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ABSTRACT
Decision-making in spine surgery is complex due to patients’ heterogeneity and complexity of spinal pathologies and the 

various surgical options applied to a given pathology. Artificial intelligence/machine learning algorithms provide an opportunity 
to improve patient selection, surgical planning, and outcomes. The purpose of this article is to present the experience and 
applications of in spine surgery at 2 large academic health care systems.
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BACKGROUND

Surgical decision-making in spine surgery is complex 
due to heterogeneity in patients, pathologies, and surgi-
cal options. Spine patients may present with significant 
variability in self-reported health status, comorbidities, 
and surgical approaches to care.1–6 The heterogeneity of 
patient presentations and surgical approaches has import-
ant implications for the cost and outcomes of care.7

Patient-collected data are growing in both size and 
complexity. Consequently, clinicians are limited in their 
ability to consider all patient data in decision-making 
regarding risk and outcome assessment. Precision med-
icine approaches to care may empower patients and 
physicians to make informed decisions regarding appro-
priate care and hold promise to optimize outcomes of 
care.7 Artificial intelligence/machine learning (AI/ML) 
are valuable analytic techniques for the development of 
models to help personalize decision-making. AI/ML are 
tools that provide correlations between variables that 
may not be apparent in traditional multivariate anal-
ysis and may reduce the biases of hypothesis-driven 
modeling.8 In contrast, AI/ML techniques are limited 
by important issues including poor reporting method-
ologies, increased clinician burden, fairness, privacy/
anonymity, explainability, and interpretability.6,9,10 Partic-
ularly for the medical domain, interpretability is critical 
in providing trust between the AI/ML algorithm and the 
health care system.11 Although similar algorithms with 

similar accuracy can behave differently in deployed set-
tings, global and local interpretability methods can help 
in model selection and generalization.12,13 It is crucial to 
think about AI/ML algorithms as devices with end users 
and process flow. These devices require documentation, 
regulations, and maintenance.14,15 The regulation of ML 
algorithms is evolving given limited precedence.

AI/ML has been used across multiple aspects of spine 
surgery16 including spinal medical imaging,17,18 predict-
ing surgical outcome,19–22 identifying patients’ character-
istics in deformity patients,23,24 enhancing robotics,25,26 
forecasting length of stay and discharge disposition,27–29 
capturing surgeons decision-making,13 and predicting 
mortality and complications.23,24,30 Increasing availability 
of patient data through electronic health records is leading 
to integrated clinical prediction models for precision med-
icine at the point of care.31 However, the development, 
implementation, and maintenance of these tools can vary 
widely depending on institutional culture, level of patient 
interaction, model accuracy, and perceived trust.32

The level of automation of AI/ML can be categorized 
into 3 groups: assistive, autonomous information, and 
autonomous decision.15 Assistive describes a device with 
an overlapping role between a provider and the device, 
where providers confirm or approve device-provided 
information in overlapping cases. Autonomous informa-
tion provides separation between the device and the pro-
vider; the latter will act on the interpretation made by the 
device. The final category, autonomous decision, makes 



Real-World Implementation of Artificial Intelligence/Machine Learning for Managing Surgical Spine Patients

International Journal of Spine Surgery, Vol. 17, No. S1S12

decisions without provider input (Figure  1a). Approxi-
mately one-half of medical devices using ML are assistive 
devices. Increasing the autonomy of these devices would 
require close monitoring of model performance and 
more comprehensive regulatory approval to deploy them. 
Control theory, including closed loop control, would 
provide the appropriate safety framework to increase 
autonomy without decreasing risk (Figure 1b). The closed 
loop control system relies on feedback from the system 
at agreed-upon intervals. The feedback should match 
with the expected performance. Differences between the 
expected and the observed metrics would require adjust-
ment of the system. These adjustments can vary from 
automated to manual model re-training and assessing data 
skewness.

Real-world application of AI/ML for modeling out-
comes, complications, and costs of care is a difficult task 
that has been spearheaded by Ames et al and the Interna-
tional Spine Study Group.33–35 The cost of care for adult 
spinal deformity is highly variable, and cost outliers are 
an important threat to the sustainability of complex spine 
surgery, especially in smaller hospitals. Ames et al used 
regression tree and random forest models to predict cost 
outliers in deformity surgery.36 Adult spinal deformity is 
characterized by significant variability regarding manage-
ment approaches, complications, and outcomes. Durand 
et al used AI/ML-based models to predict whether adults 
with spinal deformity were treated operatively or non-
operatively with 86% accuracy.37 Patient clustering devel-
oped with AI/ML may be useful in the classification of 
patients and in predicting appropriate surgical approaches 
and expected outcomes of care.38,39 Predicting complica-
tions is important in guiding appropriate care for patients 
with spinal deformity. Scheer et al used traditional statis-
tical techniques to develop a predictive model for com-
plication in spinal deformity with 87% accuracy.40,41 The 

application of AI/ML with larger datasets holds promise 
for more precise and patient-specific prediction tools 
regarding complications, outcomes, and appropriate care 
in spinal deformity.42,43 Model development and valida-
tion will be an iterative process with the introduction of 
new data points and techniques.

The successful algorithms in the industry are the algo-
rithms that tend to run in the background with fewer user 
interactions. These include energy management, fraud 
detection, spam filter, and similar algorithms.44–46 Improv-
ing the effectiveness of AI/ML algorithms would require 
designing a solution as a system with appropriate control 
and safety logic, a transparent expected goal, a higher 
level of autonomy, and clear documentation of the users 
and maintenance team. In the current article, we present 
2 real-world AI/ML applications at academic centers for 
augmenting and complementing surgeons’ knowledge in 
decision-making, patient selection, and patient optimiza-
tion.

HEALTH CARE UTILIZATION METRICS 
AT THE CLEVELAND CLINIC

At the Cleveland Clinic, an AI/ML tool is utilized 
to improve patient outcome while minimizing health 
care expenses. To create this tool, a real-time data-
base was generated of over 55,970 surgical encounters 
between 2007 and 2022 of patients who underwent sur-
gical intervention at the Cleveland Clinic Health Care 
System in Ohio and Florida. Patient outcomes, imaging, 
laboratory results, vitals, medications, costs, and other 
metrics were all considered in the analytics. From this 
dataset, limitations were identified for patient-reported 
outcomes (PROs)/quality of life measures as a pure 
measure for making decisions. For example, up to 
10% of the patients reported fluctuations in their PROs 

Figure 1.  (a) Illustration of the level of autonomy by artificial intelligencey/machine learning group. (b) Illustration of the machine learning (ML) control system.
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from improving to worsening or worsening to improv-
ing during the first 12 months following surgery. PRO 
metric instability creates difficulty in solely relying 
on PRO for a visit-to-visit analysis. Consequently, we 
developed a health care utilization metric to complement 
patient performance for analysis. This metric is a linear 
combination of a patient’s encounters with the health 
care system, use of opioids, office visits, MyChart mes-
sages, physical therapy, imaging, postoperative epidural 
injections, etc. One purpose of this metric development 
was to objectify postoperative performance using a 
translatable and transferable language that other health 
systems and payers would understand. The known het-
erogeneity of PRO use and adoption across the nation 
is well documented. The health care utilization metric 
describes a different aspect of a patient’s recovery but 
does not replace PRO, with a correlation coefficient of 
−0.34 between utilization and PRO (Figure 2). In addi-
tion to utilization, early and delayed costs are collected.

Three target objectives are optimized per patient 
before and after surgical intervention (Figure  3). The 
target objectives are to (1) maximize PROs at 1-year 
follow-up, (2) minimize health care utilization, and (3) 
minimize costs. As opposed to usual classification tasks, 
multiobjective optimization adds additional hyperpa-
rameters to be selected, which are the important aspects 
of the 3 objectives relative to each other. Optimization 

happens at 3 levels (patient, surgeon, and hospital), 
with each level having specified modifiable features. 
Decision-making is based on a search algorithm of the 
simulated outcome under varying circumstances using 
causal inference logic as described by Judea Pearl in 
his book on causality.31 The current system is an assis-
tive device to complement surgeon input. The auton-
omy of the system can increase to assist with insurance 
approval and medical preoperative optimization.

PREDICTIVE MODELING FOR 
SURGICAL INTERVENTIONS AT UCSF

The assessment and development of AI/ML tools 
in the University of California, San Francisco (UCSF) 
Spine Service are a major focus of UCSF’s clinical 
research initiatives. Accurate information regarding the 
length of stay and discharge disposition has important 
implications regarding patient counseling and hospital 
budgeting. An assistive AI/ML tool for the accurate pre-
operative identification of patients at risk for extended 
length of stay after surgery can provide substantial 
benefits, including more transparent communication 
on expected benefits and risks of surgery, postopera-
tive planning, cost savings, pre-emptive administra-
tive action, and optimization of modifiable patient 
risk factors.47–49 Internal work for adopting predictive 

Figure 2.  Graphical representation of health care utilization and the relationship to patient-reported outcomes. Graphs a and b show utilization in relation to 
PROMIS. Graph c shows the utilization in relation to PROMIS and stratified by MCID. MCID, minimum clinically important difference; PROMIS, Patient-Reported 
Outcomes Measurement Information System; post-op, postoperative.
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models led to a comparison of results for commonly 
used AI/ML prediction tools: the Risk Assessment and 
Prediction Tool (RAPT) score50,51 and the American 
College of Surgeon’s (ACS) National Surgical Quality 
Improvement Program (NSQIP).29 The RAPT score 
has been used to predict patient outcomes following 
surgery. It is a cumulative scaled score ranging from 1 
to 12 and is composed of components that correspond 
to patient community support, the extent of home care, 
gait aid, and preoperative functional ability.50,51 While 

the RAPT score can be calculated by hand, other tools 
such as the ACS NSQIP require an online calculator, 
which utilizes 21 manually input preoperative factors 
to predict both length of stay and discharge status. To 
compare these tools, we selected a subset of adult elec-
tive spinal fusion patients previously described in Arora 
et al that had available RAPT scores (1251 patients) or 
ACS NSQIP scores (420 patients); 140 patients had both 
scores.29 For predicting patient-specific length of stay 
in the hospital after surgery, the Pearson’s correlation 

Figure 3.  Illustration of the optimization objectives and the level of optimization. PRO, patient-reported outcome.

Figure 4.  Graphical representation of Pearson’s correlation with the true length of stay for patients scored with the American College of Surgeon’s (ACS) National 
Surgical Quality Improvement Program (NSQIP; r = 0.461, P < 2e-16; A) and the Risk Assessment and Prediction Tool (RAPT) score (r = −0.364, P < 2e-16; B). When 
comparing ACS NSQIP to RAPT, the models were found to be correlated but highly divergent on a patient-by-patient basis (r = −0.286, P < 2e-16; C).
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for ASC NSQIP was 0.461 (P < 2e-16; Figure 4A) and 
for the RAPT score was −0.361 (P < 2e-16; Figure 4B). 
Although both of these scores were significantly cor-
related, the ACS NSQIP was significantly more cor-
related with the true length of stay than the RAPT score 
(Fisher’s r-to-z transformation; P = 0.0192). However, 
comparing ACS NSQIP to RAPT directly, Pearson’s 
correlation was −0.286, meaning that one patient can 
have very different scores using different AI/ML models 
(Figure 4C). This indicates that more work should be 
done to properly understand how and for what types of 
patients these models differ, which could potentially be 
used to improve care.

DISCUSSION

In this study, we report real-world applications of AI/
ML-based tools for managing surgical spine patients at 
2 academic health care systems and identify major pit-
falls. First, using data from the Cleveland Clinic, we 
demonstrate the need for a health care utilization metric 
when utilizing AI/ML tools since PRO data alone were 
shown to be insufficient for studying patient outcomes. 
This information is then used for optimizing patient out-
comes for overall cost in addition to traditional metrics. 
Finally, using data from the UCSF Spine Service, we 
demonstrate that existing tools for predicting patient-
specific outcomes are often inaccurate and can be in 
disagreement depending on the tool utilized. Thus, 
more research is needed to optimize how and which AI/
ML tools for predicting outcomes are implemented in 
new clinical settings.

The application of predictive models and algorithms 
based upon AI/ML offers promise to improve the man-
agement of patients in spine clinics and inpatient set-
tings. Accurate models will empower patients and 
surgeons to make informed choices regarding optimal 
care pathways. For health care systems, accurate 
models will also guide appropriate resource utilization 
and improve sustainability in providing cost-effective 
care for patients. However, careful consideration must 
be made to provide meaningful insights for clinicians. 
Moreover, the effective adoption and application of AI/
ML-based algorithms will require ongoing validation 
within and between health care systems.
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