have been incorporated into biomaterials to enhance the repair of 

muscle[125], bone[123,124] and cartilage[122].

2.2.1.2. Delivery of immunomodulatory cytokines: As described above, it is necessary 

to modulate the macrophage response to a biomaterial to overcome immunological rejection 

and promote effective healing. Molecules secreted by M1 macrophages such as TNF-α, 

IL-1, and IL-6 may accelerate bone fracture repair, matrix mineralization, and the 

recruitment of MSCs and osteoprogenitor cells[126,127]. However, sustained presentation of 

higher concentrations of these cytokines inhibit cartilage formation in the early phases of 

bone induction and are responsible for cartilage damage in disorders such as 

osteoarthritis[128]. Local cytokine presentation from biomaterials is under investigation to 

influence macrophage polarization and enhance tissue repair. For example, the sequential 

delivery of IL-4 and IFN- γ from decellularized bone scaffolds promoted sequential M1 and 

M2 polarization and higher vascularization when implanted in vivo[129]. More recently, 

local M2 macrophage polarization was enhanced by adsorption of IL-4 and IL-13 to 

collagen scaffolds implanted in an osteotomy gap, resulting in improved endochondral 

ossification and bone regeneration in vivo[130].

2.2.2. Incorporation of insoluble signals

2.2.2.1. Peptide modification to control cell behavior: Cells in their microenvironment 

can interact with distinct protein moieties present in the ECM through the binding of cell 

surface receptors such as integrins, cell surface proteoglycans, and the hyaluronan receptor 

CD44[131]. Due to ligand-receptor specificity, cell adhesion to different ECM proteins 

triggers different responses that modulate cell function[5,132]. Initially, decellularized 

animal-derived ECM was explored to recapitulate this native complexity[26]. However, 

naturally derived ECMs have several limitations for their clinical translation including batch-

to-batch variability and immunogenic potential[26,133]. To overcome these issues, various 

scaffolds and hydrogels have been functionalized with ECM mimics that emulate the native 

ECM, enabling increased control over material design and properties.

Cell adhesion peptides (CAPs) represent the largest class of ECM mimics to regulate cell 

function in engineered materials. These short amino acid sequences are the minimal moiety 

needed for binding to the specific cell receptor responsible for cell attachment[132]. Among 

CAPs, the arginine-glycine-aspartic acid (RGD) tripeptide sequence[133,134] is arguably 

the most commonly used cell adhesion motif. In fact, 89% of CAP studies published from 

1970–2018 used the RGD sequence[132]. However, depending on the type of tissue, the 

ECM contains different ratios of multiple cell attachment domains[132]. Thus, more than 

one peptide motif is necessary to reproduce the native ECM complexity. Many other 

sequences of native[135–143] or synthetic[144,145] origin (Table 2) have been identified to 
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drive stem cell differentiation towards the osteogenic, myogenic, and chondrogenic 

pathways. Domains isolated from growth factors such as BMP-2[146,147], VEGF[148], and 

parathyroid hormone[149] are of special interest to instruct cell behavior and differentiation 

when incorporated to biomaterials. For example, peptides derived from BMP-2 and 

parathyroid hormone domains have been explored to enhance osteogenesis[146,147], and 

chondrogenesis[149] of MSCs, while other motifs such as the QK peptide can promote 

vascularization[148].

Cells sense the mechanical properties of the matrix only through adhesion to the surrounding 

microenvironment. The binding between the specific cell receptors and the ligands present in 

the ECM enables linking of the actin cytoskeleton within the cell through a focal adhesion 

complex [153]. The development of tension and the maturation of focal adhesions trigger the 

signaling cascades that control cell spreading, migration, and differentiation[153]. The 

ability of cells to sense the mechanical properties of their environment and their responses 

depend on both ligand identity and density[153]. For example, MSCs seeded on peptide-

functionalized hydrogels with constant stiffness and ligand density exhibited increased 

osteogenesis when seeded on laminin-derived IKVAV-functionalized gels, yet cells seeded 

on laminin-derived YIGSR- or synthetic RRETTAWA-functionalized gels followed the 

adipogenic route[137]. Despite sharing the same matricellular protein of origin, IKVAV and 

YISGR induced unique effects on cell differentiation due to different integrins engaging 

specifically with each peptide[137]. Ligand density is another determinant for cell function. 

MSCs entrapped in alginate gels that were either non-functionalized or functionalized with a 

high density of RGD peptides, providing too few or too many adhesion sites, respectively, 

exhibited impaired migration that translated to increased osteogenesis and bone formation, 

whereas alginate hydrogels with low RGD density induced more migration but reduced bone 

formation[154]. The interaction of MSCs with RGD ligands is also mediated by dynamic 

material properties such as stress relaxation, with faster relaxing RGD-modified alginate 

gels facilitating increased integrin receptor binding, RGD ligand clustering, and enhanced 

osteogenesis[21]. The effect of ligand density on cell differentiation is likely due to 

cytoskeletal tension regulated by the number of bonds between the substrate and the 

cell[153].

2.2.2.2. Antimicrobial peptides: Infections due to opportunistic microorganisms are one 

of the most important causes of musculoskeletal repair failure and prosthesis revision, with 

Staphylococcus aureus (S. aureus) identified as one of the most common microbes. It is 

estimated that out of the 1 million knee prostheses and 6 million fracture fixation devices 

implanted per year, 2% and 5%, respectively, fail due to infections[155,156]. Infection-

related failure of orthopedic implants results in an economic burden of $2 billion annually. 

Numerous approaches have been examined to avoid microbial infections in scaffolds for 

tissue engineering after implantation including the incorporation of antibiotics[157,158] and 

nanoparticles made of gold[159] and silver[160]. However, increasing bacterial drug 

resistance and rapid burst release upon implantation[156] limit the efficacy of these 

approaches. Alternatively, the incorporation of electroconductive materials[78] and their 

functionalization with antibacterial peptides may provide sustained antibacterial activity and 

enhanced tissue regeneration. Antimicrobial peptides (AMPs) contain cationic amino acids 
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that bind to negatively charged bacterial membranes, leading to increased membrane 

permeabilization, and ultimately, cell lysis. In light of their bioactivity, both natural and 

synthetic materials have been functionalized with AMPs[161,162]. For example, the 

synthetic peptide Tet213 was incorporated within gelatin methacryloyl (GelMA)-

tropoelastin hydrogels, decreasing colonization by S. aureus and Escherichia coli (E. coli) to 

levels comparable to zinc oxide incorporation within the same hydrogel[162]. Other peptides 

exhibit synergistic potential with antibacterial properties by simultaneously enhancing 

musculoskeletal regeneration. The self-assembling peptide KLD modified with variable 

numbers of cationic arginine residues at its N-terminus possessed increased antibacterial 

potential against E. coli, while also inducing greater expression of osteogenic genes in vitro 
and increased callus formation in vivo[163].

2.2.2.3. Enzymatic degradation sequences: The ECM is a dynamic structure that 

undergoes constant remodeling due to cell-mediated enzymatic degradation and subsequent 

new ECM synthesis. ECM turnover is critical for maintenance of its function, and disruption 

of the balance between regenerative and degenerative processes is often associated with a 

loss of functionality or disease[164]. Degradation kinetics must be considered in light of 

natural turnover rates, as the goal of many TERM approaches is to provide a temporary 

structure that can support function and is subsequently replaced by native ECM over 

time[164]. Many materials are designed to degrade hydrolytically, and the material 

degradation rate is tuned by changing the fraction of bonds susceptible to hydrolysis in a 

copolymer. However, natural ECM is degraded enzymatically through the action of matrix 

metalloproteinases (MMPs) and serine proteinases.

Proteolytically sensitive peptide sequences provide an opportunity to leverage nature’s own 

mechanisms for ECM remodeling. PEG hydrogels were initially crosslinked with MMP-

cleavable oligopeptides, based on the cleavage sites present in collagen type I, which 

increased cell invasion and healing of a rat critical sized calvarial bone defect[165]. After 

these foundational studies, novel protease substrates from different origins that can degrade 

ECM faster or more specifically have been investigated. The degradability of 17 different 

natural and synthetic sequences specific for MMP-1 and MMP-2 activity were screened by 

incorporation into PEG hydrogels[166]. When exposed to specific enzymes produced by 

particular cell types, these hydrogels underwent faster substrate remodeling, cell spreading, 

and invasion in vitro. PEG has been used successfully as a blank slate to interrogate these 

processes due to the capacity to incorporate adhesivity and probe specific cell physiological 

processes. For example, MMP-7, a chondrogenesis-specific enzyme, was incorporated into 

PEG hydrogels to enable differentiation-mediated hydrogel degradation and increased MSC 

chondrogenesis[167].

2.2.2.4. Inorganic materials: Calcium phosphates to promote biomineralization: Bone 

is a highly mineralized tissue composed of up to 65% calcium phosphate (CaP). Thus, many 

studies focus on the use of CaP-based composites for bone TE scaffolds. The mineral phase 

in natural bone is a calcium-deficient, nanocrystalline, carbonate-substituted hydroxyapatite 

(HA). This phase is found in both mineralizing collagen matrix and localized between 

collagen fibers in a highly organized manner[168]. CaP itself is known to have 
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osteoinductive and osteoconductive properties and has been used in synthetic bone grafts 

since the 1970s. Many forms of CaP-based bone graft systems are in clinical use and under 

further development[169]. However, the structure of highly organized and hierarchical 

mineralized native tissue such as bone or dentin has not yet been replicated in the laboratory. 

There are few examples in the literature in which synthetic organic/inorganic composites 

containing ceramics have an organization and properties approaching that of biological 

material or tissue[170,171]. Therefore, bio-instructive approaches involving mineralized 3D 

scaffolds or surfaces on which a tissue is formed by an in vivo like process are 

attractive[172–174].

CaP composites can be instructive by providing a source of ions for deposition of new 

bone[175], surface morphology and chemistry recognized by bone cells[174], or improved 

mechanical properties[176] (Figure 4). Instructive composite scaffolds based on proteins, 

biopolymers, or synthetic polymers can be mineralized using a range of strategies including 

ALP-induced precipitation[177] or precipitation from chemical precursors[173,178]. 

Polymeric substrata have been coated with carbonated apatite by immersion in simulated 

body fluid supersaturated with respect to CaP[174], and coated substrates have been used as 

stand-alone scaffolds[179] or as part of composite materials[180,181] to guide MSC 

osteogenic differentiation in vitro and in vivo. Polymer-induced liquid precursor (PILP)-

driven mineralization has been also widely explored. When applied to densified collagen 

films with various degrees of chemical crosslinking, this method resulted in homogeneous 

intra- and extrafibrillar mineralization and composites with mechanical properties 

approaching those of native bone[176]. Recently, a self‐structuring in vitro model of bone 

formation was created using a fibrin gel containing rat periosteal cells and cast between bio-

instructive β‐TCP/brushite anchors[175]. The β‐TCP/brushite particles were incorporated as 

a local source of calcium and phosphate for the ossification of developing tissues, while 

fibrin was chosen to mimic the microenvironment of the initial callus formed during fracture 

healing[175]. Cell culture was continued for up to 1 year, resulting in a cell-synthesized 

osseous matrix resembling the composition and structure of native mature bone[175].

3. Future directions

Throughout this review, we have summarized current and emergent strategies to incorporate 

physical and biochemical cues within biomaterials to modulate cell behavior and tissue 

formation. This allows for the compilation of the general and tissue specific characteristics 

needed for musculoskeletal repair (Figure 5). However, most highlighted strategies focus on 

a single aspect of cell biology, yet more integrative approaches presenting multimodal 

stimuli are needed to effectively address regenerative processes. For example, the 

combination of antimicrobial and osteogenic factors loaded in a 4-arm PEG-maleimide 

(PEG-4MAL) hydrogel simultaneously reduced S. aureus infection and regenerated murine 

critical-sized segmental bone defects[182].

Moreover, individual musculoskeletal tissues are not autonomous entities that work and 

regenerate independently from one another. Native tissues are dynamically interconnected, 

and this connection guarantees physiological function and regulates repair processes after 

injury. For example, open bone fractures affecting the surrounding skin and muscle exhibit 
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impaired bone healing and delayed union in comparison to closed fractures[183]. 

Furthermore, the repair of the subchondral bone underlying articular cartilage is necessary 

for the successful regeneration of osteochondral and superficial cartilage defects[184]. In 

order to understand how to effectively regenerate musculoskeletal tissues, it is necessary to 

know what material properties are preferred for each specific organ and also how tissues 

interact with each other in a more integrated approach. The application of bio-instructive 

materials to technologies such as organ-on-a-chip and 3D bioprinting offer the possibility of 

recapitulating this complexity and advancing tissue engineering strategies towards clinical 

translation.

3.1. Bio-instructive materials for in vitro modelling of organ development and function

There is an urgent need for the development of physiologically relevant 3D in vitro models 

as an alternative to conventional preclinical in vivo models for basic science and drug 

screening. Such models have been primarily driven by needs in cancer research due to poor 

correlation between culturing tumor cells on 2D surfaces and their behavior in 
vivo[185,186]. Organ-on-a-chip strategies are based on the engineering of biomimetic 

microsystems that represent the native physiology and functions of living organs through the 

convergence of tissue engineering and microfluidics. The use of organ-on-a-chip approaches 

in musculoskeletal regeneration that capture elements such as the complex cell population, 

mechanical loading, signaling gradients, and fluid flow are needed.

Polydimethylsiloxane (PDMS) is the most commonly used material for the engineering of 

organs-on-a-chip due to its biocompatibility, gas permeability, transparency, low cost, and 

ease of fabrication[187]. However, the use of PDMS in musculoskeletal applications is 

limited by its hydrophobicity, non-specific protein adsorption, low stiffness and high 

deformation, challenges in maintaining a hypoxic microenvironment, and leaching of 

uncrosslinked polymer chains[188]. In order to resolve these issues, PDMS surfaces can be 

coated with matricellular proteins such as fibronectin and collagen type I[189]. However, 2D 

models fail to reproduce the complexity of musculoskeletal tissues. To address this 

challenge, 3D scaffolds and hydrogels are being combined with PDMS chips to produce 

microfluidic in vitro models of bone[190], bone marrow[191], cartilage[192,193] 

osteochondral unit[194,195] and skeletal muscle[196]. Various biophysical properties of 

biomaterials can be modified to recapitulate the tissue niche including topography[192] or 

bioactivity[190,191,194]. Beyond engineering a single tissue, there is an emerging effort to 

recapitulate interfacial tissues. For example, an organ-on-a-chip in vitro model of the 

osteochondral unit was developed to study the pathology of osteoarthritis through the spatial 

differentiation of MSCs in bioactive GelMA scaffolds locally exposed to either osteogenic 

or chondrogenic media[194]. This strategy effectively reproduced local gene expression and 

ECM gradients found in native articular cartilage.

3.2. Bio-instructive materials for biofabrication

Additive manufacturing and biofabrication approaches has the potential to revolutionize the 

tissue engineering field due to control over implant architecture, the precision for cell 

seeding, and the promise of generating functional, patient-specific organs. The development 

of bioinks, defined as “a formulation of cells suitable for processing by an automated 
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biofabrication technology that may also contain biologically active components and 

biomaterials”[197], has taken central stage. However, the development of materials that 

provide necessary fidelity for high printing resolution and promote cell viability, 

proliferation, and differentiation remains challenging. Stiff hydrogels containing high 

polymer concentrations/or crosslink densities are best suited for biofabrication, yet these 

may not be optimal to support the cell functions required in tissue engineering[198]. 

Therefore, the engineering of bio-instructive materials for biofabrication applications have 

the added requirement to meet the physicochemical demands of the additive manufacturing 

process.

Alginate[199], GelMA[200], agarose[200], collagen[201], PEG[202], HyA[203] and others 

have been utilized as hydrogel-based bioinks in biofabrication for musculoskeletal tissue 

engineering. Various biochemical and physical approaches previously reviewed in this 

article have been used to instill cell-instructive potential in these materials. The regulation of 

bioink stiffness to modulate stem cell differentiation at different locations within the 

bioprinted tissue is an effective strategy to locally direct stem cell fate[204]. Control over 

bioink micro- and nanotopography has also been explored through the engineering of 

composite materials for the introduction of nanofibers into the bulk bioink hydrogel[205] or 

the fabrication of pore-forming bioinks[54,55]. To achieve fine control of the topography of 

printed tissues, 3D inkjet-based cell printing has been combined with electrospinning to 

manufacture layered nanofibrous scaffolds[206]. Similar to bulk hydrogels, bioinks have 

been functionalized with cell adhesive peptides[207] or chemical groups[208], 

decellularized ECM[209], and bioactive moieties such as growth factors[200] or genes 

encoding for these molecules[210].

Poor mechanical strength of most hydrogels is a major limitation for their use as bioinks in 

load-bearing applications. Hybrid co-printing has emerged as a promising strategy to 

provide mechanical stability and biological functionality to 3D printed tissues using a multi-

head deposition system (MHDS) of mechanically stable thermoplastic polymers and cell 

compatible bioinks. The co-deposition of these hydrogels along with polymeric materials 

such as PCL[211] or PLGA[212] provides the opportunity to fabricate mechanically 

reinforced constructs with compressive equilibrium moduli in the range of trabecular bone 

or articular cartilage. This approach enables the decoupling of mechanical and biological 

properties of 3D printed constructs, allowing for a wider range of bioinks not limited by 

their mechanical properties. For example, mechanically reinforced 3D-printed vertebral 

bodies were manufactured with the MHDS approach to co-print PCL and RGD-modified 

alginate gels[211]. The resulting materials possessed mechanical properties approaching 

those of trabecular bone. The same co-printing approach was used to prepare constructs with 

alginate bioinks functionalized through the incorporation of plasmids encoding for TGF-β3 

and BMP-2, resulting in increased osteogenesis of MSCs in vitro and in vivo[210].

The use of 3D bioprinting for musculoskeletal tissue engineering provides an important 

advantage over existing bulk materials, namely the superior spatial control over the 

deposition of cells and materials that enables the engineering of complex tissue interfaces. 

The local patterning of physical and biochemical cues by constructing material gradients in 

bioink mechanical properties[213], growth factors[214], nucleic acids[215], and cell 
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types[216] has been investigated to recapitulate the bone-cartilage interface of the 

osteochondral unit[215] and the bone-ligament interface between others[214,216].

4. Conclusion

Bio-instructive materials can control cell behavior and influence differentiation towards 

specific functions and phenotypes. To date, this has primarily been demonstrated via in vitro 
experiments using model biological systems and often in homotypic cell cultures. As 

summarized in this review, approaches to enhance biomaterial effects on cell response are 

inspired by intrinsic and external factors to which cells are exposed in their native niches. 

These factors were summarized into physical and biochemical cues that can be incorporated 

into biomaterials using different strategies. However, the translation of these strategies to 

clinical use remains a major challenge. Most of these strategies are based on the 

identification of single components of the complex niche milieu which can be recapitulated 

in vitro and decoupled from the intrinsic properties of the biomaterial. Although a single 

component may be insufficient to modulate host and transplanted cell response in vivo, the 

combination of different cues, each of them aiming to control a specific aspect of cell 

biology, may be a more relevant strategy to successfully guide the repair of musculoskeletal 

tissues. The engineering of multifactorial bio-instructive materials, together with the spatial 

and temporal control of these cues and the production of mechanically compliant patient-

specific implants, may facilitate the clinical translation of these therapies.
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Statement of Significance

Disorders affecting the musculoskeletal system affect individuals across the lifespan and 

have a profound effect on mobility and quality of life. While small defects in many 

tissues can heal successfully, larger defects are often unable to heal or instead heal with 

inferior quality fibrous tissue and require clinical intervention. Cell-based therapies are a 

promising option for clinical translation, yet challenges related to maintaining cell 

survival and instructing cell phenotype upon implantation have limited the success of this 

approach. Bio-instructive materials provide an exciting opportunity to modulate cell 

behavior and enhance the efficacy of cell-based approaches for musculoskeletal repair. 

However, the identification of critical instructive cues and how to present these stimuli is 

a focus of intense investigation. This review highlights recent biochemical and physical 

strategies used to engineer bio-instructive materials for the repair of musculoskeletal 

tissues, while also considering exciting progress in the engineering of 

immunomodulatory and antibacterial materials.
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Figure 1. 
Bio-instructive materials present physical and biochemical signals to associated cells at the 

meso-, micro-, and nanoscale.
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Figure 2. 
The cell niche is determined by intrinsic and external cues of physical (substrate mechanics, 

topography, external force and electric stimulation) and biochemical (substrate composition 

and soluble molecules) origin. This complex milieu determines cell behavior and 

differentiation.
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Figure 3. 
Substrate stiffness is an essential design parameter for the incorporation of physical cues 

into biomaterials to guide stem cell fate.
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Figure 4. 
Incorporation of calcium phosphate phases such as HA, dicalcium phosphate dihydrate 

(DCPD) or amorphous calcium phosphate (ACP) into biomaterials can provide a surface 

recognized by cells and biomacromolecules or act as a source of ions for the mineralization 

of incorporated or cell-produced ECM components. Both processes contribute to instructing 

stem cell phenotype towards de novo bone formation.
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Figure 5. Summary of physical and biochemical cues to enhance regeneration of specific 
musculoskeletal tissues.
While immunomodulatory and antimicrobial cues are common for the design of bio-

instructive materials for musculoskeletal tissues, the necessary biochemical and physical 

cues are tissue specific. Softer and aligned substrates are preferred for muscle and cartilage, 

but bone requires stiff and randomly oriented materials to effectively guide cells toward the 

osteogenic lineage. Muscle regeneration is enhanced by the presentation of myogenic factors 

(e.g., IGF-1, SDF1α), cartilage by the presentation of members of the TGF-β superfamily 

(e.g., TGF-β1, TGF-β3) and the suppression of chondrocyte hypertrophy, and bone by other 

members of the TGF-β superfamily (e.g., BMP-2, BMP-4), angiogenic factors and the 

promotion of tissue biomineralization.
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Table 1.

Electroconductive 3D hybrid scaffolds for musculoskeletal tissue engineering

Electroconductive scaffold Applied voltage Cell type TE application Reference

Polyaniline-PCL None Myoblasts Skeletal muscle TE [77]

Graphene- poly(citric acid-
octanediolpolyethylene glycol)

None Myoblasts Skeletal muscle TE [83]

Zinc oxide coated- polydimethylsiloxane 120 mV/mm Umbilical cord bloodderived MSCs Skeletal muscle TE [73]

Graphene oxide-PCL None Umbilical cord bloodderived MSCs Skeletal muscle TE [66]

Chitosan/polypyrrolealginate None MG-63 osteosarcoma cell line Bone TE [84]

Polyaniline- None MG-63 osteosarcoma Bone TE [85]

PCL/alginate/gelatin/HyA cell line

Polypyrrole-Gelatinhydroxyapatite None Osteoblasts Bone TE [86]

Polypyrrole- polylactide 200 mV Adipose derived MSCs Bone TE [87]

Polyaniline-polylactide None Bone marrow-derived MSCs Bone TE [88]
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Table 2.

Peptide sequences for material functionalization and improved musculoskeletal regeneration.

Origin Sequence name Cellular effect References

ECM Collagen type I GFOGER Chondrogenesis/osteogenesis [135]

Collagen type III CTC Osteogenesis [138]

Decorin KLER Chondrogenesis [139]

Fibronectin RGD Osteogenesis, chondrogenesis/myogenesis [133,134]

Laminin YIGSR Myogenesis, angiogenesis [136,137]

Laminin IKVAV Adipogenesis/osteogenesis [137]

N-cadherin HAVDI Chondrogenesis [140]

Bone specific ECM Bone sialoprotein CB Osteogenesis [141]

Bone sialoprotein, KSRS Osteogenesis [142]

fibronectin, osteopontin

Osteopontin CBM Osteogenesis [143]

Growth factor BMP-2 KIPKASSVPTELSAISTLYL Osteogenesis, Chondrogenesis [146,150]

BMP-4 HBD Osteogenesis [151]

BMP-7 BFP-1 Osteogenesis [152]

Parathyroid hormone PTH 1–34 Osteogenesis [149]

VEGF receptor QK Angiogenesis [148]

Synthetic RADA Chondrogenesis/osteogenesis/ligament [144,145]

KLD Osteogenesis/chondrogenesis [140]

RRETAWA Osteogenesis/adipogenesis [137]
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