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TO APPEAR IN THE PROCEEDINGS OF THE IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2011.

Modeling and Perception of Deformable One-Dimensional Objects

Shervin Javdani, Sameep Tandon, Jie Tang, James F. O’Brien, Pieter Abbeel

Abstract— Recent advances in the modeling of deformable
one-dimensional objects (DOOs) such as surgical suture, rope,
and hair show significant promise for improving the simulation,
perception, and manipulation of such objects. An important
application of these tasks lies in the area of medical robotics,
where robotic surgical assistants have the potential to greatly
reduce surgeon fatigue and human error by improving the
accuracy, speed, and robustness of surgical tasks such as
suturing. However, different types of DOOs exhibit a variety
of bending and twisting behaviors that are highly dependent
on material properties. This paper proposes an approach for
fitting simulation models of DOOs to observed data. Our
approach learns an energy function such that observed DOO
configurations lie in local energy minima. Our experiments on
a variety of DOOs show that models fitted to different types of
DOOs using our approach enable accurate prediction of future
configurations. Additionally, we explore the application of our
learned model to the perception of DOOs.

I. INTRODUCTION

The physical modeling of non-rigid objects like thread,
rope, hair, and plants in real world settings is a challenging
task. These objects are highly deformable, exhibiting bending
and twisting behaviors, and their cross section is typically
negligible in size compared to their length. Accurate phys-
ical modeling of these deformable one-dimensional objects
(DOOs) has potential applications in, for example, graphics,
robotic manipulation, and perception.

Our work is motivated by applications to medical robotics,
where robotic surgical assistants, such as Intuitive Surgical’s
da Vinci, are increasingly being accepted in hospitals for
surgery. These devices are usually tele-operated in a master-
slave mode, and enable surgeons to accurately perform del-
icate operations at much finer scales than would be feasible
with direct manual interaction. However, many surgical tasks
are time consuming and require a high level of concentration,
which can lead to surgeon fatigue.

Robotic surgical assistants present the possibility of au-
tonomous execution of sub-tasks in surgical procedures. The
automation of such sub-tasks would improve patient health
by enhancing accuracy, reducing operation time, and reduc-
ing tedium and thus medical errors. Suturing, in particular
knot-tying, stands out as a time-consuming, frequently recur-
ring, and repetitive task which involves the perception and
manipulation of suture material. Understanding the dynamics
of DOOs is crucial for achieving high accuracy in this task.

Past work has often focused on graphical realism and has
not emphasized accurate reproduction of specific physical
instantiations. This work addresses the problem of modeling
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Fig. 1: Three simulated DOOs initialized with the same
configuration exhibit different behavior under different model
parameters.

specific physical instantiations of (DOOs), with high fidelity.
By fitting model parameters to different types of DOOs
from observed data, our approach accounts for differences
in behavior due to underlying material properties (Figure 1).

The one-dimensional nature of DOOs makes the percep-
tion task challenging for two particular reasons. First, a
DOO in an image is thin and easily occluded by objects
in the foreground, including self occlusions. Second, many
DOOs are uniform in color and texture, making it difficult to
find correspondence points between images. We propose the
application of a physically accurate model to address these
challenges.

In this paper we present an approach for estimation of
model parameters from real data. Our approach uses a
generic energy function with free parameters within the en-
ergy model (which generalizes the one presented by Bergou
et al. [1]). Using labeled training data consisting of different
types of DOOs in many different 3D configurations, we learn
the free parameters such that the configurations observed in
the training data lie in local minima of the energy function.
Our approach uses real training data to fit a simulation model
specifically for different types of DOOs. Our experiments
show that learning an energy function specific to the type of
object yields improved prediction accuracy, and we demon-
strate the effectiveness of our model and learned parameters
for the task of perception.

Additional information can be found on our web site:
http://rll.berkeley.edu/ICRA_2011/.

II. RELATED WORK

We closely follow the work of Bergou et al. [1], [2], which
uses an energy-minimization based approach for dynamic
simulation of DOOs (which they refer to as elastic rods). This
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approach accurately models DOO behavior, including twist-
curvature interactions. Wakamatsu et al. [3], [4] also describe
approaches for modeling of DOOs, and show experimental
validation of model prediction based on observed behavior.
Based on the demonstrated experimental results, we choose
to build on the model of Bergou et. al, [1], as it provides
a good combination of model accuracy and computational
efficiency.

Kavraki and collaborators [5], [6], [7], [8], [9] consider
the problem of motion planning for elastic objects, using
a different energy formulation and model parameterization.
Their model does not explicitly model twist-curvature in-
teractions. During the planning step, they consider only
quasistatic configurations, improving the robustness of the
final trajectory. We adopt a similar quasistatic approach when
learning models and evaluating performance. Their work
primarily focused on challenges in motion planning and did
not consider how to build object-specific dynamics models.

Sahalsto et al. [10] present a motion planning approach
leveraging topological planning ideas, enabling them to tie
knots—assuming the rope can be fixed in place at any
point along its path. In particular, they make use of needle
fixtures in order to create and maintain the integrity of loops
throughout their knot tying procedure. Allowing fixtures
during this step greatly simplifies the challenges in predicting
how the rope will behave and enabled them to focus on
addressing challenges in motion planning while side-stepping
the challenges in perception and modeling.

Our work shares a common motivation with work in
medical robotics where past work has addressed surgical
skill modeling [11], [12], [13]. Mayer et al. [14], [15] show
a surgical robot learning knot-tying from a demonstration.
We are motivated by the goal of creating robotic surgical
assistants which are faster, more robust, and more accurate
than a human surgeon when executing surgical operations.
In our past work [16], we demonstrated reliable execution
of knot-tying maneuvers at superhuman speeds (using a
learning from demonstration approach). However, in this
work we did not attempt to model the dynamics of the suture,
and accurate execution relied on having a consistent initial
configuration of the suture and pickup point of the robot.
The current work addresses the issue of accurately modeling
specific types of suture and leveraging this for perception.

III. MODELING APPROACH

A. Preliminaries
Following Bergou et al. [1], we represent a DOO as a

3-tuple Γ = (V, E ,M), where V = {v0, . . . , vN} is a
collection of N 3-dimensional vectors representing vertices,
E = {e0, . . . , eN−1} is a collection of N − 1 3-dimensional
vectors representing edges between the vertices V , andM =
{(t0,m0

1,m
0
2), . . . , (tN−1,mN−1

1 ,mN−1
2 )} is a collection of

N − 1 3 × 3 matrices representing the material frames at
each edge. We adopt the convention that quantities attached
to vertices will be indexed by i, while quantities attached
to edges will be indexed by j, for example vertex xi and
edge ej . We define tj = ej

‖ej‖ as the tangent vector pointing

in the direction of edge ej . Together with mj
1,m

j
2, these

three vectors form an orthonormal basis denoting the material
frame at edge ej .

Let (κb)i denote the curvature binormal at a vertex i:

(κb)i =
2ej−1 × ej

|ej−1||ej |+ ej−1 · ej

and let li = |ei−1| + |ei|, so that li/2 corresponds to the
average length of the two segments closest to vertex xi.

B. Constraints

In our model of DOOs, we enforce two separate types
of constraints. The first, which we term inextensibility con-
straints, specify that each edge ej is of fixed, uniform length.
These constraints take the form:

ej · ej − ej · ej = 0 ∀j = 1, . . . , N − 1

where ej is the rest length of the jth edge.
In addition, we also enforce boundary point and frame

constraints which fix the position of the start and end points
as well as the material frame on the first and last edges:

(tj ,mj
1,m

j
2)− (t

j
,mj

1,m
j
2) = 0

vi − vi = 0

for i = {0, N} and j = {0, N − 1}, where vi is the
constrained point and (t

j
,mj

1,m
j
2) is the constrained end

frame. For a given DOO, Γ, we define the constraint matrix
C(Γ) = 0 as the concatenation of the inextensibility and
boundary constraints described above.

C. Energy Model

We adopt the energy model of Bergou et al. [1]. It models
the energy of a specific configuration of Γ as a combination
of bend energy and twist energy. Including a gravitational
energy term results in:

E(Γ) = Ebend(Γ) + Etwist(Γ) + Egravity(Γ).

The bending energy is defined as

Ebend(Γ) =
∑N
i=1

1
2li

∑i
j=i−1 ω

jT
i Bωji ,

where ωji =
(

(κb)i ·mj
2,−(κb)i ·mj

1

)T
for j = {i − 1, i}

and B represents a 2× 2 bending energy matrix.
To formulate a description of the twisting energy, we must

first introduce the concepts of parallel transport, and the
Bishop frame associated with each edge, which will allow
us to define a zero-twist reference. The Bishop frames are
defined to have their first axis aligned with ej . To define the
other two axes, we start by fixing the first Bishop frame (the
one for edge e0) by arbitrarily completing the axis aligned
with e0 into a right-handed frame. Then the second Bishop
frame (the one for edge e1) is defined as the frame that
has its first axis aligned with e1 and is minimally rotated
with respect to the Bishop frame attached to e0. The entire
sequence of Bishop frames can be obtained this way and
they define a zero-twist reference.
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Formally, we let u0 be a unit vector orthogonal to t0. Then
t0, u0, and v0 = t0 × u0 form a frame which we define as
the Bishop frame at edge e0. The remaining Bishop frames
are defined by the relation uj = Pj(u

j−1), where Pj is a
rotation such that Pj(tj−1) = tj , Pj(t

j−1 × tj) = tj−1 × tj .
The twist θj of a material frame Mj = (tj ,mj

1,m
j
2) is

defined as the rotation around tj that aligns it with the Bishop
frame (tj , uj , vj). Hence the twist θj satisfies:

mj
1 = cos θj · uj + sin θj · vj ,

mj
2 = − sin θj · uj + cos θj · vj .

The twist energy is defined in terms of the twist angles θj :

Etwist(Γ) = β
∑n
j=1

(θj−θj−1)2

lj
.

Finally, the gravitational potential energy is given by

Egravity(Γ) = µ
∑n
i=0 z

ili

where zi represents the z-component of vertex vi.
In the isotropic case (Bj = αI2×2), the energy of a DOO

reduces to:

E(Γ) = 1
2

∑n
i=1 α

(κb)2i
li

+ β(θn−θ0)2∑N
i=1 li

+ µ
∑n
i=0 z

ili

We let Θ = (B, β, µ) be the vector of free parameters
used to weight the different energy terms. In the following
sections, we will often denote E(Γ) as EΘ(Γ) to make
explicit the dependence of the energy function on Θ.

D. Finding Minimum Energy Configurations

Given a set of constraints C and an initial DOO config-
uration Γ, a common problem is to solve for the “closest”
configuration1 Γ′ that locally minimizes the energy function
EΘ while satisfying C. Our rationale is that DOOs tend to
move toward lower energy configurations. One application
is predicting motion: given a configuration Γ1 which we
assume to be a local minimum of EΘ under constraints
C1, and given a motion of the end points resulting in new
constraints C2, we could predict the new configuration of the
DOO as a local minimum Γ2 of EΘ under C2 which is found
by starting a local minimization procedure from Γ1. Another
application is recovery of shape from noisy measurements of
a DOO.

We use the following gradient-descent type scheme on the
energy function EΘ(Γ). We first take a step in the direction
of the gradient of the energy with respect to the vertices V
while holding twist angles fixed. Next, as the Bishop frames
depend on the positions of the vertices, we compute the new
Bishop frames. This gives us the reference frames for twist.
Next we minimize the energy with respect to the twist angles.
See [1] for a derivation of the analytic gradients.

To enforce constraints, we use the fast manifold projection
method of [17], which alternates between the above energy
minimization gradient step and a reprojection step using an
augmented Lagrangian method. We iterate this procedure

until the improvement in the energy function from one step
to another falls below some threshold.2

Let Γ̃Θ,C be the result of running the above energy
minimization procedure starting from a configuration Γ using
the energy function EΘ(.) and the constraints C. We define
the operator F as

Γ̃Θ,C = F (Γ, EΘ, C).

E. Parameter Learning

The energy model described above has a number of free
parameters Θ, namely the bending parameters matrix B
(in the isotropic case, this is a scalar α), the twist angle
parameter β, and the gravity/weight parameter µ. Because
different types of DOOs possess different material properties,
we expect that different combinations of parameters are
better at predicting the behavior of different types of thread.

We now outline our two approaches to learning these
parameters from training data. Both are based on the idea
that under the right set of parameters Θ, observed training
examples should lie in local minima of the corresponding
energy function EΘ.

Our first approach searches for a set of parameters Θ
which minimizes the difference between a noisy observation
of Γ and the estimated nearest-by local minimum of the
energy. Concretely, let {(Γ1, C1), . . . , (ΓD, CD)} be a set of
noisy training examples consisting of DOO configurations Γd

together with associated end-point constraints Cd. In a slight
abuse of notation, let V(Γ) refer to the vertices of the DOO
configuration Γ, and let M(Γ) refer to the material frames.
To quantify the difference between two configurations, we
introduce the following metric:

d(Γ1,Γ2) =

N∑
i=0

‖vi1 − vi2‖2
N

+ wm

N−1∑
i=0

‖mi1
1 −mi2

1 ‖2
N − 1

where {(tid,mid
1 ,m

id
2 ) | i = 0, . . . , N − 1} =M(Γd)

{vid| i = 0, . . . , N} = V(Γd). (1)

This metric is a weighted combination of two terms: a
position error term, which is the l2-norm of the difference
between the vertices of the two configurations, and a material
frame error, which is the l2-norm of the difference between
one axis of the material frames of the two configurations.

We propose to minimize the distance between the training
data and our best estimate of the true configuration of the
training data after energy minimization.

minΘ

∑D
i=1 d(Γ̃iΘ,Ci ,Γ

i) (2)

s.t. Γ̃iΘ,Ci = F (Γi, EΘ, C
i), ∀i = 1, . . . , D.

1For example under the l2 distance metric.
2This gradient descent method is a natural choice for quasi-static sim-

ulation. In the perception setting, however, we do not know the initial
configuration, and start from a noisy estimate based on the images we
want to improve upon. In this setting one might in principle instead
be interested in the constrained local energy minimum closest to the
initial configuration—rather than the one reached by descending the energy
surface. However, it is unclear whether any scheme other than exhaustive
search could find the exact solution and so we also use the described scheme
for perception.
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We call Equation (2) the static parameter learning objective.
Our second approach searches for a set of parameters Θ by

considering simulation accuracy. Concretely, for each term in
the objective we consider two training examples Γx and Γy

which have been collected starting from Γx and ending in
Γy . We then run a simulation in which we initialize with
Γx and (potentially over several smaller steps) change the
boundary constraints of Γx to the boundary constraints of
Γy . We compare the predicted configuration with the actual
configuration of Γy . This gives the following objective:

minΘ

∑D
i=1

∑D
j=1 wijd(Γ̃iΘ,Cj ,Γ

j) (3)

s.t. Γ̃iΘ,Cj = F (Γi, EΘ, C
j) ∀i, j = 1, . . . , D.

The main difference between the two objectives can be
seen in the term Γ̃iΘ,Cj , which is the result of applying
the constraints from one configuration Cj (corresponding to
configuration Γj) to another configuration Γi. The weights
wij are specified beforehand, and allow us to specify the sets
of motions which contribute to the objective function. We
call Equation (3) the dynamic parameter learning objective.

These objective functions are nonlinear and non-convex.
The dimensionality, however, is relatively low and in our
experiments it was feasible to solve these using exhaustive
search.

IV. APPLICATION TO PERCEPTION

Perception of DOOs can be particularly challenging due to
a lack of salient features for stereo correspondence. A set of
images is often consistent with multiple DOO configurations.
An accurate DOO model can help disambiguate between
these configurations, and improve detection reliability. For
the remainder of this section, we focus on perception of
isotropic materials.

A. Estimating Configuration

Given a set of camera images {I1, I2 . . . IG} of a DOO,
our objective is to recover the most likely DOO configuration
Γ. Such a configuration should be physically plausible while
its reprojection onto the images agrees with visual evidence.
We assess this likelihood as a weighted combination of a
visual reprojection error and a DOO energy term. Concretely,
assume each camera image Ic is represented as a binary map
Ic(x, y), where Ic(x, y) = 1 when Γ is detected on image Ic

at pixel (x, y) (a detected pixel), and 0 otherwise. In practice,
we use a Canny edge detector with a blurred, offset Gaussian
kernel to generate binary images Ic. We solve for the optimal
Γ by minimizing the following objective function:

Evis(Γ) = E(Γ) + ν
∑G
i=1E

i
proj(Γ).

Here ν is a weighting constant, and Eiproj(Γ) is the visual
reprojection error of configuration Γ on camera image i.
We compute visual reprojection error by projecting every
edge ej ∈ E(Γ) onto each camera image and summing the
distances to the nearest detected pixels.

Our full perception algorithm incrementally constructs
possible DOO configurations edge by edge (Algorithm 1).

Algorithm 1 Perception for DOOs
Initialize S1 = {Γ1}, C
for all i = 1 . . . N do

for all Γ̂i ∈ Si do
Generate set of new hypotheses {Γ̂i+1} from Γ̂i
Solve {Γ̃i+1} = F ({Γ̂i+1}, Evis, C)
Add {Γ̃i+1} to Si+1

end for
Select H hypotheses from Γi+1 ∈ Si+1

end for
return arg minΓN Evis(ΓN ), ΓN ∈ SN

To recover a DOO with a fixed number of vertices N , we
pick an initial hypothesis Γ1 with vertex v0 and edge e0,
and constraint set C which includes the inextensibility and
start constraints. At each step, we define Si to be the set of
configuration hypotheses with i edges. For each configuration
in Si, we generate several new hypotheses by adding an edge
ei+1 using visual reprojection error alone. Specifically, we
densely sample edges ei+1 such that ei · ei+1 > 0. Next,
we sort the edges based on the visual reprojection error. We
then select the edge ej with the lowest error, and remove all
edges within a certain angle of ej . We repeat this process
until all edges have been selected or removed. For each
new hypothesis, we solve for a more likely configuration
by minimizing Evis(Γi+1).

After minimizing, we prune hypotheses as follows: we sort
all hypotheses based on the score Evis. Next, we greedily
keep the hypothesis with the lowest score, and remove all
hypotheses which are too similar based on a function of the
distance between the corresponding last vertex vi+1 and the
angle between the corresponding last edge ei. We repeat until
we have selected up to H hypotheses. After N edges, we
return the hypothesis with the lowest score Evis(ΓN ).

B. Estimating Twist Angles

As our algorithm is building up the DOO incrementally,
it is not including an end-point or end-frame constraint
in the energy minimization. As a byproduct, the energy
minimum will find zero twist energy for isotropic materials.
To recover an estimate of the twist angles, after having
run the perception algorithm, we propose to find the end-
frame constraint, and corresponding twist angles, for which
the recovered location of the vertices is closest to a local
minimum of the energy E.

Concretely, we are given D configurations Γ1, . . . ,ΓD

with associated constraints3 C1, . . . , CD. We let φ be the free
parameter we try to recover, corresponding to not knowing
how much the end frame was rotated around the twist axis

3In practice, we initialize the end-frame constraint of Ci with the last
bishop frame of Γi.
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relative to the zero twist case.4 A particular choice of φ
induces a corresponding set of constraints Tφ(C) as follows:
Given constraints C with end-frame constraint (t,m1,m2),
let Tφ(C) be the same set of constraints but with the end
frame rotated by φ about t. We propose to recover φ by
minimizing the following twist estimation objective:

minφ
∑D
i=1 d(Γ̃iΘ,Tφ(Ci),Γ

i) (4)

s.t. Γ̃iΘ,Tφ(Ci) = F (Γi, EΘ, Tφ(Ci)), ∀i = 1, . . . , D.

V. EXPERIMENTS

A. Data Gathering Setup

To gather training data for our parameter learning and
perception experiments, we used a calibrated 3-camera rig
(Figure 2) to gather images of several types of DOOs:
three different types of isotropic suture, namely Ethicon
coated vicryl polyglactin 910 1 suture (vicryl), Oasis nylon
MV-N666 monofilament 1 suture (nylon), and Ethicon silk
K883 2-0 suture (silk), and one type of anisotropic gift
wrapping ribbon, Hallmark 249RMS6006 (approximately
6.7mm wide). We prepared an example of each type of DOO
of length 99mm, and hand-painted marks every 3mm (for a
total of 34 vertices). We fixed the end points and frames of
each DOO using alligator clips. For each DOO, we varied the
distance between end points to be 30, 42, 54, 66, 78, 90mm,
for a total of six end-point distances. For each end-point
distance, we fixed the start frame and varied the rotation of
the end frame to be 0, 30, ..., 270◦ for a total of ten end-
frame rotations. In total, we had three images for each of
six end-point distances and 10 end-frame rotations for a
total of 60 different configurations per DOO type. To extract
ground truth DOO configurations, we hand-labeled each of
the 34 marks in the 3 images for each configuration, and used
triangulation to estimate the corresponding 3-D position. The
material frames at each end point are known. For anisotropic
DOOs we hand-labeled the material frame at each edge by
labeling additional markers in the image.

B. Isotropic Material, Static Objective

We evaluate our parameter learning algorithm using the
static objective of Equation (2) on our three different
isotropic materials (sutures).5 For each type of DOO, we first
constructed a visualization of the static objective function
over a densely sampled subset of parameter space, which we
term the static error landscape (Figure 3).6 These plots make
a strong case for performing parameter learning. Finding

4For simplicity of exposition, we assume only one free parameter φ,
which is the case when we know the end-constraint motions between
C1, . . . , CD , which would be the case if a robot were to manipulate
the suture through C1, . . . , CD without re-grasping. If not the case, we
would end up with an additional parameter φ for each re-grasp (assuming
no knowledge about what happened to the twist between grasps) and the
problem would break down into several disjoint problems with a single
parameter φ.

5For isotropic materials we set wm = 0, as our data does not include
labeled material frames. Even without the material frame data for training,
our approach successfully predicts DOO configurations to within 3.2mm.

6Since we can scale all our parameters by a constant without altering the
minimum energy configurations, we fix µ while varying α and β

Fig. 2: Left: Data gathering setup. Top Right: Vicryl suture.
Bottom Right: Ribbon material. We place orange marks
across the DOOs for stereo correspondence.

Nylon Test (mm) Silk Test (mm) Vicryl Test (mm)
Nylon 1.40 ± 0.09 3.09 ± 0.17 2.14 ± 0.16
Silk 1.59 ± 0.09 2.56 ± 0.19 2.73 ± 0.17
Vicryl 1.36 ± 0.09 3.201 ± 0.17 2.15 ± 0.16

TABLE I: The effect of varying DOO type on simulator
accuracy. The rows correspond to the type of DOO used in
the training set, while the columns show the type of DOO
used in the test set. We use leave-one-out cross validation
with Equation (2) as the test score and report the mean and
standard error over all configurations in our data set. Bolded
entries correspond to the best learned parameters for each
test set.

optimal settings of the parameters can greatly improve the
accuracy of the simulation.

To compare performance across different types of DOOs,
we varied the type of DOO used in the training set together
with the type of DOO used in the test set, making a
total of 9 different test setups. For each test setup, we
performed leave-one-out cross validation, training on 59
configurations and testing on the 60th. We performed the
minimization over material parameters using an exhaustive
search. Using Equation (2) as the test score, we report the
mean and standard errors over all configurations in our
data set in Table I. Our approach was able to distinguish
the material properties of the silk suture from those of the
nylon and vicryl—the learned parameters for the silk suture
significantly outperform all other parameters on the silk test
set. The learned parameters from both the nylon and vicryl
training sets performed well on both nylon and vicryl test
sets. The resulting errors for nylon and vicryl suture are
always within 1 standard error, implying that their behavior
is similar when aggregating over the entire data set.

When we break down the data further by the configura-
tion’s end-point distance in addition to the type of DOO, we
observe that learning different parameters for different parts
of the configuration space can improve performance. Figure 4
shows how combining data with different end-point distances
averages out individual trends in the error landscapes specific
to different parts of the configuration space. Table II shows
the effect of varying DOO type and end-point distance
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(a) Silk (b) Vicryl (c) Nylon

Fig. 3: Static error landscapes for isotropic DOOs. We use Equation (2) as the error and show the error landscapes for silk,
vicryl, and nylon DOOs. The parameters with lowest test error are different for each type of DOO.
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(a) Vicryl 54mm (b) Vicryl 66mm (c) Vicryl 54mm and 66mm

Fig. 4: Example of aggregating data by end-point distance on simulator performance. We use Equation (2) as the error. The
results for the 54mm data suggest that the optimal parameters lie toward lower β

α ratios, while the results for the 66mm
data suggest the optimal parameters lie toward higher β

α ratios. Combining the data sets averages out the individual trends.
While figures shown are for vicryl suture, other materials exhibit similar behavior.

on simulator accuracy. To construct our training sets, we
selected 3 different end-point distances (30mm, 54mm, 78
mm) for all 3 types of DOOs. We created our test sets in
the same manner. We use leave-one-out cross validation with
Equation (2) as the test score. In 6 of the 9 test sets, the mini-
mum test score is achieved when learning and testing on data
at the same end-point distance (corresponding to the diagonal
entries of Table II). Even when the minimum test score is
not on the diagonal, the diagonal entry is always within
7% of the minimum. In general, partitioning by end-point
distance and DOO type outperforms partitioning by DOO
type alone. These results implies that while a global choice
of parameters already provides accurate predictions, richer
models have the potential to further improve simulation and
learning parameters local to a region in the configuration
space could be a plausible way to obtain such richer models.

C. Isotropic Material, Dynamic Objective

In this section we present results comparing the perfor-
mance of our parameter learning algorithm using the static
objective of Equation (2) versus the dynamic objective of
Equation (3).7 We partitioned our data set by the end-point
distance as well as the type of DOO. The results are shown in
Table III. Dynamic parameters (those learned on the dynamic
objective) perform about as well as static parameters (those

7Here we set wxy to be nonzero iff Γx,Γy have the same end-frame
distances and end-frame rotations which differ by 120◦.

learned on the static objective) on the static test set. However,
dynamic parameters perform significantly better than static
parameters on the dynamic test set. This result suggests that
the dynamic objective is more informative than the static
objective to estimate material parameters.

D. Anisotropic Material

We also explored the performance of our parameter learn-
ing algorithm under both static and dynamic objectives on
anisotropic DOOs.8 In both cases, we restrict our bending
energy matrix B to be diagonal, yielding two parameters
α1, α2. We fix both the gravity parameter µ and the twist
parameter β, and varied the bend parameters α1, α2. Note
that for the specific ribbon material we test on, it is very
difficult to bend it about one axis. Therefore, we expect one
bend coefficient to be significantly larger than the other.

Figure 5 (a) and (b) show static and dynamic error
landscapes over a densely sampled subset of parameter space.
Three distinct behavior regimes can be seen in this figure.
Figure 5 (b) illustrates how our dynamic objective helps
avoid local minima in parameter space which look reasonable
under the static objective.

E. Estimating Configuration

We applied our perception algorithm to all images from
our dataset, with parameters Θ from our static learning, ν =

8In Equation (1), we set wm = 6.7, the width of our ribbon in mm.
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Nylon 30mm Nylon 54mm Nylon 78mm Silk 30mm Silk 54mm Silk 78mm Vicryl 30mm Vicryl 54mm Vicryl 78mm
Nylon 30mm 1.02 ± 0.07 1.13 ± 0.11 1.71 ± 0.27 2.61 ± 0.30 3.70 ± 0.42 3.27 ± 0.56 1.93 ± 0.27 2.61 ± 0.44 2.35 ± 0.50
Nylon 54mm 1.05 ± 0.08 1.08 ± 0.10 1.65 ± 0.28 2.32 ± 0.21 3.27 ± 0.32 3.25 ± 0.60 1.81 ± 0.30 2.34 ± 0.39 2.47 ± 0.50
Nylon 78mm 1.43 ± 0.17 1.25 ± 0.10 1.65 ± 0.29 1.99 ± 0.30 2.33 ± 0.20 2.97 ± 0.56 2.18 ± 0.27 2.16 ± 0.34 2.72 ± 0.39
Silk 30mm 1.78 ± 0.25 1.39 ± 0.09 1.59 ± 0.29 1.85 ± 0.29 1.88 ± 0.18 2.97 ± 0.51 2.34 ± 0.24 2.24 ± 0.33 2.93 ± 0.32
Silk 54mm 2.05 ± 0.26 1.56 ± 0.11 1.63 ± 0.29 1.85 ± 0.30 1.74 ± 0.19 3.04 ± 0.47 2.41 ± 0.23 2.23 ± 0.31 3.04 ± 0.29
Silk 78mm 1.61 ± 0.20 1.32 ± 0.09 1.58 ± 0.29 1.85 ± 0.29 2.14 ± 0.20 3.16 ± 0.49 2.25 ± 0.26 2.28 ± 0.34 2.91 ± 0.33

Vicryl 30mm 1.15 ± 0.09 1.08 ± 0.10 1.66 ± 0.30 2.56 ± 0.21 3.09 ± 0.24 3.11 ± 0.56 1.83 ± 0.26 2.06 ± 0.32 2.44 ± 0.50
Vicryl 54mm 2.17 ± 0.32 1.66 ± 0.18 1.66 ± 0.30 2.07 ± 0.30 2.17 ± 0.28 3.52 ± 0.35 1.95 ± 0.20 1.85 ± 0.29 3.04 ± 0.30
Vicryl 78mm 2.37 ± 0.52 2.31 ± 0.61 1.96 ± 0.28 5.25 ± 0.89 5.56 ± 0.89 3.45 ± 0.51 3.52 ± 0.59 3.87 ± 0.76 2.20 ± 0.56

TABLE II: The effect of varying DOO type and end-point distance on simulator accuracy. The rows correspond to the type
and end-point distance of DOO used in the training set, while the columns show the type and end-point distance of DOO
used in the test set. We use leave-one-out cross validation with Equation (2) as the test score and report the mean and
standard error over all configurations in our data set. All results are reported in mm.

Vicryl 30mm Static 54mm Static 78mm Static 30mm Dynamic 54mm Dynamic 78mm Dynamic
30mm Static 1.81 ± 0.42 2.69 ± 0.27 3.33 ± 0.55 4.57 ± 0.40 6.92 ± 0.60 10.43 ± 0.39
54mm Static 1.98 ± 0.24 2.36 ± 0.26 3.40 ± 0.37 6.72 ± 0.53 8.84 ± 0.78 10.88 ± 0.24
78mm Static 3.99 ± 0.61 5.02 ± 0.62 3.09 ± 0.68 5.57 ± 0.56 10.73 ± 0.81 11.13 ± 0.94

30mm Dynamic 2.17 ± 0.41 3.01 ± 0.16 3.42 ± 0.42 1.50 ± 0.19 4.81 ± 0.34 8.59 ± 0.30
54mm Dynamic 1.99 ± 0.47 3.11 ± 0.25 3.38 ± 0.49 2.03 ± 0.37 4.67 ± 0.47 8.44 ± 0.32
78mm Dynamic 1.95 ± 0.48 3.47 ± 0.36 3.29 ± 0.56 3.09 ± 0.45 5.11 ± 0.50 8.43 ± 0.37

TABLE III: The effect of varying objective and end-point distance on simulator accuracy. Results are reported for vicryl
suture. The rows correspond to the objective and end-point distance used in the training set, while the columns show the
objective and end-point distance used in the test set. We use leave-one-out cross validation with Equation (2) and Equation (3)
as the test score for static and dynamic objective respectively, and report the mean and standard error over all configurations
in our data set. We restrict the test configurations of the static objective to those that are used in the dynamic objective. All
results are reported in mm. The minimum test score is found along the diagonal in all 6 of 6 test sets (i.e. where the best
parameters found on a given training set perform the best on the corresponding test set).
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(a) Ribbon, static objective (b) Ribbon, dynamic objective (c) Ribbon Behavior

Fig. 5: Static and dynamic error landscapes for anisotropic DOOs. We use Equation (2) and Equation (3) as the error for (a)
and (b) respectively. We fix β to 2.0 and vary bend parameters α1 and α2. Both plots show roughly three distinct behavior
regimes: 1) β > α1, α2, 2) α2 > α1 > β, and 3) α1 > α2 > β. Compared to plot (a), plot (b) shows clear minima in regions
2) and 3). Figure (c) shows sample DOOs with identical end-point and end-frame constraints, but different parameters. Colors
red, green, and blue corresponding to regions 1, 2, and 3 respectively. The difference in parameters results in a wide variation
of the final configurations. For region 1, the ribbon makes sharp bends in order to avoid twisting. For region 2, the ribbon
predicts bends about the “wrong“ axis. For region 3, the ribbon uses twist to avoid bending about the wrong axis, which
matches reality most accurately.

0.005, and H = 40. In order to distinguish between errors
due to missing gaps from our Canny detection and the error
minimization, we filled in gaps based on hand-labeled data.
Human labels were used to seed the algorithm with an initial
guess of start vertex v0 and edge e0.

When only considering the visual reprojection error
(Eproj), multiple configurations seem plausible (Figure 6).

Using our approach, we were able to recover the correct
suture configuration on all 180 test sets. To assess recon-
struction error, we evaluate the average l2-norm between
detected vertices and hand-labeled data. Our approach was
highly accurate, with errors of 0.023mm for nylon, 0.028mm
for silk, and 0.040mm for vicryl.
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Fig. 6: Top: Canny images with reprojections. Bottom: 3D
configurations. Yellow is ground truth, blue is the correct
configuration, and red is another plausible configuration
when considering the visual projection only. By considering
model energy in addition to visual reprojection, we correctly
choose the more physically plausible blue configuration.
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Fig. 7: Histograms of angle errors of end-frame rotation
estimation across all thread types.

F. Estimating Twist Angles

We evaluated our twist estimation scheme from Sec-
tion IV-B. Using configurations recovered with our percep-
tion algorithm, we evaluate the twist estimation objective in
Equation (4) by searching for φ over the interval −2π ≤ θ ≤
2π at π

12 increments. For our energy minimization operator
F (Γ, EΘ, C) we used the Θ learned under the static objective
and partitioned by end-point distance.

Figure 7 shows the effect of varying the number of ob-
servations D. Our results suggest that certain configurations
of vertices can be well-explained by a range of twist angles.
Increasing the number of observed configurations increased
estimation accuracy. With only one observation, we had a
53.3% success rate of predicting end-frame rotation to within
90◦. With 6 observations, this success rate was 80%.

VI. CONCLUSION AND FUTURE WORK

We have presented a method for learning adaptive models
of deformable one-dimensional objects from data. Our ex-
periments confirm that our method produces learned models
in which minimum energy configurations better reflect the
actual observed data. We applied these learned models to
the perception of suture, demonstrating their applicability

for finding both 3D configurations and twist angles. Going
forward, we plan to investigate using the learned models for
motion planning and controlled manipulation of suture with
visual feedback.
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