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Radially convergent groundwater flow in sloping terrain 
 
 
ROY B. LEIPNIK1 & HUGO A. LOÁICIGA2 

1 Department of Mathematics, University of California, Santa Barbara, California 93106, USA 
leipnik@math.ucsb.edu  

2 Department of Geography, University of California, Santa Barbara, California 93106, USA 
hugo@geog.ucsb.edu  
 
Abstract The groundwater flow equation governing the elevation (h) of the steady-state phreatic surface 
in a sloping aquifer fed by constant recharge over a bi-circular sector is rhh′ – r2Bh′ + Pr2 – PR2 = 0, 
where r is the radial coordinate, P is a constant involving recharge and aquifer properties, and B is the 
slope of the aquifer–bedrock boundary. The derived flow equation describes radially convergent flow 
through a sloping aquifer that discharges to a water body of fixed head. One important simplification is 
that in which the width of the bi-circular sector is constant, and the draining land becomes a rectangular 
aquifer. The bi-circular sector and rectangular-strip groundwater flow problems are solved in terms of 
implicit equations. The solutions for the steady-state phreatic surfaces depend on the ratio of recharge to 
hydraulic conductivity, the slope of the aquifer–bedrock, and the downstream constant-head boundary. 
Computational examples illustrate the application of the solutions.  
Key words aquifer recharge; hydraulic conductivity; ordinary differential equation; phreatic surface;  
unconfined flow  

Ecoulement souterrain radialement convergent en terrain pentu 
Résumé L’équation d’écoulement souterrain qui gouverne la cote (h) de la surface libre stabilisée d’un 
aquifère en pente alimenté par une recharge constante via un secteur bi-circulaire est rhh′ – r2Bh′ + Pr2 –
PR2 = 0, où r est la coordonnée radiale, P est une constante qui dépend de la recharge et de propriétés de 
l’aquifère, et B est la pente de l’interface aquifère–substrat. L’équation d’écoulement qui en est déduite 
décrit l’écoulement radialement convergent à travers un aquifère en pente qui s’écoule vers un exutoire 
d’altitude fixée. Le cas où la largeur du secteur bi-circulaire est constante et celui où l’aquifère est de 
forme rectangulaire sont deux cas simplificateurs importants. Les problèmes d’écoulement d’un secteur 
bi-circulaire et d’une nappe rectangulaire sont résolus au moyen d’équations implicites. Les solutions 
des surfaces libres stabilisées dépendent du rapport entre recharge et conductivité hydraulique, de la 
pente de l’interface aquifère–substrat et de la limite aval d’altitude fixe. Des exemples de calcul 
illustrent la mise en application des solutions. 
Mots clefs recharge d’aquifère; conductivité hydraulique; équation différentielle ordinaire; surface libre;  
écoulement à surface libre 
 
 
INTRODUCTION 
 
The study of unconfined groundwater flow through sloping terrain owes its importance 
to the centrality that infiltration, aquifer recharge, and the ensuing perched phreatic 
surfaces have on runoff formation (Dunne, 1990; Smith, 2002; Cherkauer & Ansari, 
2005; Loáiciga, 2005; Loáiciga & Huang, 2005). The geometry of phreatic surfaces in 
sloping aquifers is also useful in the calculation of groundwater discharge, in the 
analysis of slope stability, in the estimation of pore pressure created by perched 
groundwater, and its role on subsurface erosion (Terzaghi et al., 1996; Coduto, 1999).  
 One situation of interest is that of a bi-circular sector of land that receives constant 
recharge (N) giving rise to unconfined groundwater discharging to a water body at the 
downstream end of the sloping terrain, see Fig. 1. A second situation arises when the 
tributary aquifer has a rectangular geometry as shown in Fig. 2. These two geometries 
of sloping unconfined aquifers were investigated by Dunne (1990), who wrote the 
governing equations for the height of the corresponding phreatic surfaces. No solutions 
were provided in Dunne (1990) for the sloping-aquifer case, however, and the case of 
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the bi-circular-sector geometry remained unsolved in analytical form. Loáiciga (2005) 
presented implicit solutions for the case of sloping rectangular unconfined ground-
water flow discharging to a stream or lake of constant water level h0 (see Fig. 2).  
 This article presents, for the first time, the analytical solution for the geometry of 
steady-state phreatic surfaces created by constant recharge over bi-circular sectors of 
land discharging groundwater flow to a constant-head downstream boundary (see the 
pertinent geometry in Fig. 1). The results presented here include quantitative analysis 
of the factors governing the analytical solution. In addition, this work contains a 
comparison of the solution for the bi-circular-sector case to that pertinent to the 
rectangular-aquifer case (presented in Loáiciga, 2005) with the aim of contrasting 
similarities and differences among the two types of sloping unconfined groundwater 
flow.  
 
 
GROUNDWATER FLOW EQUATION FOR A BI-CIRCULAR SECTOR 
 
The steady-state groundwater flow at a distance r, q(r), from the origin of the co-
ordinate system in Fig. 1 equals the volumetric rate of recharge that accumulates in the 
area comprised between R and r (θ is the convergence angle of the bi-circular sector):  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
⋅θ=

2
)(

22 RrNrq  Rrrs ≤≤  (1) 

The recharge rate N has units of volume per unit (horizontal) area of land and per unit 
time (i.e. length over time). Groundwater flow is directed towards the origin (where r 
= 0), hence the negative sign of q(r) in equation (1). It follows from equation (1) that 
q(R) = 0. The groundwater flow reaches a maximum at r = rs. There, the groundwater 
discharge per unit length of downstream boundary, )/()()( θ≡′ sss rrqrq , equals:  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=′

s

s
s r

rRNrq
22

2
)(  (2) 

Equation (2) will prove useful in comparing radial groundwater discharge with 
groundwater discharge in a rectangular aquifer (see equation (29)). 
 The groundwater flow in equation (1) must equal that obtained by using Darcy’s 
law, as follows (in which h′ = dh/dr; B ≡ tanβ; K = hydraulic conductivity, and the 
Dupuit assumption of nearly horizontal streamlines is used): 

( ) hrrBhKRrN ′θ−⋅−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
θ

2

22

 (3) 

The right-hand side of equation (3) implies that the groundwater flow may equal zero 
if (a) h = rB, in which case the saturated thickness is zero (this condition is implied in 
Fig. 1 at the location r = R, where h(R) = RB), or (b) h′(r) = 0, that is, the hydraulic 
gradient equals zero. Algebraic rearrangement of equation (3) produces the following 
equation governing the height of the phreatic surface under steady-state conditions 
(with P ≡ N/(2K)):  
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r = 0

R θ

rs
θ

r = R

r = rs

h= R tanβ

  = R B phreatic surface

phreatic
surface

hs

β

N

h

h = 0

aquifer bedrock boundary

q(rs )

rs B

 
Fig. 1 Flow geometry in a bi-circular sector with convergence angle θ. The stream or 
lake are located at r = rs, where the elevation of the phreatic surface equals hs. See the 
text for other notation involved. 

 
 
 

r = R

r = 0

h= R tanβ

  = R B phreatic surface

phreatic surface

h0

β

N

h

h = 0

aquifer bedrock boundary

b

qo

b

 
Fig. 2 Flow geometry in a rectangular strip of land of width b. The stream or lake are 
located at r = 0, where the elevation of the phreatic surface equals h0. See the text for 
other notation involved. 
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0222 =−+′−′ RPrPhBrhhr  Rrrs ≤≤   (4) shrh ≥)(

whose boundary condition is a constant head at r = rs: 

ss hrh =)(    (5) 

The boundary head is specified so that hs < RB to induce groundwater flow downslope. 
 The hydraulic ratio P = N/(2K) ranges between a minimum of 5 × 10-5 (corres-
ponding to N = 0.001 m day-1 and K = 10 m day-1) and 50 (when N = 0.1 m day-1 and 
K = 0.001 m day-1), typically, in unconfined aquifers (Loáiciga, 2005). As for the 
aquifer slope, 0 < B ≤ 0.1, so that the Dupuit assumption of nearly horizontal 
streamlines is well approximated. 
 The zero-slope case (B = tanβ = 0) leads to straightforward integration of equation 
(4) yielding:  

( )
2
1

2222 ln2)( ⎥
⎦

⎤
⎢
⎣

⎡
+−−= ss

s

hrrP
r
rRPrh  (6) 

Equation (6) returns h(rs) = hs. Solution (6) describes the phreatic surface with 
recharge that would develop in a horizontal aquifer connecting two lakes separated by 
a distance R – rs, one of which has elevation h(R) and the other elevation hs. Equation 
(6) will prove useful in the solution of the sloping-aquifer problem embodied by 
equations (4) and (5). 
 It is of mathematical and hydrologic significance that equation (4) is a special case 
of the Abel family of nonlinear ordinary differential equations (ODEs) of the form 

 (Abel, 1839), whose members appear fre-
quently in mathematical physics (see, e.g. Kamke, 1959), and in hydrological diffusion 
processes (Polubarinova-Kochina, 1962; Philip, 1993; Loáiciga & Huang, 2005). The 
solution of this type of ODE is usually approximated numerically using Runge-Kutta 
algorithms. Much more can be learned, on the other hand, by deriving analytical 
solutions of the type derived in the remainder of this paper.  

0)()()())(( 01
2

2 =+++′+ rfhrfhrfhrgh

 
 
SOLUTION OF THE FLOW EQUATION THROUGH A BI-CIRCULAR 
SECTOR 
 
Approaches to find analytical solutions to nonlinear differential equations rely on a 
variety of clever transformations and approximations (see, e.g. Kamke, 1959; Polyanin 
& Zaitsev, 1995). Infinite series sometimes prove successful for such tasks, as demon-
strated in this work. Assume that the solution h(r) of equations (4)–(5) satisfies the 
following expansion into infinite (implicit) series:  

( )∑
∞

=

=−=
0

)(),(
n

n
n

s krfhhrhF  (7) 

in which the weighting functions fn(r) and the constant k must be determined. Taking 
the derivative on both sides of equation (7) and noting that dF = (∂F/∂h)dh + 
(∂F/∂r)dr = dk = 0, produces the following result for the hydraulic gradient h′(r) 
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(letting dfn/dr = f′n): 
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rfhhn

rfhh
rh  (8) 

Substitution of equation (8) in the ODE (equation (4)) leads (using the identity h – rB 
= h – hs –(rB – hs)) to:  

( ) ( ) ( )∑∑∑
∞

=

−
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∞
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+ =−⎟⎟
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1 0)(
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s
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n
n

ssn
n

n
s fhhnr

r
RPfhhhBrfhh  (9) 

The coefficients of (h – hs)n, n = 0, 1, 2, 3, …, must equal zero for all values of h – hs if 
equation (9) is to hold. For n = 0 one obtains:  

( ) 0

2

1 fhBrr
r

RPf s ′−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⋅  (10) 

For n = 1:  

( ) 02 2

2

10 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⋅+′−−′ fr

r
RPfhBrf s  (11) 

The following recursion to generate the functions fn+1 is identified at once:  

( ) 1

2

1)1( −+ ′−′−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⋅⋅+ nnsn ffhBrr

r
RPfn  (12) 

for n = 1, 2, 3, …, where f ′0 is required to start the recursion via equation (10) 
involving f1 and f ′0.  
 Equation (7) implies that F(hs,rs) = f0(rs) = k. Furthermore, from the solution (6) 
for the case B = 0, let:  

222
ln

2
)()(

222
2

2

0
ss

s

hrPrP
r
rRPrhrf ++−==  (13) 

with derivative:  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⋅=′ r

r
RPf

2

0  (14) 

This implies, according to equation (10), that:  

shBrrf −=)(1  (15) 

This choice imposes the following value of the constant k in the series (7): 

khrfrhF s
sss ===

2
)(),(

2

0  (16) 

 The choice (13) for the starting weighting function f0(r) is not binding: others 
could be used (although f0(r) cannot equal a constant value). Equation (13), however, 
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happens to lead to the relatively simple recursion (12) for fn(r), n  1. It is appealing 
that it has a connection to the physically meaningful solution for phreatic surface when 
B = 0. 

≥

 The solution to equations (4)–(5) is given in implicit form by the following power 
series:  

( )∑
∞

=

=−=
0

2

2
)()(),(

n

s
n

n
s

hrfhrhrhF  Rrrs ≤≤   (17) shrh ≥)(

with the functions fn(r) generated by equation (12), starting with f0(r) and f1(r) in 
equations (13) and (15), respectively.  
 Certain combinations of B and P render phreatic surfaces in which the head h(r) 
falls in the interval (hs, RB). This is, in fact, the situation graphed in Fig. 1. Other com-
binations produce heads h > RB. The latter situation arises when the aquifer–bedrock 
slope B is so small and/or P so large that the saturated thickness must take relatively 
large values to drain all the accruing recharge through the downstream boundary. The 
examples section illustrates the roles of B and P as controls of hydraulic head. 
 
 
CONVERGENCE OF F(h, r) AND COMPUTATION OF h(r) 
 
It can be shown that convergence of the power series in equation (17) requires that:  

( )
3

222

2,1 )(
r

Rrhrh s
−

<−λ  (18)  

in which 2,1λ  denotes the maximum magnitude of the roots of the quadratic equation 
Pλ2 – Bλ +1 =0, the roots being:  

P
PBB

2
4,

2

21
−±

=λλ  (19) 

which are complex if B2 < 4P. A complex root’s magnitude is 22
2,12,1 w+ν where = 

  (with i2 = –1). Equation (18) imposes a rather stringent convergence 
condition of the series F(h,r) in equation (17), especially in the limit r → R. 

2,1λ

2,1ν ± iw ⋅2,1

 The implementation of the implicit solution (17) requires choosing a value of r in 
the interval [ sr , δ+sr ], in which δ is a small increment of r. Next, the power series 
(17) is approximated by an expansion of order M, the functions fn(r), 0 ≤ r ≤ R, are 
calculated, and the following polynomial equation on h is solved:  

( )∑
=

≈−
M

n

s
n

n
s

hrfhrh
0

2

2
)()(  (20) 

An estimate of h(r) that satisfies equation (20) according to a user-specified closure 
criterion is taken as the solution h(r). To ensure accuracy of the solution, the first 
choice of r, r1 = rs + δ, must be quite close to rs. The head hs at rs is used as guess to 
start the search for h(r1). When an estimate for the latter is obtained, it is used as a 
starting guess for the next head at r2 = r1 + δ. This procedure is repeated for as many 
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values of r as deemed adequate to characterize the phreatic surface in the neighbour-
hood upstream of rs. To progress with the solution upstream beyond the vicinity of rs, 
one must reset the downstream boundary to one of the calculated pairs (r, h(r)). That 
is, rs becomes r and hs becomes h(r) in equations (10)–(17). The pair (r, h(r)) so 
established is used to reformulate equations (10)–(17) to continue solving for the 
hydraulic head upstream of the newly set boundary condition. This procedure is 
repeated until the upstream boundary is reached. This iterative solution procedure is 
known as analytic continuation and is a powerful tool in real- and complex-variable 
calculus (see further mathematical details in Needham, 1997, or Penrose, 2004, 
pp. 129–133). The polynomial equation (20) can be solved with numerical software 
such as Mathematica and Matlab, which feature symbolic operators to generate 
functions of type fn(r) (see equation (12)). It is recommended to use expansions of 
order M ≥ 5 in equation (20). 
 
 
THE CASE OF RECTANGULAR TRIBUTARY AQUIFER 
 
This section is an abridged version of the approach by Loáiciga (2005), and it is 
included for comparison purposes with the results presented in the previous section. 
Focusing on Fig. 2, the relationship between the recharge accruing to groundwater and 
the discharge expressed by Darcy’s law at a distance r from the origin requires that  
–N(R – r)b = –Kb(h –rB)h′, whose boundary condition is h(0) = h0. Notice that 
groundwater discharge equals zero at r = R, where either h = RB (that is, the saturated 
thickness is zero), or h′ = 0. Letting α = K/N in the previous ODE one obtains  
h′(r) = (R – r)/(αh – rαB) = (R – r)/z(r), in which z(r) = αh(r) – rαB and z′(r) =  
αh′ – αB. Replacing the expression for h′(r) into the latter equation produces the 
following ODE:  

0)()()()( =−⋅α−α+′ rRrzBrzrz   (21) 

Define the variable u = R – r. Thus, BuRuhuzuRrz α−−α=≡−= )()(~)(~)( , where 
. Let)()(~ uRrhuh −== α= /)(~)( uzuy . Using u and y(u) in equation (21) yields the 

following equation (where BNKBa /=α= ):  

0)()()( =+−′ uuyauyuy  Ru ≤≤0  (22) 

which is an Abel-type, nonlinear, ODE. Its boundary condition is:  

0
)0()( hhRy α=

α
α

=  (23) 

 An order-of-magnitude analysis of the flow parameter a = BNK / is warranted. 
The factor NK / typically ranges between 0.1 (when K = 0.001 m day-1 and  
N = 0.1 m day-1) and 100 (when K = 10 m day-1and N = 0.001 m day-1) in perched 
aquifers. Limiting the aquifer slope to the range 0 < B = tanβ ≤ 0.1 bounds the flow 
parameter so that 0 < a ≤ 10, a meaningful range from a practical standpoint. 
 Upon solution of equations (22)–(23) for y(u), the hydraulic head h(r) is recovered 
by means of the following identity:  
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)()()()(~)()()(~ rhBrrzBuRuzBuRuyuh =
α

α+
=

α
α−+

=
α

α−+α
=  (24)  

with . 0)0( hh =
 Unlike the ODE (4) for radial discharge, equation (22) can be integrated in finite 
form. There are three solution pathways for the phreatic surface, corresponding to the 
cases a = 2, a > 2, and a < 2. This is a mathematical necessity. From a physical point 
of view, however, the phreatic surface varies continuously over the range of the flow 
parameter a (that is, over a > 0). 
 The case a = 2 produces the following implicit solution for y(u):  

1
)(e)( kuyu uyu

u

=⋅− −  (25) 

in which k1is a constant obtained from the boundary condition (23) for y(R). 
 The case a > 2 produces the following implicit solution for y(u):  

21

221 )()( vv uvuykuvuy ⋅−=⋅⋅−  (26) 

in which 2/)(,2/)( 21 δ−−=δ+−= avav , where , and k2 is a constant 
calculable from the boundary condition (23).  

2/12 )4( −=δ a

 Lastly, the case a < 2 produces the following implicit solution for y(u):  

322

22

4)(

)(2arctg
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2)()(ln k
auy

uyau
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auyuyuau =
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⎥
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⎤

⎢
⎢
⎣

⎡

−

+
⋅

−
++⋅⋅+  (27) 

In which “arctg” denotes the inverse tangent function, expressed in radians, and k3 is 
an integration constant obtained from the boundary condition (23). 
 
 
PERSPECTIVES ON THE RADIAL AND RECTANGULAR FLOW 
SOLUTIONS 
 
The ODE (4) for bi-circular-sector discharge is mathematically more complex than that 
for rectangular-strip discharge in equation (21). This fact is reflected in the approxi-
mated and iterative nature of its solution by a truncated power series (equation (20)). It 
is fair to state that the bi-circular-sector problem is “more nonlinear” than the rec-
tangular-strip one. In the latter case, a physically meaningful flow factor that ties 
hydraulic conductivity, recharge and bedrock slope controls the solution pathway, of 
which there are three possible ones, all of them expressible in terms of combinations of 
elementary functions and the downstream boundary condition. 
 One common theme to the ODEs (4) and (21) is that their hydraulic heads at the 
headwater, h(R), may either equal the elevation of the aquifer–bedrock boundary  
(= RB), in which the saturated thickness of groundwater flow is zero, or have a 
gradient h′(R) = 0. These two conditions force zero discharge at the headwater, and all 
the recharge drains through the downstream end of the aquifer. Yet, it is plausible that 
when the aquifer–bedrock boundary’s slope is very mild and/or the recharge over 
conductivity ratio sufficiently large, there may be mounding of the phreatic surface and 
the recharge may drain through both the downstream and upstream boundaries of the 
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sloping aquifer. The ODE for flow in a bi-circular sector with specified upstream flow 
q(R) (in the direction of increasing r) is a slightly modified version of equation (4):  

0)(222 =
θ⋅

+−+′−′
K

RqRPrPhBrhhr  (28) 

The solution of the ODE (28) is arrived at with methodology analogous to that 
presented in equations (7)–(17) after proper consideration is given to the rightmost 
(constant) term on the left-hand side of the equation.  
 In comparing the solutions for h(r) stemming from bi-circular sectors and rect-
angular strips, it is desirable that their discharges per unit length of downstream 
boundary be the same for either geometric configuration. In other words (see Figs 1 
and 2 to review the involved geometries):  

s

s

r

rRN

b
bRN ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
⋅

=
⋅⋅ 2

22

 (29) 

in which the left-hand and right-hand sides represent the unit discharges in the 
rectangular strip and bi-circular sectors, respectively. Solving for the offset distance rs 
yields: 

( ) RRrs 414.012 ≈−=  (30) 

which fixes rs to produce equal unit downstream discharges for given R and any 
rectangular width b. Equation (30) shall prove useful in the next section dealing with a 
computational example.  
 
 
COMPUTATIONAL EXAMPLE 
 
The effect of aquifer slope on the phreatic surface 
 
The effect of the slope of the aquifer–bedrock boundary (B) on the phreatic elevation 
h(r) in a bi-circular sector is illustrated in Figs 3 and 4. The hydraulic ratio is  
P = N/(2K) = 10-3/(2 × 1) = 5 × 10-4, where N and K are in m day-1; R = 1000 m, and 
rs = ≈−12 0.414R in both figures. The radial offset rs was chosen so that the unit 
downstream discharge in the bi-circular sector is equal to the unit discharge from a 
rectangular strip of length R = 1000 m and width b (see Fig. 2, equation (32)). The 
head hs= rsB + 2 m so that the downstream saturated thickness equals 2 m in Figs 3–4.  
 Figure 3 corresponds to the case of steeper slope B = 0.1. It is seen there that the 
hydraulic head h(r = R) equals the bedrock elevation RB = 100 m at the upstream 
boundary, for a saturated thickness equal to zero at r = R, implying nil groundwater 
flow there. The saturated thickness (= h(r) – rB) increases with decreasing distance 
from the origin up to a distance of about 0.48R. Thereafter, the saturated thickness 
decreases (while the hydraulic gradient increases) towards r = rs to achieve its down-
stream value equal to 2 m. The groundwater velocity v(r) = K⋅h′(r) varies throughout 
the flow length, being controlled by the hydraulic-head gradient, which is seen to be 
largest as the downstream boundary is approached.  
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Fig. 3 Calculated phreatic surface (h(r)) in a bi-circular sector; hydraulic ratio P = 5 × 
10-4, slope of the aquifer–bedrock boundary B = 0.1; R = 1000 m; the sector starts at 
rs = 0.414R; downstream head hs = rsB + 2 m. See text for details. 
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Fig. 4 Calculated phreatic surface (h(r)) in a bi-circular sector; hydraulic ratio P = 5 × 
10-4, slope of the aquifer–bedrock boundary B = 0.01; R = 1000 m; the sector starts at 
rs = 0.414R; downstream head hs= rsB + 2 m. See text for details. 

 
 
 Figure 4 displays the calculated hydraulic head in a bi-circular sector for the case 
of an aquifer–bedrock slope B = 0.01, the mildest of the two considered in this 
example. Other input variables and parameters are the same as those used in Fig. 3. 
There is clear departure in the geometry of the phreatic surface depicted in Fig. 4 
relative to that observed in Fig. 3, which features a steeper slope. The saturated 
thickness equals 17.1 m at r = R, the upstream boundary, and achieves a maximum 
near r = 0.85R, with a minimum equal to 2 m at the downstream boundary. The 
considerable saturated thickness observed throughout the aquifer in Fig. 4—much 
larger than that in Fig. 3—is necessary to convey groundwater discharge over a 
relatively mild slope. The hydraulic-head gradient is zero at the upstream boundary, a 
necessity imposed by the zero-discharge condition at that location. The hydraulic-head 
gradient increases with decreasing distance from the origin to reach a maximum at the 
downstream boundary, where the saturated thickness is equal to 2 m (the same as in 
Fig. 3). Evidently, the groundwater velocity increases—driven by a steeper hydraulic 
gradient—as the downstream boundary is approached.  
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The effect of hydraulic conductivity on the phreatic surface 
 
Figure 5 shows the effect of hydraulic conductivity on the phreatic surface, all other 
factors kept constant. The slope of the aquifer–bedrock boundary is B = 0.01. 
Phreatic surfaces were calculated for (a) a hydraulic conductivity K = 1 m day-1 and 
hydraulic ratio P = N/(2K) = 10-3/(2 × 1) = 5 × 10-4 (already shown in Fig. 4), and  
(b) K = 50 m day-1, with P = N/(2K) = 10-3/(2 × 50) = 10-5. The top curve in Fig. 5 
shows the calculated hydraulic head (h) for K = 1 m day-1. The middle curve is the 
hydraulic head corresponding to K = 50 m day-1. The bottom curve is the aquifer–
bedrock boundary. It is clear from Fig. 5 that the five-fold rise in hydraulic 
conductivity reduces the saturated thickness substantially, from 17.1 m to 0 m at r = R, 
for example, as the hydraulic conductivity rises from 1 to 50 m day-1. This is due to 
greater groundwater velocities and associated reduction of saturated thickness needed 
to drain the same amount of groundwater flow.  
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Fig. 5 Calculated phreatic surface (h(r)) in a bi-circular sector; slope of the aquifer–
bedrock boundary B = 0.01; R = 1000 m; the sector starts at rs = 0.414R; downstream 
head hs = rsB + 2 m. The top curve corresponds to a hydraulic ratio P = 5 × 10-4 with  
K = 1 m day-1. The middle curve corresponds to a hydraulic ratio P = 10-5 with  
K = 50 m day-1. See text for details. 

 
 
Comparison of bi-circular and rectangular-strip phreatic surfaces 
 
Figure 6 shows the computed hydraulic head h(r) in a rectangular strip and bi-circular 
sector. The former is R = 1000-m-long, while the latter spans from rs = 0.414R (see 
equation (32)) to r = R. Both aquifers discharge the same flow of groundwater per unit 
length of downstream boundary (= NR). The aquifer–bedrock boundary’s slope equals 
B = 0.06325. This choice of slope renders the flow parameter a equal to 2, which is the 
value of the bifurcation threshold in the case of a rectangular-strip aquifer. In addition, 
K = 1 m day-1, and N = 10-3 m day-1for both aquifer geometries. The hydraulic ratio  
P = N/(2 K) = 5 × 10-4 and the flow factor a = BNK /  = 2 in the bi-circular sector and 
rectangular strip, respectively. It is seen in Fig. 6 that the rectangular strip requires a 
longer flow length and relatively larger saturated thickness for r/R < 0.6, approximately, 
relative to the bi-circular sector. The rectangular strip exhibits smaller hydraulic-head 
gradients than the bi-circular sector, thus supporting lower groundwater velocities for the 
stated conditions.  
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Fig. 6 Calculated phreatic surface (h(r)) in a rectangular strip and in a bi-circular 
sector. Slope of the aquifer–bedrock boundary B = 0.06325; R = 1000 m; downstream 
saturated thickness = 2 m in both cases. The sector starts at rs = 0.414R. The hydraulic 
ratio P = 5 × 10-4 for the sector, while the flow factor a = 2 for the strip, both with 
K = 1 m day-1 and N = 10-3 m day-1. The unit discharge through the downstream 
boundaries of the strip and sector is the same (= NR). 

 
 
CONCLUSION 
 
An implicit solution was developed for the geometry of the steady-state phreatic 
surface in a sloping unconfined aquifer with bi-circular sectorial (planar) geometry. 
This aquifer geometry conforms to radially convergent groundwater flow towards a 
downstream boundary (lake or stream) with constant water level. The implicit solution 
allowed investigation of the role of hydraulic characteristics (recharge, hydraulic con-
ductivity) and geometry (slope, flow length, radial convergence) on the shape of the 
steady-phreatic surface with constant-head downstream boundary. In addition, results 
for the radially convergent groundwater flow were compared with those of the 
previously solved rectangular sloping aquifer.  
 The presented solutions for steady-state phreatic surfaces in sloping aquifers are of 
practical value from hydrological and geotechnical perspectives. Inferences concerning 
the height of saturation, groundwater velocities (from Darcy’s law), flow accumula-
tion, pore-pressures, and aquifer–stream or aquifer–lake interactions can be improved 
with the aid of the derived analytical solutions. 
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