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Multiscale simulation of ideal mixtures using smoothed dissipative
particle dynamics

Nikolai D. Petsev, L. Gary Leal, and M. Scott Shell
Department of Chemical Engineering, University of California at Santa Barbara, Santa Barbara,
California 93106-5080, USA

(Received 17 November 2015; accepted 8 February 2016; published online 26 February 2016)

Smoothed dissipative particle dynamics (SDPD) [P. Español and M. Revenga, Phys. Rev. E 67,
026705 (2003)] is a thermodynamically consistent particle-based continuum hydrodynamics solver
that features scale-dependent thermal fluctuations. We obtain a new formulation of this stochastic
method for ideal two-component mixtures through a discretization of the advection-diffusion equation
with thermal noise in the concentration field. The resulting multicomponent approach is consistent
with the interpretation of the SDPD particles as moving volumes of fluid and reproduces the correct
fluctuations and diffusion dynamics. Subsequently, we provide a general multiscale multicomponent
SDPD framework for simulations of molecularly miscible systems spanning length scales from
nanometers to the non-fluctuating continuum limit. This approach reproduces appropriate equilibrium
properties and is validated with simulation of simple one-dimensional diffusion across multiple length
scales. C 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4942499]

I. INTRODUCTION

Stochastic particle descriptions for mesoscale phenomena
have become ubiquitous in simulation due to their ability
to accurately reproduce hydrodynamic behavior over time
and length scales beyond what is feasible in fully resolved
molecular dynamics (MD). In this coarse-grained picture,
the detailed underlying molecular structure is ignored
and the problem domain is instead decomposed into a
collection of fluid volumes or clusters of atoms/molecules,
with appropriately chosen interparticle interactions between
them such that desired thermodynamic and hydrodynamic
properties of the original fluid are preserved. Coarse-grained
particle descriptions of fluids are often obtained from a
“bottom-up” perspective, where the coarse model is extracted
from detailed molecular simulations or principles and features
a smoother representation of the free energy landscape that
allows for large time-stepping. Alternatively, it is possible
to adopt a “top-down” approach and use a coarse-grained
fluid description that ignores molecular detail altogether, such
as the continuum transport equations. Degrees of freedom
absent in the coarse model are approximated by introducing
additional features (e.g., fluctuations of field variables).

Smoothed Dissipative Particle Dynamics (SDPD)1 is
one such particle-based top-down approach and has been
applied to a number of phenomena, including pinned DNA
in shear flow,2 colloidal particles,3 the flow of blood,4

intravascular drug delivery,5 suspensions,6 and viscoelastic
flows.7,8 Thieulot et al.9,10 developed a SDPD-like model for
a phase-separating fluid mixture by introducing fluctuations
through the GENERIC formalism11–13 following a particle
discretization of the appropriate continuum equations. In
addition, Ellero et al.8 used GENERIC to obtain a discretized
advection-diffusion equation for a system of Hookean
dumbbells in solvent. For the most part, however, SDPD

has been limited to single-component systems or suspensions
where dissolved particles are equal in size or larger than
the SDPD particles (e.g., colloidal or polymeric systems).
Multicomponent problems have also been considered in other
types of particle-based mesoscale simulations,14,15 although
this is done in an ad hoc fashion where fluid volumes assume
a unique identity (e.g., a particle in a two-component mixture
is either type A or type B). This simple approach is easy
to implement and qualitatively adequate in many cases, but
not consistent with the interpretation of particles as fluid
volumes, since a single particle in a homogeneous fluid
mixture should contain some amount of solute and solvent.
Therefore, a more rigorous extension of these kinds of particle
solvers for solutions should instead include an additional
variable associated with each fluid volume specifying the
concentration of solute at the particle. Recently, Li et al.
extended traditional particle-based solvers to advection-
diffusion-reaction systems.16 There have also been recent
developments by Kordilla et al.,17 who derived this type
of single-scale multicomponent stochastic particle method
through a direct particle discretization of the Landau-Lifshitz
fluctuating hydrodynamics equations for mass and momentum
transfer.18–20

In this paper, we take a different approach and instead
develop a multicomponent SDPD model that provides an
appropriate basis for multiscale simulation of hydrodynamic
phenomena through the GENERIC formalism,11–13 which
guarantees thermodynamic consistency. SDPD and other
particle-based fluid solvers are particularly attractive for
designing multiscale simulation strategies that reduce
computational cost through coarse-graining of select parts
of the system, while retaining a high level of detail in
others. This is motivated by an abundance of problems
in molecular and interfacial physics that involve processes
featuring multiple characteristic length scales. In particular,
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there have been a number of studies describing approaches
for coupling MD regions to continuum domains, which makes
it possible to preserve molecular resolution where necessary
and use a simpler, coarse-grained description where this level
of detail is not required.21–29 SDPD specifically has already
been used in coupled MD-continuum simulations.30 While
there are a number of hybrid simulation approaches for
single-component problems, developing general multiscale
strategies for multicomponent systems remains a major
challenge. Since SDPD has scale-dependent fluctuations, it
is ideally suited for multiscale problems, and an approach
for coupling two SDPD regions featuring different degrees
of coarse-graining has been developed by Kulkarni et al.31

Therefore, generalizing SDPD to multicomponent systems
immediately allows for a novel approach to multiscale
multicomponent simulation, which is the subject of this work.
This kind of particle-based Lagrangian description offers an
alternative to spatially adaptive approaches to solving the
fluctuating hydrodynamics equations in the Eulerian frame.32

SDPD addresses a number of issues present in one of
the most widespread bottom-up particle-based techniques,
dissipative particle dynamics (DPD).33,34 In DPD, the fluid
is modeled as a collection of particles, where each particle
is interpreted as a cluster of molecules that is locally at
thermodynamic equilibrium. These mesoscopic fluid volumes
interact with one another and evolve in time through a
Langevin-type equation of motion; particles experience a
soft repulsion as they approach along the line joining their
centers, as well as pairwise viscous and random forces
with magnitudes chosen in accordance with the fluctuation-
dissipation (FD) theorem. This approach preserves Galilean
invariance and conserves mass and momentum, giving rise
to hydrodynamic behavior.35 DPD has been applied to a
wide range of problems, ranging from polymer solutions
and melts36–39 to the rheology of spherical and non-spherical
colloids,40–42 membranes,43,44 surfactant monolayers,45 and
vesicles.46,47 Atomistic interaction potentials, or ones obtained
from inverse thermodynamic approaches,48,49 can also be
used in place of the softly repulsive conservative DPD
force, i.e., the viscous and fluctuating DPD interactions also
provide a basis for thermostatting a fluid in a non-equilibrium
setting.50–52 Despite great success in modeling a broad range
of mesoscale phenomena, DPD suffers from a number of
limitations. Fluid transport coefficients (e.g., bulk and shear
viscosities) do not appear in the equations of motion and are
related to the free parameters of the DPD model in an indirect
fashion through kinetic theory.53,54 Moreover, traditional DPD
fixes the form of the conservative force and, in turn, the
equation of state such that it is always quadratic in the fluid
density.

These issues were resolved by Español and Revenga,
who derived the so-called SDPD1 starting from a particle
discretization of the hydrodynamic equations known as
smoothed particle hydrodynamics, or SPH.55–57 SPH is
a continuum approach originally developed for modeling
astrophysical problems and later modified for simulation
of flows in the low Reynold’s number limit.58 Here, the
fluid is approximated as a collection of Lagrangian particles
that evolve in time according to an equation of motion

obtained from an interpolation theory discretization of the
Navier-Stokes equations. By introducing fluctuations into the
hydrodynamic variables of the SPH equations in accordance
with the second law, Español and Revenga obtain a general
model for fluids at the mesoscale that is rigorously derived
from a top-down perspective. The resulting approach (SDPD)
corresponds to a particle discretization of the Landau-Lifshitz
Navier-Stokes equations and offers a number of advantages
over traditional particle-based mesoscale techniques such
as DPD.1 Since the basis for SDPD is the continuum
hydrodynamic equations, transport coefficients are naturally
included and appear in the final equations of motion, and it is
possible to use an arbitrary equation of state for calculating
the pressure distribution. Importantly, the characteristic length
scale in SDPD is properly defined and determined by a
parameter known as the “smoothing length.” For systems
involving small smoothing lengths, the corresponding fluid
particles are very small and therefore subject to large thermal
fluctuations. Similarly, in the limit of large smoothing lengths
and hence large particles, fluctuations disappear altogether
and the deterministic SPH equations of motion are recovered.

We follow the approach in Ref. 1 in this work and
start from a continuum, top-down perspective to derive a
discrete particle model for ideal binary mixtures where the
concentration field is specified by defining a concentration
associated with each fluid particle. Unlike Ref. 17, we
introduce thermal noise through the GENERIC framework
and obtain a model that presents a convenient basis for
multiscale simulation. Although this approach is only valid
for ideal mixtures, it is still useful for a host of problems, such
as biological and drug delivery applications where the ideal
assumption is valid due to the dilute concentrations. In using
the fluctuating hydrodynamic equations for two-component
solutions as a basis, we obtain a model where a particle is no
longer limited to the discrete choice of assuming identity A
or B, but rather has associated with it a variable indicating the
mass fraction of solute contained in the particle volume. We
reconcile this multicomponent SDPD approach with existing
multiscale techniques and provide a general SDPD formalism
for multiscale multicomponent simulation. In Section II, we
derive a fluctuating concentration smoothed particle model
for a quiescent system (i.e., in the absence of any flow fields).
In Section III, the model is generalized for systems with flows
and fluctuations in the velocity field, and in Section V, we
describe how this method is used in multiscale simulation.
The approach is validated through some simple multiscale
equilibrium and non-equilibrium benchmark problems in
Sections V and VI.

II. FLUCTUATING CONCENTRATION
MODEL DERIVATION

We first develop a mass diffusion model for a collection of
SDPD particles at a constant temperature with fixed positions.
The model is for a two-component incompressible fluid in the
ideal mixing limit. We then extend this approach in Section III
to cases with momentum transfer featuring thermal noise in
the velocity field, in which particles are not stationary. The
diffusion equation in the Lagrangian frame and in the absence
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of temperature gradients is given by59

dΦ
dt
=

1
ρ
∇ · (D∇Φ) . (1)

Here, D is the diffusion coefficient for the solute and is
defined in terms of units ML−1 t−1, the concentration Φ is a
mass fraction (hence, dimensionless), and ρ is the total mass
density of the solute-solvent mixture. The time derivative on
the left-hand side denotes the material derivative, although for
the present case where particle positions are fixed and there
are no velocities in the system, it is equivalent to a partial
derivative with respect to time.

Discretizing Eq. (1) through an interpolant function W ,
we obtain the SPH approximation for the diffusion equation,60

mi
dΦi

dt
= 2D

N
j=1

mim j

ρiρ j

*
,

1�
ri j

�
∂Wi j

∂ri j
+
-
Φi j . (2)

Here, mi is the mass of the ith particle, ρi is the density
of the ith particle, Φi j ≡ Φi − Φ j, and ri j is the relative
position vector for the particles i and j, ri j ≡ ri − r j. Wi j

is the smoothing function (described below). For simplicity,
transport coefficients are assumed to be uniform throughout
the system; for the more general case where the diffusion
constant varies in space, the quantity 2D in Eq. (2) is brought
inside the summation and replaced with 4DiD j/

�
Di + D j

�
,

where Di is the diffusion constant for the ith particle.60

The density at each particle can be updated from a
discretization of the continuity equation or by performing the
following summation at each time-step:

ρ (ri) =
N
j=1

m jW
�
ri − r j,h

�
. (3)

In this equation, h is the smoothing length, a parameter
that controls the size of the particles and hence the length
scale for the fluid. The smoothing kernel W

�
ri j,h

�
≡ Wi j is a

normalized bell-shaped function with compact support. One
possibility is a cubic spline, which is used for all numerical
tests presented in this work,31,57,61

Wi j(q) = 1
πh3




1 − 3
2

q2 +
3
4

q3, 0 ≤ q < 1
1
4
(2 − q)3, 1 ≤ q < 2

0, q ≥ 2

. (4)

Here, q = ri j/h.
The objective of this section is to introduce scale-

dependent thermal noise in the concentration field, which
is achieved through the GENERIC11–13 framework. In
GENERIC, the system dynamics are governed by the
following stochastic differential equations (SDEs):

dx =

L · ∂E

∂x
+ M · ∂S

∂x
+ kB

∂

∂x
· M


dt + dx̃. (5)

Here, x denotes the independent variables that completely
describe the system; in this case, it is fully specified by the set
of particle positions and the respective concentration at each
particle, x = {ri,Φi, i = 1, . . . ,N}. M is the dissipative matrix,
a positive semidefinite linear operator that acts on the entropy

gradients to generate the irreversible dynamics. E denotes
the total system energy and L is an antisymmetric operator
that translates energy gradients into reversible dynamics. For
the present case, this term is zero since the processes under
consideration are purely irreversible; this will not be the
case in Section III where fluid motion is considered. In the
above equation, dx̃ is the stochastic contribution. The term
kB (∂/∂x) · M appears due to the Itô interpretation of the
stochastic integral.11,13

For a two-component ideal mixture, the entropy of mixing
is simply

Si = −
(

mi

m0

)
kB [Φi lnΦi + (1 − Φi) ln(1 − Φi)] , (6)

where m0 denotes the mass of a single atom. Hence
mi/m0 = Ni, where Ni is the number of atoms or molecules
inside the ith SDPD particle. The driving force for an
irreversible process is given by the entropy gradient,

∂Si
∂Φi
= −

(
mi

m0

)
kB ln

(
Φi

1 − Φi

)
. (7)

Next, we postulate a form for the noise term. If we assume
pairwise fluxes between particles, the simplest possible choice
for introducing noise in a scalar field is

midΦ̃i =

N
j=1

Gi jdVi j . (8)

In this expression, dVi j is an increment of the Wiener process
with the antisymmetry dVi j = −dVj i, and Gi j is the noise
amplitude, which is symmetric under exchange of particles i
and j, Gi j = G j i. In practice, dVi j is approximated using a
randomly generated number drawn from a normal distribution
with unit variance and zero mean, dVi j ∼

√
∆tN (0,1).

Here, ∆t is the simulation time-step magnitude. The above
symmetries ensure that the amount of solute is a conserved
quantity, i.e.,

N
i=1

midΦ̃i = 0. (9)

The FD theorem relates the noise in Eq. (8) to the
dissipative matrix M . For any fluctuating state variable x,
the FD theorem can be written as dx̃d x̃T = 2kBMdt. Thus,
we use the FD theorem to write the ijth component of the
dissipative matrix as

Mi j =
dΦ̃idΦ̃ j

2kBdt
. (10)

We substitute the postulated noise terms [Eq. (8)] into Eq.
(10) and write Mi j in terms of the noise amplitude Gi j,

mim j

dΦ̃idΦ̃ j

dt
= δi j

N
j′=1

Gi j′G j j′ − G2
i j . (11)

Here, we have assumed delta correlated noise by applying the
mnemotechnical Itô rule dVii′dVj j′ =

�
δi jδi′j′ − δi j′δi′j

�
dt.1,62

For discrete particle models, the dot operator in Eq.
(5) corresponds to a sum over particle indices. Hence,
the stochastic dynamics for the concentration field are
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governed by

dΦi

dt
=


j

dΦ̃idΦ̃ j

2kBdt

(
∂Sj

∂Φ j

)
. (12)

All the quantities on the right-hand side of this expression
are known. Substituting Eqs. (7) and (11), we arrive at the
following evolution equation:

mi
dΦi

dt
= − 1

2m0

N
j=1

G2
i j


ln

(
Φi

Φ j

)
+ ln

(
1 − Φ j

1 − Φi

)
. (13)

In order to compare this with the discretized diffusion equation
[Eq. (2)], we modify Eq. (13) by first writing

ln
(
Φi

Φ j

)
=

1
2

ln
(
Φi

Φ j

)
− 1

2
ln

(
Φ j

Φi

)
. (14)

Linearizing the logarithmic terms, ln
�
Φi/Φ j

�
≈ Φi/Φ j − 1,

and recombining them,

ln
(
Φi

Φ j

)
≈ 1

2

(
1
Φi
+

1
Φ j

)
Φi j . (15)

Here, it is assumed that Φi/Φ j is close to unity, i.e., that
local concentration gradients and deviations from equilibrium
are small. The linearization in Eq. (15) is applied to both
logarithmic terms in Eq. (13), which gives the following
approximation after some algebra:

mi
dΦi

dt
= − 1

4m0

N
j=1

G2
i j

(
Θi + Θ j

ΘiΘ j

)
Φi j, (16)

where we have defined Θi = Φi (1 − Φi). For fluctuation-
dissipation to hold, this equation governing the dissipation
of the stochastic noise must be equivalent to the discretized
diffusion equation. Hence, by comparing this expression to
Eq. (2), we find that the following equality must be satisfied:

2Dmim j

ρiρ j

*
,

1�
ri j

�
∂Wi j

∂ri j
+
-
= − 1

4m0

(
Θi + Θ j

ΘiΘ j

)
G2

i j . (17)

Solving for the noise magnitude term Gi j,

Gi j =


−

8Dm0mim j

ρiρ j

(
ΘiΘ j

Θi + Θ j

)
1�

ri j
�
∂Wi j

∂ri j



1/2

. (18)

This is the SDPD discretized form of the noise amplitude
for the stochastic flux in the Landau-Lifshitz Navier-Stokes
equations for a binary mixture, G =


2m0DΦ (1 − Φ).63

Finally, we compute the term in Eq. (5) involving the
divergence of the dissipative matrix, kB (∂/∂x) · M , which
arises due to the Itô interpretation of the stochastic differential
equations. Calculating the divergence of the dissipative matrix
is generally undesirable,13 although since the model features
multiplicative noise, including this additional term may be
important. Hence, we calculate this term from

kB


j

∂

∂Φ j

dΦ̃idΦ̃ j

2kBdt
=

1
2mi


j

1
m j

∂

∂Φ j

× *.
,
δi j


j′

Gi j′G j j′ − G2
i j
+/
-
. (19)

Applying the delta function and simplifying, this reduces to

=
1

2mi


j

*
,

1
mi

∂G2
i j

∂Φi
− 1

m j

∂G2
i j

∂Φ j

+
-
. (20)

After substituting Eq. (18) into Eq. (20) and differentiating, it
is possible to write the final SDEs governing the concentration
field including the Itô term,

midΦi = 2D
N
j=1

�
1 − gi j

� mim j

ρiρ j

*
,

1�
ri j

�
∂Wi j

∂ri j
+
-
Φi jdt + midΦ̃i.

(21)

Eq. (21) is the discretized form of Eq. (1) with fluctuations in
the concentration field. The noise term is described by Eq. (8)
with amplitude given by Eq. (18). In the above equation, we
have defined the following quantity:

gi j = 2m0



(1 − 2Φi)m jΘ
2
j −

�
1 − 2Φ j

�
miΘ

2
i

mim j

�
Θi + Θ j

�2 �
Φi − Φ j

�

. (22)

Note that this contribution to the governing equation scales
inversely with particle mass. Hence, for large SDPD particles,
it is much smaller than the other terms and usually negligible.
For example, in Secs. IV–VI, we perform tests with particles
having masses such that gi j is a hundred times smaller than the
irreversible term in Eq. (21). Moreover, the SDPD particles
cannot be too small or the continuum assumption breaks down,
and thus this term’s influence will typically be minor relative
to the rest. Hence, in all of the numerical tests presented in this
paper, we ignore this contribution (i.e., we assume gi j ≈ 0).

III. SDPD MODEL FOR TWO-COMPONENT IDEAL
MIXTURE WITH FLOW

We now consider the more general case when particles
are allowed to translate due to flow fields in the system. In the
presence of fluid motion, the positions of the SDPD particles
evolve according to

dri
dt
= vi. (23)

The velocity vi can be determined from the momentum
equation in the Lagrangian description,59

ρ
dv
dt
= −∇p + η∇2v +

(
ζ +

η

3

)
∇∇ · v. (24)

Here, p denotes the pressure distribution, and η and ζ are the
shear and bulk viscosities, respectively. In discretized form,
this equation becomes1

mi
dvi

dt
= −

N
j=1

mim j
*
,

pi
ρ2
i

+
pj

ρ2
j

+
-

∂Wi j

∂ri j
ei j

+

(
5η
3
− ζ

) N
j=1

mim j

ρiρ j

*
,

1�
ri j

�
∂Wi j

∂ri j
+
-

vi j

+ 5
(
η

3
+ ζ

) N
j=1

mim j

ρiρ j

*
,

1�
ri j

�
∂Wi j

∂ri j
+
-

�
vi j · ei j

�
ei j .

(25)
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As before, transport coefficients are assumed constant for
simplicity.

The expression governing the evolution of the concen-
tration field remains unchanged from Section II since the
particles are now free to move, and velocities determined from
Eq. (25) are included in the material derivative of the equation
for the solute transfer, Eq. (21). Equilibrium fluctuations
in concentration and velocity are statistically independent,64

hence we do not need to impose any correlation between
velocity and concentration in the postulated form for the noise
of those quantities. Thus, the appropriate form for the velocity
noise for an ideal two-component system with flow at constant
temperature is the same as for the single-component case,1,62

midṽi =

N
j=1

(
Ai jdŴi j + Bi j

1
3

tr
�
dWi j

�
I
)
· ei j . (26)

In this expression, dWi j is a tensorial generalization of
the Wiener process and dŴi j is the traceless, symmetric
part of dWi j, dŴαβ

i j =
1
2


dWαβ

i j + dW βα
i j


− δαβ

3 tr
�
dWi j

�
. In

non-equilibrium systems, advection of concentration due
to velocity fluctuations in the fluid can lead to long-
ranged correlations between fluctuations in concentration
and velocity, which is responsible for the so-called
giant fluctuation phenomenon.65,63 This effect is naturally
incorporated into Lagrangian fluctuating particle models since
the velocity that appears in the material derivative of Eq. (21)
includes the stochastic contribution.17

The noise magnitudes for the fluctuations in the velocity
field are given by1

Ai j =


−

4mim jkBT
ρiρ j

(
5η
3
− ζ

)
1�

ri j
�
∂Wi j

∂ri j



1/2

,

Bi j =


−

4mim jkBT
ρiρ j

(
5η
3
+ 8ζ

)
1�

ri j
�
∂Wi j

∂ri j



1/2

.
(27)

The final SDE for the velocity field is1

midvi = −
N
j=1

mim j
*
,

pi
ρ2
i

+
pj

ρ2
j

+
-

∂Wi j

∂ri j
ei jdt

+

(
5η
3
− ζ

) N
j=1

�
1 − di j

� mim j

ρiρ j

*
,

1�
ri j

�
∂Wi j

∂ri j
+
-

vi jdt

+ 5
(
η

3
+ ζ

) N
j=1

�
1 − di j

� mim j

ρiρ j

*
,

1�
ri j

�
∂Wi j

∂ri j
+
-

×
�
vi j · ei j

�
ei jdt + midṽi, (28)

where

di j =
kB

4

(
1
Ci
+

1
Cj

)
. (29)

Once again, the term arising from the divergence of the
dissipative matrix scales inversely with an extensive quantity
(in this case, the extensive heat capacity) and hence becomes
negligible for large SDPD particles. This term is also not
included in the present calculations since we only consider
situations where particles are massive and this contribution

is small. For the cases considered in this paper, it is not
necessary to solve the entropy equation since it is decoupled
from the equations of mass and momentum transfer at constant
temperature.

Solid surfaces are treated in SDPD using virtual particles
frozen on a lattice, and Dirichlet boundary conditions are
imposed using the approach of Morris et al.,58 where
dissipative and random interactions between fluid and wall
particles are modified in order to enforce the correct boundary
values for the fields. For fluid-wall particle pair interactions,
the distance of the fluid particle from the wall d f and the
distance of the virtual particle from the wall boundary dw are
calculated. Next, we calculate a factor β from

β = 1 +
dw

d f
. (30)

This factor is used to rescale the dissipative terms in both
the momentum and diffusion equations, ensuring the solution
for the concentration and velocity assumes the correct values
at the interface. For every pair interaction, this is equivalent
to extrapolating the fluid particle’s concentration and velocity
across the interface and assigning values to the wall particle
such that boundary conditions are satisfied. Note that the
stochastic terms are rescaled by

√
β rather than β in order to

yield the correct fluctuation-dissipation balance.

IV. EQUILIBRIUM PROPERTIES OF FLUID MIXTURE

First, it is necessary to ensure that this model yields the
appropriate fluctuations at equilibrium. SDPD particles have
constant mass, but do exchange solute and solvent with their
neighbors. Therefore, solute and solvent exchange between
particle pairs are not independent, and if a particle loses
some amount of solute to a neighbor, it must gain the same
amount of solvent in order to conserve its mass. The variance
of the solute fluctuations at equilibrium for a fluid volume
with a constant mass constraint is obtained from a derivation
similar to that in Ref. 64. The resulting expression for the
concentration variance in a collection of SDPD particles each
having dimensionless mass m/m0 is given by(∆Φ)2 = m0 ⟨Φ⟩ (1 − ⟨Φ⟩)

m
. (31)

In the following simulations, we choose non-dimensional
units such that the mass of a single molecule or atom is unity
(m0 = 1). This implies that the dimensionless mass m of a
SDPD fluid volume equals the number of molecules N0 that
it contains, N0 = m. Hence, a particle with mass m = 100 can
be interpreted as a cluster or fluid volume comprised of 100
fluid atoms or molecules.

To evaluate equilibrium fluctuations in the new model,
we consider two cases: (1) quiescent fluid at equilibrium
with fluctuations in the concentration field alone, as described
in Section II and (2) quiescent fluid at equilibrium with
fluctuations in both concentration and velocity (described in
Section III). In the first case, particles exist on a cubic lattice
and their positions do not evolve in time. As a model fluid, we
choose parameters that mimic a simple Lennard-Jones-like
liquid, and all values are reported in reduced Lennard-Jones



084115-6 Petsev, Leal, and Shell J. Chem. Phys. 144, 084115 (2016)

units using the convention described in Refs. 30 and 31.
According to Eq. (31), the concentration fluctuations are
affected by the degree of coarse-graining (i.e., the SDPD
particle mass) and the average concentration in the system.
Hence, we vary these two parameters and perform equilibrium
simulations to ensure that we obtain the correct distribution of
concentrations for all cases. The particle masses considered
are m = 25, 100, and 200 (with corresponding smoothing
lengths h = 3.75, 6.00, and 7.50, respectively). The average
concentrations tested for each case are ⟨Φ⟩ = 0.25, 0.50,
and 0.75. For the m = 25 case, particles are initialized on
an 8 × 8 × 8 cubic lattice inside a box with dimensions
of 25 × 25 × 25 and periodic boundary conditions in all
directions. For the simulations with particles masses m = 100,
1000 particles are initially placed on a 10 × 10 × 10 lattice
inside a periodic 50 × 50 × 50 region. Finally, for the m = 200
case, we initialize an 8 × 8 × 8 cubic lattice of particles inside
a box with size 50 × 50 × 50. The system temperature is
T = 1.0 and the mass density is ρ = 0.8. For scenario (2), we
also solve the momentum equation and choose ζ = 0.966 and
η = 1.967 for the viscosities. For convenience, the diffusion
constant is assumed constant and set to unity (D = 1.0).

Fluid thermodynamic properties are determined by the
choice of equation of state, which is an input parameter in SPH
and SDPD. In these smoothed particle techniques, fluid motion
is driven by local density gradients. Therefore, incompressible
flows are typically approximated by choosing a quasi-
incompressible equation of state that leads to large pressure
gradients for small density perturbations. The equation of
state is constructed such that density variations are small
(it is recommended that density fluctuations remain within
3% of the target density58), while still allowing for practical
time-step magnitudes. Presently, we choose pi = ρic2

s,
31,56,57

where the speed of sound is cs = 5.0,31 giving average particle
density fluctuations within 1.1% of the desired value for all
tested fluid resolutions. The selected smoothing kernel is the
cubic spline [Eq. (4)]. The Euler-Maruyama integrator68 with
a time-step of ∆t = 0.001 is used for time-integration for case
1, where we have fixed particles’ positions. For case 2, the
same time-step is used and particle positions are evolved in
time using a modified velocity-Verlet algorithm commonly
used for DPD simulations,17,69 where the concentration field
is updated at the same points during the integration process as
the velocity. The system is equilibrated for 1 × 106 time-steps,
and the averaging is over 5 × 106 time-steps.

In Figure 1, the distribution of fluctuations determined
from the SDPD simulations at three different average concen-
trations is compared to the analytical result, given by Gaussian
distributions with the variance of Eq. (31). For clarity,
we only show results for the fixed-position tests (case 1).
The results for the runs where particles are allowed to move
are indistinguishable from the fixed-position case as expected,
since fluctuations in velocity and concentration are statistically
independent at equilibrium. For all tests, the numerical
calculations show excellent agreement with the analytical
result. The time-averaged variance for the ⟨Φ⟩ = 0.25 SDPD
simulations is within 0.8% of the theoretical result for the
case with m = 200. The error in the variance for the cases
with m = 100 and m = 25 is 1.7% and 6.5%, respectively. For

FIG. 1. Concentration probability distributions obtained from simulations
using multicomponent SDPD (colored markers) as compared to the analytical
result (black curves), given by a Gaussian with variance given by Eq. (31).
Solutions with three different average concentrations are simulated, ⟨Φ⟩
= 0.25 (circle markers), 0.50 (triangles), and 0.75 (squares). For each concen-
tration, we also consider three different particle masses, m = 25 (red markers),
100 (green), and 200 (blue). The results shown are for the fixed-position tests;
simulation results for the case where particle positions evolve in time do not
show any appreciable difference and are omitted for clarity.

the simulations with ⟨Φ⟩ = 0.50, the error in the distribution
variance is 0.5% for the m = 200 case, 1.1% for m = 100,
and 4.0% for m = 25. These errors are further reduced by
decreasing the time-step.

We find that low order integrators such as Euler-
Maruyama lead to precision issues if an insufficiently small
time-step is used. Concentration cannot assume negative
values (or values greater than one), and thus the distribution
of concentrations becomes increasingly asymmetric with
values of the average concentration approaching zero or
unity. This is more prominent for situations involving very
small SDPD particles since fluctuations become very large
and the distribution of concentrations becomes very broad.
A low-order integrator may not be sufficiently accurate to
prevent fluctuations that lead to unphysical concentrations
(Φi < 0 or Φi > 1). One possible approach to resolve these
kinds of issues when dealing with smaller SDPD particles
and dilute concentrations is to use an adaptive time-step
integrator for propagating concentrations and/or velocities in
time. This can be rigorously implemented through use of a
Brownian tree algorithm.70 With this algorithm, it is possible to
detect unphysical concentrations and dynamically reduce the
time-step as needed while preserving the original Brownian
trajectory of the particle concentrations. For the present work,
we simply choose an appropriately small time-step to avoid
numerical difficulties.

V. MULTISCALE MULTICOMPONENT SDPD

In this section, the multicomponent approach outlined in
Sections II and III is generalized to a multiscale simulation
approach using the formulation of Kulkarni et al.31 A similar
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FIG. 2. Depiction of the multiscale SDPD simulation interface region between fluids with different resolutions. The “fine” SDPD fluid has smoothing length
and mass h1 and m1, respectively. The “coarse” fluid in this example has a smoothing length of h2 and mass of m2= 2m1. The interface is divided into three
parts: (1) refining, (2) overlap, and (3) coarsening subdomains. Once a large particle crosses into the refining region, it splits into two small SDPD particles each
having half the mass of the parent particle. When a small particle crosses into the coarsening region, it is combined with another nearby particle into a large one.
Large and small particles coexist within the overlap domain.

method has been developed for bridging regions featuring
traditional DPD particles with a coarse-grained DPD particle
description.71 In both of these works, separate parts of the
simulation box contain SDPD/DPD fluids with varying levels
of detail. For the SDPD case, the resolution is determined by
the smoothing length parameter that controls the particle
masses, and hence the magnitude of the fluctuations.
Therefore, it is possible to couple a finely resolved SDPD
particle region (where particles have smoothing length h1 and
some corresponding mass m1) to a more coarse one (containing
particles with h2 > h1 and m2 > m1) by carefully constructing
an interface between the two different representations of the
bulk fluid. Fig. 2 illustrates how to interface two SDPD fluids
with different levels of detail for the case of large particles
twice as massive as the fine particles, where the large particles
therefore split into twos. The interface region is itself divided
into three separate subdomains (1) an overlap region, (2) a
coarsening region, and (3) a refining region. Particles in the
system are free to traverse the interface and mass transfer
between domains with different resolutions is unrestricted.
Mass is conserved through particle splitting and combining
when moving across this boundary.

If a large SDPD particle is transported into the interface
region, either due to advection or Brownian motion, and
then eventually moves into the refining subregion, it splits
into two small SDPD particles. Here, we have assumed that
the small SDPD particles in the finely resolved part of the
simulation box have half the mass of the large particles in
the coarse region, m2 = 2m1. It is possible to generalize this
kind of approach for situations where the massive particles
are n times more massive than the small particles, where
n is an integer greater than one, and hence large particles
can split into n smaller particles. For simplicity, we assume
n = 2. The remaining splitting rules are constructed such that
momentum and the amount of solute are also conserved.
Note that there are multiple ways to assign new positions to
the daughter particles upon splitting. In the work of Backer
et al.,71 both particles are inserted at the same location as the

parent particle. Due to the soft DPD interactions, the system
remains stable in spite of both particles occupying the same
point, and the thermostat dissipates heat generated due to
particle overlap after the insertion. However, for fluids with
quasi-incompressible equations of state, this heating may be
substantial. Therefore, Kulkarni et al. adopt an alternative
perspective where both particles are inserted randomly inside
a region that corresponds to the influence domain of the parent
particle (i.e., within a sphere surrounding the parent particle
with radius equal to the parent’s smoothing length). This
reduces the problem of heating, although the center of mass
of the original particle is no longer conserved.

Here, we take a different approach and only insert one
of the two daughter particles randomly inside the parent
particle’s influence domain. After particle j is inserted at
random inside a sphere with radius hi surrounding the parent
particle i, the second particle k is inserted at a position such
that the center of mass of the parent particle is preserved.
In other words, if a large particle i splits into small particles
j and k, we generate a random displacement vector ∆ri j
= ri − r j according to ∆ri j = random (hi). Then, the appro-
priate rules are

m j = mk = 0.5mi,

v j = vk = vi,

r j = ri − ∆ri j,
rk = ri + ∆ri j,
Φ j = Φk = Φi.

(32)

This procedure also ensures that potential energy is conserved
in simulations that feature a linear external potential acting
on the particle masses (e.g., gravity). We have tested the
procedure implied by Eq. (32) by placing two fluids with
different resolutions next to a wall in a semi-infinite domain,
with a uniform gravitational force in the direction of the wall.
The computed density profiles do in fact show the correct
equilibrium Boltzmann distribution, without artifacts due to
the interface. Moreover, this test is successful whether or not
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the more massive-particle fluid is on top or bottom. (Detailed
results are not shown here.)

The rules for combining smaller particles into larger ones
are more straightforward. If a small particle j is transported to
the interface region and crosses into the coarsening region, the
nearest small particle k is located, and the two are combined
into large particle i using the following rules:

mi = m j + mk,

vi = 0.5
�
v j + vk

�
,

ri = 0.5
�
r j + rk

�
,

Φi = 0.5
�
Φ j + Φk

�
.

(33)

We note that with the particle splitting and combining
steps in this top-down multiscale approach, it is not strictly
possible to satisfy detailed balance because the coarsening
and refining subregions, where the “forward” and “reverse”
moves take place, are spatially separated. However, this
splitting/combining scheme maintains conserved physical
quantities and has been shown to accurately reproduce
hydrodynamic behavior.31,71 For the single-component case,
this method yields a flat density distribution at equilibrium, as
well as accurate solutions for the flow field in simple problems
such as shear flow. Specifically, Backer et al. consider cases
where the flow is both perpendicular and parallel to the
interface separating the regions with different resolutions, and
in both cases, there is good agreement of the numerical result
with the analytical solution from Navier-Stokes.

In this section and Sec. VI, we benchmark the multiscale
multicomponent approach by performing simple equilibrium
and non-equilibrium problems. Due to the presence of multiple
length scales, a few additional details require discussion.
Note that previously it was possible to hold the smoothing
length constant for all particles. In the present multiscale
scenario where the fluid resolution changes with position, the
smoothing length for every particle must be allowed to vary
since the number density varies in space, and each particle
must maintain the appropriate number of nearest neighbors.
Thus, each particle is assigned a smoothing length variable
that is updated at each time-step based on the local SDPD
particle number density,31

hi = h0ν
−1/3
i . (34)

Here, νi is the local number density computed from
νi =


j

Wi j. h0 is a constant parameter selected so that

each particle has ∼56 neighbors within its own influence
domain, which is required for the accuracy of the particle
approximation.57 In this work, we choose h0 = 1.2.31,57 In
order to ensure symmetric interactions, we use the arithmetic
mean of particle smoothing lengths when computing pair
interactions, hi j =

�
hi + h j

�
/2.

Unlike previous studies that only focused on single-
component systems, Eqs. (32) and (33) include the appropriate
splitting and combining rules for a binary mixture. We
confirm that this approach reproduces correct equilibrium
properties uniformly across the simulation box by considering
a fluid at reduced temperature T = 1 with density ρ = 0.8
and viscosities η = 1.9 and ζ = 0.9. Initially, we divide
the global simulation box (with volume 50 × 50 × 100) into

two parts, with 1000 fine particles in the region located at
z < 50 and 512 coarse particles in the region at z > 50. The
fine particles are initialized on a 10 × 10 × 10 lattice inside
a 50 × 50 × 50 volume. These “fine” particles have mass
m = 100 and smoothing length h = 6.0. For the coarse region,
particles are initially placed on an 8 × 8 × 8 lattice inside
a volume with dimensions 50 × 50 × 50. These “coarse”
particles have a mass of m = 200 and smoothing length
h = 7.5. The z-coordinate is perpendicular to the interface
separating the coarse and fine SDPD domains [see Fig. 3(a)].
Periodic boundary conditions are used in all directions. The
interface regions have a width of 9.0 and are located between
z = 0.0 and 9.0, and z = 50.0 and 59.0. It is necessary to
include two transition zones due to the periodicity of the
simulation box. Each of the interface coarsening, refining,
and overlap subdomains has a width of 3.0. The interface
region should be sufficiently large to allow for a smooth
transition of the smoothing length; when an inadequately
sized transition region is used, particles near the interface
have a different number of neighbors from particles in the
bulk, which can result in unphysical density gradients.71 After
initializing positions, all the particles are translated in the
z-direction by half the interface region width so that the
initial boundary between the coarse and fine particle lattices
is located precisely half-way inside the interface regions,
within the overlap subdomains (z = 4.5 and z = 54.5). We
use a time step of ∆t = 0.001 and collect data for 5 × 106

steps after equilibrating for 1 × 106. Five cases with average
concentrations ⟨Φ⟩ = 0.25, 0.40, 0.50, 0.60, and 0.75 are

FIG. 3. (a) Visualization of equilibrium multiscale SDPD simulation. The
left bulk region (white particles) is the finely resolved SDPD fluid with
smoothing length h = 6.0, and the particles on the right (orange) are the
coarse ones with h = 7.5. These coarse particles are twice as massive as
the fine ones, and their number density is half as much. Periodic boundary
conditions are used for the x-, y-, and z-directions. (b) The corresponding
smoothing length versus position for an equilibrium multiscale SDPD simu-
lation. The interface regions are located between z= 0.0 and 9.0 and between
z= 50.0 and 59.0.
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considered. The neighbor list is updated every ten steps,
unless the number of particles in the system changes due to
splitting/combining of particles, in which case it is also rebuilt.

The system is illustrated in Fig. 3(a), and the smoothing
length as a function of position is obtained from a binning
procedure and shown in Fig. 3(b). The regions where the
smoothing length is low (h = 6.0) contain particles with mass
m = 100, and the part where h = 7.5 features particles with
mass m = 200, with a smooth transition between the two
values of h across the interface separating the two domains.
Fig. 4(a) gives the concentration profiles for the five different
average concentrations investigated. There are no unphysical
concentration gradients perpendicular to the interface between
the fine and coarse regions, and the distribution of solute is
uniform. The average error per bin in the profiles across all
five cases is 0.0003%. We also compare the concentration

FIG. 4. (a) Concentration profiles for equilibrium multiscale SDPD simula-
tions. We have performed tests at several different average concentrations,
⟨Φ⟩= 0.25, 0.40, 0.50, 0.60, and 0.75, where the results from each simulation
are shown with a different marker/color. (b) Concentration probability distri-
butions from equilibrium multiscale simulations. For clarity, we show results
for three of the five cases: ⟨Φ⟩= 0.25 (red/square markers), 0.50 (blue/triangle
markers), and 0.75 (green/circle markers). The solid markers represent the
probability distribution in the “coarse” SDPD region, and the hollow markers
represent the “fine” SDPD region. The black curves are the exact analytical
solution. The distributions for ⟨Φ⟩= 0.40 and 0.60 are omitted for clarity.

distributions in the fine and coarse regions to the exact
analytical result [Eq. (31)] in Fig. 4(b) and find that both the
finely resolved and coarse-grained regions in the multiscale
simulation exhibit fluctuations in concentration appropriate for
their respective scales. The distributions for the ⟨Φ⟩ = 0.40
and 0.60 are omitted for clarity.

VI. ONE-DIMENSIONAL DIFFUSION ACROSS
MULTIPLE LENGTH SCALES

Next, we demonstrate that our multiscale multicomponent
method captures diffusion dynamics correctly across multiple
length scales by performing a multiscale simulation of quasi-
1D diffusion. Once again, we choose T = 1 and ρ = 0.8 as
the state point, and D = 1.0, ζ = 0.9, and η = 1.9 for the
transport coefficients. The system is set up as follows: the
global simulation box has dimensions 50 × 50 × 200, where
one side initially contains 2000 fine particles, and the other side
contains 1024 coarse particles. At the start of the simulation,
the finely resolved particles are initialized on a 10 × 10 × 20
lattice inside a region with dimensions 50 × 50 × 100, which
is a subset of the whole simulation box. These particles have
a mass of 100 and smoothing length of 6.0. Next to this
region, we initialize the coarse SDPD particles (with mass
of 200 and smoothing length of 7.5) on an 8 × 8 × 16 lattice
inside a part of the global simulation box with dimensions
50 × 50 × 100. The vector normal to the interface separating
the coarse and fine regions is in the z-direction. The interface
region separating the coarse and fine domains has a width of
9.0 and is centered at z = 100. The simulation box features
periodic boundary conditions in the x- and y-directions. The

FIG. 5. Concentration profile at different times for the quasi-one-dimensional
diffusion problem across multiple length scales. A fluid region is situated
between two walls, and the fluid itself is divided into finely resolved and
coarse-grained domains, where particles have masses m = 100 and m = 200,
respectively. After equilibrating, a concentration gradient is imposed by hold-
ing the concentration fixed at 0.4 at the left boundary and 0.6 at the right
boundary, and the time-evolution of the concentration profile is computed.
The numerical results (blue curve and circle markers) are shown against the
exact solution of the non-fluctuating diffusion equation (black curve).
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walls are located z = 20 and z = 180, and particles located
at z < 20 and z > 180 are labelled as virtual particles; their
positions and concentrations are not evolved in time. The fluid
particles are initialized with an average concentration of 0.4.
We use a time step of ∆t = 0.01 and equilibrate for 1 × 106

time-steps.
After equilibration a concentration gradient is imposed

on the system by increasing the concentration of the wall
particles located at z > 180 to 0.6. Boundary conditions are
enforced using the approach described in Section III. The
gradient is perpendicular to the interface separating the fine
and coarse regions and hence drives solute transfer across the
boundary from the region with coarse resolution to the finely
resolved SDPD region. The resulting transient concentration
profile is shown for several different times and compared to
the exact analytical solution of the non-fluctuating diffusion
equation in Fig. 5. The results show excellent agreement
with the exact solution, mass transfer is correctly mediated
across domains with different levels of detail, and diffusion is
independent of the degree of coarse-graining. At steady-state,
the time-averaged concentration profile is perfectly linear
and does not exhibit unphysical artifacts due to the interface
between the two SDPD regions with different resolutions.

VII. CONCLUSION

In this work, we provide a new multiscale fluctuating
continuum particle approach for ideal solutions. The stochastic
differential equations governing the concentration field are
obtained by introducing thermal noise in the Lagrangian
SPH equation for diffusion using the GENERIC formalism.
Random fluxes of solute are pairwise between particles and
constructed such that fluctuation-dissipation is satisfied. When
solved concurrently with the SDPD equations of motion,
this set of SDEs allows for treatment of advection-diffusion
problems across length scales ranging from nanometers
to microns and the non-fluctuating continuum limit. The
characteristic length scale of the fluid is controlled by
the smoothing length parameter, which influences both
the distribution of momenta and solute concentrations. We
illustrate that this new multicomponent SDPD reproduces the
correct fluctuations by performing equilibrium simulations
at different average concentrations and resolutions (i.e.,
smoothing lengths). In all cases, the results show excellent
agreement with the analytical result for the probability
distribution of concentrations.

Importantly, the ability to control the smoothing length
parameter makes multicomponent SDPD ideal for multiscale
simulation. Thus, we use this approach to extend the
single-component multiscale SDPD techniques of Kulkarni
et al. to binary solute-solvent systems and propose refining
and coarsening rules for particle splitting/combining such
that mass, momentum, and solute are conserved. In order
to validate this framework for multicomponent multiscale
simulation, we perform equilibrium simulations involving
SDPD fluids with different degrees of coarse-graining and
demonstrate that there are no unphysical artifacts in the
concentration profile near the interface between the two
regions, and each region features the appropriate fluctuations

for its corresponding length scale. Finally, we apply these
tools to a simple non-equilibrium problem (one-dimensional
diffusion across a narrow channel), and we demonstrate that
this multiscale method correctly captures the propagation of
a concentration gradient across multiple length scales and
accurately reproduces the expected diffusion dynamics with
solute transfer from the coarse region to the fine one.

The presented multiscale multicomponent approach does
have a number of limitations, however. First, for very small
SDPD particles with concentration close to zero or unity such
that the analytical Gaussian distribution of concentrations
is truncated, precision issues can lead to unphysical nega-
tive concentrations (or concentrations greater than one). It is
possible to remedy this problem either by reducing the time-
step or by using a dynamic time-step approach, such as the
Brownian tree algorithm described in Ref. 70. Second, the
method is based on a discretization of the diffusion equation,
which is relevant to a very wide range of different prob-
lems, but which ultimately assumes ideal mixing. Moreover,
constant temperature conditions and a quasi-incompressible
fluid are also assumed. These simplifications may be relaxed,
although the resulting equations of motion become more com-
plex and for the case of temperature gradients, it is necessary
to solve the entropy equation in addition to the ones for
momentum and solute diffusion. Finally, while this approach
provides a basis for coarse-graining regions where a high level
of detail is unnecessary, it is still purely a continuum approach.
The power of this framework lies in the ability to reduce the
number of particles in bulk regions where high detail is not
required, lowering computational cost. However, for certain
problems, it may be necessary to retain atomistic resolution in
select regions to capture important effects. In a prior study, we
developed an approach for embedding a MD region inside a
coarse-grained SDPD fluid, and constructing these kinds of
MD-SDPD hybrid approaches for multicomponent systems
will be the subject of future work.
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