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ABSTRACT 

Multiple disruptions in road networks have the potential for cascading effects that can 

cause significant degradations of network performance resulting in large increases in 

travel time. However, it is challenging to identify vulnerable combinations of links in 

road networks due to the complex interdependency of road segments and a prohibitively 

large number of possible combinations of links. In this paper, we present a deep 

reinforcement learning (DRL) framework to identify vulnerable combinations of links in 

road networks. We let a DRL agent select links to disrupt, and its policy is parameterized 

with deep neural networks (DNNs). The policy is directly learned from the consequences 

of disruptions of links (i.e., congestion incurred by the disruptions) in traffic simulations 

where multiple links are disrupted in a sequence. As a case study, we analyzed vulnerable 

combinations of links in the road network in the city of Davis in California, and 

compared the criticality of the disruptions of links selected by the proposed DRL-based 

method and heuristic-based methods that use betweenness centrality or traffic counts of 

links. In the results, we observed that disruptions by the DRL agent induced significantly 

larger congestion and increase in travel time of vehicles than heuristic-based methods. 

Furthermore, the links selected by the DRL agent reveal that the disrupted links are 

selected considering both the static properties such as the topology of the road network 

and the capacity of the links as well as dynamic properties imposed by the traffic 

demand. 

  



  v 

 

ACKNOWLEDGEMENTS 

I am grateful for the generous support of the Republic of Korea Navy which allowed me the 

opportunity to pursue a master's degree in computer science. The experience of my graduate 

education at the University of California, Davis expanded my academic background and 

professional techniques in computer science which is essential for my position as an information 

and communications officer in ROK Navy. During the past 2 years of my academic journey, 

there have definitely been periods of struggle but overwhelmingly this has been an incredibly 

rewarding journey made possible by some amazing and kind people who I will attempt to thank 

here. 

To Professor Dipak Ghosal, my committee chair, mentor, and primary advisor. I was very lucky 

to meet you and take your classes that inspired me to research these interesting topics. Thank you 

for your invaluable guidance, patience, and encouragement that helped me to grow as a scientist. 

To Professor Raissa D'Souza and Professor Michael Zhang, my committee members, and 

secondary advisors. Thank you for your insight, feedback, and advice as it was influential and 

essential in this thesis in that it needed views from various fields of study. I was always excited 

to meet you all and discuss through zoom every week. 

Lastly, my study would not be possible without my loving wife, my life, Dasom Lee. Thank you 

for trust and believing in me and especially for your dedication to taking care of two little babies. 

I love you to the end of time. 

I love you too, my little daughters Seah Pung and Seyoung Pung. Be kind when you grow up.



  1 

 

1 INTRODUCTION 

Intelligent Transportation Systems (ITS) integrate sensing, control, analysis, and 

communication technologies into transportation systems to resolve current challenges in 

traditional transportation systems, such as congestion, accident risks, carbon emissions, 

and air pollution [1] [2]. Although the deployment of ITS is being accelerated thanks to 

the recent advances in Information and Communication Technology (ICT), the new 

technologies and connectivity in ITS bring diverse threats by cyber-physical attacks. 

Attacks on ITS have implications within the physical world and may cause sudden 

disruptions of critical links in road networks resulting in severe degradation of the road 

transport systems [2]. In this context, identifying vulnerabilities in road networks is 

becoming more essential for ITS, so that traffic system managers can effectively allocate 

resources for prevention and build contingency plans in case of disruptions. 

Traditionally, road network vulnerability analysis mostly considered a single disruptive 

event where a road segment or a group of roads in the same region is disrupted in a single 

disruptive event [3] [4] [5] [6] [7] [8] . Each link (or a group of links) in a road network is 

disrupted iteratively and the corresponding consequence of the disruption (e.g., increase 

in travel time) is measured and ranked to identify vulnerable components. These brute-

force approaches with a single disruptive event may be reasonable for threats by disasters 

or accidents as they occur independently in arbitrary locations. However, malicious 

attackers have a clear objective to degrade quality of service provided by the road 

network. As a result, they are likely to disrupt multiple, carefully selected links to 



  2 

 

maximize the impact of the attack. In these cases, multiple target links in different parts 

of the network will be selected taking into account both the local and non-local effects 

that disruption can cause. However, brute-force approaches are not computationally 

feasible to identify vulnerable combinations of links as the number of possible 

combinations of links grows exponentially with the number of road segments. 

As the traffic flow in the road network introduces interdependence among different 

sections of the road network, the combined effect of disruptions on a small vulnerable set 

of links may cause cascading degradations. However, individual vehicles interact in a 

complex way and the dynamic nature of road networks makes it challenging to identify 

critical disruption scenarios on a combination of links. Furthermore, the set of most 

vulnerable links in a multiple-link failure scenario is not simply the combinations of the 

most vulnerable links with a single-link failure scenario. Finally, even the vulnerable 

links are not necessarily connected or located in the vicinity of each other [9] [10]. Thus, 

identifying the criticality of multiple links requires a different approach from the 

vulnerability analysis for a single disruptive event. 

Recently, the application of deep reinforcement learning (DRL) has demonstrated 

significant successes in diverse control tasks [11] [12] [13] [14] [15] [16] [17]. DRL 

combines deep neural networks (DNNs) with a framework of reinforcement learning, 

which enables agents to progressively learn better policies that map complex system 

states from high-dimensional input data to actions that yield higher rewards. Recently, 

there has been an increasing interest in DRL-based approaches in the applications of 
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transportation systems such as traffic management systems and autonomous driving [18]. 

Nevertheless, the application of DRL in road network vulnerability analysis, or in 

particular, for identifying vulnerable combinations of links, has not been investigated. 

In this paper, we propose a DRL framework that aims at identifying vulnerable 

combinations of links in case of a sequence of disruptions in road networks. We let a 

DRL agent repeatedly observe the statistical data of a road network, take action to select 

the target roads to disrupt, and learn the criticality of links from the impact of the 

disruption. As a case study, we analyzed vulnerable combinations of links in the road 

network of the city of Davis in California, and compared the criticality of the disruptions 

of links selected by the proposed DRL-based approach and heuristic-based methods that 

use betweenness centrality or traffic count of links. We observed the DRL agent 

identified critical combinations of links causing significantly higher congestion and 

increase in travel time of vehicles than links selected by heuristics. The contribution of 

this study can be summarized as follows.  

1) We propose, for the first time, a DRL framework to identify critical combinations 

of links in a road network.  

2) We show the robustness of the proposed method with the results with different 

settings, e.g., traffic demand and the number of disruptions  

3) Numerical results demonstrate that the proposed method significantly outperforms 

heuristic-based methods that use betweenness centrality and traffic counts. 
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The remainder of the paper is organized as follows. Section 2 introduces the literature 

review in this field of study, Section 3 describes the adversarial model that determines the 

problem formulation and disruption scenario, Section 4 presents our custom traffic 

simulator model used in this study, Section 5 describes the proposed DRL-based 

approach, Section 6 includes results from a case study in the road network in the city of 

Davis in California, and Section 7 concludes the paper.  
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2 RELATED WORKS 

While several authors argue that the concept of vulnerability or criticality may have 

different definitions depending on the context [19] [20] [21] [22], from the road network 

point of view, it is generally related to the consequence of disruptive events on road 

segments. For example, in [20] vulnerability in transportation system is defined as "a 

susceptibility to incidents that can result in considerable reductions in road network 

serviceability”. Similarly, in [3] road network vulnerability analysis is defined as “the 

study of potential degradations of the road transport system.” 

The dominant approach to assess the consequence of disruptive events is simulation-

based method. In most analyses reported in the literature, candidate links to disrupt in the 

network are removed iteratively, and the impact of each disruption is measured in terms 

of the increase in travel cost (e.g., travel time) of the vehicles in the network. The 

vulnerability of links is ranked in accordance with the amount of degradation of network 

performance [3] [4] [5] [6] [7] [8]. Candidate links can be selected from all the links, or 

from a subset of important links to make large-scale analysis computationally feasible. A 

common weakness in such simulation-based methods is that computational cost 

significantly increases as the number of candidate links increases. At least a single 

simulation is required for each possible disruptive event, and the number of simulations 

should be increased to achieve statistically meaningful results considering the 

stochasticity of traffic simulations [23].  
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Especially for multiple disruptive events, the number of possible combinations of links 

can be prohibitively large even for a moderately sized set of candidate links, thus it may 

not be computationally feasible to simulate the outcomes of all possible combinations. 

Thus, prior studies for multiple disruptive events focused on optimization approaches that 

mathematically model the problem, instead of simulation-based methods. The study in [9] 

formulated the problem as bi-level programming where the upper-level problem is to 

decide which edge to disrupt, and the lower-level problem is to determine the traffic 

flows in user equilibrium. They defined an objective function that represents the 

summation of increased travel time of travelers, and the objective function is linearized to 

be convex and to have a globally optimal solution. To identify the most vulnerable 

combination of links, the objective function is optimized to have maximum value. The 

study was extended to a larger network by adding a preliminary analysis that identifies a 

set of potentially more vulnerable links and takes only those as candidate links to disrupt 

[10]. There are several weaknesses in these methods. They either are applicable to only 

very small network due to high computational cost [9] or take a small subset as candidate 

links where the results can be highly biased depending on the selection criteria for the 

candidate links [10]. Also, the user equilibrium traffic assignment ignores the fact that 

individual vehicles may make en-route routing decisions on their ways to avoid the 

disrupted links. 

In this thesis, we propose a DRL framework for identifying vulnerable combinations of 

links. We model a sequence of disruptive events as a Markov decision process (MDP), 
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and train the DRL agent to select a link to disrupt at each timestep throughout dynamic 

traffic simulations. The main difference between our proposed DRL-based method and 

the above-mentioned simulation-based methods is that the DRL agent can extract 

knowledge through experiences from traffic simulations to improve its policy. The DRL 

agent begins with a random policy, but progressively learns better policies to degrade the 

performance of the road network. Thus, as training proceeds, critical links are 

progressively more disrupted by the DRL agent, and links whose disruptions have little 

impact on the network are not selected. This enables the DRL agent to successfully 

identify vulnerability in the network without brute force simulations by focusing on the 

critical links. 
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3 ADVERSARIAL MODEL 

In this section, we describe the adversarial model in our study that determines the 

problem formulation and the disruption scenario. First, we describe the system for 

analysis and the threat by an adversary against the network. Next, we determine the 

number of disruptive events. Finally, we present an adversarial model that models the 

problem as a Markov decision process to apply a DRL-based method. 

3.1 SYSTEM AND THREAT 

We consider a transportation system for our study as a road network in ITS with the 

following assumptions: 

1. The system has a central controller that has perfect sensing of traffic volume on 

each road segment. The controller estimates the travel time of road segments and 

advertises it to vehicles in the network.  

2. Vehicles in the network are Connected and Autonomous Vehicles (CAVs) that 

driving is fully automated (SAE Level 5 [24]). Vehicles route to the shortest path 

calculated by Dijkstra’s algorithm [25] based on the information given by the 

controller. 

We consider a threat by an adversary against the system with the following assumptions: 

1. The adversary conducts data-integrity attacks [26] against the traffic delay model 

of the controller, and the expected travel time of attacked road segments is 

advertised to have an unacceptably long delay. The attacked roads are logically 
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disrupted as vehicles avoid routing over them and re-route to alternative paths, 

increasing traffic congestion in the rest of the network and reducing traffic 

efficiency.  

2. The disrupted links remain disrupted until the end of the simulation as we simulate 

a relatively short period of time (up to several hours).  

Although we consider a cyber-physical threat in ITS, traditional road networks also have 

a threat of disinformation attacks that cause a similar effect. The study in [27] showed 

that a malicious adversary can use disinformation (e.g., false notification of road works) 

to influence travelers to avoid targeted links and create bottlenecks. 

3.2 NUMBER OF DISRUPTIONS 

We assume that the adversary has resource constraints and can only target a relatively 

small number of road segments to achieve the objective. For physical attacks (e.g., 

physically destroying or blocking road segments), it is clear that attackers have finite 

capability due to the resource constraints on physical assets. Even for logical attacks, that 

attack must be launched on a small number of segments to avoid being detected by 

system managers so that the impact of the attack can last for a long time. In this case, the 

resource constraints are determined by the detectability of the target system. Thus, 

determining the number of disruptions is a case-specific problem that is closely related to 

the resource constraints of attackers. Our study focuses on vulnerability analysis given a 

fixed number of disruptions. In this paper we implemented independent environments 

with different numbers of disruptions from 2 to 5, and trained a DRL agent for each 
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environment to show that our proposed framework is robust and can be applied to various 

settings. 

3.3 ADVERSARIAL MODEL FOR DRL FRAMEWORK 

We model a disruption scenario as a decision-making problem in which an adversary 

determines multiple disruptive events on the road network. The target links to disrupt are 

selected by an agent. The adversarial model may have different formulations depending 

on the length of interval 𝐼𝑑 between disruptive events. 

If 𝐼𝑑 is equal to 0, the adversary disrupts all the targeted links simultaneously as a single 

disruptive event. Since this scenario has a single decision point, it can be modeled as a 

bandits problem, such as multi-armed bandits (MAB). In bandits setting, an agent has a 

set of possible actions, and each action is associated with a fixed but unknown reward 

probability distribution where a reward measures the success and failure of the action. In 

the bandits-based adversarial model, an action represents selecting a full combination of 

links to disrupt and a reward represents the degree of service degradation of the road 

network. However, this formulation has two major challenges. First, each action is 

independent of each other regardless of whether they share the same selection of links or 

not. Thus, every action should be sampled at least once, making the problem-solving 

process similar to the traditional simulation-based method. Second, the size of the action 

space is prohibitively large. The possible number of combinations of links is (𝑁𝑙
𝑁𝑑
) where 

𝑁𝑙 is the number of links and 𝑁𝑑 is the number of disruptions. Getting experiences of all 
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the possible actions is not computationally feasible since even a moderately-sized road 

network consists of hundreds or thousands of links. 

If 𝐼𝑑 is greater than 0, disruptions occur in a sequence, and there are multiple decision 

points that decide which link to disrupt at each disruptive event. Thus, we modeled the 

problem as a Markov decision process (MDP). A MDP is defined by a 5-tuple 

〈𝑆, 𝐴, 𝑃, 𝑅, 𝛾〉 where each element is defined as follows:  

1. S is a set of possible states where a state is a concrete and unambiguous 

representation of the operating environment. In our scenario, a state includes the 

statistical information of the current road network such as traffic distribution, 

travel time of links, and which links are disrupted.  

2. A is a set of possible actions the agent can apply (i.e., select and disrupt a link).  

3. P is a state transition probability matrix that defines how the environment, the road 

network including travelers in our case, evolves after applying an action.  

4. R is the reward function that returns the reward for the action of an agent at each 

timestep. A reward is the feedback by which we measure the success or failure of 

an action taken by an agent given a specific state.  

5. The discount factor γ is a value between 0 and 1 that defines the importance of the 

rewards obtained by future decisions. If γ is 0, only the immediate reward matters 

to the agent, and if γ is 1, the future rewards are equally important to the 

immediate reward. In our adversarial model, γ should have a value near 1 since the 
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effect of disruption may not be observed unless the full combination of links is 

disrupted.  

Then, the objective of the adversary is to find a policy that takes a state from S as input 

and maps the state to an action in A that maximizes the discounted cumulative rewards 

𝐺 = ∑ 𝛾𝑡𝑅(𝑠𝑡 , 𝑎𝑡)
𝑇
𝑡=0 . Compared to the combinatorial action space in the bandits setting, 

the MDP formulation of the adversarial model has a significantly smaller action space, 

which is the number of candidate links to disrupt regardless of the number of disruptions. 

It allows the agent in the MDP adversarial model to avoid the curse of dimensionality for 

sampling the experience of each action. Thus, we considered the MDP adversarial model 

in our study, and considered fixed length 𝐼𝑑 for simplicity.  

Table 1. Notation glossary used in this thesis 

Symbol Description 

𝐼𝑑  Length of interval between disruptive events. 

𝑁𝑙  Number of links 

𝑁𝑑  Number of disruptions 

𝑆  Set of possible states 

𝑠𝑡  State of the environment for timestep 𝑡 

𝐴  Set of possible actions 

𝑎𝑡  Action of the agent for timestep 𝑡 

𝑃  State transition probability matrix 

𝑅  Reward function 

𝑟𝑡  Reward for a state-action pair (𝑠𝑡 , 𝑎𝑡) for timestep 𝑡 

𝛾  Discount factor 

𝐺  Discounted cumulative rewards 

𝜆𝑔  Average vehicle generation rate 

𝑠𝑎𝑡𝑒  Saturation rate of an edge 𝑒 
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𝑁𝑣𝑒ℎ
𝑒   Number of vehicles in the queue of an edge 𝑒 

𝑁𝑙𝑎𝑛𝑒
𝑒   Number of lanes of an edge 𝑒 

𝐿𝑒  Length of an edge 𝑒 in meters 

𝐿𝑣𝑒ℎ  Average length of a vehicle 

VDF Volume-delay function 

𝐵  Free-flow travel time 

𝐿  Signal light delay 

𝐶  Congestion delay 

𝛽1, 𝛽2, 𝛽3  Slopes of piece-wise linear function for 𝐶 

𝛼1, 𝛼2  Break points of piece-wise linear function for 𝐶 

𝑘  Maximum number of disruptions in a simulation 

𝑁𝑣𝑒ℎ  Number of vehicles in the road network 

𝐶𝐵  Edge betweenness centrality 

 

One of the classical methods to solve the MDP is to evaluate all the possible state-action 

pairs. However, it is computationally very expensive with large state and action spaces. 

Instead of this brute-forcing approach, we take advantage of the powerful generalization 

techniques of DRL. DRL extracts knowledge from visited states that can be used for 

unexplored states using deep neural networks. This enables a DRL agent to make a 

successful decision in states not experienced in advance. Figure 1 illustrates the DRL 

framework for our road network disruption scenario. At the beginning of the scenario, the 

timestep 𝑡 is initialized as 1. The agent observes the initial state 𝑠𝑡=1 of the environment, 

and given the state, takes an action that selects and disrupts a link. The environment 

elapses 𝐼𝑑  time and returns the next state 𝑠𝑡+1  and reward 𝑟𝑡  for the current state and 

action pair (𝑠𝑡 , 𝑎𝑡). This process is iterated until the terminate timestep that the number of 

disruptions reaches to the maximum number of disruptions. The policy of the agent is 
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initialized with a random policy, but the agent progressively learns better policy that 

yields higher cumulative rewards by exploring different disruption strategies. 

 

Figure 1.  DRL framework for road network disruption scenario. 
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4 SIMULATION MODEL 

In our experiments, we used a custom-built traffic simulation model to simulate the 

disruption scenario in a real-world road network. This section describes the architecture 

of the simulation model and the simulation scenario. 

4.1 MODEL ARCHITECTURE 

We built a process-based discrete-event simulator that models the operation of a road 

network system as a sequence of events. Each event occurs on a specific process, and the 

state of the system changes as a result of the event. The initial state of the system is an 

empty road network that is represented as a weighted directed graph with the nodes being 

the traffic intersections, the edges being the road segments, and the weights being some 

attribute of road segments (e.g., travel time or length). Each edge has a queue where 

vehicles that enter the edge are required to wait as much as the travel time of the edge. 

When the simulation begins, traffic is dynamically assigned in the network, and each 

individual vehicle proceeds over the queueing links following the shortest path route to 

its destination.  

The simulation model has three logically separated processes: traffic generation process, 

vehicle movement process, and disruption process.  

1. Traffic generation process generates new vehicles to travel within the road 

network and injects them into the system following a Poisson process with rate 𝜆𝑔 

vehicles per second. Thus, the interval between vehicle generations is a random 
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variable that has the exponential distribution 𝐸𝑥𝑝(𝜆𝑔) . Origin and destination 

(OD) nodes are sampled for each new vehicle, where the probability of sampling a 

node for origin or destination is weighted by the traffic demands. The shortest path 

between an OD pair is calculated by Dijkstra’s algorithm [25], and the new vehicle 

is added to the tail of the queue of the start edge of the shortest path. 

2. Vehicle movement process lets the vehicles in the queue of each edge move 

forward to the next edge in their path if the next edge is not full and the vehicles 

waited in the current queue at least the travel time of the current edge. Thus, 

congestion in the network backpropagate as vehicles gets delayed in congested 

edges. An edge is considered full if its saturation rate is equal to or greater than 1. 

The saturation rate of an edge 𝑒 is defined by 

𝑠𝑎𝑡𝑒 = 
𝑁𝑣𝑒ℎ
𝑒 × 𝐿𝑣𝑒ℎ
𝑁𝑙𝑎𝑛𝑒
𝑒 × 𝐿𝑒

 (1) 

where 𝑁𝑣𝑒ℎ
𝑒  is the number of vehicles in the queue of the edge, 𝐿𝑣𝑒ℎ is the average 

length of a vehicle, 𝑁𝑙𝑎𝑛𝑒
𝑒  is the number of lanes of the edge, and 𝐿𝑒  is the length of 

the edge in meters. 𝐿𝑣𝑒ℎ is set as 4.5m in our study. In simulations, an event for 

this process occurs in every second, which iterates a loop over all the edges in the 

network to check the head of the queue and move vehicles that satisfy the 

conditions.  

3. Disruption process disrupts edges in the road network. The first disruption occurs 

at the beginning of this process, and a new edge is disrupted every 𝐼𝑑 seconds until 

the number of disruptions reaches the designated maximum number of disruptions 
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for the simulation. On disruption, vehicles in the network re-route to alternative 

paths to avoid the disrupted edge. 

In real-world road networks, traffic delay is affected by a myriad of factors, thus the 

travel time of a road segment is not always the same as the free-flow speed, and changes 

over time. Our custom simulator uses a volume-delay function (VDF) to reflect this 

dynamic nature of traffic delay, and the travel time of each edge is re-calculated 

whenever the traffic volume on the edge changes. The travel time of an edge 𝑒 computed 

by VDF is defined by 

𝑉𝐷𝐹(𝑒) = 𝐵(1 + 𝐶) + 𝐿 (2) 

𝐶 =  { 

𝛽1 × 𝑠𝑎𝑡𝑒 , 0 ≤ 𝑠𝑎𝑡𝑒 < 𝛼1
𝛼1𝛽1 + (𝑠𝑎𝑡𝑒 − 𝛼1) × 𝛽2 , 𝛼1 ≤ 𝑠𝑎𝑡𝑒 < 𝛼2
𝛼1𝛽1 + 𝛼2𝛽2 + (𝑠𝑎𝑡𝑒 − 𝛼2) × 𝛽3, 𝛼2 ≤ 𝑠𝑎𝑡𝑒 ≤ 1

 (3) 

where 𝐵 is the free-flow travel time that is computed by dividing the length of the edge 

by the speed limit, 𝐿  is the signal light delay where a constant delay is assigned 

depending on road types, and 𝐶 is the congestion delay that is a function of 𝑠𝑎𝑡𝑒 where 

the value of 𝑠𝑎𝑡𝑒 is clipped to 1. The definition of VDF is similar to traditional VDFs [28] 

where the delays increase slowly for small traffic volumes and increase very steeply for 

large traffic volumes. For simplicity, we used a piecewise-linear function with three 

different slopes (𝛽1 = 1, 𝛽2 = 3, and 𝛽3 = 20) and two break points (𝛼1 = 0.5 and 

𝛼2 = 0.8) for congestion delay 𝐶. 
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4.2 SIMULATION SCENARIO 

The scenario of a simulation can be decomposed into three different periods: warming-up 

period, disruption period, and cooling-down period. First, the scenario starts with 

warming-up period because the initial state of the network is an empty network. At the 

beginning of simulation, the vehicles injected into the system are like driving at midnight 

with small traffic volumes and drive near free-flow speed without congestion delay. 

Thus, the data obtained near the start of a simulation have a strong bias toward smaller 

travel time. The warming-up period enable the network to fill with vehicles before we 

observe and analyze the behavior of vehicles. Next, disruption period takes place with 

disruption process that disrupts an edge in the network in every disruption interval 𝐼𝑑. 

This period produces the perturbations that degrade the throughput of the network. 

Finally, in cooling-down period, new traffic is not generated, and no more link is 

disrupted. The network discharges remaining vehicles in the system by letting them 

continue to finish their travel. Cooling-down period allows the effect of congested queues 

to be accounted for the measurement of travel time in results. Figure 2 shows operating 

processes in each period throughout a simulation run. 

 

Figure 2.  Processes operating during different phases of the simulation run.  
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5 DESCRIPTION OF THE DRL FRAMEWORK 

In this section, we describe our proposed DRL framework. We defined state/action space 

representations, and the reward function to perform vulnerability analysis in road 

networks. These representations determine how the DRL agent recognizes the state of the 

environment, applicable actions for the DRL agent, and the aim that the DRL agent 

optimizes its policy. 

We modeled a simulation run as a 𝑘-step episode where 𝑘 is the maximum number of 

disruptions in the simulation. As mentioned in Section 3.2, we built four independent 

environments with different values of 𝑘 from 2 to 5, and trained an independent DRL 

agent for each environment. DRL agents iteratively observe the state of the environment 

and take an action at each timestep. If timestep 𝑡 reaches 𝑘, the agent takes the last action, 

the rest disruption period proceeds without any disruption, and the environment returns 

the terminate state 𝑠𝑡=𝑘+1. Figure 3 shows the 𝑘-step episode for a simulation run. 

 

 

Figure 3.  A simulation run modeled as a k-step episode. The figure illustrates an episode with k=5. The 

episode starts with the initial state 𝑠1. At the last timestep t=k, the agent takes the last action for the 

episode and the environment returns the terminate state 𝑠𝑘+1. 
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5.1 STATE SPACE REPRESENTATION 

For an unambiguous state space representation, the state should include not only 

information about the road segments but also information about the traffic volume and 

traffic flow. To obtain this observation, the statistical information of both a link and the 

vehicles on the link is represented as a vector for each link, and the vectors for all the 

edges are concatenated to a single vector as a state, which is the input to the agent. The 

vector for each edge has seven elements as follows:  

1. Saturated queue length: the number of vehicles that causes the saturation rate 

of the edge to become greater than or equal to 1. If this value is small, the edge 

has a low capacity for vehicles, and thus it has more chance to be congested. It 

can be also used as a congestion indicator when combined with current queue 

length. 

2. Current queue length: the number of vehicles that are currently on the edge. In 

the observation in which the vectors for all the edges are concatenated, this 

element shows the distribution of traffic volume. 

3. Traffic count: the number of vehicles that visited the edge between the current 

timestep 𝑡 and last timestep 𝑡 − 1. If 𝑡 = 1, the traffic count in the warming-up 

period is measured since the initial observation is at the beginning of the 

disruption period. This is an important element in that a high traffic count 

implies that the link is frequently selected for the shortest paths for the 

vehicles, contributing to the functionality of the transportation network. 
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4. Flow count: the number of vehicles that have the edge in their routes beyond 

the current edge. This element allows the agent to recognize the directions that 

the vehicles are heading. 

5. Disrupted or not: binary flag whether the edge is disrupted or not.  

6. Speed limit: speed limit on the edge in km/h. 

7. Length: length of the edge in meters. 

5.2 ACTION SPACE REPRESENTATION 

We defined a discrete action space where each action corresponds to disrupting a specific 

link from a set of candidate links. Thus, the size of the action space is the same as the 

number of candidate links. Candidate links may either include all the links in the network 

or be a set of pre-selected links determined by specific link criteria. However, if the study 

network is large, limiting the candidate links to pre-selected links allows the agent to 

have a concise action space, so that it can easily explore the sample space of trajectories. 

5.3 REWARD FUNCTION 

With respect to the reward function, we use the increase in the number of vehicles in the 

network, caused by the disruptions. To determine the increase in the number of vehicles 

due to disruptions, we need a baseline on the number of vehicles over time in a fully 

operational network without any disruption. We ran a simulation with a baseline scenario 

in which the disruption period is replaced with the same length of additional warming-up 

period. This implies that the simulation has the same runtime but does not have any 
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disruption. Considering the stochasticity of the traffic simulator, we repeated the 

simulations 20 times and determined the average number of vehicles at each timestep. 

For the state and action pair (𝑠𝑡 , 𝑎𝑡)  at the timestep 𝑡 , we reward the agent as the 

difference in the number of vehicles at the next timestep 𝑡 + 1 between the network with 

disruptions and the baseline (i.e., the fully operational network). For the immediate 

reward at the last timestep 𝑡 = 𝑘 ,  the difference is measured at the terminate state 

𝑠𝑡=𝑘+1.  

The simulation time at the terminate state 𝑠𝑡=𝑘+1 is a time point in the middle of the 

cooling-down period that the vehicles without congestion finished their travels but the 

vehicles in congested areas are still not fully discharged, which should be calibrated for a 

specific road network. We consider the rewards obtained at 𝑡 < 𝑘 as a short-term effect 

of disruptions since the effect of disruptions is measured in a relatively short disruption 

interval 𝐼𝑑 . On the other hand, the reward obtained at 𝑡 = 𝑘  has a long difference in 

simulation time between 𝑡  where the disruption occurred by the action 𝑎𝑡  and the 

termination timestep 𝑡 + 1  where the reward for 𝑎𝑡  is measured. Thus, the reward 

represents a long-term effect of disruptions. Also, the disruption of the full combination 

of 𝑘 links is complete at the last timestep 𝑡 = 𝑘, and we can finally observe the entire 

combined effect of disruptions only at the last reward. Thus, we put more weight on the 

last reward by dividing the reward by a constant 𝑚 = 3 if 𝑡 < 𝑘. The reward function 𝑅 

for a state and action pair (𝑠𝑡 , 𝑎𝑡) at timestep 𝑡 is defined by 
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𝑅(𝑠𝑡 , 𝑎𝑡) =

{
 
 

 
 𝑁𝑣𝑒ℎ

(𝑠𝑡+1) − 𝑏𝑡+1
𝑚

𝑡 < 𝑘

𝑁𝑣𝑒ℎ(𝑠𝑡+1) − 𝑏𝑡+1 𝑡 = 𝑘

0 if 𝑎𝑡 is not unique

 (4) 

where 𝑁𝑣𝑒ℎ(𝑠𝑡) is the number of vehicles in the system at the timestep 𝑡, and 𝑏𝑡 is the 

number of vehicles in the fully operational network at the same simulation time as 

timestep 𝑡 . Since the action space does not change, the agent may select an already 

disrupted edge. To train the agent to avoid this duplicate action, we do not reward for the 

actions that are already taken in the previous timesteps. 

There are two reasons that we used the number of vehicles to reward the agent instead of 

other metrics such as travel time of vehicles. First, the vehicles are entering the system at 

an average rate 𝜆𝑔 vehicles per second. Under this condition, the increase in the number 

of vehicles represents that the transportation functionality of the network is degraded as 

the discharge rate of the vehicles is decreased. Second, the agent does not have to 

continue the cooling-down period until the network fully discharges all the vehicles. If 

we use the travel time of vehicles for rewards, all the vehicles must finish traveling to 

measure the travel time. This will make sampling episodes for the agent to become 

computationally more expensive. However, the number of vehicles can be measured at 

any time point throughout a simulation. In the cooling-down period, vehicles in the areas 

without congestion finish their travel very soon, and there is a rapid drop in the number 

of vehicles at the beginning of the period. Then, the number of vehicles decreases very 

slowly with a long tail since the vehicles in the congested areas have long delays. We can 
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measure the difference in the number of vehicles between the disrupted network and the 

baseline after the rapid drop at the beginning of the period, instead of waiting for the full 

discharge. We measured the travel time of vehicles for evaluation, not training, and found 

that there is a strong correlation between the number of vehicles over time in the system 

and the travel time of vehicles. 

5.4 DRL ALGORITHM 

Besides the design of state/action space representations and reward function, the selection 

of a DRL algorithm that is appropriate for the nature of the problem is also important. 

Our problem has a large action space where an action is to select and disrupt a link from 

hundreds or thousands of candidate links. Thus, algorithms based on Q-learning are likely 

to be infeasible due to the curse of dimensionality [29], and algorithms that can deal with 

the large action space should be selected. We choose to use Proximal Policy Optimization 

(PPO) [30] which is one of the state-of-the-art DRL algorithms. PPO is an actor-critic 

method that directly optimizes its policy with a clipped surrogate objective and entropy 

regularization, which enables stable training and improved exploration. Also, the 

algorithm operates with multiple workers so that training episodes can be sampled fast. It 

is important to note that, however, this specific choice of DRL algorithm is not 

fundamental to our proposed approach.  
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6 A CASE STUDY 

In this section, we perform a case study that adapts our proposed DRL-based solution for 

city-level road network vulnerability analysis of the city of Davis in California. We 

evaluated the effect of disruptions by DRL agents in different settings (e.g., traffic 

demand, number of disruptions), and compared the criticality of the disruptions of links 

selected by the proposed DRL-based approach with heuristic-based methods that use 

betweenness centrality or traffic counts of links. 

6.1 ROAD NETWORK DATA 

OSMnx [31] is a Python package that downloads road networks from OpenStreetMap [32] 

and constructs them into weighted directed graphs with the nodes being the traffic 

intersections, the edges being the road segments, and the weights being some attribute of 

road segments including the length and type of roads. Using OSMnx, we represented the 

road network of the city of Davis as a weighted directed graph.  

The complete road network has a hierarchical structure. It includes high-level roads 

(motorway, primary, secondary, and tertiary roads) which transport a large number of 

vehicles at fast speeds and low-level residential roads which have low speed limits and 

are used to provide access between high-level roads and local residential areas. To 

simplify the network, we omitted all the residential roads, and iteratively removed 

network elements that do not contribute to overall transportation functionality, such as 

self-loops, dead-ends, and interstitial nodes that lie on the same road line. After 
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simplification, we got the output network that has 376 nodes and 753 edges. Excluding 

the links that consist of small lamps at the intersections, we take 625 edges as a set of 

candidate links to disrupt for the DRL agent. Figure 4 shows the complete and simplified 

road networks and the road type of edges. 

 

Figure 4.  The road network in the city of Davis. The color of edges represents the road type. (a) is the 

complete road network and (b) is the simplified road network. 

 

As described in Section 4.1, in the simulation model, the travel time of an edge is 

determined by the free-flow travel time, congestion delay, and signal light delay. To 

obtain the free-flow travel time of the road segments, we assigned speed limits depending 

on the road types. Specifically, we assign 110 km/h for motorways, 60 km/h for primary 

roads, 50 km/h for secondary roads, and 40 km/h for tertiary roads. To obtain the free-

flow travel time, we divided the length of each edge by its speed limit. The signal light 

delay is set 0, 10, 10, and 6 seconds for motorways, primary, secondary, and tertiary 

roads, respectively. 
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6.2 TRAFFIC DEMAND 

Davis is a small college town with a consistent traffic pattern in which most traffic is 

concentrated at the University of California, Davis (UC Davis). Commuters to the 

university who are non-residents in Davis enter the city mainly from I-80, the freeway 

that runs through the south of Davis. We use this empirical knowledge about the city to 

build traffic demands where the probability of sampling a node for origin or destination is 

weighted by the traffic demands. We consider two traffic demands one for morning rush 

hour and the other for the evening rush hour. 

In the morning traffic demand, the eastbound and westbound nodes of the I-80 have 10% 

and 15% of probability respectively to be sampled as an origin node, and all other nodes 

have 75% probability of being sampled as an origin. For the probability to sample 

destinations, 5 nodes surrounding UC Davis, 7 nodes for popular groceries, and 7 nodes 

for the downtown area are assigned probability of 50%, 10%, and 10%, respectively, and 

all other nodes have the uniform random probability of 30%. Figure 5 shows the 

locations of the nodes with weights in the morning traffic demand. In the evening traffic 

demand, the weights for sampling origin and destination nodes are switched from the 

morning traffic demand, so that the traffic demand has a reversed direction. 
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Figure 5.  Traffic demand in the morning. Popular areas are weighted for sampling OD nodes. 

6.3 CALIBRATION 

Calibration is the adjustment of parameters in a traffic simulation model to improve the 

model's ability to reproduce local driver behavior and traffic performance characteristics 

[33]. In our study, we calibrated several essential parameters in the simulation model: the 

length of the warming-up, disruption, and cooling-down periods, and the traffic 

generation rate.  

The warming-up period is generally included in traffic simulation studies, and as a rule of 

thumb, the longest travel time of the system or double the travel time is recommended for 

the length of the warming-up period [23] [33]. The travel time between possible OD pairs 

in the road network in Davis has the distribution in Figure 6, where the longest travel 

time is 970 seconds. We set the length of the warming-up period to 1000 seconds as it 

satisfies the guidelines for calibrating simulation models. Furthermore, in our preliminary 
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experiments with a wide range of traffic generation rates, we found the steep increase in 

the number of vehicles at the beginning of simulations turns to a steady slope after 1000 

seconds in common. 

 

Figure 6.  Free-flow travel time between OD pairs in the road network in Davis. 

For the evaluation scenario, the cooling-down period continues until all the vehicles in 

the network are fully discharged so that the travel of vehicles can be measured. However, 

for the training scenario, we stop the cooling-down period before vehicles are fully 

discharged for faster training, and the agent gets rewards based on the number of 

remaining vehicles that suffer from congestion. Thus, the length of the cooling-down 

period for the training scenario should be enough to discharge traffic in areas without 

congestion. We set 1500 seconds to be the length of the cooling-down period, which is 

one and a half times the warming-up period since the travel time of vehicles is likely to 

be larger than the beginning of the simulation as congestion delay is added. 

The length of interval 𝐼𝑑 between disruptions is an important parameter for both training 

the agent and the criticality of disruptions. If 𝐼𝑑  is too short, disruptions occur almost 
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simultaneously, and it is difficult to observe the short-term effects of the individual 

disruptions which are used for the rewards for the state and action pairs at non-terminal 

timesteps. On the other hand, if 𝐼𝑑 is too long, disruptions become sparse, allowing the 

network to have more time to digest the perturbations, and the cascading effect of 

disruptions may decrease. We set 200 seconds to 𝐼𝑑, which is about half the mean travel 

time of the possible OD pairs in the system, considering the tradeoff between short and 

long intervals. In our study, we consider maximum 5 disruptions in a simulation, thus the 

total length of the disruption period is set to 1000 seconds. In order to have the same 

traffic volume, the length of the disruption period is the same 1000 seconds regardless of 

the number of disruptions in a simulation. If the number of disrupted links reach the 

designated number of disruptions in a simulation, the rest disruption period proceeds 

without additional disruptions. 

The traffic generation rate 𝜆𝑔 determines the number of vehicles that are injected into the 

system per second. The value of 𝜆𝑔  should be reasonably high since we consider the 

traffic demands in rush hours and the adversary against the network is likely to attack 

when the traffic volume is high to maximize the impact of attacks. However, a too high 

value of 𝜆𝑔 is unrealistic and may cause grid-lock in simulations where vehicles block 

each other and the network is locked [23]. To find the proper value for 𝜆𝑔, we performed 

a linear search by running simulations with different values of 𝜆𝑔 from 0.5 to 5. In the 

simulations, the runtime for each period was the same as the training scenario for the 

DRL agent, and disruptions did not occur. The results in Figure 7 show that vehicles are 
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almost fully discharged after the cooling-down periods for 0.5 and 1 vehicles per second 

(v/s), but beyond 1.5 v/s the number of remaining vehicles at the end of simulations 

rapidly increases. Thus, we selected 1.5 v/s for the value of 𝜆𝑔. At this rate the traffic 

volume is large enough to remain after the cooling-down period, but congestion is not 

unacceptably heavy or causes grid-locks. 

 

 

Figure 7.  The number of vehicles over time (left column) and the number of remaining vehicles at the 

end of simulations (right column).  (a) and (b) are for the morning traffic demand, (c) and (d) are for the 

evening traffic demand. 

 

6.4 EXPERIMENTS AND RESULTS 

In our experiments, we evaluated the DRL-based framework described in Section 5 with 

the adversarial model and simulation model described in Section 3 and Section 4, 

respectively. First, we check the robustness of our proposed method by training 
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independent DRL agents in different environments where each environment has a 

different number of disruptions from 2 to 5 and has morning or evening traffic demand. 

This experiment shows the applicability of the method in various settings. Next, we study 

the rationale behind the behavior of the DRL agents by analyzing the disrupted links by 

the agents. Finally, we compare the performance of our DRL agent with respect to other 

heuristic-based methods that use betweenness centrality or traffic counts to select links to 

disrupt.  

Regardless of the number of disruptions or traffic demands in the environment, DRL 

agents can improve their policies to obtain higher cumulative rewards throughout 

training. In Figure 8 (a) and (c), DRL agents in all the environments obtain a small mean 

episode reward at the beginning of training, which means that the performance of 

disrupted networks is almost the same as the fully operational network without any 

disruption. However, the DRL agents progressively improve their policies and obtain 

higher mean episode reward through training. This implies that they can identify 

vulnerable combinations of links and the disruptions have great impacts on the networks. 

After 250k training timesteps, the policies of DRL agents converged and obtained steady 

mean episode rewards.  
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Figure 8.  Mean episode reward over training (left column) and the travel time of vehicles in 

environments (right column) with different number of disruptions. White marks in the box plots represent 

the mean travel time. (a) and (b) are for the morning traffic demand, (c) and (b) are for the evening 

traffic demand. 

 

We evaluated the DRL agents with an evaluation scenario in which the cooling-down 

period continues until all the vehicles in the system finish their travel, so that the 

measured travel time includes the effect of congestion. The travel time of the vehicles 

whose travel is finished before the end of the warming-up period is not measured as they 

are not affected by disruptions. Considering the stochasticity of traffic simulation, we ran 

the evaluation scenario 20 times for each agent. We included the results in a fully 

operational network without disruption for comparison as a benchmark. Figure 8 (b) and 

(d) show the evaluation results. We can observe that although the medians do not have a 

big difference, the number of vehicles that suffered from large delays greatly increases 
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with the disruptions by the DRL agent, thus the average travel time also increases. This 

results clearly show that the DRL agents can identify the vulnerabilities in the network 

and cause congestion to degrade the performance of the network. 

To better understand the behavior of the DRL agents, we investigated the selections of 

the DRL agents. Figure 9 shows the most frequently selected combinations of links by 

the DRL agents in the evaluations with 5 disruptions. We can observe that the agents first 

disrupted the bottleneck links for the access between UC Davis and the rest of the 

network, and then disrupted the freeways that have a high capacity. Since there are many 

commuters to UC Davis, disruption of the bottleneck links to the university forces the 

traffic to be concentrated on the remaining bottlenecks causing heavy congestion. Also, 

the disruption of the high-capacity roads compels the vehicles to go through low-capacity 

roads that have larger delays and easily get congested. This shows that the DRL agent 

captures the singularities of the network topology, traffic demands, and the capacity of 

the roads, and exploit the knowledge to select critical combinations of links. 

 

Figure 9.  The most frequently disrupted links by the DRL agents in the environments with 5 disruptions. 

(a) morning traffic demand (b) evening traffic demand. 
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We evaluated the proposed DRL-based method in the environment with 5 disruptions 

against two different heuristic-based methods that use betweenness centrality and traffic 

counts respectively. Many prior studies [34] [35] [36] [37] in road network analysis used 

betweenness centrality to identify important road segments. Betweenness centrality [38] 

shows how frequently an edge lies on the shortest paths connecting a pair of nodes in a 

graph. In a road network, the higher betweenness of an edge, the more it provides the 

shortest routes between OD pairs in the network and is likely to contribute to the 

transportation in a city. The betweenness centrality 𝐶𝐵 of an edge 𝑒 is defined by 

𝐶𝐵(𝑒) =
1

𝑁(𝑁 − 1)
∑

𝜎(𝑠, 𝑡|𝑒)

𝜎(𝑠, 𝑡)
𝑠,𝑡 𝜖 𝑉

 (5) 

where 𝑁 is the number of nodes in a graph, 𝑉 is the set of nodes, 𝜎(𝑠, 𝑡) is the number of 

shortest paths between an origin and destination pair (𝑠, 𝑡), and 𝜎(𝑠, 𝑡|𝑒) is the number of 

those paths that passing through edge 𝑒 . Considering that vehicles reroute to avoid 

disruptions, we repeated to compute 𝐶𝐵 in the network, disrupt the edge with the highest 

𝐶𝐵, and then re-compute 𝐶𝐵 and disrupt the next edge with the highest 𝐶𝐵 until 5 edges 

are disrupted. Figure 10 shows the 5 links selected by this approach. In the evaluation 

scenario, one of the pre-selected edges is disrupted at each timestep in the order the edges 

are selected by the heuristic. 
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Figure 10.  5 selected links by the heuristic that uses betweenness centrality. 

 

The other heuristic-based method is to use traffic counts to select links to disrupt. Traffic 

counts of a road segment show the traffic volume that went through the road for a 

specific period in the past, which are often used to identify critical flows and improve 

traffic systems in the real world, and are collected by many governmental traffic 

departments [23]. In the evaluation scenario, traffic counts are measured between the 

current timestep and the last timestep by the number of vehicles that entered each edge. 

For the initial timestep, the traffic counts in the warming-up period are measured. At each 

timestep, the edge with the highest traffic counts is disrupted. 

Figure 11 shows the travel time of vehicles in the environments in which 5 links to 

disrupt are determined by heuristic-based methods (𝐶𝐵  and traffic counts) and our 

proposed DRL-based method, respectively. The results in the fully operational network 

are included for comparison as a benchmark. We can observe that the DRL-based method 

significantly outperforms the heuristic-based methods with both morning and evening 



  37 

 

traffic demands, causing a huge increase in the travel time of vehicles. These results 

imply that the heuristic-based methods are limited in identifying vulnerabilities compared 

to the proposed DRL-based method. Since the heuristics focus on specific aspects of the 

network, they may ignore some of the complex and dynamic nature of road networks. For 

example, although betweenness centrality is a useful indicator to identify topological 

singularities in networks, it overlooks the traffic demands in road networks and the time-

varying delays of road segments. On the other hand, the DRL-based method does not 

have any pre-defined heuristic. Instead, the DRL agent directly optimizes its policy to 

cause large degradation of the performance of a road network. Unlike heuristic-based 

methods that specific possibly useful metrics are explicitly used to determine vulnerable 

links, the DRL-based approach is an effect-based method that the reward for the DRL 

agent is obtained only from the consequence of disruptions (i.e., traffic volume in the 

road network). However, after proper training, the DRL agents can make decisions that 

various conditions are comprehensively reflected such as traffic demands, topological 

singularities, and congestion-induced delays, as shown in Figure 9. 

 

Figure 11.  The travel time of vehicles in the environments with different disruption policies. White marks 

in the boxplot represent the mean travel time. (a) morning traffic demand (b) evening traffic demand. 
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7 CONCLUSION AND FUTURE WORKS 

In this thesis, we propose a DRL framework to identify vulnerable combinations of links 

in road networks. Our proposed method parameterized the policy of the DRL agent with 

DNNs and train the agent with the experiences from traffic simulations. Contrary to the 

dominant approaches in this field of study that use brute force simulations with 

disruptions on all the possible combinations of links, the DRL-based approach takes 

advantage of the powerful generalization techniques of DRL to extract knowledge from 

experienced disruptions that can be used for unexplored disruptions using DNNs. This 

enables the DRL agent to identify disruptions on links that cause significant degradation 

in the service quality of the road network. The results in our case study demonstrate that 

the DRL agents can make successful decisions to disrupt critical links considering 

various conditions in road networks such as traffic demands, topological singularities, 

and congestion-induced delays. 

An interesting future research topic would be training DRL agents in environments with 

flexible scenarios such as the interval between disruptions is not fixed, the network has 

elastic traffic demand, or disrupted links can be recovered. For simplicity, we controlled 

these elements stationary in the environments and do not include them in the observation 

space. However, we believe DRL agents can potentially learn in more complex and 

flexible environments in which these elements are variable and included in the 

observation space so that a general DRL agent can be used for various settings rather than 

training an individual DRL agent for each different environment.  
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