
UC Irvine
ICS Technical Reports

Title
Partitioning-based algorithm for pipelined scheduling and module assignment

Permalink
https://escholarship.org/uc/item/1hd8h9m8

Authors
Wu, Allen C.H.
Lis, Joseph
Gajski, Daniel D.

Publication Date
1991-04-09

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1hd8h9m8
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

J>artitioning-Based Algorithm for
Pipelined Scheduling and Module Assignmen~

Allen C-H. Wu
Joseph Lis-

Daniel D. Gajski

Technical Report #91-32
April 9, 1991

Dept. of Information and Computer Science
University of California, Irvine

Irvine, CA 92717
(714) 856-8059

Abstract

We propose partitioning-based algorithms for pipeline scheduling, module assignment,
and interconnect sharing. A novel hypergraph model is used to perform module as­
signment which facilitates the identification of sharable resources and the calculation
of interconnect costs. The algorithms use clustering and interchange improvement
techniques to maximize interconnect sharing. The results show significant improve­
ment over other published results.

TABLE OF CONTENTS

1. Introduction .. 1

2. Notation and definition 4

3. Pipeline scheduling . 5

3.1 Determination of the disjoint partitions ... 5

3.2 Partitioning-based scheduling .. 6

4. Function unit assignment and interconnect sharing ;......................... 10

4.1 Formulation .. -... 11

4.1.1 The hypergraph ... 11

4.1.2 Interconnect cost in the hypergraph model .. 16

4.2 The algorithm 17

4.2.1 Initial assignment ... 18

4.2.2 Improvement by interchanging ... ~................... 19

5. Experimental results ... 23

6. Conclusions 24

7. References 33

Page i

LIST OF FIGURES

Figure 1. Pipeline example (a) Latency= 1 and (b) Latency=3. 2

Figure 2. (a) Freedom calculations and schedule and (b) Disjoint sets. 8

Figure 3. Hyperedge merging and interconnect sharing. 13

Figure 3. (cont.).. 14

Figure 4. (a) A data flow graph example and (b) Hypergraph of (a). 15

Figure ·5. Feasible hyperedges. 20

Figure 6. "Lock" hyperedges. 21

Figure 7. The schedule and structural netlist of a FIR filter with latency=2.,

Figure 8. The schedule and structural netlist of a FIR filter with latency=3.

Figure 9. The schedule and structural netlist of a FIR filter with latency=4.

Figure 10. The data flow graph of an elliptic filter example.

Figure 11. The (a) schedule, (b) operation assignment, and (c) structural net-

25

26

27

29

list of an elliptic filter with latency=8. ... 30 .

Figure 12. The (a) schedule, (b) operation assignment, and (c) structural net-

list of an elliptic filter with latency=9. ... 31

Page ii

LIST OF TABLES

Table 1. Results and Comparisons of a FIR filter example. 28

Table 2. Results and Comparisons of an elliptic filter example. 32

Page iii

1. Introduction

The data path synthesis of digital systems have been active research topics in

recent years [1,3,5,6,8,9]. Two datapath models can be identified. One assumes that

original description is a sequence of assignment statements, if statements, and loop

statements. The problem is to map this description on connection of functional and

storage units. Some or all of the functional units can be pipelined. The goal of this

mapping is to minimize total execution time or number of functional units, storage

units, and busses. The minimal execution time is achieved by exploiting maximal

parallelism in the program such that minimal cost is obtained by maximal sharing of

hardware units. The second model assumes that the given description is a single loop

using a infinite stream of data. In this model, loop iterations form the pipeline and

units are not shared inside a single iteration. We describe the solution for the second

problem in this paper.

The key parameter m determining the performance of a pipeline is the latency

which is the number of time steps separating two task initiations. This parameter

influences the overall computation time as well as hardware cost associated with the

pipeline design. Consider a task that is partitioned into 5 subtasks. The pipeline

schedules of such a task with latency=l and latency=3 are shown in Figure 1. Let c be

the clock rate and t be the number of control steps of a task. The total computation

time for n tasks is: tc + (n-l)lc. For example, if 1=1, n=lOO, and t=5, the total

computation time is 104c. On the other hand, if 1=3 then the computation time ·of 302c

is required to execute 100 tasks. Thus~ the lower the latency, the faster the

computation time.

Page 1

Page 2

tasks

1

2

3
4

5

ta ks

1 f 1

f 1

T
fL:1f

f 2

f 1

f 2

I

fn~

,... task •I
t 1 I t2 I t3 I t 4 I ts I

f 2 f 3 f 4 f 5

f 1 f 2 f 3 f 4 f 5
f 1 f 2 f 3 f 4 f 5

f 1 f 2 f 3 f 4

f 1 f 2 f 3
T T

(a}

f 3 f 4 f 5

L = latenc y

f 5

f 4 f5 J
T

clock cycle

2 f 1 f 2 f 3 f 4 f 5

3 f 1 f 2 f 3 f 4 f 5

~L=3~ clock cycle

(b}

Figure 1. Pipeline example (a) Latency==l and (b) Latency==3.

An adverse effect of a small latency is a correspondingly higher hardware cost due

to the increased number of parallel operations in each state. Consider the example in

Figure l(a). Five subtasks are executed in the same clock cycle; therefore, minimally

five function units are required to carry out the pipeline design with the latency= 1.

However, in Figure l(b), only two function units are needed to carry out the pipeline

design with the latency=3.

The pipelining technique has been incorporated into the scheduling, allocation,

and resource binding tasks of high-level synthesis. Sehwa [8] first introduced a set of

techniques for the synthesis of pipelined data paths. Park and Kurdahi (7] use a

constrained clique· partitioning approach with the goal of maximizing interconnect

sharing to perform module assignment for pipelined d.ata path designs. Hwang and

Casavant [4] have developed a scheduling and hardware sharing algorithm using the

force-directed scheduling approach (6) to synthesize both pipelined and non-pipelined

designs.

In this paper, we present a partition-based formulation for pipeline scheduling,

function unit allocation, and interconnect sharing. A novel hypergraph model is used

to perform module assignment which facilitates the identification of sharable resources

and the calculation of interconnect costs. Clustering and interchange improvement

techniques are used to maximize interconnect sharing. Results have demonstrated

significant improvement over other published results.

The remainder of this paper is organized as follows: Section 2 defines the notation

and terms used throughout the paper. Section 3 describes the partition-based

scheduling technique. Section 4 discusses the function unit assignment and

Page3

design is l\1ax(f n
0
/r

0
P l). Furthermore, if a fixed latency I is used, a function unit can

be used at most in I clocks whose indices modulo-I are (O,l, .. ,l-1). Based on these facts,

we can state the following fact:

Fact 1: For a fixed latency I, there exists a set of disjoint partitions S={sk I k=O .. l-1}
such that no two partitions are executed in the same clock cycle.

Consequently, we can formulate the pipeline scheduling as a partitioning problem

m which operation nodes are assigned to disjoint partitions while maximizing the

function unit sharing. The scheduling algorithm first determines the necessary and

sufficient number of function units R={roi:i}= f n
0
/I l for a given latency I, or determines

the minimal latency I can be performed for the given resources. For example, consider a

data flow graph consisting of 15 addition operation nodes and 8 multiply operation

nodes. To satisfy the performance requirement of latency=3, 5 adders (fi5t3 l) and 3

multipliers (fst3 l) are necessary and sufficient to carry out the pipeline design. As a

result, there are three disjoint partitions, and initially, 5 adders and .3 multipliers are

allocated to each partition.

3.2. Partitioning-based scheduling

The partitioning-based scheduling task consists of three steps: (i) Freedom

calculation, (ii) Disjoint set partitioning, and (iii) Time step assignment. Algorithm I

shows the pseudo code for this procedure.

Freedom calculation. Based on ASAP (as soon as possible) and ALAP (as late as

possible) scheduling, the algorithm first calculates the freedom of each node. For a

node vi, freedom(vJ=fALAP(vJ-fASAP(vJ Furthermore, a chaining strategy [5] is

implemented for the freedom calculation. The freedom calculations for the FIR filter

Page 6

are shown in Figure 2(a) where the delay for an adder is 40ns, a multiplier is 80ns, and

the clock cycle is lOOns.

Disjoint set partitioning. In the second step, the algorithm assigns nodes into 1

disjoint partitions such that the resource sharing is maximized. The algorithm first

assigns nodes with zero freedom to their corresponding partitions. Then, the algorithm

assigns the rest of nodes to partitions in increasing order of freedom. For the node vi

with freedom interval from fASAP(vJ to fALAP(vJ, the algorithm can assign v1 to partition

sk between k=(fASAP(vJ mod 1) and k=(fALAP(vJ mod 1). The node assignment of vi is

performed using the following steps:

(1) From k=(fASAP(vJ mod 1) to (fALAP(vJ mod 1), the ·algorithm locates the• first

partition sk with the available function unit for node vi.

(2) If sk contains a predecessor node v. of node v. and v. cannot be chained with v .,
J I I J

then locate the next available partition set; otherwise, assign node vi to sk.

(3) If sk contains a successor node v. of node v. and v. can be chained with v., then
J I J I

assign node vi to sk; otherwise, assign node v1 to sk and propagate node vi to the

next available partition set.

The final partition configuration of the FIR filter with fixed latency=3 is shown in

Figure 2(b). Since in the first scheduling phase, the algorithm allocates only the

necessary resources for each disjoint partition. The algorithm adds more resources when

needs to satisfy the required performance.

Control step assigmnent. Finally, the algorithm assigns a control step to each

operation node from inputs to outputs based on the data flow and its dependency.

From disjoint set s0 to s1_ 1' the algorithm assigns the control step to the nodes without

Page 7

Page 8

time step
------~---------------~---------......---- 0

latency= 3

(a)

(b)

1

2

3

4
5

out

partition
sets

So

Figure 2. (a). Freedom. calculations and schedule and (b). Disjoint sets.

any data dependency edges and then deletes the nodes and their data dependency

edges to the nodes' successors. For example, in Figure 2(b), in s
0

there are no data

dependency edges for nodes +l, +2,and +3. The algorithm will assign step 1 to these

three nodes and delete the nodes +l, +2, and +3. It will then delete the arcs between

nodes +l, +2, +3 and nodes *l, *2, *3. The algorithm executes repeatedly until all of

the nodes are assigned to a time step. The final scheduling of a FIR filter with fixed

latency=3 is shown in Figure 2(a).

Algorithm I Partitioning-Based Scheduling
Partitioning_Based_Scheduling(G){

determine_partition_set(G,RJ);
freedorn_cakulation(G);
sort_freedom_list(G);
/**assign operation nodes to partitions**/
for (i= 1 to n){

done = FALSE;

step = f ASAP(vi);
while (done== FALSE && step < fALAP(vJ){

k = step mod l;

Page 9

if (op(i) E R(sk)) {

if ({v/ sk I vj is vi's predecessor}){
if (vi can be chained with v){

sk = sk U {v);

}

R(sk) = R(sk) - op(i) ;
done= TRUE;

}
else

step = step + 1;

else if ({v/sk I vj is v/s successor}){
if (vj can be chained with vi){

sk = sk U {v);
R(sk) = R(sk) - op(i);
done= TRUE;

}
else{

}

sk = sk U {v);
R(sk) = R(sk) - op(i);
step =step + 1;
I= J;

}

}

}

}
else{

}

sk = sk U {v);
R{ sk) = R{ sk) - op(i);
done= TRUE;

if (step > fALAP(v1) && done == FALSE){
for (k= 1 to 1)

}

R{sk) = R{sk) U op(i);
step = f ASAP(vi);

/**control step assignment**/
p= O;
k= O;
while (S*<P){

k = k mod I~
· t = t U {v. Esk Iv. has no dependency edges}; p p I I

delete_node_edge(sk,{vi Esk I vi has no dependency edges});

k = k + 1;
p = p + 1;

}

4. Function unit assignment and interconnect sharing

The objective of function unit assignment and interconnect sharing is to assign

operation nodes into function units such that the interconnect cost is minimized. vVe

formulate the function unit assignment and interconnect sharing problem in terms of a

hypergraph merging. In this section, we first describe the hypergraph formation and

interconnect cost in the hypergraph model. Then, we describe the function unit

assignment algorithm that minimizes the interconnect cost by clustering the operation

nodes into function units exploiting data dependency similarity.

Page 10

4.1. Formulation

4.1.1. The hypergraph

The algorithm first transforms the data flow graph G to a hypergraph H in which

there are two types of hypernodes: (i) input/output and (ii) operation. Input/output

hypernodes denote input/output ports. Each operation hypernode denotes a particular

single-function unit such as adder, multiplier, or shifter. Each operation hypernode

contains a set of nodes in the data flow graph. Hypernodes are connected with one or

more hyperedges. Each hyperedge· denotes the physical connections between two

function units; the weight of a hyperedge is the number of dependency edges assigned

to it.

At the time of hypergraph formation, each dependency edge is transformed into

one hyperedge. After that, our algorithm performs hyperedge merging to reduce cost of

interconnections. Before merging, each hyperedge is labeled as a right-data-input or a

left-data-input. Two hyperedges can be merged if and only if:

(1) They have the same source and destination hypernodes.

(2) The operation nodes connected by the hyperedges have the same data dependency

elapse time.

(3) They have the same label (right or left).

An example of case (2) is shown in Figure 3(a). The data dependency elapse time

between two operation nodes v1 and v3 is defined as t(v3)-t(vi). In case when t(v3)­

t(v1)=2 and t(v
4
)-t(v2)=1, because eal,b3 needs one latch while ea2,b4 needs two latches

one extra multiplexer input is required for each hyperedge (ea1,b3 and ea2,b4) as shown in

Page 11

Figure 3(a). On the other hand, two hyperedges ea
1

,b3 and ea2 ,b4 in Figure 3(b) can be

merged since their elapse times are the same t(v3)-t(v1)=t(v4)-t(vJ=l. Furthermore,

consider case in Figure 3(c), since ea1,b3 enters the left input of vb and ea2,b4 enters the

right input of vb, and both inputs are not commutable. Therefore, ea1,b3 and ea2,b4 can

not be merged since one multiplexer input is required for each hyperedge. However, if

two inputs ea1,b3 and ea2,b4 are commutable, they can be commuted first and then

merged into one hyperedge as shown in Figure 3(d). Another example is shown in

Figure 3(e). If two hyperedges are connected to the different inputs of a function unit

from the same source, they can not be merged.

Figure 4(b) shows- an example of hypetgraph formulation from the DFG shown in

Figure 4(a). There are a set of input and output hypernodes V:
0
={va,vb, ... ,vP}. In

addition, there are 4 hypernodes vop ={vl,v2,v3,v4}, where type(vl) and type(v2) represent

adders and type(v 3) and type(v
4

) represent multipliers. Each hypernode contains two

operation nodes: v1={v(+l),v(+3)}, v2={v(+2),v(+4)}, v3 ={v(*l),v(*3)}, v4 ={v(*2),v(*4)};

therefore, q(v
1
)=2, q(v2)=2, q(v3)=2, and q(v

4
)=2. Since an adder and a multiplier

have 2 inputs and 1 output each, p(v
1
)=p(v2)=p(v3)= p(v1)=2. There are two

dependency edges between v
1

to v
3

, thus w(e
13

)=2. The hyperedge direction is based

on the flow of data between the hypernodes. For example, e13 is connected from the

output of v
1

to the input of v
3

; therefore, e13 is viewed as the outgoing hyperedge to the

v
1

and the incoming hyperedge to the v
3

•

Page 12

Input

~b

(a)

FU

(b)

no merge a b

...

(c)

Page 13 Figure 3. Hyperedge merging and interconnect sharing.

FU

.(d)

FU

b

FU

(e)

Figure 3. (cont.)

Page 14

control a b cde f g h

step

1

2

3

p

(a)

- ~ dependency edges 0 input/output hypernodes .. hyperedges 0 hypemodes 0 operation nodes

(b)

Page 15
Figure 4. (a). A data flow graph exan1ple and (b). Hypergraph of (a).

assignment step, the algorithm assigns the operation nodes into hypernodes based on

the closeness of data dependency elapse time among the operation nodes. In the

interchanging improvement step, the algorithm takes into account the data dependency

similarities between hypernodes, and maxnmzes the interconnect sharing by

interchanging the operation nodes in the different hypernodes.

4.2.1. Initial assignrrent

In the scheduling step, the algorithm allocates the function units and partitions

the operation nodes into disjoint sets S={sk I k=0 . .1-1}. To satisfy the latency

requirement, the function ·units only can be shared by the operation nodes in the

different sets. The task of the initial assignment is to cluster the operation nodes from

different sets into hypernodes (function units) such that the closeness of data

dependency elapse time in each cluster is maximized.

The data dependency elapse time of each operation node is calculated according to

the final schedule. Each operation node includes two sets of data dependency elapse

times: (i) the input elapse times between the node and it's predecessor nodes and (ii)

the output elapse times between the node and it's successor nodes. For the example in

Figure 2, consider operation node +9 which is scheduled at time step· 2 (t(+9)=2).

node +9 has two predecessor nodes, *1 and *2, which are scheduled at time step 1

(t(*l)=t(*2)=1), and one successor node +10 which is scheduled at time step 2

(t(+10)=2). Thus, tin_elapse(+9)={1,1} such that the input elapse times of node +9 are

t(+9)-t(*l)=l and t(+9)-t(*2)=1, and tout_elapse(+9)={0} such that the output elapse

time of node + n is t(+9)-t(+10)=0.

Page 18

The algorithm first calculates the elapse times for each operation node. During the

assignment process, the algorithm then calculates the closeness of operation nodes and

available function units when selecting the best suited unit for each operation node.

For an operation node vi' if vi can be performed in a unit ve, then the Closeness(vi,vc) is

calculated as follows:

for (v. E vJ{
if (tEtin_elapse(vJ and tEtin_elapse(vi))

CToseness(vi, v J = Closeness(vi, v J + 1;
if (tEt t el (v.) and tEt t el (v .)) ou _ apse 1 ou _ apse J

CToseness(vi, v e) = Closeness(vi, v e) + 1;
}

Since the -function units can not be shared by the operation nodes in the same set,

the algorithm will assign the operation nodes to the function units one set at a time.

The algorithm calculates the closeness between each the operation node and available

units, and assigns each operation node to the unit with the maximum closeness.

4.2.2. Improverrent by interchanging

In the interchanging improvement step, the algorithm takes into account the data

similarity among function units. The algorithm minimizes the multiplexer cost by

merging the hyperedges. We first describe how to find a feasible merging solution that

allows two hyperedges to be merged. Finding a feasible merging solution consists of two

parts:

Finding a pair of feasible hyperedges. For any hypernode, there are two possible

ways to merge the hyperedges: (i) merging of the incoming hyperedges, and (ii) merging

of the outgoing hyperedges. An example of case (i) is shown in Figure 5(a). The

hypernode ve has two incoming hyperedges ea 1 s and eb3,e6 from va and vb respectively.

Page 19

(b)

Figure 5. Feasible hyperedges.

An example of case (ii) is shown in Figure 5(b). The hypernode v has two outgoing . a

hyperedges eal,b3 and ea2,e6 entering vb and ve respectively. In both cases, if two

hyperedges have (1). the same elapse time and (2). exited or entered the same type of

hypernodes (type(vJ=type(vb) in case (i) and type(vb)=type(vJ in case (ii)), then they

can possibly be merged by rearranging the operation nodes in va and vb (Figure 5(a)) or

in vb and ve (Figure 5(b)). Therefore, a pair of feasible hyperedges can be defined as:

(i) hypernodes which have the same elapse time and (ii) they either exit from

hypernodes of the same type and enter the same destination hypernode, or they are two

Page 20

hyperedges exiting from the same hypernode and entering destination hypernodes of the

same type.

Finding a feasible rearrangement of the operation nodes in a pair of hypernodes.

After locating a pair of feasible hyperedges, a pair of feasible hypernodes can be

located. For example, in Figure 5(a), eal,cs and eb3,c6 are the feasible hyperedges; va and

vb are the feasible hypernodes. There are two possible ways to merge eai,cs and eb3,c6 : (i)

relocating v1 from va to vb or (ii) relocating v3 from vb to va. The rearrangement of

ea123,b567 w{ e a123,b567) =3 ea23,c45 w{ea23,c4s) =2

{a) {b)

Figure 6. "Lock" hyperedges.

Page 21

operation nodes must not violate the function unit sharing rule as described in the

previous section. For example, in case (i), if v3 and v1 can not share the same function

unit (v
3

and v
2

are in the same disjoint set), then the algorithm has to interchange v
3

and v2 rather than moving V3 to v a' However, if v3 and vl can not be assigned to the

same operation unit, then the feasible rearrangement of operation nodes does not exist

since eai,cs and eb3,c6 can not be merged by interchanging v3 and v1 .

Using a bucket structure [2], the algorithm first sorts hypernodes in terms of the

number of feasible hyperedges by ordering a list in decreasing order. After finding a

feasible merging solution, the algorithm calculates the total multiplexer cost. If a

smaller multiplexer cost is obtained; then the algorithm· nierges the - hyperedges;

otherwise, the algorithm continues to find the next feasible merging solution. After

merging, if the number of operation nodes in a hypernode is equal to the weight of it's

incoming or outgoing hyperedge, then this hypernode achieves the maximum

interconnect sharing. Hence, the algorithm will lock this hypernode, i.e. no more

interchange for this hypernode is possible. For example, m Figure 6(a),

q(v J=w(ea123,b567)=3. In Figure 6(b), q(vb)=w(ea 23 ,b45)=2. Both hypernodes will be

locked. The algorithm runs repeatedly until no more hyperedges can be merged.

Algorithm II Function Unit Assignment
Let F be a set offeasible merging solution;
Function_ Unit_Assignment(G,S; T;R){

/*initial assignment*/
calculate_data_dependency _elapse_time(G,T);
V = build_hypernode(R);
for (k=O to 1-1){

}

for (vi Esk)
closeness_calculation(vi, V);

function_unit_assignmen t(sk, V);

H = build_hypergraph(V,G);

Page 22

}

/*interchanging improvement*/
mux_cost = mux_cost_calculation(H,¢);
no_more_merge = FALSE;
while (no_more_merge ==FALSE){

F = find_feasible_solution(H);

}

if (F == ¢)
no_more__merge = TRUE;

else{

}

mux_cost_merge = mux_cost_calculation(H,F);
if (mux_cost_merge < mux_cost){

merge_hyperedge (H,F);
m ux_cost = m ux_~ost_merge;

}

5. Experimental results

The algorithms are written in the C language, and the prototype implementation

currently runs on SUN 4 workstations under the UNIX operating system.

We have applied our algorithms to two examples: a FIR filter [8] (Figure 2(a)) and

an elliptic filter [6] (Figure 10). For the FIR filter example, we have tested the example

with the latency from 1 to 6. The examples of schedule and structural netlist with

latency=2, 3, and 4 are shown in Figure 7, 8, and 9 respectively. Table 1 shows the

comparison of our results with the results in [4] which is the only published paper

documenting a complete set of results for the FIR filter and the elliptic filter examples.

The results show that the number of multiplexer inp·uts was reduced up to 343 and the

number of latches was reduced up to 193 using our algorithms.

For the elliptic filter example, we have tested the example with the latency from 1

to 9. The examples of schedule, operation assignment, and structural netlist with

latency=8 and 9 are shown in Figure 11 and 12 respectively. The results in Table 2

Page 23

show that the number of multiplexer inputs and the number of latches were reduced up

to 30% compared to the results in [4]. However, in the case of latency=4, our algorithm

used 8 adders but [4] used 7 adders.

6. Conclusions

We presented partitioning-based algorithms for pipeline scheduling, module

assignment, and interconnect. sharing. Based on a hypergraph model, the algorithms

use clustering and interchange improvement techniques to maximize interconnect

sharing. The results have shown significant improvement over other published results.

This research has demonstrated that the hypergraph model facilitates the identification

of sharable resources and calculation of interconnect costs. Furthermore, this approach

produces very good results in very short time.

7. Acknowledgements

This work was supported by NSF grant #MIP-8922851, California MICRO grant

#90-046, and contributions from Rockwell International, Western Digital, and Silicon

Systems Inc. We are grateful for their support. The authors also like to thank Tedd

Hadley, L. Ramachandran, Viraphol Chaiyakul, and Nels Vander Zanden for their

useful discussions.

Page 24

Page 25

I
latency= 2

{a)

(b)

I

Figure 7. The schedule and structural
netlist of a FIR filter with latency==2.

1

2

5
out

Page 26

..,...............,__..~-.---.---..~r--......-......------~----------~--timestep 0

out

latency= 3

(a)

(b)

Figure 8. The schedule and structural
netlist of a FIR filter with latency==3.

1

2

3

4
5

out

Page 27

time step
~--.--~------.,-----......--~.---.--------------- 0

I I
latency= 4

(a)

(b)

Figure 9. The schedule and structural
netlist of a FIR filter with latency 4.

:' 1
2

3

4

5
out

~
o86.
cti
~
00

~~cy
Resources~

Number of *'s

Number of +'s

Size of
multiplexers

Number of
registers

CPU time
(sec)

1

* ** % *

8 8 0 4

15 15 0 8

0 0 0 32

52 57 -8.9 34

0.3 9 - 0.5

*:our results.

**: The results in [4].

2 3 4 5 6

** % * ** % * ** % * ** % * ** %

4 0 3 3 0 2 2 0 2 2 0 2 2 0

8 0 5 5 0 4 4 0 4 4 0 3 3 0

40 -20.0 30 42 -28.6 27 41 -34.1 33 39 -15.4 34 37 -8.1

42 -19.0 37 43 -14.0 50 50 0 43 46 -6.5 37 43 -14.0

138 0.3 144 0.3 142 0.4 143 0.3 147 - - - - -

Table 1. Results and Comparisons of a FIR filter example.

In n2 n13 n26 n18 n38 n33 n39

6

in n2 n13 n26 n38 n33 out

Figure 10. The data flow graph of an elliptic filter example.

Page 29

Page 30

step 1: +1,+3 FU operation assignment

step 2: +2,+4,+5 *1 *1,*3,*5,*8

step 3: *t,*2 *2 *2,*4,*6,*7

step 4: +6,+7,+8,+9 +1 +1,+2,+14

step 5: +10,+ 11,*3,*4 +2 +3,+5,+8,+ 11,+ 16

step 6: +12,+13,+14,+15,+16,+19 +3 +4,+6,+ 10,+ 12,+20,+21

step 7:

step 8:

step 9:

+17,+18,*5,*6 +4 + 15,+22,+23

+20,+22,+25,*7,*8 +5 + 7,+13,+ 18,+24,+25

+21,+23,+24,+26 +6 +9,+ 17,+19,+26

(a) (b)

(c)

Figure 11. The (a) schedule, (b) operation assignment, and (c)
structural netlist of an elliptic filter with latency==8.

step 1: + 1 ,+2,+3

step 2: +4,+5 FU operation assignment
step 3: *1, *2

*1 *1,*3,*5,*8
step 4: +6,+7 ,+8,+9

*2 *2,*4,*6,*7
-

step 5: +10,+11,*3,*4
+1 +2,+6,+ 12,+ 14,+21,+25

step 6: +12,+13,+16,+19

step 7: +14,+15,+17,+18,*5,*6
+2 + 1,+4,+7,+ 1O,+13,+ 15,+20,+24_

+3 +8,+ 16,+ 17 ,+23

step 8: +20,+22,+25,*7,*8
+4 +3,+5,+9,+ 11,+ 18,+ 19,+22,+26

step 9: +21,+23,+24,+26

(a) (b)

in 1111111
TTT. I TTT]

]_

l rtt:±=:l1~t ±itt ==t=tif=~+-m-=t:tt#+=hl11 1 Jl l[[l
r mux] r mux l mux l r mux]

t5
(mux l

l _L
r mux J

Jl
r mux l [mux

Page 31

+1

-4-
-~ •• •i----4-
•lm

1
I
I T

--..... -· -· --...

f mux]

*1

+3

_______
....

LLL ,m1-m8
_lJ I I

mux l mux l

(c)

*2

Figure 12. The (a) schedule, (b) operation assignment, and (c)
structural netlist of an elliptic filter with latency::::9.

+4

\ \\\ '' \~ \\ ~\ \\\ \\ \\ \\\ \\ \ \\\ \~ \\ \\~ \\\ \
3 1970 00882 4432

