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Background: Epigenetic dysregulation has been proposed as a key mechanism for arsenic-

related cardiovascular disease (CVD). We evaluated differentially methylated positions (DMPs) as 

potential mediators on the association between arsenic and CVD.

Methods: Blood DNA methylation was measured in 2321 participants (mean age 56.2, 58.6 % 

women) of the Strong Heart Study, a prospective cohort of American Indians. Urinary arsenic 

species were measured using high-performance liquid chromatography coupled to inductively 

coupled plasma mass spectrometry. We identified DMPs that are potential mediators between 

arsenic and CVD. In a cross-species analysis, we compared those DMPs with differential 

liver DNA methylation following early life arsenic exposure in the apolipoprotein E knock-out 

(apoE−/−) mouse model of atherosclerosis.

Results: A total of 20 and 13 DMPs were potential mediators for CVD incidence and mortality, 

respectively, several of them annotated to genes related to diabetes. Eleven of these DMPs were 

similarly associated with incident CVD in three diverse prospective cohorts (Framingham Heart 

Study, Women’s Health Initiative and Multi-Ethnic Study of Atherosclerosis). In the mouse model, 

differentially methylated regions (DMRs) in 20 of those genes and DMPs in 10 genes were 

associated with arsenic.

Conclusions: Differential DNA methylation might be part of the biological link between arsenic 

and CVD. The gene functions suggest that diabetes might represent a relevant mechanism for 

arsenic-related cardiovascular risk in populations with a high burden of diabetes.

Graphical Abstract

Keywords

cardiovascular disease; arsenic; DNA methylation; prospective cohort; animal model

Subject terms:

epigenetics; biomarkers
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Introduction

Inorganic arsenic exposure is a global health problem.1 Even at low exposure levels in water 

and food, arsenic has been related to multiple health outcomes including atherosclerotic 

cardiovascular disease (CVD).2–4 CVD outcomes associated with arsenic in Bangladesh, 

Chile, Taiwan, Denmark, Spain and the United States include coronary heart disease,5–9 

stroke,7 peripheral arterial disease10 and overall CVD mortality.7,11,12 Arsenic has also 

been prospectively associated with changes in blood pressure levels9,13 and carotid 

atherosclerosis.9,14,15 These epidemiological findings are consistent with data from animal 

models showing that arsenic can induce atherosclerosis at relatively low exposure levels.16,17

The recognition of arsenic as a CVD risk factor, however, remains hindered by limited 

understanding of the specific mechanisms involved. Growing evidence points to the 

importance of epigenetic dysregulation and its influence on gene transcription pathways 

as a potential mechanism for arsenic-related CVD. Indeed, arsenic has been associated with 

changes in DNA methylation in epigenome-wide association studies in human populations 

from Bangladesh,18–22 South America,23,24 Taiwan,25 China,26 and the US.27–30 Increasing 

evidence also supports the notion that changes in DNA methylation are prospectively 

associated with incident CVD31,32 and coronary heart disease, the most common clinical 

form of heart disease.33,34

We hypothesized that epigenetics, measured based on differentially methylated CpG 

positions (DMPs) in blood, can partially explain arsenic-related CVD. We tested this 

hypothesis in the Strong Heart Study (SHS), the largest and longest study of CVD in 

American Indian communities, ongoing since 1989–1991. Urinary arsenic species were 

measured using high-performance liquid chromatography coupled to inductively coupled 

plasma mass spectrometry. Prior evidence in the SHS showed that baseline arsenic 

exposure, which was stable for decades, was associated with increased CVD risk7 and with 

differentially methylated blood DNA in an epigenome-wide association study (EWAS).27 

We also used data from the Framingham Heart Study (FHS), Women’s Health Initiative 

(WHI) and Multi-Ethnic Study of Atherosclerosis (MESA) to assess if DMPs associated 

with arsenic-mediated CVD in the SHS were associated with incident CVD in those 

populations. Since MESA is, to our knowledge, the only other US cohort that has data 

on arsenic, DNA methylation and CVD, we also used data from MESA to assess if the 

same DMPs were associated with arsenic exposure. Further, we conducted an inter-species 

comparison in a mouse model of arsenic-enhanced atherosclerosis and measured DNA 

methylation in livers of adult mice that were exposed to arsenic from mating through 

weaning of offspring.

Methods

Data Availability.

The data underlying this article can be shared to external investigators following the 

procedures established by the Strong Heart Study, available at https://strongheartstudy.org/. 

Data from the Framingham Heart Study and from the Women’s Health Initiative are 
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available at dbGaP (accession numbers phs000724.v8.p12 and phs000200.v11.p3). Data 

from the Multi-Ethnic Study of Atherosclerosis are available upon request at TopMed 

(https://topmed.nhlbi.nih.gov/).

Ethics.

The experimental protocol was approved by the McGill Animal Care Committee and 

animals were handled in accordance with institutional guidelines. McGill Animal Care 

Committee is certified by the Canadian Council on Animal Care.

Main study population—The SHS is an ongoing prospective cohort study of CVD and 

its risk factors in American Indian communities since 1989.35 At the baseline visit (1989–

1991) a total of 4549 men and women aged 45–75 years members of 13 tribes based in 

Arizona, Oklahoma, North Dakota and South Dakota enrolled in the study (participation rate 

62%). In 2016, a Tribal Nation from Arizona declined further participation, leaving 3,517 

potential participants for this study. DNA methylation was measured in blood samples from 

2,351 participants collected at the baseline visit (1989–1991) who were free of CVD, had 

community agreement, were not missing data on relevant variables, and had sufficient blood 

left for epigenetic analyses. Details regarding inclusion criteria for blood DNA methylation 

measurements have been published.36 For the main analyses, we restricted the follow-up 

through 2009 as water arsenic exposure, which was stable in the communities for decades,37 

changed a few years after the enactment of the US EPA Final Arsenic rule in 2006.38,39 

Strong Heart Study tribal review boards approved procedures for this study, and participants 

gave written informed consent.

Participant characteristics and urinary arsenic measurements—Trained and 

certified nurses and medical examiners collected information on sociodemographic factors 

(age, sex, study region), medical history and smoking status (never, former, current) in a 

personal interview. Participants who had smoked ≥ 100 cigarettes in their lifetime and were 

smoking at the time of the interview were considered current smokers. Participants who had 

smoked > 100 cigarettes in their lifetime and were not smoking at the time of the interview 

were considered former smokers. The examiners measured height and weight (to estimate 

body mass index (BMI)) and blood pressure, and collected fasting blood and urine samples.

Arsenic measurements in spot urine samples have been described in detail.40 Briefly, arsenic 

species (inorganic arsenic, monomethylarsonate (MMA), dimethylarsinate (DMA), and 

arsenobetaine) were measured using high-performance liquid chromatography coupled to 

inductively coupled plasma mass spectrometry (Agilent 1100 HPLC and Agilent 7700x ICP-

MS; Agilent Technologies).41 Urinary creatinine was measured in the same urine sample 

used for arsenic measurement using an automated alkaline picrate methodology run on a 

rapid flow analyzer.35 As the biomarker of inorganic arsenic exposure (referred to as urinary 

arsenic in the manuscript for simplicity), we calculated the sum of inorganic and methylated 

arsenic species (MMA and DMA) concentrations (μg/L). This biomarker was divided by 

urinary creatinine (g/L) to account for urine dilution. In a random sample stratified by study 

region of 380 participants with three repeated arsenic measures over 10 years, the intraclass 
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correlation coefficient for the log-transformed sum of inorganic and methylated arsenic 

species was 0.64 (95% CI, 0.60 to 0.69).

Cardiovascular disease follow-up—The endpoints are incident fatal and non-fatal 

CVD assessed during the follow-up by annual mortality and morbidity surveillance of 

medical records, which included evaluation of medical history and physical examinations, 

emergency room visits, medical consultations, electrocardiograms, laboratory assays, 

medical imaging, discharge summaries, operations, and other procedures from the Indian 

Health Service and other facilities. Mortality surveillance examined death certificates from 

state health departments, records from the Indian Health Service, autopsy and coroner’s 

reports, and interviews with physicians or family members. Potential CVD‐related deaths 

and events were reviewed by two independent physicians. In case of disagreement, they 

were adjudicated by a third independent physician. Detailed definitions of fatal and nonfatal 

events42 and definitions of the criteria used by the review committees43 have been reported. 

Incident CVD was defined as the first occurrence of fatal or non-fatal coronary heart disease, 

stroke or congestive heart failure, or other non-fatal CVD. CVD mortality was defined as 

any fatal CVD. Follow-up time was calculated as the time from blood drawn for DNA 

methylation measurement (1989–1991) to the time of CVD events (through 2009). For 

participants who did not develop CVD, follow-up was censored at the time of occurrence of 

non-CVD death, loss to follow-up, or December 31, 2009. Follow‐up rates for mortality and 

morbidity were at 99%.44

Microarray DNA methylation measurements—Details of microarray DNA 

methylation measurements have been published.36 Briefly, buffy coat was extracted from 

fasting blood samples and used to obtain bisulfite converted DNA methylation from white 

blood cells. DNA methylation was measured using Illumina’s MethylationEPIC BeadChip 

(850K). Individuals with low detection p-values, cross-hybridizing probes, probes located 

in sex chromosomes and single nucleotide polymorphisms (SNPs) with minor allele 

frequency > 0.05 were excluded.45 Single sample noob normalization and regression on 

correlated probes normalization were conducted following Illumina’s recommendations for 

preprocessing.46 Blood cell proportions (CD8T, CD4T, NK cells, B cells, monocytes and 

neutrophils) were estimated using the R package FlowSorted.Blood.EPIC, which uses the 

Houseman projection method.47 The preprocessing resulted in data for 2324 individuals and 

788,368 CpG sites.

Replication populations—We used data from the FHS, WHI, and MESA to replicate 

the DMPs associated with arsenic-mediated CVD in the SHS. All of them used follow-up 

procedures for CVD events and analysis of blood DNA methylation similar to those used by 

the SHS (details reported in Supplementary Methods, DNA methylation was also measured 

using the 850K Illumina microarray in MESA, while the 450K Illumina microarray was 

used in FHS and WHI).

FHS recruited White adults of European descent from Framingham, Massachusetts starting 

in 1948 (original cohort). The children of the original cohort and their spouses were 

recruited into the Framingham Offspring study in 1971.48 The participants of exam 8 (2005–

2008) of FHS offspring cohort were followed through 2014 (average follow-up of 7.7 years; 
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range: 0.04 years – 9.8 years). This study was approved under Boston University Medical 

Center protocols H-27984 and H-32132. Written informed consent was obtained from each 

participant. Among 2,631 FHS participants with blood DNA methylation data available 

in the FHS Offspring, we excluded those with prior CVD (N=316) and those missing 

information on CVD risk factors (N=325), leaving 1,990 participants with 408,254 CpG 

sites available. DNA methylation measurements in the FHS were conducted in two separate 

batches including 1879 and 111 participants, respectively. We conducted a sensitivity 

analysis excluding the 111 individuals in the second batch from the analysis.

WHI enrolled 161,808 women of diverse ethnicities (including White, African American, 

Native American, Hispanic, Asian and pacific Islanders) starting in 1993 as part of 

randomized control trials that were continued as a prospective cohort study. The participants 

of WHI were followed from baseline (1993–1998) to 2016 with an average follow-up time 

of 12.18 years (range: 0.003 – 21.3 years). The WHI was approved by the institutional 

review boards of participating institutions from all 40 clinical centers and the coordinating 

center. Among 2,096 WHI participants with blood DNA methylation for 434,113 CpG sites, 

we excluded those with missing information on traditional risk factors of CVD, leaving 

1,487 participants.

MESA followed participants of diverse ethnicities (White, African-American, Hispanic 

and Asian) through 2017 with an average follow-up time of 15.56 years (range: 7.76 – 

17.42 years). MESA was approved by the institutional review boards of the participating 

institutions with the six clinical field centers and the MESA data coordinating center. 

Written, informed, and signed consent was obtained from each participant. From 916 

participants that had DNA methylation data and prospective CVD data, 20 were excluded 

due to missing covariates. The final sample size for DNA methylation and CVD analyses 

was 896. From 214 participants that had DNA methylation and urinary arsenic data, 8 were 

excluded due to missing covariates. The final sample size for DNA methylation and arsenic 

analyses was 206.

Statistical methods—DMPs associated with CVD: To identify DMPs associated with 

CVD incidence and mortality, we used Iterative Sure Independence Screening coupled 

with Adaptive Elastic-Net (ISIS-Aenet). Adaptive elastic-net is a modified version of 

traditional elastic-net models that uses data-driven weights to achieve better consistency 

in effect estimation while preserving the advantages of elastic-net models for prediction.49 

In ultra-high dimensional settings such as in epigenomics data, computational cost and 

algorithm instability might worsen the performance of these estimators.50 The Sure 

Independence Screening (SIS) method and its iterative variant (ISIS) can overcome these 

limitations.51 ISIS-Aenet has shown to outperform other variable selection methods in 

ultra-high dimensional settings.49,50,52

To account for the time to event, we used Cox ISIS – Aenet entering all the 788,368 

CpG sites simultaneously to select DMPs associated with CVD incidence and mortality 

(dependent variables, in separate models). Confidence intervals were calculated using 

the quantile bootstrap method. The bootstrap tool randomly selects individuals from the 

database with resampling in each iteration, and fits the algorithm in those sets. We 
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set the number of iterations to 2000. The 2.5th and the 97.5th percentiles of the effect 

estimates of all iterations were then selected as the lower and upper bounds of the 95 

% confidence interval. Models were adjusted for baseline covariates including age, sex, 

smoking status (never, former, current), BMI, LDL cholesterol, HDL cholesterol, diabetes 

status (yes/no), hypertension medication (yes/no), systolic blood pressure and albuminuria 

(micro, macro, normal), which are established CVD risk factors in the SHS.53 Given the 

different characteristics of the three study centers (Arizona, Oklahoma, and North Dakota 

and South Dakota), models were also adjusted for center. DNA methylation levels are known 

to differ by cell type, therefore, we adjusted the models for estimated cell proportions 

(CD8T, CD4T, NK, B cells, and monocytes).54 To account for population stratification, 

models were additionally adjusted for five genetic principal components (PCs).55 Of 2,562 

genotyped SHS participants as part of the CALiCo/PAGE Study, we identified 644 unrelated 

individuals (either founders of pedigrees or unrelated spouses of their descendants). Of 

162,718 autosomal SNPs that passed quality control, we selected 15,158 based on the 

following criteria: minor allele frequency ≥ 0.05 (i.e., not rare variants), minimum physical 

separation of 1kb and pairwise correlation of genotype scores ≤ 0.1 within a 100 kb sliding 

window. We performed PC analysis on the genotype scores (i.e. dosages) within unrelated 

individuals using the R function prcomp. Non-founders doses were projected onto PC axes 

using the R function predict. The first five PCs were kept as they explained most of the 

variance. Code for implementing Cox ISIS - Aenet based on the R packages SIS and 

msaenet is available upon request.

Mediation analysis: To identify DMPs that may explain arsenic-related CVD, we used 

the Aalen additive hazards models for causal mediation analysis with survival outcomes, 

similar to other studies with time to event data.56–58 The DMPs tested as possible mediators 

included the DMPs identified as relevant for CVD by ISIS – Aenet as well as 315 DMPs 

previously identified as associated with arsenic exposure using an elastic-net model in the 

SHS in a previous study.27 The Aalen additive hazards model included time to incident CVD 

(or CVD mortality, in a separate model) as the outcome, baseline urine arsenic (modeled 

as log2) as the exposure, and DNA methylation as mediator (each DMP in a separate 

model). Our mediator model was a linear model with logit2-transformed methylation values 

(M values) as the outcome (each DMP in a separate model) and urine arsenic (modeled 

as log2) as the exposure. Both the outcome and mediator models included adjustment 

for the same covariates (age, sex, smoking status, BMI, LDL cholesterol, study center, 

cell counts and genetic PCs). Mediated effects (natural indirect effects) were reported as 

the number of CVD cases per 100,000 person-years associated with a 2-fold increase 

in urinary arsenic that are attributable to DNA methylation changes in that CpG site. 

Confidence intervals were calculated using a resampling method that takes random values 

from multivariate normal distribution of the estimates.56 Total effects, direct effects and 

indirect effects with confidence intervals not including 0 were considered significant. To 

account for the withdrawal of one of the Tribal Nations (see the Study Population section 

and 36), the primary mediation analysis used inverse probability weighting to reduce bias.59 

We weighted the participants remaining in the study with approximately 1/3 of weight for 

each center based on the baseline SHS cohort enrollment (33.0% AZ, 33.6% OK, 33.4% 

ND/SD). We also present the unweighted analyses as a side by side comparison.
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Protein-protein interaction network to evaluate biological plausibility of identified 
DMPs.: Arsenic-associated and CVD-associated DMPs were annotated to the nearest 

protein coding gene and included in a protein-protein interaction network. The interactions 

between nodes were obtained using STRING database v11.0,60 selecting all active 

interaction sources with a confidence score of 0.4. The confidence score (from 0 to 

1) provided by STRING database estimates the likelihood that an annotated interaction 

between a pair of proteins is biologically meaningful, specific and reproducible.60 The 

network was analyzed and displayed using edge weighted spring embedded layout with 

Cytoscape v3.8.2.61

Gene Ontology enrichment and KEGG analyses.: We used the missmethyl R package 

to conduct gene ontology enrichment and KEGG analyses. We tested whether any Gene 

Ontology terms or pathways were enriched for the set of DMPs that were significant in the 

mediation analysis for both CVD incidence and mortality, as compared to the total number 

of CpG sites that were tested in mediation (329 for CVD incidence and 338 for CVD 

mortality).

Cross-reference with the EWAS catalog to evaluate biologic plausibility.: For DMPs 

showing significant mediated effects for arsenic-related CVD incidence and/or mortality, we 

looked for previously known trait associations in the EWAS Catalog.62 This catalog contains 

information on EWAS conducted across the literature and is regularly updated (we used the 

February 4, 2021 version). For DMPs with several traits in the EWAS catalog, either the 

most relevant trait or the study with the largest sample size were selected.

Sensitivity Analyses.: Because diabetes and hypertension might be in the arsenic-CVD 

causal pathway, the main models were not adjusted for those variables. We repeated the 

mediation analyses for CVD incidence and CVD mortality adjusting for diabetes status and 

for hypertension treatment and systolic blood pressure. Mediation models were also repeated 

considering the full follow-up (through 2017) rather than truncating it in 2009.

Differentially Methylated Genomic Regions and Positions in Livers of Arsenic-
Exposed Mice—Apolipoprotein E knockout (apoE−/−) mice are a well-established animal 

model of atherosclerosis, where genetic manipulation results in hyperlipidemia. Importantly, 

the model increases disease burden in response to dietary changes (i.e. high fat)63 and 

environmental exposures (i.e. arsenic).16 This model is relevant for many human populations 

which diets are also lipid-rich, such as the typical diet of many participants in the SHS.64,65 

B6.129P2-ApoEtm1Unc/J (ApoE−/−) mice were obtained from the Jackson Laboratory 

(see the Major Resources Table in the Supplementary Material). ApoE−/− mice were fed 

a purified AIN-76 diet (Harlan Laboratories Inc, WI, USA) and allowed to mate a week 

later. The male and female apoE−/− mice were assigned randomly into mating pairs prior 

to arsenic exposure. Arsenic exposure was then provided through drinking water or not 

to the female during the duration of pregnancy based on the random assignment of the 

mating pair. The mating pairs were started on either 200-ppb sodium arsenite (treated mating 

pair) or maintained on tap water from mating to until 3-weeks post-birth. The offspring, 

once weaned, were maintained on tap water and purified diet until 18 weeks of age, a 
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time point at which enhanced atherosclerotic plaque is observed.66 At endpoint, livers were 

harvested from the offspring of control and treated mating pairs, and whole genome bisulfite 

sequencing was performed (N=3 per sex, per treatment group). A total of 12 liver samples 

from randomly chosen offspring of each unique litter were sequenced. DNA was isolated 

from liver tissues, and bisulfite conversion and whole-genome bisulfite sequencing (WGBS) 

were performed at McGill University and Genome Quebec Innovation Centre.

The data was processed using the GemBS pipeline from Merkel et al. 2017,67 using the 

MM9 mouse reference genome. A chromosome-wise matrix of methylation counts and read 

counts (after quality control filter) was created for all samples. The BSmooth function68 

was applied in the bioconductor package bsseq to smooth the data and the t-statistics 

were calculated. Finally, the dmrfinder function was used to identify genomic regions that 

were differentially methylated in the tissue samples from the offspring of exposed dams 

compared to the offspring of control dams. For differentially methylated CpG sites in the 

genes of interest, the Bioconductor package limma was used separately for male and female. 

Statistical significance was determined by calculating the effective number of independent 

tests, separately for each site and adjusting for multiple testing as per Li and Ji 2005.69 The 

DMRs were annotated with the MM9 annotations using CHIPseeker70 and Annotatr.71

Results

A total of 847 participants developed incident CVD in the SHS (36.4 %), 208 in the FHS 

(10.4 %), 754 in the WHI (50.7 %) and 87 in MESA (9.7 %). In the SHS, individuals 

with incident CVD were older and more likely to have diabetes, higher LDL cholesterol, 

hypertension, higher systolic blood pressure and micro and macro albuminuria. Individuals 

who died of CVD had higher levels of urinary arsenic at baseline (Table 1). Participants’ 

characteristics for the replication cohorts are shown in Table S1.

The Cox ISIS-Aenet model selected 70 and 72 DMPs as relevant for CVD incidence 

and mortality, respectively (Excel Tables S1 and S2). Nine DMPs were common for both 

CVD incidence and mortality: cg13251119 (annotated to EPS8L3), cg00841849 (ID2), 

cg14066163 (intergenic), cg25371036 (AMOTL1), cg03362418 (TYMP), cg25452273 

(PPCDC), cg18130370 (NCF4), cg00451635 (EMP2) and cg06970472 (APBB2) (Table 2).

In the mediation analysis for CVD incidence, which included the 70 DMPs associated 

with CVD incidence and 315 DMPs associated with urinary arsenic in our previous 

study,27 we found statistically significant mediated effects for 21 DMPs (seven from 

the Cox ISIS – Aenet model, and 14 among those previously associated with arsenic) 

(Table 3). For CVD mortality, which included 72 DMPs associated with CVD mortality 

and 315 DMPs associated with urinary arsenic in our previous study, we found 

statistically significant mediated effects for 15 CpG sites (five from the ISIS – Aenet 

model and 10 previously associated with arsenic) (Table 4). The DMPs cg05779585 

(LOC286083), cg19693031 (TXNIP), cg06716655 (ADAR), cg17608381 (HLA-A), 

cg22294740 (LINGO3), cg11946459 (HLA-A), cg03362418 (TYMP) and cg06970472 

(APBB2) were common significant mediators for arsenic-related CVD incidence and 

mortality (two from the Cox ISIS – Aenet model and four from those previously associated 
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with arsenic). Mediated effects from unweighted models (Tables S2 and S3) were consistent 

with those from weighted models.

The adjustment for diabetes in the mediation models attenuated the indirect effects for 

arsenic-related CVD incidence and mortality for all DMPs, although most of them remained 

statistically significant for both CVD incidence and mortality (data not shown). Two CpG 

sites that were not significant in non-diabetes-adjusted models had significant indirect 

effects when adjusting for diabetes; cg25371036 (annotated to AMOTL1) had a total effect 

of 71.1 (−35.8, 177.9) and an indirect effect of 13.5 (0.1, 31.4) CVD incidence cases per 

100,000 person-years (i.e., of 71 CVD cases per 100,000 person-years associated with a 

doubling of arsenic exposure, 13 cases were attributed to DNA methylation). In addition, 

cg22130008 (annotated to FGG), showed an indirect effect of 18.8 (0.53, 46.35) for CVD 

incidence. The adjustment for hypertension and systolic blood pressure in the mediation 

models lead to similar results as the primary analysis (data not shown).

All DMPs with statistically significant mediated effects in the main analyses were also 

significant when considering the full follow-up (through 2017) for CVD incidence, except 

cg01542019 (TECR). For CVD mortality, all were significant except cg05527044 (EGR4), 

cg00451635 (EMP2), cg27523527 (BARHL2) and cg19301366 (HLA-DQB1) (data not 

shown).

Among the 21 DMPs associated with arsenic-mediated incident CVD in the SHS, all of the 

CpG sites were available in MESA and 14 were available in FHS and WHI. Among the 

14 common CpG sites, six had hazard ratios in the same direction for the four populations 

(annotated to LINGO3, TXNIP, HLA-A, EIF2C2, ANKS3 and TECR), and five more had 

hazard ratios in the same direction for all populations except one (Table 5). Results for FHS 

were similar when excluding the 111 individuals from the second batch (data not shown).

In the SHS and MESA, DNA methylation was measured using EPIC array. In FHS and 

WHI, the 450K array was used.In MESA, the only cohort with urine arsenic data available 

(N=206), one DMP was associated with arsenic at 0.05 p-value cut-off, and two more were 

associated with arsenic at 0.1 p-value cut-off. These DMPs were annotated to EPPK1 (mean 

difference [SE] in methylation M values −0.018 [0.008] for one log-unit change in arsenic), 

ANKS3 (mean difference [SE]: −0.018 [0.01]) and ARRDC2 (mean difference [SE]: 0.013 

[0.007]) (Excel Table S3). A DMP annotated to TXNIP associated with arsenic before 

adjustment for cell counts (mean difference [SE] 0.027 [0.008]), was no longer significantly 

associated after adjustment for cell counts (mean difference [SE] −0.014 [0.02]).

In the protein-protein interaction network, we analyzed a list of 405 unique genes (from 

315 genes tagged to DMPs associated with arsenic and 70 and 72 genes tagged to DMPs 

associated respectively with CVD incidence and mortality). Of these, 168 ncRNA genes or 

unconnected nodes were discarded, obtaining a network with 237 nodes and 460 interactions 

(Figure 1). MAPK8, ITPKB and SMAD3 were the most connected nodes in the network 

with 28, 17 and 17 interactions, respectively, and all nodes associated with arsenic and 

SMAD3 were also associated with CVD. Other highly connected nodes associated with 

CVD were TGFBR1 or PKM, with more than 10 interactions. TGFBR1, LMO7, UBAC1 
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and COL1A1, with 11, 10, 8 and 8 interactions respectively, were significant in the 

mediation analysis.

In the Gene Ontology analysis, we found 110 enriched terms for CVD incidence (Excel 

Table S4), and 86 enriched terms for CVD mortality (Excel Table S5), at a cut-off of 

nominal p-value 0.05, none of them significant when adjusting for multiple comparisons 

using the FDR approach. Most of the top Gene Ontology terms were related to immune 

function for CVD mortality and to gene silencing for CVD incidence. In the KEGG analysis, 

no pathways were enriched for CVD incidence (data not shown), while 12 pathways were 

enriched for CVD mortality at a 0.05 nominal p-value significance threshold, including a 

diabetes mellitus pathway (Excel Table S6).

Cross referencing with the EWAS Catalog, 17 of the 29 DMPs that were significant in the 

mediation analysis for either CVD incidence or mortality showed previous associations with 

other traits (Table S4). The most frequently found traits were type II diabetes, smoking, and 

alcohol consumption.

We next investigated whether DNA methylation marks were conserved in a mouse model 

of early-life arsenic exposure. ApoE−/− mice exposed to arsenic during early-life (mating 

to weaning) exhibit increased atherosclerosis later in life and sex-specific changes to the 

components of the atherosclerotic plaque.66 We first interrogated differentially methylated 

regions (DMRs) within the 29 genes that showed significant indirect effects in the mediation 

analysis and were present in the animal model. We observed most (20 out of 29 DMRs) 

were related to arsenic-induced atherosclerosis in the animal model (Table 6, Figure 2). 

Further, we assessed whether individual DMPs within the 29 genes were significantly 

different between controls and arsenic-exposed mice. In this more stringent analysis, 43 

(42 in males and one in females) DMPs mapped to 10 of 26 genes. Of note, six DMPs 

were annotated to Lmo7 in males, but not females, correlating with more profound arsenic-

induced changes in atherosclerotic plaques found in males. The gene Nav2, significant in the 

mediation analysis for CVD mortality, had eight and one differentially methylated positions 

for male and female, respectively.

Discussion

In this population-based study of American Indian adults chronically exposed to arsenic in 

drinking water across the Southwest and the Great Plains in the US, differential methylation 

of several CpG sites explained part of the association of inorganic arsenic exposure, as 

measured in urine, with CVD incidence and mortality. Among 70 and 72 DMPs associated 

with CVD incidence and mortality, respectively, and 315 previously associated with arsenic 

in the SHS,27 we found significant mediated effects for 21 and 15 DMPs for CVD incidence 

and mortality, with up to 41% of mediated effects for individual DMPs (without accounting 

for multiple mediation). Among the 21 DMPs associated with arsenic-mediated incident 

CVD, six of them were associated with incident CVD in the same direction in three 

independent cohorts. In MESA, the only cohort with arsenic measured in a subset, despite 

the small sample size, the direction of association between arsenic and CVD was replicated 
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in 13 of the 21 DMPs (N=896), and three DMPs were associated with urinary arsenic levels 

(N=206).

Most of the DMPs were inversely associated with CVD incidence and mortality, which 

would mean that hypermethylation in those CpG sites would be associated with lower risk 

of CVD. Only one CpG (cg25371036, annotated to AMOTL1) was located in a promoter 

region. As DNA methylation in promoter regions affects gene expression generally leading 

to gene silencing,72 our results may suggest that silencing of AMOTL1 is related to a lower 

risk of CVD. Several DMPs associated with arsenic-related CVD (annotated to LINGO3, 
UBAC1, EPPK1 and TYMP for CVD incidence, and to LINGO3, C1RL and EMP2 for 

CVD mortality) were located in promoter regions. Of those, TYMP, UBAC1, C1RL and 

EMP2 had inverse associations with CVD, potentially reflecting that silencing of those 

genes could be related to lower risk of CVD. EPPK1 and LINGO3, on the other hand, had 

positive associations with CVD incidence, potentially reflecting that overexpression of those 

genes could be related to higher cardiovascular risk. Functional studies exploring how DNA 

methylation changes in these CpG sites influence gene expression should be conducted.

The biological functions of genes annotated to the significant DMPs in the mediation 

analysis are relevant for CVD development and provide additional supportive evidence on 

the potential role of inorganic arsenic exposure on CVD through DNA methylation. Arsenic 

exposure has been associated with diabetes,73,74 one of the main CVD risk factors, in 

particular in American Indian communities,75,76 a population who has recently observed 

major changes in lifestyle including changes in traditional diets towards a high-fat diet 

in part related to limited resources and challenges of access to healthy foods in the 

communities.64,65 Arsenic causes impairment of pathways of glucose catabolism,77 can 

disrupt glucose metabolism through its reactivity toward thiol groups78 and has been related 

to diabetes in multiple populations including the SHS.79,80 Other mechanisms including 

oxidative stress, inflammation or apoptosis might also be involved in arsenic-induced 

diabetes.73 Several diabetes-related genes were significant in our mediation analysis. 

UBAC1 is a Ubiquitin-Associated Domain-Containing Protein that can influence glucose-

induced insulin synthesis and secretion.81,82 Deletion of APBB2 (Amyloid Beta Precursor 

Protein Binding Family B) has been related to dysfunction of beta cell function in mice.83 

Arsenic-induced expression changes of APBB2 were reported in primary neuronal cells 

in vitro.84 The EWAS Catalog has shown previous associations of RELL1 and EGR4 
with diabetes or fasting glucose. In addition, methylation in FGG has been proposed as 

a biomarker of type 2 diabetes, while some alleles of HLA-DQB1 have been related to 

type 1 diabetes.85 Diabetes might be part of the biological mechanism underlying arsenic-

induced CVD, at least in populations where high-fat diets have become common, as this 

is also the context of the animal model used in our cross-species comparison. Another 

possible explanation is that arsenic and diabetes share common mechanisms linking them to 

cardiovascular disease.

The TXNIP gene (thioredoxin interacting protein) shows one of the strongest mediated 

effects in our study (41%). Interestingly, cg19693031, annotated to this gene, was 

consistently inversely associated with CVD in all cohorts. Four DMRs annotated to this 

gene were also associated with arsenic in the mouse model for both males and females. 
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TXNIP is an important binding partner for the redox signaling protein thioredoxin. Arsenic 

is known to directly bind thioredoxin.86 Thioredoxin plays a central role in redox control 

of cell functions and regulates the activity of transcription factors, such as nuclear factor 

kappa B (NF-KB), activating protein 1 (AP-1, an heterodimer that can include C-JUN, 

which is phosphorylated by MAPK8), and p53 (an important tumor suppressor protein), all 

of which have been involved in arsenic-toxicity, as well as in the regulation of apoptosis, a 

major proposed mechanism for arsenic-induced damage in multiple organs and systems.86,87 

Arsenic promotes down-regulation of TXNIP in multiple myeloma cells compared to 

untreated cells, which could explain arsenic-induced apoptosis.88 TXNIP has also been 

related to prevalent diabetes,89,90 glucose homeostasis,91,92 systolic blood pressure93,94 

and triglycerides.95,96 However, deletion of TXNIP is beneficial in high fat diet fed mice 

and streptozotocin mouse diabetes models, so the interpretation of this finding remains 

unclear.97,98

In addition to diabetes, the EWAS catalog linked some DMPs with smoking and alcohol 

intake. Smoking is a known source of arsenic,99 although it is generally not the main 

source. Some alcoholic beverages are known to contain arsenic, however, the estimated 

amount of arsenic exposure via those beverages is low.100 The EWAS catalog did not 

identify DMPs associated to other traits. However, this catalog is not balanced as no blood 

DNA methylation epigenome-wide studies have been conducted for variables that might be 

important for arsenic-induced CVD, such as hypertension. Hypertension is one of the most 

important risk factors for CVD, and it has been associated with arsenic.101 In our mediation 

analysis, the results did not change when adjusting for hypertension treatment and systolic 

blood pressure. Other EWAS are needed to evaluate the potential role of hypertension in 

arsenic-induced CVD.

Some of the genes in our mediation analysis have been evaluated as therapeutic targets 

for CVD. Mutations in the gene TGFBR1 have been associated with aortic diseases102,103 

and perturbations in cardiovascular development.104 This gene has also been proposed as 

a prognostic biomarker after myocardial infarction.105 The DMP annotated to TYMP was 

consistently inversely associated with CVD in the four populations. TYMP encodes an 

angiogenic factor which promotes angiogenesis in vivo and contributes to endothelial cells 

growth in vitro. Platelets are a major source of TYMP and platelet-mediated clot formation 

is a key process for several types of CVD.106 The ADAR2 gene, from the ADAR gene 

family, has been suggested to play a vital role in preventing cardiovascular defects.107

Other significant genes have also been associated with CVD risk factors or atherosclerosis. 

The C1RL gene mediates the proteolytic cleavage of HP/haptoglobin in the endoplasmic 

reticulum. Differential expression in C1RL has been associated to CVD risk factors 

(hypertension, atherosclerosis) in several studies.108,109 The COL1A1 gene encodes the 

major component of type I collagen. Expression changes in this gene have been associated 

to in utero and post-natal As exposure in mice with disruptive effects in blood vessels in 

the heart and lungs.110 The AMOTL1 gene is related to angiomotin (an angiostatin-binding 

protein). This gene has been reported to be an important part of a biological mechanism by 

which Fat4 mutants restrict heart growth.111 Also, arsenic has been reported to be associated 

with dysregulations of Yap, a protein with an important role on prevention of AMOTL1 
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degradation.111,112 The fact that many genes with significant mediated effects in our analysis 

are involved in CVD-related biological pathways supports that arsenic-induced epigenetic 

dysregulations in those genes could be part of the biological link between arsenic and CVD, 

and that numerous mechanistic pathways are involved.

A recent study conducted in the same mouse model used for replication in this work showed 

that an in utero and early-life arsenic exposure can enhance atherosclerosis later in life 

in apoE−/− mice.113 Comparing the DNA methylation data from the livers harvested in 

that study to the top hits from our population-based study, we observed differential DNA 

methylation in the genes of interest. The fact that these DMPs and DMRs are validated in a 

different tissue (blood vs. liver) that is equally important to CVD, in particular in the context 

of cardiometabolic disease, provides supporting evidence of a potential causal relationship 

between arsenic-induced DNA methylation changes and atherosclerosis.

One of the methodological strengths of this work is the implementation of the innovative 

statistical tool ISIS – Aenet to evaluate the association of DNA methylation with CVD. 

ISIS has proven to be very efficient for variable selection, reducing the false discovery rate. 

It has been used in other studies paired with other shrinkage methods such as LASSO or 

elastic-net, however, to our knowledge, this is the first study that has incorporated Aenet, 

an improvement of elastic-net, to the ISIS algorithm for a survival problem. Other strengths 

include replication in three independent cohorts and in an animal model, having methylation 

data in one of the largest microarrays available (850K), the prospective study design, and the 

high quality of the study protocol and CVD ascertainment.

This work has some limitations. First, water arsenic levels changed a few years after the 

implementation of the US EPA Final Arsenic Rule in 2006.38 However, the SHS does not 

have updated information on urinary arsenic levels in recent years, and data from Chile 

support that CVD incidence changes a few years after exposure changes.114 Longitudinal 

studies with repeated measurements of arsenic and DNA methylation are needed to assess 

the reduction of CVD risk after arsenic exposure decreases. Second, DNA methylation is 

highly cell-type specific and results from blood cells might not be comparable to DNA 

methylation in other tissues. Blood DNA methylation, however, is emerging as a relevant 

tissue for CVD, probably because many of the immune cells in blood are involved in CVD 

pathogenesis. Also, it is unknown if CpG sites in human blood are comparable to mouse 

liver cells; indeed, there is limited homology between human and murine CpG sites. A 

genetically-modified mouse that induces hyperlipidemia had to be used, as wild-type mice 

do not develop atherosclerosis, even on a high-fat diet. Thus, the arsenic exposure cannot 

be studied in the absence of hyperlipidemia. Our mice were exposed to arsenic only during 

early-life and were all hyperlipidemic through genetic modification, although they were not 

on high-fat diet. This model might be well suited for the populations we studied such as SHS 

and MESA, but may not be representative for populations exposed to arsenic in Bangladesh 

and other parts of the world where high-fat diets are less common. These results lay the 

groundwork for developing mouse models to test specific questions regarding the epigenetic 

contribution to arsenic-related CVD and potential interventional strategies.
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In conclusion, differential methylation of CpG sites annotated to genes relevant for arsenic-

related health effects might be part of the biological link between inorganic arsenic exposure 

and CVD. Diabetes might be a relevant mechanism for arsenic-induced cardiovascular risk 

in populations with a high diabetes burden, or alternatively arsenic and diabetes might share 

common pathways for CVD. Replication was observed for several DMPs across diverse 

US populations. The inter-species comparison supports that arsenic exposure modifies 

methylation of the same genes in the liver of an animal model of atherosclerosis compared to 

unexposed animals. Additional experimental studies are needed to assess whether changes in 

these epigenetic signatures depending on arsenic exposure influence CVD development.
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SHS Strong Heart Study
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MMA Monomethylarsonate

DMA Dimethylarsinate
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DMRs Differentially methylated regions
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Novelty and significance

What is known?

• Arsenic, a risk factor for cardiovascular disease (CVD), induces epigenetic 

modifications in experimental models.

• DNA methylation has been proposed as an intermediate mechanism between 

environmental exposures and disease.

What new information does this article contribute?

• Mediation analysis in the Strong Heart Study supports that blood DNA 

methylation influences arsenic-related CVD.

• Differential DNA methylation in several sites were replicated in three 

independent cohorts and in a mouse model of arsenic-induced atherosclerosis.

• Gene functions support that diabetes and redox signaling are involved in 

arsenic-induced CVD.

This is the first study that conducts a mediation analysis to assess the potential 

role of DNA methylation on arsenic-related CVD. Differential methylation of DNA 

sites in blood were identified as potential mediators in the Strong Heart Study, and 

some of them were replicated as associated with CVD in three independent cohorts. 

Differential methylation of similar genes in the liver was observed in a mouse model 

of arsenic-induced atherosclerosis. The characterization of gene function related to these 

DNA methylation sites can help identify the biological link between arsenic exposure 

and CVD. Gene function analysis supported that diabetes and redox signaling are 

relevant pathways for arsenic-induced CVD in populations with a high diabetes burden. 

Alternatively, arsenic and diabetes might share common pathways for CVD.
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Figure 1. 
Protein-protein interaction network of differentially methylated positions associated with 

CVD and with arsenic in the Strong Heart Study. Arsenic-associated and CVD-associated 

DMPs were annotated to the nearest protein coding gene and included in a protein-protein 

interaction network. The interactions between nodes were obtained using STRING database 

v11.0,60 selecting all active interaction sources with a confidence score of 0.4. The network 

was analyzed and displayed using edge weighted spring embedded layout with Cytoscape 

v3.8.2.61.

Domingo-Relloso et al. Page 27

Circ Res. Author manuscript; available in PMC 2023 July 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Summary of significant DMPs in mouse model of in utero arsenic exposure by gene element 

and the direction of differential methylation.
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Table 1.

Baseline participants’ characteristics by cardiovascular disease incidence and mortality status.

Non-incident CVD
(N=1474)

Incident CVD
(N=847)

CVD death
(N=316)

Age (years), median (IQR) 53.1 (48.0, 60.0) 57.3 (51.0, 64.4) 58.4 (52.6, 66.2)

Sex, % Men 60.0 58.3 56.8

Smoking status, %

 Former 33.3 33.4 29.6

 Current 32.3 36.4 34.3

BMI, median (IQR) 29.8 (26.3, 34.2) 30.4 (27.1, 34.5) 30.4 (27.1, 34.3)

LDL cholesterol (mg/dL), median (IQR) 114 (92, 135) 121 (99, 142) 121 (100, 144)

HDL cholesterol (mg/dL), median (IQR) 44 (38, 53) 42 (36, 50) 41 (36, 49)

Systolic blood pressure, median (IQR) 122 (111, 135) 129 (118, 141) 133 (120, 144)

Hypertension, % 15.3 30.1 34.5

Diabetes, % 40.3 61.9 69.2

Albuminuria, %

 Microalbuminuria 15.1 24.5 24.2

 Macroalbuminuria 6.4 15.8 24.4

Urinary arsenic (μg/g creatinine)* 10.2 (5.9, 16.7) 10.3 (6.0, 17.3) 11.2 (6.6, 18.2)

CVD: Cardiovascular disease, IQR: interquartile range.

*
Urinary arsenic corresponds to the sum of inorganic and methylated species (methylarsonic acid and dimethylarsinic acid) in the urine.
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Table 6.

Significant genes in mediation analysis in the Strong Heart Study that were differentially methylated in liver 

samples from the mouse model of in utero arsenic exposure compared to controls.

Mouse gene Outcome in mediation 
analysis in the Strong Heart 

Study

Number of DMRs (male / 
female) annotated to the 
gene in the mouse model

Number of DMPs (male / 
female) annotated to the 
gene in the mouse model

Genomic position of the 
DMPs

Tgfbr1 CVD incidence 5 / 4 1 / 0 47429393

Arrdc2 CVD incidence 5 / 2 1 / 0 73359785

Ago2 CVD incidence 8 / 2 2 / 0 72999018, 72977447

Nisch CVD incidence 2 / 0 1 / 0 32008471

Lmo7 CVD incidence 23 / 7 6 / 0 102168435, 102232355, 
102232332, 102232208, 
102296394, 102136457

Adar CVD mortality 4 / 5 1 / 0 89534367

Apbb2 CVD mortality 3 / 16 4 / 0 66999334, 66978308, 
66724458, 66733745

Nav2 CVD mortality 31 / 15 8 / 1 56849475, 56830246, 
56621107, 56724015, 
56583581, 56804011, 
56665515, 56605002, 

56747173

Egr4 CVD mortality 2 / 2 1 / 0 85463274

Lingo3 CVD incidence and mortality 0 / 1 2 / 0 80308751, 80306748

Ubac1 CVD incidence 1 / 0 0 / 0 -

Eppk1 CVD incidence 1 / 2 0 / 0 -

Tecr CVD incidence 3 / 1 0 / 0 -

Smoc2 CVD incidence 4 / 11 0 / 0 -

Klf9 CVD mortality 4 / 4 0 / 0 -

C1rl CVD mortality 4 / 0 0 / 0 -

Emp2 CVD mortality 4 / 9 0 / 0 -

Barhl2 CVD mortality 8 / 10 0 / 0 -

Txnip CVD incidence and mortality 4 / 4 0 / 0 -

Tymp CVD incidence and mortality 1 / 0 0 / 0 -

DMPs: Differentially Methylated Positions

DMRs: Differentially Methylated Regions
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