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Abstract

Observable Consequences of Rotation for

Stars, Brown Dwarfs, and Star Clusters

by

Mikhail Lipatov

It is reasonable to suppose that a typical newborn star or brown dwarf inherits much

of its progenitor molecular cloud’s angular momentum. This leads to the suggestion

that such an object ought to have a rotational velocity that is close to the Keplerian

breakup limit, resulting in significant centrifugal expansion at the equator. According

to models of internal energy transport, this expansion ought to make the poles of a

rotator significantly hotter than its equator, so that the inclination of its rotational

axis greatly affects both the shape of its observed spectrum and its total observed flux.

These predictions are consistent with the interferometric and spectroscopic observations

of stellar and sub-stellar objects whose rotational speeds are frequently at appreciable

fractions of the Keplerian limit.

In particular, the oblate shapes, surface temperature variations, and spectral line

broadening of many early-type stars indicate large rotational velocities. Via its effects on

surface temperature and shape, rotation has a significant effect on these stars’ spectra.

Thus, in order to infer the structural and life history parameters of these objects from
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their spectra, one must carefully integrate specific intensity over the two-dimensional

surfaces of corresponding stellar models. Toward this end, in Chapter 2, we offer PARS

(Paint the Atmospheres of Rotating Stars) – an integration scheme based on models that

incorporate solid body rotation, Roche mass distribution, and collinearity of gravity and

energy flux (Lipatov & Brandt, 2020a). The scheme features a closed-form expression

for the azimuthal integral, a high-order numerical approximation of the longitudinal

integral, and a precise calculation of surface effective temperature at rotation rates up to

99.9% of the Keplerian limit. Extensions of the scheme include synthetic color-magnitude

diagrams and planetary transit curves. An important input to PARS in Chapter 2 is a

grid of specific intensities for stellar plane-parallel atmosphere models, ATLAS9.

Much like the observations of early-type stars, spectroscopy and time-resolved pho-

tometry of brown dwarfs are frequently indicative of rotational velocities that are com-

parable to the breakup limit. Accordingly, in Chapter 3, we apply PARS to parameter

inference in the case of rotating brown dwarfs, exploring the dependence of these sub-

stellar objects’ observables on rotational speed and axis inclination. In this case, instead

of specific intensities for stellar atmosphere models, we feed PARS an intensity grid that

is appropriate for brown dwarfs, computed by PICASO (a Planetary Intensity Code for

Atmospheric Spectroscopy Observations) from Sonora brown dwarf 1D climate and chem-

istry models. We find that the specific flux of a typical fast-rotating brown dwarf can

increase by as much as a factor of 1.5 with movement from an equator-on to a pole-on

view. On the other hand, the distinctive effect of rotation on spectral shape increases
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toward the equator-on view. The latter effect also increases with lower effective tempera-

ture. The bolometric luminosity estimate for a typical fast rotator at extreme inclinations

has to be adjusted by as much as ∼ 20% due to the anisotropy of the object’s observed

flux. We provide a general formula for the calculation of the corresponding adjustment

factor in terms of rotational speed and inclination.

Rotation does not only directly affect the spectra of present-day stars, it also signifi-

cantly alters the evolution of stars throughout their lives, chiefly via its effect on stellar

internal transport. By means of both the direct and the evolutionary effects, stellar

rotation is possibly responsible for the fact that the color-magnitude diagrams (CMDs)

of intermediate-age star clusters (≲2Gyr) are much more complex than those predicted

by coeval, non-rotating stellar evolution models. The clusters’ observed extended main

sequence turnoffs (eMSTOs) could result from variations in stellar age, stellar rotation,

or both. The physical interpretation of eMSTOs is largely based on the complex map-

ping between stellar models—themselves functions of mass, rotation, orientation, and

binarity—and the CMD. In Chapter 4, we compute continuous probability densities in

three-dimensional color, magnitude, and ve sin i (i.e., projected equatorial velocity) space

for individual stars in a cluster’s eMSTO, based on a rotating stellar evolution model.

These densities enable the rigorous inference of cluster properties from a stellar model,

or, alternatively, constraints on the stellar model from the cluster’s CMD. We use the

MIST stellar evolution models to jointly infer the age dispersion, the rotational distri-

bution, and the binary fraction of the Large Magellanic Cloud cluster NGC 1846. We
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derive an age dispersion of ∼ 70−80Myr, approximately half the earlier estimates due to

non-rotating models. This finding agrees with the conjecture that rotational variation is

largely responsible for eMSTOs. However, the MIST models do not provide a satisfactory

fit to all stars in the cluster and achieve their best agreement at an unrealistically high

binary fraction. The lack of agreement near the main-sequence turnoff suggests specific

physical changes to the stellar evolution models, including a lower mass for the Kraft

break and potentially enhanced main sequence lifespans for rapidly rotating stars.

xii
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Chapter 1

Introduction

1.1 Observational Consequences of Stellar Rotation

Advances in optical interferometry over the past two decades enable the resolution of

nearby stellar surfaces (Monnier, 2003; Zhao et al., 2010; van Belle, 2012). Corresponding

observations reveal that at least 4 of the 15 brightest early-type stars have non-spherical

shapes and star-scale variation in surface temperature: Vega (Yoon et al., 2010, hence-

forth YP10), Achernar (Domiciano de Souza et al., 2014), Altair (Bouchaud et al., 2020,

henceforth BD20), and Regulus (Che et al., 2011). Rapid rotation can explain these

effects. The polar regions of a spinning star are closer to its core and thus hotter than

its equatorial regions (Owocki et al., 1994; von Zeipel, 1924; Cranmer & Owocki, 1995).

The Keplerian velocity of such a star provides an upper limit to its surface rotation rate

(e.g., Ekström et al., 2008). Vega, Achernar, Altair, and Regulus all have inferred rota-

tion rates between 0.62 and 0.84 of the Keplerian limit, and polar temperatures 23% to
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35% hotter than their equatorial temperatures. Here and in the rest of this work, Vega’s

parameters are from Table 1 with horizontal macroturbulence in YP10, Achernar’s are

from Domiciano de Souza et al. (2014), Altair’s are from Table 5 in BD20, and Regulus’s

are from Table 4 in Che et al. (2011) with the modified von Zeipel model.

When a star’s angular size is too small for interferometric resolution, one can invoke

the Doppler effect to infer projected rotation from the broadening of individual spectral

lines (Elvey, 1930; Herbig & Spalding, 1955). Interpretation of observations in light

of this methodology supports the view that many unresolved early-type stars rotate at

significant fractions of the Keplerian limit (Glebocki & Gnacinski, 2005; Dı́az et al.,

2011; Zorec & Royer, 2012). This, in addition to the effect of rotation on the surface

temperatures of resolved stars, implies that rapid rotation frequently affects both spectral

energy distributions and absorption line profiles of unresolved stars.

An observer viewing the pole of a spinning star will see a larger, hotter surface in

projection than one viewing its equator. Through this effect, stellar rotation can explain

color-magnitude diagrams of star clusters with single, coeval populations (Brandt &

Huang, 2015a; de Juan Ovelar et al., 2019; Gossage et al., 2019). Models of clusters start

with the evolution of individual rotating stars from the zero-age main sequence (ZAMS)

to the observed epoch. One then needs to integrate specific intensities over the surfaces

of stellar models for comparison with the observed spectra, colors, and magnitudes.

The inhomogeneous surface of a rotating star also affects transit light curves: a mis-

aligned planetary or stellar companion will produce a deeper or shallower transit as it
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transits a hotter or cooler part of the star (Barnes, 2009). Computing this effect from

a full stellar model requires calculating both the integrated spectrum and the specific

intensity along a chord of finite thickness running across the projected stellar surface.

In Chapter 2, we present a fast, flexible, and accurate numerical integration scheme to

compute synthetic spectra, color-magnitude diagrams, and transit light curves for rapidly

rotating stars. The scheme is embodied in publicly available software PARS (Paint the

Atmospheres of Rotating Stars). The software and the scheme do not take into account

the rotational Doppler effect, so that it is mainly applicable to the inference of rotational

parameters from broad spectral features, as opposed to specific absorption lines.

1.2 Rotation of Brown Dwarfs

1.2.1 Brown Dwarf Structure and Evolution

When a portion of a giant molecular cloud collapses to form a single gaseous object, the

nature and the fate of that object are mainly determined by its mass. Above 75MJup,

the object is massive enough that its core temperature and pressure enable the fusion

of hydrogen, 1H (Basri, 2000). This, by definition, makes the object a main-sequence

star, whose temperature and luminosity remain relatively constant for billions of years –

except in the rare case that the star’s mass significantly exceeds 1M⊙. Between 13MJup

and 75MJup, however, the collapsed object cannot fuse 1H, although it can still fuse

deuterium, 2H (Saumon et al., 1996). This sort of an object is a brown dwarf (BD).
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Infra-red excess from young brown dwarfs indicates the presence of accretion disks. This

confirms that BDs are formed via the above-mentioned process of molecular cloud col-

lapse, much like stars (Muench et al., 2001; Natta & Testi, 2001). Regardless of their

formation mechanism, objects with mass below 13MJup never achieve nuclear fusion in

the core and are classified as planets.

The objects that are intermediate between stars and planets in terms of mass –

brown dwarfs – are particularly interesting. No such object exists in our own solar

system, though the latter does contain several giant planets and a star. According to

the theory of brown dwarf formation and evolution, the surface effective temperature

of a typical newly formed BD is in the neighborhood of ∼2,500 − 3,000K (Chabrier &

Baraffe, 2000). However, this temperature drops relatively quickly, reaching about 50%

of its original value by ∼500Myr as the deuterium content dwindles, even for massive

brown dwarfs. The cooling process leads to observed brown dwarf temperatures that are

as low as ∼250K for low masses and old ages (Luhman, 2014; Phillips et al., 2020).

If we approximate brown dwarfs as black bodies, Wien’s displacement law tells us

that these objects’ surface temperature drop corresponds to a rise in peak spectral wave-

length from ∼ 1µm well into the infra-red portion of the spectrum. In addition, the

temperature drop corresponds to a drop in luminosity. In particular, luminosities of

the heaviest BDs decrease past the luminosities of the least massive main-sequence stars

around 1Gyr (Dantona & Mazzitelli, 1985). It wasn’t until relatively recently that as-

tronomical detection technology enabled the observation of such low luminosities in the

4



infra-red. Accordingly, although the existence of brown dwarfs was predicted in the early

1960’s (Kumar, 1963; Hayashi & Nakano, 1963) and although BDs are about as common

as stars (Bate et al., 2002), the first object unambiguously classified as a brown dwarf

was announced as late as 1995 (Basri, 2000; Nakajima et al., 1995; Oppenheimer et al.,

1995).

Models of brown dwarf structure and evolution predict that the radii of these ob-

jects are generally close to Jupiter’s and that these radii decrease with object age as

their interiors cool and electron degeneracy becomes an increasingly important source of

pressure support (Baraffe et al., 2003; Saumon & Marley, 2008). The former prediction

agrees with the observed brown dwarf radii, which are anywhere between ∼ 0.6MJup and

∼ 1.4MJup (Sorahana et al., 2013; Carmichael et al., 2020).

Due to their relatively low temperatures, brown dwarf atmospheres exhibit a number

of complexities that are not present in the atmospheres of stars. In particular, BD

spectra deviate strongly from black body spectra due to prominent molecular absorption

features (Allard et al., 1997). Furthermore, clouds can form in the potentially rotating

atmospheres, adding further complexity (Ackerman & Marley, 2001; Lew et al., 2020;

Tan & Showman, 2021). At any given time point, such atmospheric properties strongly

depend on surface effective temperature. The atmosphere of a brown dwarf, in turn,

determines the shape of its spectrum and regulates its cooling (Chabrier & Baraffe, 2000;

Allard et al., 1997).
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1.2.2 Rotating Brown Dwarfs

Brown dwarfs spin at a significant rate due to the angular momentum that they inherit

from their progenitor molecular clouds. Specifically, observed rotation periods of newly

born BDs are ∼ 100 hr, falling to ∼ 10 hr by ∼ 100Myr due the above-mentioned cooling

and contraction process (Eislöffel & Scholz, 2007; Crossfield, 2014). The rotational peri-

ods of the fastest-rotating brown dwarfs are as low as ∼ 1 hr, corresponding to significant

fractions (up to a third) of the Keplerian breakup velocity (Tannock et al., 2021). As

noted in Section 1.1, rotation rates at appreciable fractions of the breakup limit cause

centrifugal deformation and surface temperature variation in stars (Monnier et al., 2007;

Domiciano de Souza et al., 2014). This, in turn, causes the observed spectra, magni-

tudes, and bolometric fluxes of stars to depend on the inclination of the rotational axis

with respect to the observer (Lipatov & Brandt, 2020b, hereafter LB20). Specifically,

the intensity of a typical fast rotating star varies by as much as a factor of 1.5 between

the two extreme inclinations in spectral regions with appreciable flux, which corresponds

to ≳ 0.3 in visual magnitude difference. Differences in color and spectral line shape are

potentially detectable as well. Rotation is expected to be similarly appreciable in brown

dwarfs (e.g., Sanghavi & Shporer, 2018).

Inference of brown dwarf parameters based on model atmospheres yields effective

temperatures, surface gravities, radii, and metallicities of these objects (Zhang et al.,

2021). Currently, such inference is based on nonrotating, spherically symmetric models

with uniform surface temperature, even for objects known to be rotating at significant
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fractions of the breakup limit (Tannock et al., 2021; Eislöffel & Scholz, 2007; Crossfield,

2014). This can lead to inaccurate estimation of temperatures and luminosities from

BD spectra and bolometric fluxes, since the latter observables depend on rotational axis

inclination and since the temperature of a rotating brown dwarf varies significantly across

its surface. In Chapter 3, we quantify the dependence of BD observables on rotational

speed and object orientation, as well as the associated effect on inferred nonrotating

model parameters. To accomplish this, we utilize Sonora brown dwarf 1D climate and

chemistry models (Marley et al., 2021), the PICASO spectroscopy code (Batalha et al.,

2019), and PARS (Paint the Atmospheres of Rotating Stars) – software that computes

observed spectra of self-gravitating, rotating gaseous objects (LB20).

1.3 Clusters with Rotating Stars

1.3.1 Evolution of Rotating Stars

According to modern physical science, fundamental principles can explain the diversity

of observed stars via stellar structure and evolution (Arny, 1990; Christensen-Dalsgaard,

2021). An early manifestation of this idea is the Vogt-Russell theorem, a proposition

that a star’s chemical composition structure and its initial mass (or, simply, mass) fully

determine the course of its life (Kaehler, 1978; Carroll & Ostlie, 2007, p. 333). The

addition of rotation to the list of life-determining parameters constitutes an important

amendment to this proposition.
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Generally speaking, stars rotate. This phenomenon has been observed in the move-

ment of the Sun’s spots (Howard et al., 1984), the centrifugally deformed shapes of

nearby B- and A-type stars (Monnier et al., 2007; Domiciano de Souza et al., 2014),

and spectroscopic rotational velocities of unresolved stars (Royer et al., 2002a,b; Healy

& McCullough, 2020). Rotation has important consequences for the evolution and ob-

served properties of stars. It mixes extra hydrogen into the core of a main-sequence star,

increasing both its luminosity and lifetime (Brott et al., 2011; Eggenberger, 2013). In

addition, as noted in Section 1.1, the equatorial regions of a rotating star are cooler and

dimmer than its polar regions due to an effect called gravity darkening (von Zeipel, 1924;

Espinosa Lara & Rieutord, 2011). This makes the star’s magnitudes and colors depend

on the inclination of its axis with respect to the observer (e.g., Lipatov & Brandt, 2020b).

Stars inherit their angular momenta from ancestral clouds of gas and dust (Prentice

& Ter Haar, 1971; Tomisaka, 2000; Larson, 2010). Subsequently, their rotational speeds

evolve to the present day (Maeder & Meynet, 2000). The speeds extend up to appreciable

fractions of the centrifugal breakup limit for stars with mass ≳1.5M⊙ (Zorec & Royer,

2012; Kamann et al., 2020). Lower-mass stars, on the other hand, spin down rapidly

(e.g., see Figure 11 in Godoy-Rivera et al., 2021). This pattern likely results from the

emergence of an outer convective zone that supports magnetic field lines that, in turn,

rotate with the star and extend away from it. Stellar wind particles move along these

lines, depriving the star of angular momentum. This process, termed magnetic braking,

results in the Kraft break – a sharp reduction in observed rotation rates as stellar mass
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decreases below ∼ 1.3M⊙ (Kraft, 1967; Noyes et al., 1984). Recent analyses tune models

of magnetic braking to clusters, i.e., gravitationally bound collections of stars (Matt et al.,

2015; Breimann et al., 2021; Gossage et al., 2021).

1.3.2 Stellar Distributions in Massive Clusters

In this work, we focus on NGC 1846, which belongs to the category of massive (≳104M⊙),

intermediate-age (∼ 1 − 2Gyr) clusters that reside in the Magellanic Clouds (Bastian

& Niederhofer, 2015, hereafter BN15). Like other clusters, it offers an opportunity to

tune a model of stellar structure and evolution simultaneously to all of its stars, since

their shared cluster membership implies that they share some of their life-determining

parameters.

For example, if the stars in a cluster are all formed from the collapse and fragmenta-

tion of the same giant molecular cloud (Klessen, 2001; Bate et al., 2003), they should all

have the same chemical composition. This picture is not entirely true for massive clus-

ters, which can contain multiple populations (MPs) with different chemical compositions

(Bastian & Lardo, 2018; Gratton et al., 2012; Piotto, 2009). On the other hand, massive

clusters in the Magellanic Clouds generally show insignificant within-cluster departures

from uniform iron abundances [Fe/H] (Piatti & Bailin, 2019; Piatti, 2020; Mucciarelli

et al., 2008). This suggests that there is not enough variation in chemical composition

to produce appreciable variation in stellar evolution within such clusters. Similarly to

[Fe/H] distributions, initial mass distributions in clusters are relatively well-known, with
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consequently predictable effects on magnitudes and colors. There is evidence that these

mass distributions do not differ significantly from the Salpeter initial mass function (IMF)

above ∼1M⊙ (Salpeter, 1955; Kroupa, 2001; Chabrier, 2003; Villaume et al., 2017).

Unlike [Fe/H] and mass distributions, rotational and age distributions of stars within

clusters are not established. Variations in both rotation and age have been invoked

to explain the color spreads of the main sequence turnoff (MSTO), termed extended

MSTOs (eMSTOs). One of the first eMSTOs was discovered in NGC 1846 (Mackey

& Broby Nielsen, 2007). Initial photometry-based analysis led to the hypothesis that

this pattern results from a wide stellar age distribution, i.e., an extended star formation

(eSF) period (Goudfrooij et al., 2009; Rubele et al., 2013; Goudfrooij et al., 2011b,a).

Subsequently, as eMSTOs were discovered in other clusters, it became apparent that age

and rotation spreads could both contribute to this phenomenon, making it difficult to

distinguish between the two factors from MSTO photometry alone (Bastian & de Mink,

2009; Bastian & Niederhofer, 2015; Brandt & Huang, 2015b; D’Antona et al., 2017). At

the same time, eSF ought to have similar effects on different portions of the CMD –

e.g., the MSTO, the sub-giant branch (SGB), and the red clump (RC). BN15 show that,

even under the assumption of zero rotational variation, the SGB and RC morphologies

in NGC 1846 are consistent with zero age spread and are significantly narrower than

expected if eSF causes the cluster’s eMSTO. BN15 go on to suggest that their results can

be explained by a rotational distribution that widens the MSTO, but does not necessarily

widen the SGB or the RC.
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A variety of additional evidence conflicts with the hypothesis that eSF causes eMSTOs

in NGC 1846 and other massive clusters. For example, Niederhofer et al. (2015) show

that, under the assumption of zero rotation, age spreads inferred from eMSTOs correlate

with cluster age, an observation that is inconsistent with the idea that the age spread of a

cluster is set for the duration of its life. Instead, as the authors demonstrate, the observed

correlation is in good agreement with the hypothesis that rotation spreads cause eMSTOs.

Furthermore, Bastian et al. (2013) examine a number of clusters at one to several tens

of Myr (Young Massive Clusters, or YMCs); at these ages, one expects significant star

formation under the eSF hypothesis. The authors do not find evidence of such formation

in spectral emission lines and constrain the maximum mass of the material that could

be undergoing star formation to no more than 1-2 % of the existing stellar mass content.

Along the same line of inquiry, Cabrera-Ziri et al. (2015) show that YMCs do not possess

the interstellar gas and dust that can form into stars in the course of eSF.

1.3.3 Analysis of Star Clusters

The morphology of the CMD results from the theory of stellar evolution and the properties—

mass, age, composition, rotation, and orientation—of individual stars. In order to infer

cluster parameters from the CMD, or to tune models of stellar evolution, we need to com-

pare theoretical and observed CMDs either qualitatively or quantitatively. Recent work,

which we review here, has advanced toward ever-more rigorous statistical comparisons

between theoretical and observed CMDs.
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Some statistical approaches infer the parameters of individual stars. For example,

Brandt & Huang (2015c, henceforth BH15) infer the ages and other present-day pa-

rameters of stars from color, magnitude, and projected rotational velocity, under the

assumption of the SYCLIST evolutionary model library (Ekström et al., 2012; Georgy

et al., 2013). More recently, Cargile et al. (2020, henceforth C20) accomplish this task

under the assumption of the MIST library (MESA Isochrones and Stellar Tracks; Dotter,

2016; Choi et al., 2016; Gossage et al., 2018, 2019) . Both of these star-by-star approaches

are Bayesian, with the goal of computing the stellar parameters’ joint posterior distri-

bution. Both BH15 and C20 write down the likelihood of stellar parameters in terms

of instrumental uncertainty and multiply the likelihood by the parameters’ prior. C20

approximate the resulting posterior by way of a Monte Carlo methodology called nested

sampling (Speagle, 2020), while BH15 calculate it on a deterministic grid. Both methods

can estimate multi-modal and/or highly covariant posteriors more efficiently than con-

ventional Monte Carlo (MC) methodologies, although the deterministic method is only

viable when the dimensionality of the posterior is small.

One can also simultaneously infer the parameters of many stars under the assumption

that they share the values for some of these parameters (e.g., age and composition).

For example, BH15 marginalize the posteriors of many stars over mass, rotation, and

orientation to infer shared parameters in a star cluster. Building on earlier work (Zucker

et al., 2019; Schlafly et al., 2014; Green et al., 2014), Zucker et al. (2020, henceforth Z20)

follow a similar procedure to infer shared parameters for a different sort of object – a
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molecular cloud that lies between the stars along lines of sight.

Intuitively, when the posterior is viewed as a probability density in stellar observable

space at constant cloud/cluster parameters, parameter likelihood is the product of density

values at the observable-space locations of stars. BH15, Z20, and Green et al. (2014)

state this result without proof, but Walmswell et al. (2013) and Breimann et al. (2021,

henceforth B21) prove it as a consequence of data generation via a Poissonian process that

is inhomogeneous in observable space. The idea of thus multiplying probability density

values at observable-space locations of stars to obtain the likelihood of cluster parameters

was introduced earlier (Naylor & Jeffries, 2006; van Dyk et al., 2009). B21 evaluate the

density values and, consequently, the likelihoods, over a range of cluster parameters. In

B21’s case, the latter are synonymous with stellar evolution parameters. These authors

find that theoretical probability density values for some of the observed stars are very low,

even at maximum-likelihood evolutionary parameters: these stars cannot be explained

by the theoretical model. B21 conclude that the evolutionary model approximations

should be modified. Unlike other authors mentioned so far in this section, B21 never

evaluate or marginalize single-star posteriors over stellar parameter ranges to calculate

the probability densities. Instead, they estimate the densities directly by binning stellar

models in observable space.

Gossage et al. (2019, henceforth G19) also take a binning approach and estimate

cluster parameters via comparisons of theoretical densities in color-magnitude space,

a.k.a. Hess diagrams, with their observed counterparts (Dolphin, 2002). In G19’s work,
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the estimated parameters are the cluster’s age, the Gaussian age spread, and the rotation

rate distribution. The authors’ evolutionary models are from MIST, like those in C20.

Like B21, G19 do not evaluate single-star posteriors, directly comparing likelihoods of

different cluster models. These authors state that their analysis does not conclusively

distinguish between age and rotation in causing eMSTOs. However, they suggest that the

distinction could be made via the inclusion of rotational data such as projected equatorial

velocities. Furthermore, G19’s detailed analysis allows them to identify the evolutionary

processes that one can tune to improve the model’s fit to the data and to independent

knowledge of cluster structure and formation history. Specifically, the authors propose

that the match to the data could improve with the tuning of the model’s rotation-related

processes, such as magnetic braking. Earlier work in the same vein indicates that other

processes, such as rotationally induced mixing, also greatly affect the joint inference of

age and rotational distributions (Gossage et al., 2018).

1.3.4 Our Analysis of NGC 1846

In Chapter 4, we follow G19’s example and compare NGC 1846 data with the MIST

rotating stellar model to jointly infer the rotational and age distributions of the cluster’s

MSTO stars. In line with G19’s suggestion and similarly to BH15, our analysis integrates

projected equatorial velocity measurements with multi-band photometry of the stars.

Furthermore, much like G19, we identify evolutionary processes that one can tune to

improve the fit between the model and the data. With this work, we intend to provide a
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generally applicable and statistically quantifiable numerical framework for the derivation

of the properties of star clusters based on known aspects of stellar evolution and the

derivation of constraints on stellar evolution based on known properties of star clusters.
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Chapter 2

Synthetic Spectra of Rotating Stars

In this chapter, we present the software PARS (Paint the Atmospheres of Rotating Stars).

The main input to this computer program is specific intensity emitted by a plane-parallel

atmosphere model. The model specifies intensity as a function of wavelength, viewing

angle, surface gravity, and temperature. Based on this specification, PARS numerically

integrates intensity over the centrifugally deformed surface of a rotating star, taking into

account the temperature, gravity, viewing angle, and size of each visible surface patch.

The result is a synthetic spectrum of the star. We demonstrate that PARS calculates such

spectra with great speed and precision.

At the end of this chapter, we also introduce an extension of PARS that computes

synthetic light curves of planetary transits for planets that orbit rotating stars, under

arbitrary projected obliquity.

The contents of this chapter have been published in Lipatov & Brandt (2020b), under
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the title ”Synthetic Spectra of Rotating Stars”.

2.1 Stellar model

We begin with our model for the structure of the star itself. A simple choice is a uniformly

rotating Roche model, where the potential at the stellar surface is approximated by

placing all of the star’s mass at its center. However, two-dimensional models of material

flows in rotating stars predict that the cores and equatorial regions of early-type stars have

larger angular velocities than their envelopes and polar regions, respectively (Rieutord

et al., 2016; Rieutord & Espinosa Lara, 2009). BD20 infer these effects from spectro-

interferometry of a resolved star. In general, mass flows and differential rotation could

result in profound consequences for the shapes and temperatures of stars (Kippenhahn,

1977; Zorec et al., 2011).

Nevertheless, a Roche model can account for much of the physics that underlies the

spectrum of an early-type star. One such model incorporates collinearity of gravity and

energy flux (Espinosa Lara & Rieutord, 2011, henceforth ER11). ER11 show that there

is less than 0.01 radians of deviation from this collinearity in a two-dimensional model of

material flow. Additionally, the linear dimensions of a polytrope that mimics the star’s

structure and those of a Roche model differ by about 1% (Orlov, 1961). Furthermore,

stellar evolution calculations that form an input to our integration scheme do not model

surface differential rotation due to their fundamentally one-dimensional nature. These

calculations consider uniform rotation on isobars and use pressure as the radial coordinate
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(again assuming collinearity of effective gravity and energy flux and uniform surface

rotation) (Meynet & Maeder, 2000; Ekström et al., 2012; Georgy et al., 2014; Paxton

et al., 2011, 2019). The calculations result in surface shapes and temperature profiles

that agree with those of ER11’s structural model. Fully two-dimensional stellar evolution

models remain well beyond reach due to the enormous range of both time and length

scales in the problem.

Due to the match between ER11’s model and the output of stellar evolution calcu-

lations, its close agreement with fully two-dimensional structural models, and numerical

convenience, we adopt ER11’s model and note that it involves solid body rotation.

We can visualize energy transport through a rotating star by solving for the internal

energy flux lines. Figure 2.1 shows these lines as computed numerically from ER11’s

equation 21. They are relatively far from each other in the equatorial regions of the sur-

face, so that these regions are at relatively low temperatures due to the Stefan-Boltzmann

law. At the star’s center, where rotation is dynamically unimportant (under the assump-

tion of solid body rotation), the flux lines are equally spaced and energy transport is

independent of polar angle.

We define inclination i ∈ [0, π/2] as the angle between the model’s rotation axis ẑ

and the line of sight î. The ER11 model is symmetric about its axis of rotation, though

not necessarily about any line of sight. Accordingly, we primarily describe the stellar

surface by a set of cylindrical coordinates z, r and ϕ defined by the stars’s rotational

symmetry and assign ϕ = 0 to the azimuthal direction closest to î. We also use Cartesian
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Figure 2.1 Meridional cut through the projected surface and internal energy flux lines
of a star rotating at ω = 0.99, from ER11’s model. Only 1/4 of the star is shown, due
to symmetry. At the center of the star, the flux lines are equally spaced. At the surface,
however, they are farther apart near the equator than near the pole (the pole, as a result,
is hotter).

coordinates that include ẑ and an x-axis coinciding with ϕ = 0 at z = 0 (see Figure 2.2).

We define Rp as the polar radius of the star and µ ∈ [0, 1] as cosine of the viewing angle,

i.e. the angle between the line of sight and the normal to the surface.

Our goal is to compute the star’s specific flux Fν along the line of sight. Fν is given

by

D2
⋆ Fν = 2

∫ Rp

−zb

A(z)

∫ ϕb(z)

0

Iν(z, ϕ)µ(z, ϕ) dϕ dz, (2.1)
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where D⋆ is the distance to the star and zb corresponds to the lowest stellar latitude that

is visible at all ϕ. For a differential element of the stellar surface, A(z)µ(z, ϕ) dϕ dz is

the element’s area projected onto the view plane and Iν(ϕ, z) is its specific intensity per

unit projected area. For all z > −zb, at least some of the star is visible, while none of it

is visible for z < −zb. At a given z, the star is visible everywhere between −ϕb(z) and

ϕb(z) and is not visible anywhere else. The factor of 2 arises due to the symmetries of

the model, since the integral between 0 and ϕb(z) is equal to that between −ϕb(z) and

0. Another result of the symmetries is the fact that ϕb(z) = π for z > zb.

2.2 Visible surface

2.2.1 Surface shape

We define r̃ ≡ r/Re, z̃ ≡ z/Rp, and flatness f ≡ Re/Rp, where Re is the star’s equatorial

radius. Our definition of r̃ is different from that in ER11, which reserves this symbol for

a normalized spherical coordinate. Note that r′(z) = f r̃′(z̃). By substituting the polar

value of ER11’s normalized spherical coordinate into their Equation (30), we find that

f = 1 + ω2/2, (2.2)

where

ω ≡ Ω

√
R3

e

GM
=

Ω

Ωk

,
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Figure 2.2 Meridional cut of the projected surface and observer sightlines for a star
rotating at 90% of its Keplerian surface velocity with i = π/4 (see Section 2.1). The star
is visible at all ϕ above z = zb and, by symmetry, at no ϕ below z = −zb.

Ω is the star’s angular velocity, Ωk is the Keplerian velocity, M is the mass of the star,

and G is the gravitational constant.

We define the following helper variables and constants:

w ≡ 1 + 2/ω2, u ≡ z̃/f = z/Re and s ≡ r̃2. (2.3)

In the remainder of this chapter, we will indicate point locations by either dimensional
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coordinates such as z or by normalized dimensionless coordinates such as z̃ or u. Con-

verting ER11’s Equation (30) to normalized cylindrical coordinates and keeping in mind

Equation (2.3), we obtain

1

ω2
√
r̃2 + u2

+
r̃2

2
=

1

ω2
+

1

2
, (2.4)

which leads to a cubic in s:

s3 + s2
(
u2 − 2w

)
+ sw

(
w − 2u2

)
+
(
u2 − 1

)
w2 + 2w − 1 = 0. (2.5)

We solve this as a function of u to obtain

s(u) =
1

3

[
−u2 + 2w + 2

(
u2 + w

)
v(u)

]
. (2.6)

Here,

v(u) ≡ cos

[
1

3

(
cos−1 [ t(u) ] + 2π

)]
(2.7)

with

t(u) ≡ 27 (1− w)2

2 (u2 + w)3
− 1. (2.8)

22



We differentiate Equation (2.6) to obtain

s′(u) =
2u

3

1− 2 v(u)

1 + 2 v(u)
. (2.9)

Equations (2.2)–(2.9), along with the definitions of f , r̃, and z̃, can be used to obtain

r̃(z̃) and r̃′(z̃). Now consider

dl ≡ r̂ dr + ẑ dz, (2.10)

a differential element of r(z) between z and z + dz. Its length dl can be found from the

Pythagorean theorem and the definition of r′(z):

dl =
√
r′(z)2 + 1 dz. (2.11)

As we rotate dl around the star’s symmetry axis by dϕ, the area of the resulting differ-

ential surface element is r(z) dl dϕ. We multiply this area by µ(z, ϕ) to project it onto

the view plane, substitute for dl according to Equation (2.11), and change variables from

z and r(z) to z̃ and r̃(z̃). This results in

A(z)µ(z, ϕ) dz dϕ = R2
e Ã(z̃)µ(z̃, ϕ) dz̃ dϕ (2.12)
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with

Ã(z̃) =
r̃(z̃)n(z̃)

f
, (2.13)

where

n(z̃) =

√
[f r̃′(z̃)]2 + 1. (2.14)

A change of variables from r̃ and z̃ to s and u implies

f r̃′(z̃) =
s′(u)

2
√

s(u)

∣∣∣∣∣
u=z̃/f

(2.15)

and

s′(u) = 2f r̃′(z̃) r̃(z̃) |z̃=fu . (2.16)

Equation (2.16) helps perform this change of variables in equations (2.13) and (2.14).

The result is

Ã(z̃) =
1

f

√
1

4
s′(u)2 + s(u)

∣∣∣∣∣
u=z̃/f

. (2.17)

At the poles of the star, r̃(z̃) → 0 and r̃′(z̃) → ∓∞ as z̃ → ±1. Thus, the right side

of equation (2.13) multiplies zero by infinity in this limit, and we cannot use it to find
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Ã(±1), which is finite. However, s′(u) remains finite as u→ ±1/f . Accordingly, we use

equation (2.17) for all computation.

We now re-write Equation (2.1) as

D2
⋆ Fν = 2R2

e

∫ 1

−z̃b

Ã(z̃)

∫ ϕb(z̃)

0

µ(z̃, ϕ) Iν(z̃, ϕ) dϕ dz̃, (2.18)

where z̃b ≡ zb/Rp.

2.2.2 Viewing angle

Due to the star’s cylindrical symmetry, a normal to its surface does not have a component

in the ϕ̂ direction. Such a normal also has to be perpendicular to dl in Equation (2.10).

The two directions that satisfy both conditions are along vectors dn = ±(r̂ dz − ẑ dr).

Here, the positive sign gives the vector with a non-negative r̂ component — the vector

that points away from the star’s interior. We divide it by dz to get r̂− r′(z) ẑ, make the

same change of variables as in Equation (2.12), and normalize the result, which yields

n̂ =
r̂− f r̃′(z̃) ẑ

n(z̃)
. (2.19)

To convert this expression to the Cartesian coordinates, we replace r̂ with cosϕ x̂ +

sinϕ ŷ:

n̂ =
cosϕ x̂+ sinϕ ŷ − f r̃′(z̃) ẑ

n(z̃)
. (2.20)
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The normalized line-of-sight vector is

î = sin i x̂+ cos i ẑ, (2.21)

so that the cosine of the angle between the two vectors is

n̂ · î ≡ µ(z̃, ϕ) =
sin i cosϕ− cos i [f r̃′(z̃)]

n(z̃)
. (2.22)

2.2.3 Visibility Boundaries

Setting Equation (2.22) to zero at ϕ = π, we obtain a condition for z̃ = z̃b (see Section

2.1 and Figure 2.2):

f r̃′(z̃b) = − tan i. (2.23)

Combining Equations (2.23) and (2.15) and squaring the result, we obtain

ı ≡ (tan i)2 =
s′(ub)

2

4 s(ub)
, (2.24)

where ub ≡ z̃b/f . We solve Equation (2.6) for v(u) in terms of s(u) and substitute

the result into Equation (2.9), thus obtaining s′(u) in terms of s(u). This, in turn, is

substituted into equation (2.24), which results in
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9s3ı− s2
[
12u2ı− u2 − 6ıw

]
+ s

[(
2u2 − w

)2
ı+ 2u2w2

]
− u2w2 = 0, (2.25)

where, for compactness, ub is written as u and s(ub) as s. We can solve Equation (2.5) for

u2 in terms of s(u) and substitute the result into Equation (2.25) to obtain a 7th-order

polynomial equation in s(ub), which can be solved numerically. Equation (2.5) can then

be used again to obtain u2
b , ub and z̃b.

As discussed in Section 2.1, the surface is visible at a subset of ϕ for z̃ ∈ (−z̃b, z̃b).

At every z̃ in this region, there is some ϕb for which µ = 0. Accordingly, to find these

boundary values, we substitute ϕ = ϕb into Equation (2.22), obtaining

ϕb(z̃) = arccos [ f r̃′(z̃) cot i ]. (2.26)

2.3 Azimuthal integral

2.3.1 Intensity functions

Castelli & Kurucz (2004), henceforth CK04, provide specific intensities Iν on a discrete

grid of microturbulent velocity ξ, metallicity [M/H], effective surface temperature T ,

effective surface gravity g, radiation wavelength λ, and cosine of the viewing angle µ.

The unit of Iν is erg s−1Hz−1 ster−1 cm−2; fixed sets of 1221 λ values and 17 µ values

constitute the grid’s extent in the corresponding dimensions at all points. Hereafter,
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effective surface gravity and effective surface temperature are sometimes simply gravity

and temperature.

We define a set of closed intervals {mj} that form a partition of µ’s range, with

each interval boundary point among the constant µ grid values in CK04’s data. With

mj ≡ [µj, µj+1], µj1 < µj2 when j1 < j2.

In the remainder of this work, we set the partition to [0, 0.1], [0.1, 0.4], and [0.4, 1];

we also set [M/H] to −0.1 and ξ to 2 km s−1. Let us say that CK04 provide intensity I1

at µ = 1, as well as intensity values at other discrete µ, all for a specific parameter space

location (T, g, λ). We model Iν(µ) at this location as a piecewise polynomial

Iν(µ) =
4∑

i=0

aikµ
i with k = max

µ∈mj

j. (2.27)

For each j, we obtain the coefficients aij ∀i by a least-squares fit to CK04’s points on

mj, using every boundary point on each of the two intervals it belongs to. Here and

elsewhere in this chapter, we use version 3 of the Python programming language and the

NumPy library (van der Walt et al., 2011) for all calculations.

For every (T, g, λ), we conduct the above fitting procedure and calculate the associated

error in Iν(µ) at every µ grid point:

∣∣∣∣
δIν
I1

∣∣∣∣ ≡
∣∣∣∣
Iν(µ)− Iµ

I1

∣∣∣∣ . (2.28)

Here, Iµ is CK04’s value of Iν at the grid point, Iν(µ) is given by equation (2.27), and
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the error is normalized by I1.

The global error maximum and the median of the error maxima across the (T, g, λ)

space are 0.17% and 0.010%, respectively. Figure 2.3 presents both the errors and the

intensity fits for the location of the global maximum and for one of the locations with

maximum error closest to the median. Left to right, the three partition intervals re-

spectively contain 5, 7 and 7 grid points. Thus, the 4th degree polynomial fit is slightly

over-constrained on each of the latter two intervals, so that their errors in Figure 2.3 give

us a sense of the true error associated with the procedure. On the other hand, the lowest

interval’s number of grid points equals the number of the polynomial’s parameters, so

that its error is due to round-off.

The lowest Iν(µ) / I1 and I ′ν(µ) / I1 across all the fits are -0.95% and -2.65, respectively.

Negative values for both quantities are not physical, though they are also rare. We do

not expect them to affect the accuracy of our results any more significantly than the

errors we estimate via the fitting procedure.

The least-squares fits over the entire parameter space take about 50 seconds on a 2.3

GHz MacBook Pro with 8 GB of RAM. In the remainder of this chapter, the distinction

between i as either an integer-valued index or the inclination should be clear from context.
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Figure 2.3 Top panel: circles indicate normalized intensity values in CK04 on a grid of
µ, lines — the piecewise polynomial fits Iν(µ) to these points. Bottom panel: relative
error in Iν at the grid points (see Section 2.3.1). Both panels: blue lines and solid
markers correspond to the location of maximum error in parameter space: T = 9000K,
log10 g = 3.0, and λ = 111.5 nm; green lines and open markers — a location of an error
closest to median: T = 7750K, log10 g = 1.5, and λ = 5070 nm; grey vertical lines mark
the boundaries of the partition.
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2.3.2 Piecewise integration

In the foregoing, i ∈ {0, . . . , 4} and j ∈ {1, 2, 3}. We define functions

pij(z̃, ϕ) ≡





µ(z̃, ϕ)i µ(z̃, ϕ) ∈ mj

0 otherwise

. (2.29)

Here, µ (z̃, ϕ) is given by Equation (2.22). We re-write Equation (2.27) as

Iν(z̃, ϕ) =
∑

i,j

aij(z̃) pij(z̃, ϕ), (2.30)

where the aij depend on z̃ because T and g depend on z̃ (see Sections 2.3.1 and 2.3.3).

We substitute Equation (2.30) into Equation (2.18) and move both the sum and the fit

coefficients outside the integral in ϕ. This results in

D2
⋆ Fν = 2R2

e

∫ 1

−z̃b

Ã(z̃)
∑

i,j

aij(z̃)×
∫ ϕb(z̃)

0

µ(z̃, ϕ) pij(z̃, ϕ) dϕ dz̃. (2.31)

We define

Pij(z̃) ≡
∫ ϕb(z̃)

0

µ(z̃, ϕ) pij(z̃, ϕ) dϕ. (2.32)

According to equation (2.29), every pij is zero outside mj and its dependence on ϕ is

polynomial in cosϕ within mj. Due to this choice of {pij}, we can analytically express

the indefinite version of each integral in equation (2.32) in terms of cosines and sines.
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Calculation of the definite integrals involves the algorithm in Appendix A, which keeps

track of mj in the course of integration and accounts for the fact that µ(z̃, ϕ) in equation

(2.22) decreases as ϕ increases. Expression of the indefinite integrals in terms of cosines

and sines permits quick calculation of {Pij}. Such calculation may not be possible for a

form of Iν that differs from equations (2.27)–(2.30). For example, a number of authors

use forms with µ1/2 (Claret, 2000, 2018, BD20), which can be emulated with i = 1/2

in some of the {pij}. Expressions for the corresponding {Pij} involve incomplete elliptic

integrals, which are relatively slow to evaluate.

Together, Equations (2.31) and (2.32) yield

D2
⋆ Fν = 2R2

e

∫ 1

−z̃b

Ã(z̃)
∑

i,j

aij(z̃)Pij(z̃) dz̃. (2.33)

2.3.3 Temperature and gravity calculation

We add spherical coordinates θ and ρ to our description of the stellar surface. These

satisfy

ρ =
√
r2 + z2 and sin θ = r/ρ. (2.34)

We further define ρ̃ ≡ ρ/Re, so that

ρ̃ =
√

r̃2 + z̃2/f 2 and sin θ = r̃/ρ̃. (2.35)
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Combined with ER11’s Equation (31), this gives us the following expression for gravity:

g(z̃) =
GM

R2
e

√
1

ρ̃4
+ ω2r̃2

(
ω2 − 2

ρ̃3

)
, (2.36)

where r̃(z̃) is found in Section 2.2 and ρ̃(z̃) can be obtained from Equation (2.35). Ac-

cording to ER11’s equations 31 and 26, temperature is then

T (z̃) =

[
L

4πσGM
F (z̃) g(z̃)

]1/4
, (2.37)

where L is the luminosity of the star, σ is Stefan’s constant and

F =

(
tanϑ

tan θ

)2

(2.38)

with

cosϑ+ ln tan
ϑ

2
=

1

3
ω2ρ̃3 cos3 θ + cos θ + ln tan

θ

2
. (2.39)

ER11 tells us that the range of F for a given ω is [F1, F0], where

F0 ≡ F (0) =
[
1− ω2 ρ̃ (0)3

]−2/3
=
(
1− ω2

)−2/3
(2.40)
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and

F1 ≡ F (1) = e
2
3
ω2 ρ̃(1)3 = e

2
3
ω2f−3

(2.41)

with F and ρ̃ seen as functions of z̃, ρ̃ (0) = 1 and ρ̃ (1) = 1/f . Note that F0 ≥ F1 ≥ 1.

In order to obtain F from Equations (2.38) and (2.39), we define a new variable, x ≡

cos θ ∈ [0, 1] and perform a change of variables from {ϑ, θ} to {F, x} in these equations.

This results in

h(F ;x, ω) = 0, (2.42)

where

h(F ;x, ω) ≡ x

G
+ ln

(
(1 + x)

√
F

x+G

)
− x− 1

3
ω2ρ̃3x3 (2.43)

with

G ≡ G(F ;x) ≡
√

x2 + F (1− x2). (2.44)

Thus, given x, we can treat ρ̃ as a function of x and find F by solving Equation (2.42)

with F as the independent variable. We do so using a variant of Newton’s method, which
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requires

∂h

∂F
=

1

2F

( x
G

)3
. (2.45)

We start half-way between F1 and F0 and add

∆F (F ;x, ω) = − h

∂h/∂F
= 2FG2 [g1 + g2 + g3] (2.46)

to our estimate of F at each iteration, until ∆F is close to zero. Here,

g1 ≡ g1(F ;x) ≡ G− 1

x2
, (2.47)

g2 ≡ g2(F ;x) ≡ −G

x3
ln

(1 + x)
√
F

x+G
, (2.48)

and

g3 ≡ g3(F ;x, ω) ≡ 1

3
ω2ρ̃3G. (2.49)

A series expansion of each additive term in Equation (2.46) in x around x = 0 shows

that the equation’s last term is O(1) and that its first two terms are

2FG2g1 ≈ 2
F 5/2 − F 2

x2
+O (1) (2.50)
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and

2FG2g2 ≈ −2
F 5/2 − F 2

x2
+O (1) . (2.51)

Consider what happens for x → 0. As F approaches the root of h in the course of

running the algorithm, ∆F → 0, so that the increasingly large terms in Equations (2.47)

and (2.48) must cancel each other. Indeed, as implied by Equations (2.46), (2.50), and

(2.51), a series expansion of Equation (2.46) in x around x = 0 doesn’t have such terms:

∆F ≈ 2

3

[
F − F 5/2

(
1− ω2

)]
+ x2

[
2

5
− F 3/2

(
1− ω2

)
+ F 5/2 3− 8ω2

5 (1− ω2)

]
+O(x4).

(2.52)

The coefficient of the x4 term in this expansion is

α4(F ;ω) =
1

140

[
56− 16

F
− 35
√
F
(
1− ω2

)
−

14F 3/2 1 + 4ω2 + 10ω4

1− ω2
+ F 5/2 9 + 8ω2 + 44ω4 (3− ω2)

(1− ω2)3

]
. (2.53)

Under constant machine epsilon q, decreasing x increases the absolute error in ∆F (and

thus in F ) associated with the increasingly large additive terms in Equation (2.46). At the

same time, the error associated with Equation (2.52) decreases, since the series expansion

becomes a better approximation of ∆F . We seek to approximate ∆F using the better

of Equations (2.46) and (2.52), setting the boundary between the methods at the point
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where their respective errors are equal.

Given Equations (2.50) and (2.51), the rounding error due to Equation (2.46) is

εA = 2
q

A

F 5/2 − F 2

x2
. (2.54)

where A ≥ 1 and q is machine epsilon, ∼2×10−16 in double precision. We also approxi-

mate the error associated with using Equation (2.52) as

εB = Bα4x
4, (2.55)

where B ∼ 1. We then equate Equations (2.54) and (2.55), approximate F with F0,

define k ≡ AB, and solve for x:

x =

(
2q

k

F
5/2
0 − F 2

0

α4(F0)

)1/6

. (2.56)

We cast the right-hand side of Equation (2.56) as a function of ω with the help of

Equations (2.40) and (2.53). As ω approaches 0, the computation of this expression

becomes impossible due to rounding error. Accordingly, we sum the first three terms of

its series expansion around ω = 0 to obtain xb, a boundary value of x:

xb(ω) = q1/6
(

2

6885k

)1/6
[
3ω−2/3 − 199

255
ω4/3 − 29123

65025
ω10/3

]
. (2.57)
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Figure 2.4 Relative error in F at xb for floating point resolution q = 2 × 10−16, ω ∈
[0, 0.999] and parameter k = 100 (see Section 2.3.3). Blue filled and green open markers
correspond to the use of Equation (2.46) and (2.52), respectively.

As ω decreases even further, Equation (2.57) exceeds 1, the upper bound of x’s range.

For these values of ω, we set xb to 1.

To estimate the actual error in F , we use equation (2.46) to calculate its etalon values

with mpmath (Johansson et al., 2018) and q ∼ 10−100. In the rest of our calculations, we

use equation (2.52) up to the second order in x whenever x ≤ xb and equation (2.46)

otherwise, with q = 2× 10−16 throughout. If ω ∈ [0, 0.999], the resulting relative error in

F at xb tends to its maximum value at ω = 0.999. We set k to 100, where this maximum

error is close to minimized, equal to 0.3% (see Figure 2.4). According to equation (2.37),

this corresponds to a lower relative error in T .
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For large enough values of ω in its range, an iteration of both an error-free Newton’s

method and our error-prone algorithm can result in F < F1. In such cases, we set F

to F1. Additionally, we set F to F0 if F > F0 in the course of running the error-prone

algorithm, which can happen at low ω.

The algorithm converges within approximately 5, 6, 8, and 10 iterations for ω ≤ 0.9,

ω = 0.95, ω = 0.99, and ω = 0.999, respectively. In this chapter’s work, we run it

with 15 iterations, which takes no more than 0.1% of the total computing time for a

1221-wavelength spectrum.

2.3.4 Coefficient interpolation

We now define the temperature-dependent Planck factor as

P(T ) ≡
(
exp

[
hc

λkBT

]
− 1

)−1

, (2.58)

where h is Planck’s constant, c is the speed of light in vacuum, and kB is Boltzmann’s

constant.

In Section 2.3.1 we obtain coefficients aij on a discrete grid of g and T . However, the

values of g and T we get via Equations (2.36) and (2.37) are not necessarily on that grid.

To obtain the aij that enter Equation (2.33), we interpolate each coefficient linearly in

either g or log g and in either T , log T , or P(T ).

In order to assess the accuracy of interpolation, we aim to compute fractional errors

in intensity for three fiducial nonrotating stars with T = 6000, 9000, and 12000 K, all
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with g = 104.5cm/s2. Our choices of g and T are on the grid in CK04, so that we

can first compute the stars’ spectra without interpolation error. We also compute the

stars’ spectra with intensity information missing, either at their values of T or at their

values of g, interpolating between the closest neighboring values where such information

is available. The neighboring temperature pairs are {5750, 6250}, {8750, 9250}, and

{11500, 12500} K for the above-listed three stars, respectively. The neighboring gravity

values are 104.0 and 105.0 cm/s2. Figure 2.5 demonstrates the relative error we infer

from the comparison of error-free spectra and spectra that involve interpolation. For

the most part, P(T ) and log g are the best interpolants, although others can be better

at some λ and T . The log g and T differences between known points in the above

accuracy assessments are twice their normal values, so that our assessments over-estimate

interpolation error (by a factor ∼4 assuming that linear and quadratic terms dominate

the local series expansions).

2.4 Longitudinal integral

2.4.1 Numerical schemes

In order to approximate the integral in Equation (2.33), we first evaluate its integrand,

f(z̃) ≡ 2R2
eq Ã(z̃)

∑

j,k

ajk(z̃)Pjk(z̃), (2.59)
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Figure 2.5 Relative flux errors due to interpolation in temperature (top three panels) and
gravity (bottom three panels) for three nonrotating stars with log10 g = 4.5 (cgs) and
T = 6000, 9000, and 12000 K. Blue markers indicate interpolation in T and g, green
— in log T and log g, magenta — in P(T ) (see Equation (2.58)). Grey lines show the
stellar spectra on linear (not logarithmic) vertical scales. Errors are typically ≲1%, often
much lower, in the spectral regions responsible for a significant fraction of the stellar
flux. We compute these errors by omitting and interpolating over a tabulated model,
artificially making them twice as far away from grid points as they would otherwise be.
Real interpolation errors will be substantially lower.
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at a set of N +Nl − 1 equally spaced discrete values {z̃i}. Here, i ∈ {−Nl + 1, −Nl +

2, . . . , 0, . . . , N − 2, N − 1}, z̃N−1 = 1, and z̃i < z̃j when i < j. We ensure that z̃0 = 0

and define ∆z̃ ≡ z̃1 − z̃0. Furthermore, we define δz̃ ≡ z̃−Nl+1 − (−z̃b) and note that Nl

is a function of N , as it satisfies −z̃b ≤ z̃−Nl+1 < −z̃b +∆z̃. The evaluation of fi ≡ f(z̃i)

for a given i is described in Sections 2.2 and 2.3. It is possible that −z̃b ̸= z̃i for all i, so

that we do not evaluate f(−z̃b) directly. At the same time, µ = 0 at z̃ = −z̃b, so that

Pij(−z̃b) = 0 for all {i, j} (see equations (2.29) and (2.32)). Thus, f(−z̃b) = 0.

We wish to construct a numerical integration scheme that approximates f(z̃) as a

piecewise polynomial of up to third order. If we had an analytic expression for the

integrand, we might have been able to predict the performance of a possible scheme

by evaluating the integrand’s derivatives. Since we do not have such an expression, we

start by examining the integrand at many discrete values of z̃ for a number of different

stars. The integrand looks amenable to numerical integration almost everywhere. The

exception is a downward cusp at z̃ = 0 when ω → 1. This cusp is partly due to the fact

that

lim
ω→1
z̃→0±

r̃′(z̃) = ∓ 1

f
√
3
, (2.60)

which results from equations (2.9) and (2.15), evaluated at the given limits. Here, f

is a constant, defined in Section 2.2.1. This discontinuity in r̃′ leads to discontinuities

in both {Pij} and Ã (see equations (2.32), (2.29), (2.13), (2.14), and (2.22)), and thus

contributes to the cusp in f(z̃). There is another contributing factor. When ω → 1, both
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T and g approach zero at the equator and increase quickly away from zero latitude (see

equations (2.36) and (2.37)). This causes {aij} to also change rapidly with latitude in

the equatorial regions under these conditions (see Section 2.3.1).

Thus, when ω approaches 1, the shape of the star and its effective gravity profile near

z̃ = 0 jointly lead to a cusp in the integrand. In view of this fact, we split the integral

into two parts. We use {fi} with i ∈ {−Nl + 1, . . . , 0} and with i ∈ {0, . . . , N − 1} to

approximate the integral on the lower interval [−z̃b, 0] and on the upper interval [0, 1],

respectively. To calculate the integral on the upper interval Iu, we make use of an

approximation based on the fitting of cubic polynomials through successive groups of

four points (equation 4.1.14 in Press et al., 2007):

Iu ≡
∫ 1

0

f(z̃) dz̃ = ∆z̃

[
3

8
f0 +

7

6
f1 +

23

24
f2 + f3+

. . .+ fN−4 +
23

24
fN−3 +

7

6
fN−2 +

3

8
fN−1

]
+ εu(N ), (2.61)

where εu(N ) is the upper-interval error term.

When Nl ≥ 2 and δz̃ ̸= 0, we calculate the quadratic polynomial that goes through

points {(−z̃b, 0), (z̃−Nl+1, f−Nl+1), (z̃−Nl+2, f−Nl+2)} and shift it horizontally to go through

(0, 0), so that its form becomes az̃2 + bz̃.

When both the inclination andN are small, it is possible thatNl = 1∨(Nl = 2 ∧ δz̃ = 0).

In this case, we approximate the integrand by a straight line between (−z̃b, 0) and (0, f0),
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so that the integral on the lower interval Il is

Il ≡
∫ 0

−z̃b

f(z̃) dz̃ =
1

2
δz̃ f0 + εl(N ), (2.62)

where εl(N ) is the lower-interval error term.

When Nl = 2 and δz̃ ̸= 0, we approximate Il by the integral of the above-mentioned

quadratic on [0, z̃b]:

Il =
1

3
a z̃3b +

1

2
b z̃2b + εl(N ). (2.63)

When Nl ≥ 3, we use the quadratic to approximate the integral up to the lowest z̃i:

∫ z̃−Nl+1

−z̃b

f(z̃) dz̃ ≈ δI ≡ 1

3
a (δz̃)3 +

1

2
b (δz̃)2. (2.64)

For Nl = 3, 4 and 5, we approximate the rest of Il by Simpson’s rule, Simpson’s 3/8 rule

and Boole’s rule, respectively (see Section 4.1.1 of Press et al., 2007). For example, when

Nl = 5,

Il =
∆z̃

45

[
14f−4 + 64f−3 + 24f−2 + 64f−1 + 14f0

]
+ δI + εl(N ). (2.65)
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When Nl ≥ 6, we combine equation (2.64) with the approximation in equation (2.61):

Il = ∆z̃ ×
[
3

8
f−Nl+1 +

7

6
f−Nl+2 +

23

24
f−Nl+3 + f−Nl+4+

. . .+ f−3 +
23

24
f−2 +

7

6
f−1 +

3

8
f0

]
+ δI + εl(N ). (2.66)

The error terms, εu(N ) and εl(N ), can both be seen as functions of N for a given star.

The integration scheme corresponding to equations (2.61)–(2.66) involves approximating

the integrand by cubic polynomials everywhere except for the small interval in equation

(2.64) and the entire lower interval when Nl ≤ 3. In the foregoing, we designate this

scheme as cubic.

An alternate integration scheme is an application of the trapezoidal rule to separately

calculate Iu and Il, whilst setting the integral in equation (2.64) to zero. We designate

this scheme as trapezoidal. In either scheme, the flux is calculated according to

D2
⋆ Fν = Iu + Il, (2.67)

where the unknown error terms on the right-hand side are set to zero.

2.4.2 Convergence

To assess the convergence properties of the two schemes, we synthesize a star with Vega’s

M , L, Re and ω from YP10. When the synthetic star is seen at i = π/4, λ = 511 nm is

close to its spectral peak. We compute Fν(N ), the flux for this combination of i and λ
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at different N and plot

∣∣∣∣
δFν

Fν

∣∣∣∣ ≡
|Fν(N )−Fν(10, 000)|

Fν(10, 000)
(2.68)

in Figure 2.6. The trapezoidal approximation converges according to a power law, the

cubic approximation does better, and the two approximations converge at about the

same rate. The error due to either approximation is well below 0.1% when N ≥ 100. We

present the error due to the cubic approximation at N = 100 for the remaining wave-

lengths and inclinations in the lower left panel of Figure 2.7. The picture in Figure 2.6 is

typical across wavelengths and stars, although the advantage of the cubic approximation

and the performance of each scheme all tend to decrease as ω → 1. The latter behavior

is not surprising, given the discussion of the associated limit earlier in this Section. To

characterize a possibly worst-case scenario, we compute the error in equation (2.68) for a

star that combines ω = 0.999 with Vega’s M , L, and Re. The lower right panel of Figure

2.7 present the result of this calculation on a grid of inclinations, for each wavelength in

CK04. The error remains no higher than 0.1% for all wavelengths above 100 nm, where

the spectra are appreciably nonzero. We use N = 100 for all models in this work, unless

stated otherwise.

Figure 2.8 compares the observed spectrum of Vega from Bohlin et al. (2014) with the

star’s synthetic spectrum at the inclination from YP10 and distance from van Leeuwen

(2007). It also shows the synthetic star’s spectrum at i = π/2 (were we to view Vega

edge-on), with lower intensity and a redder spectrum indicative of the cooler equatorial
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Figure 2.6 Relative flux error due to integration in z̃ for synthetic Vega at i = π/4 and
λ = 511 nm as a function of the number of abscissae at the equator and above (see Section
2.4). Blue and green points correspond to the trapezoidal and cubic approximations,
respectively.

regions. The observed spectrum and the synthetic spectrum at YP10’s inclination are

quite close, indicating the accuracy of the synthetic star’s parameters. Figure 2.8 may

be compared with Figures 8 and 9 in Aufdenberg et al. (2006), where the parameters of

a stellar model are fit to Vega’s observed spectrum.

Given pre-computed {akj} on CK04’s parameter grid in Section 2.3.1, we split the re-

maining computation for a specific star into an inclination-independent and an inclination-

dependent portion. The former includes the calculation of r̃(z̃) and Ã(z̃) in Section 2.2.1,

g(z̃) and T (z̃) in Section 2.3.3, and {akj(z̃)} in Section 2.3.4 (via interpolation over T
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Figure 2.7 Color scheme: relative flux error due to the cubic approximation of the integral in
z̃ with N = 100 for two synthetic stars with Vega’s M , L, and Re. See Section 2.4 for details.
Grey lines: the stars’ spectra at i = 0◦ (pole-on). The star in the top panels has Vega’s ω from
YP10. The star in the bottom panels has ω = 0.999; below 100 nm, its spectra do not rise
above 0.02% of their maxima; at 100 nm and above, the maximum error from our discretization
in z̃ is 0.1%.
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Figure 2.8 Top panel: Synthetic spectrum of Vega computed using its observed param-
eters (blue points) compared to the observed spectrum (red points). The two spectra
agree well. The gray points correspond to a synthetic Vega viewed edge-on and show
a significantly fainter and redder star. The inset shows the local effective temperature
across the visible surface of the synthetic star at its observed inclination of ∼5◦ (YP10).
Bottom panel: same as the top panel, with wavelength range restricted to the Balmer
jump.
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and g). The inclination-dependent portion includes the calculation of z̃b in Section 2.2.3,

{Pkj(z̃)} in Section 2.3.2, and the one-dimensional integral in this section. On a 2.3 GHz

MacBook Pro with 8 GB of RAM, inclination-independent computation with N = 100

takes about 800 ms. Thereafter, the inclination-dependent computation takes about 30

ms per inclination, so that the full synthetic spectrum at 50 inclinations takes ∼2 seconds.

2.5 Extensions

2.5.1 Color-magnitude diagrams

Photometry is available for many more stars, and star clusters, than spectroscopy. As a

result, much of the recent work studying the observational consequences of rapid stellar

rotation has used color-magnitude diagrams (e.g. Bastian & de Mink, 2009; Brandt &

Huang, 2015b; D’Antona et al., 2015; Goudfrooij et al., 2017; Gossage et al., 2019). Our

spectra may be easily used to compute colors and magnitudes in any photometric system.

Here, we briefly show the consequences of inclination for rapidly rotating stars in the

color-magnitude diagram. For a given filter in Rodrigo et al. (2012), we approximate the

transmission curve T (λ) via third-order spline interpolation between the discrete points

with available transmission values. We also convert the previously calculated Fν(λ) to

Fλ(λ):

Fλ(λ) =
c

λ2
Fν(λ). (2.69)
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Next, we estimate the star’s flux through the filter,

F =

∫ ∞

0

Fλ(λ)T (λ) dλ, (2.70)

via the application of the trapezoidal rule over the variable-size intervals between nearest-

neighbor λ values in CK04. Finally, we calculate the magnitude:

m = −2.5 log10
F

F0

∫∞
0

T (λ) dλ
, (2.71)

where F0 is the flux zero point in the Vega calibration system and the integral is approx-

imated the same way as the one in equation (2.70).

We calculate the magnitudes corresponding to the Generic Bessel B and V filters in

Rodrigo et al. (2012) for a single star with Vega’s physical parameters, but observed at

inclinations from 0 to π/2. Figure 2.9 shows the resulting range of (B−V, V ). The black

arrow indicates Vega’s actual inclination. A similar calculation with a range of stellar

models would produce a smooth distribution suitable for comparison with observed color-

magnitude diagrams.

2.5.2 Planetary transits

Introduction

Rapid stellar rotation can have an observable effect on the light curve of a planetary

transit: the transit will be deeper or shallower as the planet transits hotter or cooler parts
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Figure 2.9 Visual magnitude versus the difference between blue and visual magnitudes
of synthetic Vega. From left to right, inclination increases from 0 to π/2. Markers are
spaced evenly in cos i, corresponding to isotropically distributed i (e.g., Corsaro et al.,
2017). The black marker and arrow indicate the star’s observed inclination.

of the stellar surface (Barnes, 2009). This effect can constrain the projected obliquity, the

angle between the star’s angular momentum, and the planet’s orbital angular momentum

(Barnes, 2009; Barnes et al., 2011; Masuda, 2015). In this section we extend our tool

to rigorously compute the light curve of a planet obliquely transiting a rapidly rotating

star.

Consider a planet of radius R1 that transits its host star. In our coordinate system,

ŷ ⊥ î. We let ẑ′ ≡ î× ŷ and refer to the plane spanned by ŷ and ẑ′ as the view plane.

Over the course of the transit and in projection onto the view plane, the planet’s center
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traces a straight line with projected impact parameter b with respect to the star’s center

and projected obliquity α ∈ [−π/2, π/2] with respect to the star’s rotational axis.

Intensity at a sight line

Slices of the stellar surface perpendicular to the z-axis are circles with centers (0, 0, z)

and radii r, with z ∈ [−Rp, Rp]. Their projections onto the view plane are ellipses that

satisfy

(
z′ − z sin i

r cos i

)2

+
(y
r

)2
= 1. (2.72)

With u′ ≡ z′/Re and ỹ ≡ y/Re, Equation (2.72) can be re-written as

r̃2 = (u′ sec i− u tan i)
2
+ ỹ2. (2.73)

Given a sight line through point (ỹ, u′) in the view plane, we wish to find the point (r̃, ϕ, u)

on the stellar surface where the sight line’s light originates. Pairs of u ∈ [−zb/Re, zb/Re]

and r̃ ∈ [0, 1] that satisfy both Equation (2.4) and Equation (2.73) correspond to the

surface points that the sight line pierces. To find these points, we substitute the right-

hand side of Equation (2.73) for r̃2 in Equation (2.4) and perform algebraic manipulation

that produces a 6th degree polynomial equation in u. We then substitute this equation’s

real roots for u in Equation (2.73) and pick out the ones that correspond to both u and

r̃2 in their respective ranges. There are two roots in the latter category when the sight
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line pierces the star and zero such roots when it doesn’t. In the former case, the greater

root gives the u and, via Equation (2.73), the corresponding r̃ coordinates for the sight

line.

Only one additive term,

(u′ sec i)6 ω4

4
, (2.74)

contains the highest power of sec i in the 6th degree polynomial. By a heuristic analogue

of the argument in Section 2.3.3, computation of u becomes impossible due to rounding

error as i becomes close enough to π/2 that the ratio of u and expression (2.74) equals

Bq, with B’s order of magnitude close to 1. This gives the following approximation of

the angle at which the procedure stops working:

ib = arccos

[(
Bq

4

)1/6
]
, (2.75)

where we set ω and u′ to 1 to obtain the worst-case scenario, since Equation (2.74) is

then largest. When i > ib, we set i = π/2, so that u = u′ and the sight line pierces the

star if and only if ỹ ≤ r̃. B = 16 and q = 2× 10−16 yield ib = π/2− 0.0031.

Once we have ỹ, u′, u, and r̃ for a given sight line, we can compute z̃ = f u and

cosϕ = ±
√

1−
(
ỹ

r̃

)2

, (2.76)
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where the negative sign corresponds to the case when the line goes through the upper

half of the elliptical projection of its surface slice, i.e. when u′ > u sin i. Then, equations

(2.36) and (2.37) produce gravity and temperature, which in turn allow us to compute

aij in Equation (2.30) via the interpolation of Section 2.3.4. At that point, equations

(2.27), (2.22), and (2.14) give us Iν at the sight line.

Blocked flux

We wish to estimate Fν,1, the flux that the planet blocks at a given time point. Multiplied

by D2
⋆, it is equal to the integral of Iν over the planet’s circular projection, which is

similar to the integral in equation (2.1), except that the two-dimensional integration

domain is different. The first thought is to use a two-dimensional analogue of a numerical

integration method similar to those in Section 2.4.1. For example, we could partition the

integration domain into rectangles and employ a midpoint Riemann sum. However, since

the integration domain is circular, we modify the latter method by attempting to partition

the domain into circles instead. Specifically, let us say we can calculate Iν at Ns sight

lines within the domain. When Ns = 7, we consider the problem of maximizing the total

area of seven congruent, non-overlapping circles that fit within a circle of radius R1; we

call this the packing problem at Ns = 7. Its solution, unique up to circular symmetry,

is to place small circles of radius R1 / 3 at the following locations in the ŷ ẑ′ coordinate

system, with the system’s origin shifted to match the center of the planet’s projection
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(Graham et al., 1998):

R1

3
{(0, 0), (±2, 0), (±1,

√
3), (±1,−

√
3)}. (2.77)

One of the small circles covers 1/9 of the integration domain. We approximate its average

intensity by Iν at the circle’s center. We then approximate the average intensity over the

remaining 2/9 of the domain by the average of all seven Iν values. This latter average,

multiplied by πR2
1, is thus our estimate of D2

⋆Fν,1. Given the known best solutions to

the packing problem for 1 < Ns < 19, the proportion of the integration domain jointly

covered by individual circles is highest for Ns = 7, which thus gives the best estimate of

the integral, by this measure. With Ns = 19, we can use the packing in Fodor (1999),

which covers more than 7/9 of the domain. An alternative, with any Ns, is picking points

from a 2-dimensional distribution that is uniform over the projection. Each method

averages Iν over the representative sight lines and multiplies the result by the planet’s

projected area to obtain D2
⋆Fν,1.

We calculate the star’s transit-free flux through the Generic Bessel V filter via the

right-hand side of equation (2.70) and call it Fmax. At every time point, we use equations

(2.69) and (2.70) to calculate blocked flux F1 through the same filter, with Fν,1 instead

of Fν . Figure 2.10 presents plots of

− F1

Fmax

=
F − Fmax

Fmax

versus time, for two different systems. The plots resemble the curves predicted for similar
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systems in Barnes (2009). Here, F is the star’s flux during transit.

Computation of the transit curves in Figure 2.10 starts with the star’s inclination-

independent calculation at N = 100, which takes about 800 ms on a 2.3 GHz MacBook

Pro with 8 GB of RAM (see the end of Section 2.4.2). Thereafter, calculation of blocked

flux takes about 1.1 ms per sight line. The resulting total time for two transit curves

with 200 time points each and 7 sight lines per time point is ∼4 seconds.

In the software implementation of the integration scheme that we reference here (Li-

patov & Brandt, 2020a), we speed up the calculation of broadband photometry by moving

the filtering step from the very end to the very beginning of such calculation. In this

implementation, we replace Fν with Iν and F with I in equations (2.69) and (2.70),

use them to calculate I for every (T, g, µ) grid point, obtain I(µ) fits for every (T, g),

perform the two-dimensional integration as before, and finally calibrate to the standard

magnitude system via equation (2.71). This change leads to a speed-up by a factor of

about 5 when each star is treated at ten inclinations. For Generic Bessel B/V and HST

ACS WFC F435W/F555W/F814W filters (Rodrigo et al., 2012), the associated errors in

I(µ) fits do not exceed the equivalent Iν(µ) errors in Section 2.3.1.

2.6 Conclusion

We have presented PARS (Paint the Atmospheres of Rotating Stars) – a scheme for the

integration of specific intensities over the surface of a rotating star to obtain the star’s

spectrum. Inputs to the scheme include the star’s mass, luminosity, equatorial radius,
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Figure 2.10 Synthetic light curves in the Generic Bessel V filter (Rodrigo et al., 2012) of
two separate transits by fictitious Jupiter-sized (R1 = 0.01Re) planets orbiting Achernar.
Inset: markers show the planets’ progress from left to right, the orange color scheme traces
local effective temperature on the stellar surface; each planet is enlarged for clarity. The
black markers and line indicate a transit at b = 0.6 and α = 0; grey symbols correspond
to a transit at b = −0.3 and α = π/3 (see Section 2.5.2). The blocked flux at each
time point was computed from 7 packed-circle sight lines; the resulting light curves are
indistinguishable from those based on about 100 random sight lines at each point.

rotational speed, and inclination.

We forgo differential rotation and volume-wide mass distribution in favor of solid-

body rotation and a Roche model, respectively. This allows us to compute a closed-

form expression for surface shape in cylindrical coordinates, based on Espinosa Lara &

Rieutord (2011), a.k.a. ER11. We then obtain closed-form expressions for the differential
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area element, cosine of the viewing angle µ, and effective surface gravity g. We also

adopt ER11’s assumption that energy flux and gravity are collinear, which allows us to

compute surface effective temperature T with high precision up to 99.9% of maximum

rotation rate.

An important input to our scheme is a set of stellar atmosphere models (such as

in Castelli & Kurucz, 2004, a.k.a. CK04), with intensity Iν on a grid of µ, T , and

g. We model Iν(µ) as a piecewise 4th degree polynomial on a partition of µ’s range

and interpolate the polynomial coefficients in log g and the Planck function factor that

involves T .

The polynomial form of Iν(µ), in combination with the closed-form expression for

µ, gives a closed-form expression for the indefinite integral in the azimuthal direction.

The definite integral results from an algorithm that keeps track of the µ interval entered

by the integration. We separately apply two cubic-fit numerical approximations to the

longitudinal integrals below and above the equator, in view of abrupt intensity changes

across this latitude at high rotational velocities.

Our scheme enables rapid calculation of synthetic spectra, taking just ∼2 seconds on

a laptop computer to compute 1221-wavelength spectra at 50 inclinations. This, coupled

with libraries of stellar models, will enable rigorous comparisons with data wherever the

effects of stellar rotation are important. We highlight two examples: observed color-

magnitude diagrams of star clusters and transit light curves. In future work we will

further develop these applications.
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Individual spectral lines are not resolved with the atmosphere models we use in this

chapter, though higher-resolution models can constitute input to PARS. On a related

note, PARS does not generally account for the rotational Doppler effect. However, we do

plan to utilize the scheme’s framework to calculate the expected broadening of individual

spectral lines in the future.

PARS Python source code is available for download and installation (Lipatov &

Brandt, 2020a). We have tested and run the software on a Unix operating system in-

cluded with macOS 10. There is potential for porting PARS to other operating systems,

as its core doesn’t require the import of rare or highly specialized modules.
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Chapter 3

Effects of Rotation on the Spectra of

Brown Dwarfs

In this chapter, we adapt the software PARS, which we introduced in Chapter 2, to pre-

dict and explore the effects of rotation on the spectra of brown dwarfs. In constructing

synthetic spectra of stars, we fed PARS plane-parallel model atmospheres by Castelli &

Kurucz (2004, a.k.a. CK04). CK04’s models, however, are not appropriate for brown

dwarfs, whose atmosphere temperatures are below the lower limit of the models’ tem-

perature range. Accordingly, the atmosphere models that serve as input to PARS in this

chapter are the Sonora brown dwarf 1D climate and chemistry models (Marley et al.,

2021), with specific intensities computed using open-source code PICASO (Batalha et al.,

2019; Batalha et al., 2022).

PARS approximates the mass distribution via the Roche model, wherein all mass is
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concentrated at the gaseous object’s center. Brown dwarfs deviate significantly from the

Roche model, so that the latter predicts higher rotational speeds from these objects’

oblatenesses than the objects’ observed speeds. Accordingly, in adapting PARS to the

study of an observed brown dwarf, we feed the software the rotational speed that corre-

sponds to the object’s observed oblateness under the Roche model, so that the centrifugal

deformation that is assumed by PARS is close to the object’s observed deformation.

The contents of this chapter have been submitted for publication in Monthly Notices

of the Royal Astronomical Society (MNRAS), under the title ”Effects of Rotation on the

Spectra of Brown Dwarfs” (Lipatov, Brandt, and Batalha, 2022).

3.1 Rotation and Mass Distribution Models

In this section, we introduce our rotation model and two mass distribution models for

brown dwarfs. Of these, the rotation model and the Roche model of mass distribution

were previously shown to accurately predict spectra of A-type rotating stars (Lipatov &

Brandt, 2020b, henceforth LB20).

We assume that a given brown dwarf rotates at some uniform angular speed Ω. The

resulting centrifugal forces cause the object’s equatorial radius to be greater than its

polar radius. In other words, rotation leads to non-zero oblateness f , a quantity that we

define as

f ≡ Re −Rp

Re

, (3.1)
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where Re is the dwarf’s equatorial radius and Rp is its polar radius. Re-arrangement of

Equation (3.1) yields the polar radius as a function of equatorial radius and oblateness:

Rp = Re(1− f). (3.2)

Another useful quantity to consider is the dimensionless rotational velocity, ω ≡

Ω/ΩK ∈ [0, 1). Here, ΩK is the Keplerian rotational limit – the maximum angular

velocity that the rotator can have without breaking up.

In general, there are no simple expressions for either ω or ΩK in terms of the dwarf’s

fundamental parameters such as mass, radius, or oblateness. On the other hand, useful

and relatively simple expressions for ω and ΩK exist under the assumption of the Roche

mass distribution, which places all mass at the brown dwarf’s center. Given the Roche

distribution, the Keplerian limit is

ΩK =
GM

R3
e

. (3.3)

The Roche distribution further implies Equation (2) in LB20,

Re

Rp

= 1 +
ω2
R

2
, (3.4)

where ωR is the theoretical value of ω that yields the observed ratio of equatorial and

polar radii under the assumption of the Roche distribution. Relatedly, ωR yields the
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observed oblateness, as well. To see this, we combine Equation (3.4) with Equation (3.1)

to get oblateness in terms of ωR,

f(ωR) =
1

1 + 2/ω2
R

. (3.5)

We then invert Equation (3.5) to obtain

ωR(f) =

√
2f

1− f
. (3.6)

Relaxation of the Roche distribution assumption allows for a more realistic inter-

nal mass distribution. Under these conditions and a certain set of approximations, the

Darwin-Radau relation connects the moment of inertia of a brown dwarf to its oblateness

and rotational speed (Barnes & Fortney, 2003):

C =
C

MR2
e

=
2

3

[
1− 2

5

(
5

2

ω2

f
− 1

)1/2
]
. (3.7)

Here, C is the moment of inertia about the rotational axis and C is the corresponding

dimensionless quantity. Spacecraft gravity field observations estimate that C = 0.276

for Jupiter (Ni, 2018). The Darwin-Radau relation, in combination with the observed

oblateness and rotational velocity, yields C = 0.22 for Saturn (Fortney et al., 2018). For

a uniform-density sphere, C = 0.4. We can re-write Equation (3.7) to obtain f in terms
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of ω and C:

f(ω,C) =
40ω2

116− 300C+ 225C2
. (3.8)

When C = 0, Equation (3.8) reduces to f = ω2/2.9. For ω ∈ [0, 1) and ω ≡ ωR,

this equation is numerically similar, although not identical, to Equation (3.5). Although

the latter assumes a mass distribution with C = 0, it does so under a different set of

approximations. Thus, when the moment of inertia approaches zero, the Darwin-Radau

expression for oblateness becomes similar but not quite identical to the Roche distribution

expression.

Finally, we can re-write Equation (3.7) to express dimensionless rotational speed in

terms of oblateness and the moment of inertia:

ω(f,C) =
√

1

40
f (116− 300C+ 225C2). (3.9)

In the rest of this chapter, we denote the observed rotational speed of brown dwarfs

by ω and assume that it relates to observed oblateness via the Darwin-Radau relation.

On the other hand, at times we will also calculate ωR – the rotational speed that yields

the observed oblateness under the assumption of the Roche model.
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3.2 Computation of Spectra

3.2.1 Spectral Intensity as a Function of Surface Parameters

We compute plane-parallel-derived spectra using the pressure-temperature, and abun-

dance profiles from the Sonora cloud-free solar metallicity grid (Marley et al., 2021),

which is available on Zenodo (Marley et al., 2018). The cloud-free atmospheres ex-

ist on a grid of gravity and effective temperature in the range of: 3.25≤logg≤5.5 and

200≤Teff ≤2400 K. Therefore, they are particularly relevant for relatively low tempera-

tures, such as those associated with Model 880, since we do not expect clouds at these

temperatures. Even though higher brown dwarf temperatures are associated with clouds,

we use the cloud-free atmospheres for higher-temperature models as well, since our main

goal is to show the qualitative effect of rotation on brown dwarf spectra.

Using the Sonora pressure-temperature, and abundance profiles, we compute the

specific intensity in erg s−1Hz−1 sr−1 cm−2 on a grid of the cosine of the viewing angle

µ = cosϕ, wavelength λ, surface effective temperature, and surface gravitational accel-

eration using version 2.3 of the open source code PICASO (Batalha et al., 2019; Batalha

et al., 2022), which has previously been used to compute the thermal emission spectra of

brown dwarfs (e.g. Mang et al., 2022) and exoplanets (e.g. Robbins-Blanch et al., 2022).

PICASO uses the same radiative transfer methodology (Marley & McKay, 1999) and

opacities (Freedman et al., 2014; Lupu et al., 2022) as those used to compute the final

pressure-temperature profiles, described in (Marley et al., 2021). Specifically, it uses the
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(Toon et al., 1989) source function technique and includes the molecular and atomic

opacities for C2H2, C2H4, C2H6, CH4, CO, CO2, CrH, Cs, FeH, H2O, H2S, HCN, K,

Li, LiCl, MgH, N2, NH3, Na, OCS, PH3, Rb, SiO, TiO, and VO. They also include

continuum opacities for the following interactions: H2 − H2, H2 − He, H2 − H, H−, H2−.

For each gravity-effective temperature pair available in the Sonora grid, we compute

spectra for viewing angles, µ, of: [0.09, 0.18, 0.28, 0.37, 0.45, 0.54, 0.61, 0.68, 0.75, 0.81,

0.86, 0.9, 0.94, 0.97, 0.98, 0.99]. The λ grid consists of 9831 wavelengths between 0.7 and

5 µm, with spectral resolution R = 5000. This wavelength grid becomes the grid of our

brown dwarf spectra. The temperature range, which is equivalent to that of the Sonora

grid, is between 200 and 2400 K, with temperature resolution equal to 25 K below 600

K, 50 K between 600 and 1000 K, and 100 K above 1000 K. The gravity grid is [17, 31,

56, 100, 178, 316, 562, 1000, 1780, 3160] m s−2.

We use µ equal to 0.1 and 0.4 as the boundaries of the viewing angle intervals for the

piecewise interpolation of intensity as a function of µ by PARS (LB20). These viewing

angle intervals proved to be optimal in the application of PARS to stars.

3.2.2 Disk-Integrated Spectra

To compute disk integrated spectra of rotating brown dwarfs, we pass the plane-parallel-

derived spectra to Paint the Atmospheres of Rotating Stars (PARS) – software that quickly

and accurately computes spectra of self-gravitating rotating gaseous objects such as stars

and brown dwarfs (LB20). PARS computes the surface shape and the local effective tem-
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perature everywhere on the surface under the assumption of the Roche mass distribution,

then integrates specific intensities over the surface to get a spectrum. To achieve this,

PARS needs specific intensities as a function of effective temperature, effective surface

gravity, and surface viewing angle — which are generally provided in the form of a li-

brary of plane-parallel atmosphere models.

One of the inputs to PARS is the dimensionless rotational velocity we discuss in Section

3.1. The gravity darkening effects we wish to compute are largely a function of geometric

distortion, epitomized by oblateness. Thus, given a model with oblateness f , we calculate

velocity ωR using Equation (3.6) and provide PARS with this velocity value. This ensures

that the PARS model has the correct oblateness. Other brown dwarf parameters that

serve as part of the input to PARS are mass M , equatorial radius Re, luminosity L and

distance. For all our models, we adopt a fiducial distance of 10 parsecs. Table 3.1 and

Section 3.3 describe the process that yields the remaining parameters.

3.3 Brown Dwarf and Exoplanet Case Studies

We construct model brown dwarfs that span a range of rotation rates and effective tem-

peratures; we ultimately compute their synthetic spectra as described in Section 3.2.

Our models are inspired, in particular, by two very fast-rotating brown dwarfs in the

literature, J0348-6022 and J0407+1546 (Tannock et al., 2021, hereafter T21). We also

construct a model inspired by β Pictoris b, one of the first imaged exoplanets (Lagrange

et al., 2009, 2010) and an object near the deuterium-burning boundary (Chilcote et al.,
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2017; Brandt et al., 2021). The upper half of Table 3.1, above the mid-table horizontal

line, lists the literature-based parameters of the three above-mentioned substellar ob-

jects. The lower half lists the parameters we assume or derive. Bold text indicates the

parameters that serve as input to the synthetic spectrum software, PARS. In this section,

we examine the process that yields all the parameters in Table 3.1.

3.3.1 J0348-6022

Object 2MASS J03480772-6022270, a.k.a. J0348-6022, is a rapidly rotating brown dwarf

with spectral type T7. Table 3.1 presents T21’s estimates of this dwarf’s mass M , equa-

torial radius Re, rotational period Prot, oblateness f , and surface temperature T̄eff . We

assume the surface temperature estimate to be some average over the gravity-darkened

dwarf surface. Our work does not aim to draw specific conclusions about this or other

astrophysical objects. Instead, our goal is to demonstrate the effects of rotation on the

spectra of such objects in general. Thus, our conclusions do not require object param-

eter values that are more exact than the ones we present. All our brown dwarf models

inspired by J0348-6022 have the same mass, M = 0.041M⊙.

Equation (3.2) yields the polar radius Rp of our J0348-6022 model. With Ravg =

(Re +Rp)/2, we set the dwarf’s luminosity L to

L = 4πR2
avgσSBT̄

4
eff , (3.10)

where σSB is the Stefan-Boltzmann constant. In Equation (3.10), 4πR2
avg is close to,
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Table 3.1. Parameters of our three main substellar models.

Name J0348-6022 (Model 880)a J0407+1546a β Pictoris bb

Spectral Type T7 L3.5 L2
M (MJup) 42.9 67.0 12.9
Re (RJup) 0.905 0.973 1.46
T̄eff (K) 880 1840 1724
Prot (h) 1.08 1.23
v ≡ ve sin i (km/s) 25
i π/2c

f ≡ Re−Rp

Re
0.08 0.05 0.029d

Ravg ≡ Re+Rp

2
(RJup) 0.869 0.949 1.44

L = 4πR2
avgσSBT̄

4
eff (L⊙) 4.3× 10−6 9.8× 10−5 1.7× 10−4

Ω = 2π/Prot (rad s
−1) 0.0016 0.0014

Ω = v/(Re sin i) (rad s
−1) 0.00024

ΩK =
√
GM/R3

e (rad s−1) 0.0045 0.0050 0.0012
ω = Ω/ΩK 0.36 0.28 0.20
C = C/(MR2

e) 0.20e 0.25f

ωR = 2 f/(1− f)g 0.42 0.32 0.24

aParameters Reference: Tannock et al. (2021)

bParameters Reference: Chilcote et al. (2017)

cAssuming that the direction of the brown dwarf’s spin angular momentum is the same
as those of its star’s spin, orbital, and circumstellar disk angular momenta (e.g., Kraus
et al., 2020).

dFrom ω and the Darwin-Radau relation, assuming C = 0.25.

eComputed from f and ω according to Equation (3.7).

fSimilar to estimates for Jupiter (Ni, 2018) and Saturn (Fortney et al., 2018).

gDimensionless rotational velocity ω corresponding to oblateness f under the Roche
model.
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but not equal to, the surface area of the star; T̄eff represents a characteristic effective

temperature.

We also compute the rotation speed as Ω = 2π/Prot, the Keplerian limit ΩK via

Equation (3.3), the dimensionless rotational speed as ω = Ω/ΩK, and the dimensionless

moment of inertia from oblateness f and ω according to Equation (3.7). Furthermore, we

use Equation (3.6) to compute the rotational speed ωR that would produce the observed

oblateness f under the assumption of the Roche distribution.

Model Variants

In order to explore the effects of rotation on the inference of brown dwarf parameters

from nonrotating models, we create a set of models based on J0348-6022 with a variety

of luminosities and rotational speeds.

We first consider the J0348-6022 model from Table 3.1, with its oblateness f = 0.08,

dimensionless rotational speed ω = 0.36, dimensionless moment of inertia C = 0.20,

Roche model equivalent speed ωR = 0.42, average effective temperature T̄eff = 880K,

luminosity L = 4.3×10−6 L⊙, and equatorial radius Re = 0.905RJup. We call this Model

880 and use PARS software (LB20) to determine the effective temperatures Teff of its

equator and poles; Section 3.2 describes the function of PARS in more detail. We then

determine the luminosities of nonrotating dwarfs that correspond to the equatorial and
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polar effective temperatures via

L = 4πR2
avgσSBT

4
eff , (3.11)

where Ravg remains constant, corresponding to constant oblateness and equatorial radius.

Finally, we create a set of nonrotating models with effective temperatures (and hence

luminosities) that are intermediate between the equatorial and polar values of Model

880. In Section 3.4 we will compare the properties of these nonrotating models to the

inclination-dependent observables of the rotating version of Model 880.

We also create a set of models by reducing the rotation rate ωR of Model 880 more

gradually. As ωR decreases, oblateness decreases according to Equation (3.5) and so

does the difference between the equatorial and polar radii. We keep luminosity and T̄eff

constant in Equation (3.10) by holding Ravg = (Re+Rp)/2 constant as oblateness varies.

To achieve this, we substitute for the polar radius according to Equation (3.4) in the

definition of Ravg and obtain

Ravg =
Re +Rp

2
=

Re

2

2 + ω2
R/2

1 + ω2
R/2

, (3.12)

so that

Re = 2Ravg
2 + ω2

R

4 + ω2
R

. (3.13)
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Thus, as we reduce ωR in discrete steps, we keep Ravg constant at the values of Model 880

by setting the equatorial radius according to Equation (3.13). This allows us to keep both

T̄eff and L constant in Equation (3.10). We keep C constant, as well. The new models

have oblatenesses given by Equation (3.5) and actual dimensionless rotational speeds ω

given by Equation (3.9). These rotating models span a range of rotational velocities, all

with characteristic effective temperature T̄eff = 880K.

We next create Model 600, which has T̄eff = 600K, while retaining the geometry,

mass distribution, and rotational speed properties of Model 880. Given that Model 600

has Ravg = 0.0893R⊙, Equation (3.10) tells us that this model’s luminosity is 9.3 ×

10−7 L⊙. We then create nonrotating models at different effective temperatures and

rotating models at different rotational speeds that correspond to Model 600 and its

average effective temperature, the same way we created such variations for Model 880.

Similarly, we create Models 400 and 1500, which have the effective temperatures

implied by their names and respective luminosities equal to 1.8 × 10−7 L⊙ and 3.6 ×

10−5 L⊙, with other parameters the same as in Models 880 and 600. We make nonrotating

and rotating model sets that correspond to each new luminosity, as well.

3.3.2 Additional Case Studies

Object 2MASS J04070752+1546457, a.k.a. J0407+1546, is a rapidly rotating brown dwarf

with spectral type L3.5 (T21). It serves as a template for a brown dwarf model with

parameters that we obtain in the same way we obtain the parameters for Model 880.
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Object β Pictoris (β Pic) b, which is at the giant planet / brown dwarf mass boundary,

serves as another model template. We obtain its mass M , equatorial radius Re, and

average temperature T̄eff from Chilcote et al. (2017). Snellen et al. (2014) measure this

object’s projected rotational velocity v ≡ ve sin i. Kraus et al. (2020) find that the

angular momentum vector of the β Pic stellar photosphere, the angular momentum of

the β Pic b orbital movement, and the angular momentum of the system’s outer debris

disk are well-aligned with mutual inclinations ≤ 3 ± 5◦, which indicates that β Pic b

formed in a system without significant primordial misalignments. Given these findings

and the orbit’s near edge-on orientation, we adopt an inclination of i = π/2 for the

planet’s spin. Here and in the rest of this chapter, we define i so that i = π/2 corresponds

to an equator-on view and i = 0 – to a pole-on view.

We then obtain the object’s angular velocity as Ω = v/(Re sin i). At this point, we

compute the average radius Ravg, luminosity L, Keplerian limit ΩK, and dimensionless

rotational velocity ω the same way we calculate these parameters for Model 880. We

adopt a dimensionless moment of inertia equal to C = 0.25, which is similar to the

estimates of this quantity for the giant planets of the Solar system (Ni, 2018; Fortney

et al., 2018). Given ω and C, we use Equation (3.8) to calculate an estimate for oblateness

f . This, in turn, yields the Roche model equivalent velocity ωR via Equation (3.6).

We list all the parameters for the models based on J0407+1546 and β Pictoris b in

Table 3.1.
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3.4 Effects of Rotation

3.4.1 Comparisons to Spectra of Nonrotating Objects

In this section, we address the detectability of gravity darkening from spectra alone. The

spectrum of a rotating brown dwarf will contain contributions from different effective

temperatures; it will differ from the spectrum of a spherical brown dwarf no matter the

temperature of the latter. We aim to quantify the difference between the spectrum of

a rotating brown dwarf and the best-matching nonrotating spectrum. This serves as

a metric of rotation’s spectral detectability that is independent of projected rotational

speed v sin i as measured from line broadening.

In the comparison of a rotating dwarf’s flux x(λ) to the flux of a nonrotating model

y(λ), we think of the former as the independent variable and of the latter as the dependent

variable. We model y(x) via linear regression. If x̃ = x− x̄ and ỹ = y − ȳ are the mean-

subtracted versions of the two spectra, then the slope of the best-fitting linear model is

b =
∑

x̃ỹ/
∑

x̃2. The root mean squared deviation (RMSD) of this best-fitting line from

the rotating model spectrum is RMSD(F̂) =
√∑

(ỹ − bx̃)2/n, where n is the number

of wavelengths at which each spectrum is sampled. The units of this deviation are the

same as the units of flux.

PARS produces flux density F(λ) in erg s−1Hz−1 cm−2 on a grid of wavelengths λ.

We calculate a grid of ν̃ = 1/λ, which is proportional to frequency in Hz. We then

integrate F(ν̃) on the grid of ν̃ using the variable-interval trapezoidal rule. This yields
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the integrated flux F in units that are proportional to erg s−1 cm−2. We divide F by the

range of ν̃ to obtain the average flux F̄ in erg s−1Hz−1 cm−2.

We divide the root-mean-squared deviation, as calculated above, by the average flux

density of the rotator within the 1µm–5µm interval and minimize the resulting quantity

over all nonrotating models. This provides a dimensionless measure of the observable

impact of rotation – the smallest difference between a non-rotator’s spectrum and a

linear transformation of the rotator’s spectrum. This minimum normalized RMSD is a

function of both rotation rate and orientation.

If there is a nonrotating model that exactly matches the spectral shape and features of

a rotating model, then minimum RMSD for that model is zero. If there is no nonrotating

model that can match the spectral shape of the rotating model, then the minimum RMSD

can be significantly nonzero. The rotating model’s spectrum in this case does not look

like the spectrum of any nonrotating brown dwarf.

3.4.2 Flux Anisotropy Factor

Rotation breaks the spherical symmetry of a brown dwarf, making the object’s bolometric

flux depend on the direction from which it is seen. As a result, if one assumes that a

rotating dwarf is not rotating and thus spherically symmetric, one tends to over-estimate

its luminosity from its flux, if one sees the object pole-on. On the other hand, an equator-

on view leads to an under-estimate of the luminosity. In this section, we quantify this

effect for a range of rotational speeds and rotational axis inclinations.
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Consider brown dwarf A with luminosity L that we wish to know and a spectrum

that we observe, with a certain bolometric flux. We allow for the possibility of rotation,

anywhere between zero and critical. The true luminosity L will not equal 4πr2 times the

bolometric flux (where r is the distance) because the observed flux varies with viewing

angle. Standard practice, however, is to infer the luminosity of a brown dwarf in ex-

actly this way, by assuming isotropic radiation. The flux density is measured at some

wavelengths and extrapolated to wavelengths that are not measured and then integrated

using a model of a nonrotating brown dwarf.

We reproduce a realistic luminosity inference by assuming that we have a nonrotating

model B that matches the observed spectrum of brown dwarf A up to a scaling factor.

Model B has luminosity L0, integrated flux F0, effective temperature T0, radius R0 and

distance r. Let p be the ratio of F0 and the model’s total bolometric flux, i.e., the fraction

of the bolometric flux within the wavelength range covered by the model spectrum. Given

these definitions, the model’s luminosity can be written as

L0 = 4πσSBR
2
0T

4
0 , (3.14)

and its integrated flux – as

F0 =
1

r2
p σSBR

2
0T

4
0 . (3.15)

We are interested in the ratio of the dwarf’s true luminosity L and the nonrotating
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model’s luminosity L0. Specifically, we wish to know what causes this ratio to deviate

from one. We can write L/L0 as

L

L0

=
L

L0

F0

F
F
F0

=
L

4πσSBR2
0T

4
0

1
r2
p σSBR

2
0T

4
0

F
F
F0

=
Lp

4πr2F ×
F
F0

, (3.16)

where we have made two substitutions according to Equations (3.14) and (3.15). Let

us assume that r and p are the same for the dwarf and the model. In other words,

the latter are both at the same distance and require the same bolometric correction for

flux that falls outside the observed wavelength range. The last expression of Equation

(3.16) consists of two multiplicative terms. The first term is the ratio of L/(4πr2), the

bolometric flux we expect if the dwarf is nonrotating and spherically symmetric, to F/p,

an approximation of the dwarf’s bolometric flux from the observed integrated flux and

the fraction of the flux that is in the available wavelength range. The second term is the

ratio of the dwarf’s integrated flux to the model’s integrated flux.

If A does not rotate, then it has a well-defined radius R and effective temperature T .

In this case, its luminosity is

L = 4πσSBR
2T 4 (3.17)

and its integrated flux is

F =
1

r2
p σSBR

2T 4. (3.18)
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Substituting for the first occurrences of L and F on the right hand side of Equation (3.16)

according to Equations (3.17) and (3.18), we obtain L/L0 = F/F0. In other words, if

the dwarf does not rotate, then it is sufficient to multiply L0 by the ratio of integrated

fluxes F/F0 to obtain L.

On the other hand, if the dwarf rotates with non-zero velocity, multiplication of L0

by the flux ratio F/F0 does not, in general, give us L. We need to additionally multiply

our estimate by Lp/(4πr2F), which we call the anisotropy ratio, since it deviates from

one due to the anisotropy of flux because of rotation-induced centrifugal deformation and

gravity darkening.

It turns out that the anisotropy ratio is mainly a function of the rotational speed and

inclination and that it is otherwise almost independent of other brown dwarf parameters

(like mass and temperature). To see this, consider Equation (31) in Espinosa Lara &

Rieutord (2011), which tells us that the surface flux at every location on the deformed

dwarf’s surface is proportional to L/R2
e , where Re is the object’s equatorial radius. If,

additionally, the spatial flux distribution at each location is independent of temperature

– the way it is for a black body, this equation implies that multiplication of L/R2
e by

some factor multiplies the observed flux by the same factor and that the anisotropy

ratio Lp/(4πr2F) doesn’t change with luminosity L, object size Re, or the effective

temperature scale, which is proportional to L/R2
e . The object’s mass M does not enter

Equation (31) in Espinosa Lara & Rieutord (2011) at all. Thus, we expect that the

anisotropy ratio is almost entirely a function of rotational speed ωR and inclination i.
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The anisotropy ratio changes little with mass M and, since the local dependence of

intensity on viewing angle broadly matches that of a black body, we do not expect the

anisotropy ratio to change significantly with luminosity L or object size Re, either. In

Section 3.5.3 we will demonstrate this fact quantitatively for our models.

3.5 Results

In this section, we present our findings – the effects of rotation on brown dwarf spectra

and the implications of these effects for the inference of brown dwarf parameters from

nonrotating models.

3.5.1 Spectral Intensity and Inferred Temperature

Since the polar regions of a brown dwarf are more luminous than the equatorial regions,

the entire object’s observed specific intensity significantly depends on the inclination of

its rotational axis. Since the polar regions are also relatively hot, the temperature that

one infers for the dwarf from nonrotating models depends on the inclination, as well. In

this section, we quantify these effects for a model inspired by one of the fastest-rotating

known dwarfs.

Let us suppose that one of the Model 880 spectra in the upper panel of Figure 3.1 is

an observed spectrum of a rotating dwarf. The magnitude of the spectral flux depends

greatly on this dwarf’s rotational axis inclination. Specifically, there are portions of

the spectrum with appreciable intensity where the flux differs by as much as a factor

80



0

2

4
F

(e
rg

/
s
×

H
z
×

cm
2
)

×10−27

J0348-6022, T̄eff = 880 K, ωR = 0.42

i = 0◦

i = 45◦

i = 90◦

F̄i=0◦

F̄i=45◦

F̄i=90◦

1.0

1.5

2.0

2.5

F i
=

0◦
/F

ω
=

0 849 921
Teff, ω=0 (K)

1.0

1.5

2.0

2.5

F i
=

45
◦ /
F ω

=
0 849 921
Teff, ω=0 (K)

1000 2000 3000 4000 5000
λ (nm)

0.5

1.0

1.5

2.0

F i
=

90
◦ /
F ω

=
0 849 921

Teff, ω=0 (K)

Figure 3.1 Top panel: synthetic spectra of a fast-rotating brown dwarf model. Lower panels:
ratios of the rotating model’s pole-on spectrum to spectra of nonrotating models with effective
temperatures between the equatorial (top line) and the polar (bottom line) temperatures of the
rotator. Crimson marks the nonrotating dwarf with the smallest relative deviation of spectrum
shape from the spectrum shape of the rotator.
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Figure 3.2 Upper panel: synthetic spectra of the L3.5-type fast-rotating brown dwarf
from T21. Lower panel: synthetic spectra of β Pictoris b. Both panels present spectra
at the two extreme inclinations.

of 1.5 between zero degree inclination (pole-on view, maximum flux) and ninety degree

inclination (equator-on view, minimum flux). Figure 3.2 shows that the variation of

spectral flux with inclination is less extreme for objects with lower rotational speed.
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Next, we compare the synthetic observed rotator (Model 880) spectrum at every

inclination to the library of associated nonrotating models (Section 3.3.1). We search the

library for the best-matching spectrum by minimizing the root-mean-square deviation

(RMSD) between the nonrotating model spectrum and a linear transformation of the

observed spectrum that brings it closest to the non-rotator (Section 3.4.1).

It is apparent from Figure 3.1 that such a procedure leads to cooler inferred tem-

peratures when the view of the rotator is closer to equator-on and hotter temperatures

when it is towards pole-on. The inferred temperature is always in the range between the

maximum, polar temperature of the dwarf and its minimum, equatorial temperature.

3.5.2 Rotation Detectability

In addition to spectral intensity and inferred temperature, inclination affects the de-

tectability of rotation from spectral shape. The minimum RMSD from the previous sec-

tion can serve as a quantitative measure of detectability, where higher minimum RMSD

corresponds to higher detectability of rotation. At pole-on inclination, there is a nonrotat-

ing model with a spectrum that is very similar to the rotator’s spectrum, both according

to the minimum RMSD criterion (Figure 3.3) and according qualitative examination

(see Figure 3.1). At the same time, Figures 3.1 and 3.3 show that the more equator-on

inclinations produce spectra that are increasingly distinguishable from all non-rotator

spectra. This effect is not intuitive in light of pure temperature range considerations,

since both pole-on and equator-on objects display full pole-to-equator ranges. In order
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Figure 3.3 Normalized minimum root mean squared difference (RMSD) between a non-
rotating dwarf’s spectrum and the closest linear transformation of a rotator’s spectrum,
minimized across nonrotating models for a given rotator. This is a measure of the differ-
ence between the rotator’s spectrum shape and the spectral shape of the best-matching
non-rotator. The horizontal axis is the cosine of the rotational axis inclination. The dif-
ferent panels correspond to different average surface temperatures of the rotating dwarf.
Comparison of the panels indicates that lower temperatures correspond to higher relative
differences between the rotating and the nonrotating dwarf spectra, and thus, potentially,
easier detectability of the rotational effects. Additionally, the panels suggest easier de-
tectability at higher inclinations, in agreement with Figure 3.1.
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to understand the effect, we have to additionally consider the geometry of rotational axis

inclination. We suggest that increasing inclination might increase the detectability of

rotation from spectrum shape due to the fact that the observed temperature profile of a

pole-on dwarf has circular symmetry, much like the profile of a nonrotating object. This

contrasts with non-polar inclinations, which are associated with solely axial symmetry

(Espinosa Lara & Rieutord, 2011; Lipatov & Brandt, 2020b).

Figure 3.3 shows that the detectability of rotation from spectral shape grows not

only with increasing inclination, but also with decreasing temperature. Specifically, this

figure demonstrates that the minimum RMSD measure, normalized by the average inte-

grated flux, decreases as one proceeds from cooler to hotter models. This may be related

to the fact that cooler models show stronger departures from blackbody spectra, with

corresponding increases in the sharpness of temperature-dependent spectral peaks and

troughs.

The horizontal axis of Figure 3.3 is linear in the cosine of inclination, cos i. This way,

equal-space horizontal axis intervals correspond to equal probabilities of brown dwarfs

under a spatially isotropic distribution of rotational axis directions, which corresponds

to observed inclination probability density that is proportional to sin i.

Figure 3.3 shows that the normalized RMSD reaches 2% for Model 880, suggesting

that, if spectral precision and modeling fidelity reach this level, rotation may be detectable

from spectra alone. The detectability is greatest for edge-on orientations, so that a

substantial ve sin i would further establish the spectrum as that of a rapidly rotating
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brown dwarf.

3.5.3 An Empirical Luminosity Correction

In this section we quantify the dependence of the inferred luminosity on inclination and

rotation rate. To do this, we first create nine rotating models associated with Model

880, as described in Section 3.3.1. Their rotation rates ωR are equally spaced between

0.1 and 0.5 and their luminosities are all equal to that of Model 880. We calculate

spectra at several inclinations for each model, and in each case produce the integrated

flux F . For every such spectrum, we find the nonrotating Model 880 variant with the

maximally similar spectrum, according to the RMSD criterion. Let us say that this

nonrotating model has integrated flux F0 and luminosity L0. We then compute a product

of luminosity and flux ratios on the left hand side of the following equation, which is a

re-arrangement of Equation (3.16):

L

L0

× F0

F =
Lp

4πr2F . (3.19)

Figure 3.4 presents the anisotropy ratio in Equation (3.19) for four of the rotational

speeds and all the inclinations that we use.

The lines in Figure 3.4 are cubic polynomials in the cosine of inclination u = cos i,

whose coefficients are given by quadratic fits to all nine rotational speeds ωR. The
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Figure 3.4 Luminosity correction factor due to the rotational anisotropy of bolometric
flux. This factor is a ratio. The numerator of the ratio is L/(4πr2), the flux we would
expect from the the dwarf’s luminosity L and distance r if the flux were isotropic –
the way it is for a nonrotating, spherically symmetric object. The denominator of the
ratio is the observed bolometric flux F/p of the rotating dwarf. Here, F is the dwaf’s
flux between the wavelengths of 0.7 and 5.0 µm, whereas p is the proportion of a non-
rotator’s flux that is between these wavelengths. When i = 55◦, the effect is non-existent.
At this inclination, the bolometric flux is equal to the direction-averaged flux, no matter
what the rotational speed is. The discrete markers are due to our synthetic spectra
at T̄eff ∈ {400, 600, 880, 1500}K. The lines are cubic fits in cos i for T̄eff = 880K, with
coefficients’ quadratic dependence on ωR given in Section 3.5.3. The effect mainly depends
on the rotational speed ωR and inclination i.
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corresponding full coefficient matrix is

A =




3.0791 −0.9858 0.0807

−4.5216 0.7383 −0.0644

−0.3774 0.1489 −0.0113

1.1536 −0.1482 1.0133




. (3.20)

Thus, the anisotropy ratio in Figure 3.4 at ωR and u = cos i is given by

[
u3 u2 u 1

]
A




ω2
R

ωR

1



. (3.21)

The maximum difference between the fits and the discrete anisotropy ratios in Figure 3.4

is 0.01, i.e., the fitting formula can correct the luminosity with a maximum error of 1%.

This maximal difference is found at ωR = 0.5, i = 90◦, and T̄eff = 1500K: a hot, very

rapid rotator seen equator-on. The root-mean-square difference between the fit lines and

all the discrete points in this figure is 1.2× 10−5, much less than 1%. The fact that these

differences are small in comparison with the range of the anisotropy ratio confirms the

proposition in Section 3.4.2 that the ratio is largely independent of object temperature

and that it is mostly a function of ωR and i.

Section 3.4.2 interprets the anisotropy ratio as a correction factor one must use in

addition to the ratio of integrated fluxes in order to obtain a rotator’s true luminosity
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from the luminosity of a best-matching model. Figure 3.4 shows that this correction

factor changes the luminosity by as much as 20% at extreme inclinations and rotational

velocities that are typical of fastest-rotating dwarfs.

3.6 Discussion and Conclusions

Rotational period and projected equatorial velocity measurements for substellar objects

frequently translate to significant fractions of critical rotation rates (Tannock et al., 2021;

Chilcote et al., 2017; Snellen et al., 2014; Helled et al., 2009; Eislöffel & Scholz, 2007;

Crossfield, 2014). The centrifugal expansion of a rotating object’s equatorial regions

will produce a significant variation in its surface temperature – relatively high values

at the object’s poles and relatively low values at its equator. As a result, we expect

both the shape of a rotator’s observed spectrum and its total observed flux to depend on

the object’s orientation, since a more equator-on view tends to show the cooler, dimmer

equatorial regions as opposed to the hotter, brighter polar regions. Furthermore, we

expect this effect to increase with greater rotational speed, since the latter leads to a

greater temperature contrast between the equator and the poles.

In this work, we explore the dependence of a substellar object’s observables on its

rotational speed and rotational axis inclination. We also place this dependence in the

context of a comparison with the expected observables of nonrotating models. In order

to accomplish these tasks, we use PICASO (a Planetary Intensity Code for Atmospheric

Spectroscopy Observations) to generate synthetic spectra and process them with PARS

89



(Paint the Atmospheres of Rotating Stars), which produces spectra of rotating, self-

gravitating, gaseous masses at different rotational speeds and inclinations (LB20).

An initial analysis shows that the specific flux of a typical fast-rotating brown dwarf

can differ by as much as a factor of 1.5 between the two extreme inclinations in spectral

regions with appreciable intensity (see the upper panel of Figure 3.1, for example).

Next, we ask whether the shape of a rotationally deformed substellar object’s spec-

trum differs significantly from the spectra of similar objects that are nonrotating and

therefore spherically symmetric. In other words, we wish to know whether one can infer

rotation from the shape of an object’s spectrum alone. To this end, we use PARS to cal-

culate synthetic spectra of a typical quickly rotating brown dwarf at different rotational

axis inclinations, as well as spectra of nonrotating objects that are otherwise similar to

the rotator. We find that, when we observe the rotator pole-on, its spectrum is virtu-

ally indistinguishable from that of another, nonrotating object at a certain temperature

between the rotator’s equatorial and polar values. On the other hand, as the rotator

approaches an equator-on view, its spectrum becomes increasingly different from that of

any nonrotating object. We demonstrate this effect in Figure 3.1 and hypothesize that

it results from the fact that a pole-on view has circular symmetry, much like the view of

a nonrotating object and unlike the rotator’s equator-on view.

To quantify the difference between the spectral shapes of a rotator and a non-rotator,

we compute the root-mean-square difference between the non-rotator’s specific flux at

different wavelengths and the closest linear transformation of the rotator’s flux. We
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minimize this quantity across non-rotators and divide it by the rotator’s mean flux,

to obtain a dimensionless measure of rotation’s detectability from spectral shape. We

compute this minimized RMSD measure across different average rotator temperatures,

rotational velocities, and inclinations. Figure 3.3 shows that, in accordance with the

qualitative results of Figure 3.1, detectability of rotation from spectral shape increases

when the rotational speed is greater and the view is closer to equator-on. In addition,

Figure 3.3 indicates that detectability increases when the temperature of the rotating

dwarf decreases.

A nonrotating model is spherically symmetric. Thus, its observed flux does not

depend on the spatial direction to the observer. On the other hand, a rotator’s flux

is anisotropic – it depends on the observer’s direction or, equivalently, on the inclination

of the rotational axis with respect to the observer’s view. Thus, although the luminosity

of a nonrotating object can be inferred from its observed flux, a rotator’s luminosity

estimate requires an additional correction due to the anisotropy effect. Without this

correction, the luminosity of an equator-on object is under-estimated, while that of a

pole-on object is over-estimated. We calculate this correction for a variety of rotating

models and plot it in Figure 3.4. We find that it is relatively insensitive to average object

temperature. On the other hand, the correction depends strongly on rotational speed and

inclination. It reaches its extreme values at the two extreme inclinations, where it adjusts

luminosity estimates by as much as ∼20% near the rotational speeds of fastest-rotating

observed dwarfs. Section 3.5.3 provides an approximation of the luminosity correction as
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a function of rotational speed and inclination.

Data Availability

The brown dwarf atmosphere intensity grid in this chapter, produced by the PICASO

radiative transfer code and based on Sonora model atmospheres, is available on Zen-

odo, at https://doi.org/10.5281/zenodo.6842801. The version of PARS that took this

intensity grid as input and produced all the figures in the chapter is also on Zenodo, at

https://doi.org/10.5281/zenodo.6842745.
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Chapter 4

Rotational Variation and Age

Spread in a Globular Cluster

In this chapter, we develop a methodology that connects the evolution of individual

rotating stars with the distributions of stellar ages and rotational speeds in clusters. Both

the evolution of stars and their distributions in clusters are associated with considerable

uncertainty. Our method aims to establish the relationship between the two, so that

aspects of evolutionary theory that are known with certainty can provide information

about cluster parameters and so that known cluster parameters can tell us something

about the evolutionary theory.

Our case study is globular cluster NGC 1846 in the Large Magellanic Cloud with

magnitude and rotational velocity data on more than a thousand stars in the extended

main sequence turn-off (eMSTO). We analyse these data in the light of MIST stellar
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evolution models that include rotation. One of our main conclusions is that rotational

variation allows for an age spread in NGC 1846 that is significantly narrower than the

spread in the absence of stellar rotation. Furthermore, our detailed analysis allows us

to suggest specific modifications to the MIST models that would likely improve the fit

between the models, the cluster data, and independent estimates of cluster parameters.

The modifications that we suggest include a reduction in rotational braking and greater

increases in longevity with rotation.

The PARS software that we introduce in the previous chapters plays a key role in the

present analysis, since it provides a precise mapping between the present-day parameters

of stellar models and the models’ observable magnitudes and rotational speeds.

The contents of this chapter have been published in Lipatov et al. (2022), under the

title ”Rotational Variation Allows for Narrow Age Spread in the Extended Main Sequence

Turnoff of Massive Cluster NGC 1846”.

4.1 Data

We base our analysis on recent spectroscopic ve sin i measurements of individual stars

in the central 1 arcmin × 1 arcmin of NGC 1846, collected by Kamann et al. (2020,

henceforth K20) with the Multi Unit Spectroscopic Explorer (MUSE, Bacon et al., 2010)

on the Very Large Telescope. Here, ve is the equatorial velocity of a star and i is the

inclination of its rotational axis with respect to the plane of the sky, so that v ≡ ve sin i is

the projected equatorial velocity. K20 estimate ve sin i from transition line broadening via
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full-spectrum fitting and augment these measurements with previously collected multi-

band HST (Hubble Space Telescope) photometry of the same stars (Martocchia et al.,

2018). The photometric magnitudes correspond to three filters on theWide Field Channel

of HST’s Advanced Camera for Surveys: m435 ≡ mF435W, m555 ≡ mF555W, and m814 ≡

mF814W. The MUSE data show significant variation in ve sin i across the MSTO, indicating

that the stars in this area of the CMD have significantly variable rotation speeds and/or

inclinations.

Inference of rotational and age distributions in clusters is sensitive to the modeling

of processes relevant to the evolution of stars, in ways that potentially differ between

the stages of a star’s life and between stars of different masses. Thus, in order to better

understand the meaning of our results, we restrict ourselves to a particular portion of

the NGC 1846 data set and a particular range of stellar evolution models. Specifically,

we work only with the stars observed in the MSTO area of the CMD (see Figure 4 in

K20) and interpret them solely in terms of 1 to 2 M⊙ main-sequence stellar models. Even

when the inference is subject to these restrictions, the data set remains large, while the

evolutionary models produce predictions that are sufficiently intricate to warrant taking

into account the exact uncertainty on each measurement. To accomplish the latter for

the entire data set, we find it advantageous to establish minimum possible errors on mea-

surements, compute corresponding minimum-error theoretical probability distributions,

then broaden these distributions as necessary for each individual measurement. Our data

selection and error assignment, further described in the rest of this section, are designed
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in view of the above-mentioned considerations.

We make use of the n = 2353 stars in K20’s data set that fall in our region of

interest (ROI), which satisfies m ≡ m555 ∈ [19.5, 22.0], c ≡ m435 −m814 ∈ [0.4, 1.0], and

v ∈ [0,∞]. We refer to a point in the 3-dimensional observable space as x ≡ (m, c, v).

Since neither of the two filters that produce c is the filter that producesm, we assume zero

correlation between the errors in these two observables for a given star. We also assume

that errors in broadband filter magnitudes do not correlate with errors in the broadening

of individual spectral lines, so that the errors in m and c do not correlate with the error

in v. The rotational measurement v is positive, zero and missing for np = 1237, nz = 74

and nm = 1042 of these stars, respectively. Every m and c measurement in the data

set is associated with its own error value, which we interpret as the standard deviation

of the corresponding error distribution. Furthermore, every positive v measurement in

the data set is associated with an upper and a lower error value. The average of these

latter two values becomes the standard deviation of the corresponding v measurement

error distribution. This averaging procedure does not affect inference at v > 100 km/s,

where the upper and lower errors are equal. We choose to retain the averaging procedure

at lower v, for the sake of computational speed and simplicity. We further assume

that the error distributions are Gaussian and impose a lower limit of σm = 0.01 on

the standard deviations of these distributions for magnitudes. This makes the error

distributions for color measurements Gaussian as well, with a lower limit on standard

deviations σc = σm

√
2 = 0.014. Our approximation of non-Gaussian error distributions

96



for low v measurements as Gaussian may introduce offsets to our cluster parameter

estimates. On the other hand, we expect these offsets to be significantly lower than the

offsets due to uncertainties in evolutionary models. The true error distributions are, in

any case, likely to be far more complicated than two half-Gaussians with a discontinuity

where they meet.

Our lower limit on the uncertainty of v measurements is σv = 10 km s−1, which is

on the order of the uncertainty in ve sin i at a given line broadening σLOS in Figure A1

of K20. Although we are not explicitly given an error on the v = 0 measurements, we

set it equal to 50 km s−1, based on an approximate extrapolation of the v measurement

standard deviations down to v = 0. We collectively refer to the minimum errors on the

observables as σx ≡ (σm, σc, σv). Each data point is composed of an observed star’s x

and σx: xp ≡ (mp, cp, vp) and σxp ≡ (σmp, σcp, σvp), where subscript p ∈ [1, n] is data

point index. A missing rotational measurement corresponds to σvp =∞.

4.2 Stellar model

In this section, we describe the procedure that yields magnitude, color and ve sin i for

a stellar model, given its independent parameters – initial mass, initial rotation rate,

inclination of the rotational axis, age, and initial mass of a binary companion (if present).
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4.2.1 Evolution

We model the evolution of stars according to version 1.0 of the MIST library , which is

based on version r7503 of the MESA computer code (Modules for Experiments in Stellar

Astrophysics: Paxton et al., 2011, 2013, 2015, 2019). MESA models rotation by using

pressure as the radial coordinate. It does not assume spherical symmetry, but rather

that certain physical quantities are constant along isobars and that energy transport is

perpendicular to the local effective gravity.

At a given age, MIST provides Equivalent Evolutionary Phase (EEP), mass M , surface

angular speed Ω, dimensionless angular speed ωM, luminosity L, Eddington ratio L/LEdd,

and radius RM. Here, RM is the radius of a sphere that encloses the star’s volume V

(Endal & Sofia, 1976; Paxton et al., 2019), so that

V =
4π

3
R3

M. (4.1)

Furthermore, ωM ≡ Ω/Ωcrit, where Ωcrit is defined soon after Equation (26) in Paxton

et al. (2013):

Ωcrit ≡
√(

1− L

LEdd

)
GM

R3
M

. (4.2)

We only consider main sequence MIST models, with EEP ∈ [202, 454]. We model

stars at other EEPs as part of a background distribution, while choosing our region of

the CMD to exclude most of these post-main sequence stars. We estimate that only
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about 1% of the stars that remain in our ROI on the CMD (i.e., about 20 stars) are post-

main sequence stars, given the amount of time that MIST models spend on the subgiant

branch before crossing the red edge of our ROI at m435 − m814 = 1. Our background

distribution also subsumes other types of stars, such as blue stragglers, that are not

modeled by the MIST library. Upon visual inspection of the turn-off, we estimate that

≲ 1% of our observed stars are likely to be blue stragglers. These would have to be

modeled via binary evolution, which is beyond the scope of this paper.

Along with age t, the models’ independent parameters are initial mass, initial angular

speed ωMi, and metallicity [M/H]M. Initial mass is designated by Mi for a primary in a

star system and by MCi for a secondary companion. Here and elsewhere in the chapter,

subscripts M and i stand for ”MIST” and ”initial”, respectively. Furthermore,

[M/H]M = log
Z

X
− log

Z⊙,M

X⊙
, (4.3)

where Z and X are the respective metal and hydrogen mass fractions of the star, X⊙ is

the protosolar hydrogen mass fraction, and Z⊙,M = 0.0142 is an estimate of the protosolar

metal mass fraction (pp. 2-3 in Choi et al., 2016; Asplund et al., 2009). In Equation

(4.3) and the rest of this work, log designates logarithm with base ten.

MIST has solar-scaled abundance ratios, so that its metallicity is equivalent to relative

iron abundance, i.e., [M/H]M ≡ [Fe/H]M. There is some evidence that the LMC and

Milky Way (i.e., solar) abundance patterns differ. In particular, the LMC may have

relatively low Mg to Fe and O to Fe ratios (Pompéia et al., 2008; Van der Swaelmen
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et al., 2013; Rolleston et al., 2002). Future work may provide model libraries with LMC-

scaled abundances. We keep metallicity [M/H]M constant at −0.45, a value that is based

on isochrone fits in K20, so that the models start off parametrized by {Mi, ωMi, t}.

Traditionally, an isochrone is a line on the CMD that corresponds to a set of models

at constant chemical composition and age, parameterized by initial mass. Here, we define

a generalized isochrone as the cloud of points in observable space that corresponds to

the full range of our independent model parameters—mass, rotation, and orientation—

restricted to a particular age t and composition [M/H]M. In this context, equivalent

evolutionary phase (EEP) can parametrize isochrones instead of initial mass (Dotter,

2016). For a point on an isochrone with some initial mass Mi and initial rotation rate

ωMi that translate to some EEP, the point closest in observable space on a neighboring

isochrone is approximately the one with the same EEP, not the one with the same mass.

Accordingly, when we intepolate between isochrones, i.e., in age t, we fix EEP and ωMi

instead of Mi and ωMi. This recipe could have been complicated by the fact that several

values of Mi can correspond to the same EEP at a given combination of ωMi and t.

However, none of the models we utilize exhibit this behavior.

Here and elsewhere in this chapter, interpolation is linear unless stated otherwise.

Furthermore, all interpolation and integration that involves t, luminosity L, and Edding-

ton ratio L/LEdd uses the logarithms of these variables.
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4.2.2 Rotational Speed Conversion

The radius used to compute the dimensionless rotation speed ωM in MIST is a volume-

averaged quantity. Because a rapidly rotating star expands in its equatorial regions,

ωM of unity does not correspond to the critical angular speed where the stellar equator

becomes unbound.

Accordingly, in addition to ωM and average radius RM, we consider dimensionless

rotational speed ω ≡ Ω/ΩK ∈ [0, 1] and equatorial radius Re. Here, ΩK is the Keplerian

limit on Ω, i.e., the rotational speed at which a star with mass M and equatorial radius

Re would start to break up due to the centrifugal effect. Under the assumption that all

mass is at the star’s center – i.e., the Roche model of mass distribution,

ΩK =

√
GM

R3
e

. (4.4)

The Roche model admits an analytic expression for a normalized radial cylindrical

coordinate of the stellar surface r̃ in terms of a normalized vertical cylindrical coordinate

z̃ (Lipatov & Brandt, 2020b, henceforth LB20). We now use that expression to derive a

conversion between ωM and ω under this model of mass distribution. To start, we define

a star’s dimensionless volume as

Ṽ ≡ 3

4π

V

R3
e

(4.5)
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and express it in terms of an integral in dimensionless cylindrical coordinates:

Ṽ (ω) =
3

4π

2

f

∫ 1

0

π r̃(z̃)2 dz̃, (4.6)

where r̃ ≡ r/Re, z̃ ≡ z/Rp, Rp is the polar radius, and f ≡ Re/Rp, as defined in

LB20. Here, f and r̃(z̃), and therefore Ṽ , are functions of ω. We compute Ṽ on a fine

grid of ω values using Equation (4.6), the expression for r̃(z̃) in LB20, and the composite

trapezoidal rule. We then perform cubic interpolation to obtain Ṽ (ω). Dividing Equation

(4.1) by R3
e , we also have

Ṽ =

(
RM

Re

)3

, (4.7)

so that

Re =
RM

3
√
Ṽ
. (4.8)

The definitions of ω and ωM, in addition to Equations (4.2), (4.4), and (4.7), yield

Ṽ (ω)× ω2 = ω2
M

(
1− L

LEdd

)
≡ ω′2

M. (4.9)

At ω = 0, rotation doesn’t deform the star, so that RM, defined in Equation (4.1), is

equal to the equatorial radius Re. As ω increases, rotational deformation causes RM/Re

to decrease. Thus, according to Equations (4.7) and (4.9), ω′
M = 0 when ω = 0 and
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ω′
M/ω decreases from one as ω increases from zero. When ω reaches one, so that Ω

is at the Keplerian limit, ω′
M = 0.7356, which implies a shape so non-spherical that

RM/Re = (0.7356)2/3 = 0.8149. We solve Equation (4.9) numerically to obtain ω(ω′
M).

Figure 4.1 presents the result, a monotonically increasing function. We use it to calculate

ω from ωM and L/LEdd.

0.0 0.2 0.4 0.6

ωM

√
1− L

LEdd
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ω

Figure 4.1 Relationship between the proportion of Keplerian rotational limit ω and a
quantity related to the MIST dimensionless rotational velocity ωM.

MIST does not provide the initial value of Eddington ratio L/LEdd for all of its models.

However, it does inform that a non-rotating model with initial mass Mi = 2M⊙ has

L/LEdd = 0.017 at zero age main sequence (ZAMS). All MIST models we use are less
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massive and most have significantly smaller L/LEdd. Therefore, in the case of initial

rotational speeds, we set L/LEdd = 0 and solve

Ṽ (ωi)× ω2
i = ω2

Mi (4.10)

to find ωi, the initial value of ω. This corresponds to the dependence in Figure 4.1, with

ωMi and ωi re-labelling the horizontal and vertical axes, respectively. The largest ωMi

below the above-mentioned Keplerian limit of 0.7356 is 0.7 in the MIST models. Setting

ωMi to 0.7 in Equation (4.10) yields ωi = 0.8590. This is the maximum ωi in the present

analysis, since we do not extrapolate to higher values of this parameter. Some of the

stars in our data set may possess ωi > 0.8590. In Section 4.6, we discuss the implications

of the rotational speed limit in our analysis on the quantitative results and suggest the

limit’s increase as an important future modification to the MIST library.

4.2.3 Synthetic Magnitudes

In Sections 4.2.1 and 4.2.2, we mention present-day parameters that determine a star’s

magnitude – its mass M , luminosity L, average radius RM, and MIST’s dimensionless

rotational velocity ωM. We also describe a procedure that converts RM and ωM to equa-

torial radius Re and another kind of dimensionless rotational velocity ω. In this section,

we describe a procedure that yields stellar magnitudes from M , L, Re, ω, and rotational

axis inclination i.
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Model Parameters for Magnitude Calculation

LB20 introduced PARS - Paint the Atmospheres of Rotating Stars, a program that com-

putes theoretical magnitudes of a rotating star in a given telescope filter. The program

is based on a model of internal energy flux due to Espinosa Lara & Rieutord (2011) and

ATLAS9, a library of stellar atmosphere models due to Castelli & Kurucz (2004). Our

present work necessitates the computation of magnitudes for many stellar models, so

that separately employing PARS to compute the magnitude of each would be too slow.

Accordingly we aim to interpolate magnitude on a grid of PARS models instead.

PARS’s input stellar parameters are L, M , Re, ω, i, and metallicity [M/H]P. Here,

[M/H]P = log
Z

X
− log

Z⊙,P

X⊙
, (4.11)

where Z, X and X⊙ are defined as in Equation (4.3), Z⊙,P = 0.01886 is an estimate of

the protosolar metal mass fraction (Anders & Grevesse, 1989), and the available [M/H]P

values are the same as in ATLAS9 (Castelli & Kurucz, 2004). Subtracting Equation (4.3)

from Equation (4.11), we get

[M/H]P − [M/H]M = logZ⊙,M − logZ⊙,P

= −0.1233.
(4.12)

Mapping between MIST and PARS models according to Equation (4.12) ensures that metal

mass fraction Z remains the same, despite the differences in the protosolar mass fraction
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between the two model libraries.

In order to speed up interpolation on the PARS grid, we wish to decrease its dimen-

sionality. Towards this end, we derive parameters γ and τ , which are similar to surface

gravity and effective temperature, respectively. We will show that one can interpolate in

γ and τ at fixed equatorial radius Re = R⊙ instead of interpolating in M , L, and Re,

then add a function of Re/R⊙ to the resulting magnitudes. Parameter γ is the logarithm

of the gravitational acceleration at the equator in cgs units,

γ ≡ log

(
GM

R2
e

/
cm s−2

)
. (4.13)

Parameter τ is the effective temperature of a spherically symmetric star with luminosity

L and radius Re,

τ ≡
(

L

4πσSBR2
e

)1/4

. (4.14)

Quantities G and σSB are the gravitational and Stefan-Boltzmann constants, respectively.

Here and in the rest of this work, logarithms of physical quantities are base-ten, while

those of likelihood and probability functions are natural, unless stated otherwise.

PARS adds up luminous power over the set of infinitesimal patches that make up the

visible stellar surface, taking into account the viewing angle of each patch. Stars of

different size but constant ω and orientation look the same apart from an overall scale–

their angular extent on the sky. This allows us to define a normalized ω-surface, which
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has unit equatorial radius and depends solely on dimensionless rotational velocity ω.

Consequently, we can write down the power emanating from a star at a given wavelength

as a product of R2
e and an integral of the star’s intensity over the patches on such a

normalized surface (see Equation 18 in LB20).

In addition to ω and i, γ and τ determine the above-mentioned flux from a nor-

malized surface, as follows. The intensity of each surface patch depends on its viewing

angle, its temperature T , and its value of g – the combined gravitational and centrifugal

acceleration. Equation (36) in LB20 writes g as a product of 10γ and a function of the

patch’s location on the ω-surface. On the other hand, Equation (31) in Espinosa Lara

& Rieutord (2011) expresses T as a product of τ and another function of the ω-surface

location. Thus, luminous power can be computed from γ, τ , ω and i, up to a factor of

R2
e .

Consequently, to compute the magnitude of a stellar model from PARS’s input param-

eters, we calculate γ and τ from Equations (4.13) and (4.14), interpolate magnitude on

the PARS grid, and subtract 5× logRe/R⊙, which is equivalent to multiplying luminous

power by (Re/R⊙)
2.

Model Grid for Magnitude Calculation

We compute the PARS grid—multi-band synthetic photometry on a grid of τ , ω, i and

γ—for [M/H]M = −0.45, extinction parameter AV = 0.263, distance modulus µ = 18.45,

and Re = R⊙. Our value for µ is the same as in K20 and the value for AV is based on

isochrone fits in K20. We do not include the uncertainties for [M/H]M, AV, or µ in our
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analysis, since the influence of these uncertainties on our results should be significantly

less than that of the uncertainties in the stellar evolution model (see Section 4.6). The

extinction curve is from Fitzpatrick (1999), with RV = 3.1. The magnitudes we calculate

are m435, m555, and m814. Here, we first convert [M/H]M to [M/H]P via Equation (4.12),

then interpolate between the available values of [M/H]P.

The range of the τ and γ portion of the grid is the same as that of temperature

and gravity in ATLAS9 plane-parallel atmosphere models (Table 1 of Castelli & Kurucz,

2004): 3,500K ≤ τ ≤ 50,000K and 0.0 ≤ γ ≤ 5.0. The two grids have similar model

coverage since, for example, the surface of a star with parameter τ has temperatures in

the neighborhood of τ . The spacing between adjacent τ values is 16K below 4500K,

31K between 4500K and 6200K, and 63K above 6200K. The spacing between adjacent

γ values is 0.5. The ω grid extends from 0 to 0.95, with a spacing of 0.05. The i grid

has 20 values, equally spaced between 0 and π/2. Overall, there are close to 1 million

models on the τ , ω, i and γ grid.

To assess the accuracy of interpolations within our model grid, we take each PARS grid

parameter and calculate the magnitude differences between any two adjacent values of

that parameter, with all other parameters fixed. Most of these differences are only a few

minimum magnitude errors σm, or a few hundredths of a magnitude, as demonstrated in

Figure 4.2. Assuming that the magnitude function does not deviate significantly from

linearity on the scale of a few σm, interpolation on the PARS grid should be very accurate.
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Figure 4.2 Histograms of the magnitude differences in units of minimum error (σm =
0.01mag) between adjacent models on the entire PARS grid in Section 4.2.3. Differences
are taken along each of the four grid dimensions, indicated in the legend. Most differences
are only a few σm. Assuming that the magnitude function does not deviate significantly
from linearity on this scale, interpolation on the PARS grid should be very accurate.

4.2.4 Calculation of Observables

The previous section describes the calculation of magnitudes for individual stars. We

also allow for the possibility that a star in our data set is actually an unresolved, non-

interacting binary system, consisting of a rotating primary and a non-rotating companion

that do not eclipse each other. Allowing for the rotation of the secondary would increase

the dimensionality of model space from 5 to 7. At the same time, this change would

only have an effect for stars whose companions lie above the Kraft break, around 20%
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of binaries, assuming a turnoff mass of ≈1.6M⊙ and a flat companion mass function.

The effects of rotation would further be subdominant to those of binarity even for these

stars. The binary fraction of the cluster is estimated to be ≈6% from independent

measurements. With ∼1000 stars on the turnoff above the Kraft break, we therefore

expect to be neglecting a subdominant effect for ∼10 stars (comparable to the effect of

our neglect of the subgiant branch).

We assume that the companion’s initial mass MCi does not exceed the primary’s

initial mass Mi, so that the binary mass ratio r ≡ MCi/Mi ∈ [0, 1]. We combine the

magnitude of a primary mp with that of its companion mc as follows:

m = −2.5 log
(
10−mp/2.5 + 10−mc/2.5

)
. (4.15)

We now define the initial stellar parameters θ′ ≡ (Mi, r, ωi, i), as well as the full set of

parameters θ ≡ (Mi, r, ωi, i, t), where ωi is the initial dimensionless rotation rate of the

primary and i is the primary’s inclination. We wish to obtain the observables on grids of

θ. Towards this end, we first interpolate dependent model parameters between original

MIST ages at constant initial rotation rate ωMi and constant equivalent evolutionary

phase, EEP (see the latter portions of Section 4.2.1). The rest of the procedure, outlined

in Figure 4.3, happens at constant age. It starts with the conversion of ωMi to ωi (see

Section 4.2.2), proceeds to the interpolation of model parameters in Mi and ωi, includes

the interpolation of magnitudes in the PARS grid, and concludes with the combination

of the primary’s and the companion’s magnitudes. Figure 4.4 presents the observables
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that result from the procedure outlined in this subsection for a subset of unary (single,

non-binary) stars on the original MIST grid. Here, ve sin i is calculated from a model’s

current parameters ω, M , Re, and i as

ve sin i = ΩRe sin i = ω

√
GM

Re

sin i, (4.16)

where we have made use of the expression for Keplerian velocity ΩK in Equation (4.4)

and the definition ω ≡ Ω/ΩK.

Figure 4.3 Schematic of our procedure for the calculation of the observables {m, c, v} at
constant age t. The top branch of the schematic pertains to the rotating primary, the
bottom – to the non-rotating companion. The combined models are parametrized by
initial mass Mi, binary mass ratio r ≡MCi/Mi, initial rotational speed ωi, and rotational
axis inclination i. Blue arrows indicate conversion of rotational speeds and radii (Section
4.2.2), green – interpolation in the MIST grid (Section 4.2.1), yellow – interpolation in the
PARS grid (Section 4.2.3), and pink – combination of the primary’s and its companion’s
magnitudes.
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4.3 Probabilities of Observables

Section 4.2 describes the procedures that map stellar model parameters to observable

space. The MIST model grid is discrete, with substantial separations in mass and rotation

rate between neighboring models. Figure 4.4 shows the discrete colors and magnitudes

corresponding to the MIST grid at two fixed inclinations. Näıvely, such discrete distri-

butions suggest zero probability of stars existing between the discrete locations. To use

these observables for statistical inference, we must instead construct continuous distribu-

tions in color-magnitude space. Colors and magnitudes can change steeply with the initial

mass of a stellar model, especially as a star approaches the end of its main sequence life.

For combined accuracy and computational efficiency, we seek a grid of model parameters

θ that maps onto a nearly uniform grid in observable space x. This grid will be coarse

in θ near parameters for which observables change slowly, and fine where observables

change sharply. In this section, we state our priors on model parameters θ, describe the

calculation of a suitable θ grid, our subsequent calculation of continuous distributions

in color-magnitude-v sin i space, and finally the integrations over these distributions that

allow us to interpret them as probability densities.

4.3.1 Cluster Model

In this section, we state our prior distributions on stellar parameters θ. The star-by-star

posterior distributions that we obtain are the product of these priors and the likelihood,

integrated to unit probability. Some of the priors are themselves parametrized by what
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are more properly called hyperparameters, i.e., parameters associated with the cluster as

a whole. We adopt parametrized descriptions of the rotation rate distribution and the

age distribution and fit for those hyperparameters in later sections. Here, we begin by

describing our model for the distribution of initial rotation rates before discussing our

models and priors on binarity, mass, and age.

We wish to construct a model of the rotational distribution that has reasonable and

sufficient degrees of freedom. K20 find evidence for a bimodal v ≡ ve sin i distribution in

NGC 1846, with about 55% of the observed stars clustered near v = 140 km s−1 and the

rest – near v = 60 km s−1. There is additional evidence of bimodal rotational distribu-

tions in clusters (D’Antona et al., 2017; Gossage et al., 2019). We add an extra degree

of freedom and assume three rotational populations: one with a maximum probability

density at zero rotation, one with maximum density at critical rotation, and one with

an intermediate maximum-probability rotation. We assume that each population has a

Gaussian distribution of initial rotation rates, truncated at ω = 0 and ω = 1.

We choose parameters for the three Gaussians so that their best-fit amplitudes result

in all three distributions contributing a nonzero fraction of the cluster’s stars. Many

sets of parameters result in all, or nearly all, stars being attributed to only two of these

rotational populations. Future work will explore the robustness of our results to different

parametrizations of the rotation rates and to changes in the stellar models. For the

present work, we use standard deviations of 0.6 and 0.15 in ω for the slow (mean ω = 0)

and fast (mean ω = 1) rotating populations. We then find the intermediate rotation rate
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where the slow and fast rotating populations contribute equally. We adopt this rotation

rate, ω = 0.696, for our intermediate rotators, with a narrow standard deviation of 0.05.

The MIST model library only extends to ω = 0.86; we use these models for all stars with

0.86 < ω < 1.

Our choice of rotational distribution allows for distinct populations of rotators that

concentrate at critical, zero, and intermediate rotation, in accordance with the qualitative

evidence of such concentrations (Kamann et al., 2020; D’Antona et al., 2017; Gossage

et al., 2019).

Multiplicity of stellar systems significantly affects the CMD of a cluster. Similarly to

rotation, it can alter both the evolutionary trajectory of a star system (through binary

evolution) and its present-day spectrum (by combining the light of the two stars). In

the present analysis we include unresolved binarity (a single point source comprising

the light of two stars) but neglect the effects of binary evolution. A radial velocity

variation technique in Section 4.4 of K20 (see also Giesers et al., 2019) estimates that

the unresolved binary fraction of NGC 1846 is ∼ 6%. This is similar to estimates of

unresolved binary fractions in Galactic globular clusters (Milone et al., 2012). Although

K20’s binary fraction for NGC 1846 is lower than the estimate of this parameter for the

LMC by Moe & Di Stefano (2013), at least part of this difference may be due to the fact

that the latter authors work with field stars as opposed to globular cluster stars. K20

argue that the small binary fraction that they find cannot lead to the much larger fraction

of slowly rotating stars in NGC 1846, supporting the idea that binary interactions are
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generally unlikely to play a significant role in the evolution of stellar rotation rates in

this cluster.

We therefore treat each star as either single or as an unresolved binary, with b denoting

the hyperparameter for the binary fraction.

For the present analysis, we adopt a uniform prior on the binary fraction b and

the simple uniform prior r ∼ U(0, 1) for the binary mass ratio, although there is some

evidence of relative dearth in the middle of r’s range. Specifically, Raghavan et al. (2010)

say that the mass ratio distribution is approximately uniform for Solar type stars, with

a bit of an excess towards equal masses. Other recent papers suggest that the binary

mass ratio prefers lower-mass companions, with a bit of an excess towards equal mass

companions (Moe & Di Stefano, 2013; Chulkov, 2021).

We assume that the cluster stars have a lognormal distribution in age, with logarith-

mic mean age µt and logarithmic standard deviation σt. A coeval cluster would have

σt = 0, while a cluster with an age dispersion, as has been suggested for LMC clusters

(e.g., Goudfrooij et al., 2011a), would have a significantly nonzero σt. We adopt uniform

priors on the hyperparameters µt and σt. This favors younger ages, but given the few

percent precision of the age that we derive for NGC 1846, it has a negligible effect on

our results.

We adopt the Salpeter IMF, π(Mi) = M−2.35
i , as the prior on the initial mass of the

primaries, as well as a prior on inclination that corresponds to an isotropic distribution,

π(i) = sin i.
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Finally, we introduce q, the fraction of stars in the CMD that are described by our

cluster model. We assume that the rest of the stars, a fraction 1− q, come from a popu-

lation of stars that we haven’t modeled. This population could contain stars that are not

in the cluster or stars that are in the cluster but aren’t described by our stellar model—

they exist in regions of the CMD that should be empty. For this background population,

we utilize a probability distribution that is uniform over observable space. Our overall

cluster model, then, is parametrized by the hyperparameters ϕ ≡ {w0, w2, µt, σt, b, q}.

4.3.2 Probability Density for a Given Population

We next aim to calculate the probability density of a star at each point x in observable

space. This is the convolution of the probability density of stars given by the stellar model

with that particular star’s error kernel. The probability density without observational

error would be the same for all stars, but non-uniform uncertainties in color, magnitude,

and v break this symmetry.

We define the error kernel with width σxp for a set of observable deviations ∆x as

G(∆x;σxp) ≡ G(∆m;σmp)G(∆c;σcp)G(∆v;σvp), (4.17)

where G(∆y;σ) is the Gaussian distribution in ∆y with mean 0 and standard deviation

σ, p is the data point index, and the other subscript on the components of σxp ≡

(σmp, σcp, σvp) specifies observable type. This subscript is either m for magnitude, c

for color, or v for ve sin i. Thus, the probability of a data point with observables xp ≡
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(mp, cp, vp), given stellar parameters θ, can be written asG(xp−x(θ);σxp). Here, x(θ) ≡

(m(θ), c(θ), v(θ)), and m(θ), for example, is the magnitude of a star with parameters θ

according to the stellar model.

For each combination of rotational population j, multiplicity k, data point p, and age

distribution parameters µt and σt, we wish to compute ρjkp(xp;µt, σt), the theoretical

probability density evaluated at xp, where

ρjkp(x;µt, σt) =
1

Z

∫
dθ πjk(θ;µt, σt) G(x− x(θ);σxp), (4.18)

dθ′ = dMi dr dωi di, dθ = dθ′ dt, (4.19)

πjk (θ
′) = πj (ωi) πk (r) π(Mi)π(i), (4.20)

πjk(θ;µt, σt) = π̄ (t;µt, σt) πjk (θ
′) , (4.21)

the Gaussian G(·) and the priors π(·) on the different components of θ are given in

Section 4.3.1, and k = 0 and 1 correspond to unary and binary populations, respectively.

The integral is over all θ, though it is finite for a given set of observables x, since π(θ) is

finite and the error kernel at x is non-zero on a finite volume of θ-space. Furthermore, the

normalization constant Z is chosen so that probability density ρjkp(x;µt, σt) integrates
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to one on our region of interest in x. Equation (4.18) represents a five-dimensional

integral for each star. In the following sections, we describe our approach for evaluating

this integral to an acceptable accuracy using as computationally efficient a method as

possible.

4.3.3 Stellar Model Grid Refinement

The original MIST model grid in Section 4.2.1 is too coarse in mass, age, and rotation

rate to accurately integrate in Equation (4.18). Figure 4.4 shows the MIST models at a

particular age and composition. These models should produce a continuous probability

density in mass/color/ve sin i space, but the discrete nature of the grid remains obvious.

In Appendix B, we motivate and describe our interpolation within the MISTmodels, which

generates a grid that is sufficiently fine to produce continuous probability densities. Our

approach balances the need to remove discretization artifacts with the need to keep the

entire procedure computationally feasible.

The above-mentioned grid refinement procedure requires interpolating within the

MIST model grid. We perform these interpolations—in mass, rotation, and age—by

first converting mass to EEP as described in Section 4.2.1, then treating EEP, age, and

rotation as the independent stellar parameters. This allows us to infer mass, equatorial

radius, luminosity, and rotation from the MIST grid, and to use these to interpolate within

the PARS grid via the equations of Section 4.2.3. We numerically integrate according to

Equation (4.18) on the resulting model grid. Figures 4.5 and 4.6 show that the result-
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ing probability densities are free from artifacts of model discretization. In the following

section, we describe our integration approach in detail.

4.3.4 Integration Procedure

In Sections 4.3.2 and 4.3.3, we state the integral that we wish to compute in model space,

in order to obtain probability densities in observable space. We also outline the produc-

tion of model grids that allow for accurate integration with minimum computational cost.

In this section, we detail our integration procedure, which utilizes a number of additional

techniques that ensure accuracy and speed.

Minimum-Error Densities

Equation (4.18) integrates over the 5-dimensional stellar parameter vector θ to produce

theoretical probability densities in observable space. Performing this integral successively

on a grid of 3 rotational populations, 2 multiplicities, 2353 data points and a number

of age prior parameter combinations is computationally prohibitive. To render the cal-

culation tractable, we assume Gaussian errors and take advantage of the commutativity

and associativity of the convolution. We first compute synthetic probability densities

of observables (color, magnitude, projected rotational velocity) by integrating Equation

(4.18) over five stellar parameters assuming a single set of uncertainties that we term the

minimum errors. We may then obtain the integrals for a star with larger uncertainties

from these integrals by a convolution in three observable dimensions. By decreasing the

dimensionality from five to three, and because a Gaussian falls so quickly to zero, this
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Figure 4.4 PARS observables of the original MIST models at log t = 9.1544 and two inclinations.
At a given ωMi, decreasing m generally corresponds to increasing Mi. Marker size is approxi-
mately equal to σm. Spaces between models in the m dimension are frequently larger than σm.
The same can be said for the c and v dimensions, though the effect is most pronounced for m.
Thus, these discrete models predict no stars in much of the empty space between the markers.
This is in contrast with the underlying theory, which is continuous in Mi and ωMi, and thus
does predict stars everywhere between the markers.
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approach speeds the computation by orders of magnitude without sacrificing accuracy.

Our formal approach begins by writing the convolution of two Gaussians with param-

eters {µ1, σ1} and {µ2, σ2} as another Gaussian with parameters {µ1 + µ2,
√

σ2
1 + σ2

2}.

We compute Equation (4.18) for a fixed set of minimum observational uncertainties,

which we take to be 0.01mag in magnitude, 0.014mag in color, and 10 km s−1 in pro-

jected rotational velocity. We represent these minimum uncertainties by σx. We then

introduce

ρ(x; t) ≡ ρjk(x; t) =

∫
dθ′ πjk(θ

′)G (x− x[θ′; t];σx) , (4.22)

which is the minimum-error version of the probability density in Equation (B.4). Figure

4.5 shows these densities for a single age and composition, for the three different rota-

tional populations and for both single and binary stars. In the following, we describe our

approach to compute these probability densities. We again suppress some of the argu-

ments and subscripts in order to describe the computation of the integral in Equation

(4.22).

We begin by constructing a fine grid in observable space x to store the probability

density given by Equation (4.18). We ensure that this grid extends well outside the

ROI on the CMD and well outside the rectangular volume circumscribed by the data

points. This allows us to convolve the probability density with error kernels for each star

without introducing artifacts from the finite extent of the ROI. Our grid of x is regular

and relatively fine, with spacing between neighboring x values ≈ σx/3, where σx is the
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vector of minimum error standard deviations.

We then weight π(θ′), the prior on initial stellar parameters θ′, according to the

composite multi-dimensional trapezoidal rule with variable steps. For example, let us say

that we have obtained discrete values of the prior πh at inclinations ih with h ∈ [1, H],

i0 = 0, and iH = π/2, where π without subscripts indicates the mathematical constant.

We designate the differences between neighboring values of inclination by ∆ih = ih+1−ih,

with h ∈ [1, H − 1]. Then, the weighted priors are 1
2
(∆i1) π1,

1
2
(∆i1 +∆i2) π2, . . .

1
2
(∆iH−1 +∆iH−2) πH−1,

1
2
(∆iH−1) πH . We extend this weighting to all parameters in

θ′ and place the resulting weighted prior on the x-grid according to x (θ′). Calculation

of x (θ′) is detailed in Section 4.2.

The density computation described above is not convolved with the error kernel, and

shows artifacts of discretization. Convolving with the minimum error kernel completes

the calculation of Equation (4.22) and removes these discretization artifacts.

We first perform this task only in the m dimension, i.e., magnitude, simultaneously

down-sampling to a coarser grid, with spacing between neighboring m values equal to

σm. Repeating the procedure in the c and v dimensions, i.e., color and ve sin i, takes

successively less time, since in each case all previous dimensions have been down-sampled.

Afterwards, we normalize each resulting probability density ρjk(x; t) as a function of x

on the ROI. We marginalize the density in v to obtain the two-dimensional version

ρjk(m, c; t) and in c to obtain ρjk(m, v; t), then re-normalize both. Figures 4.5 and 4.6

show the respective marginalized probability densities at log t = 9.1594. Figure 4.6 is an
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example of a ve sin i-magnitude diagram (VMD), by analogy with the CMD.

The above procedure, which starts by placing the prior onto x-space, is faster than

the direct integration in initial model parameter θ′-space implied by Equation (4.22).

The computational cost would be similar if we evaluated the likelihood for only one star,

with a single location in x-space. However, Equation (4.22) represents a five-dimensional

integral for every point in the three-dimensional x-space. Having performed this integral

once, we need only integrate the product of the result and a three-dimensional error

kernel for each star. Furthermore, a Gaussian has appreciable support over a limited

range of x, which also reduces the evaluation cost.

Our ensuing main integration procedure multiplies minimum-error densities ρjk(x; t)

by the residual error kernel, integrates, then multiplies by the log-normal age prior.On

the other hand, for diagnostic purposes, we can immediately multiply the minimum-error

densities by the age prior π̄(t;µt, σt), then integrate the result. This procedure yields

ρjk(x;µt, σt), the minimum-error probability density that incorporates the age prior:

ρjk(x;µt, σt) =

∫
dt π̄(t;µt, σt) ρjk(x; t). (4.23)

Figure 4.7 shows densities ρjk(x;µt, σt) for one combination of age mean µt and age

dispersion σt, marginalized over v. This figure shows no artifacts of discretization in

age, which supports the idea that the spacing requirement on the age grid in Appendix

B.2 has been met. The densities also do not show any age discretization artifacts when

marginalized in color c.
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Figure 4.5 Theoretical probability densities at minimum error (σm = 0.01, σc = 0.014) and a
specific age, marginalized over projected rotational speed v. These densities are introduced in
Section 4.3.4 as ρjk(m, c; t). Grey lines delimit the region of interest (ROI). Black dots denote
our subset of the data from K20. Probability densities for single stars (unaries) are shown on
the left and densities for unresolved, non-interacting binaries on the right, for three rotational
populations: slow rotators (top), intermediate rotators (middle) and nearly critical rotators
(bottom).
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Figure 4.6 Same as Figure 4.5, except the probability densities are marginalized in color
c. These densities are introduced in Section 4.3.4 as ρjk(m, v; t).
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Figure 4.7 Same as Figure 4.5, except the probability densities incorporate a rela-
tively narrow lognormal age prior. These densities are ρjk(x;µt, σt) in Equation (4.23),
marginalized in v.
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De-Normalization Correction

The previous section described the computation of probability densities ρjk(x; t) for the

minimum observational uncertainties. We multiply these by the residual error kernel

with standard deviation σ′
xp, associated with each data point p, and integrate to obtain

a probability density for each star’s observed properties. This probability density is

evaluated at the star’s observables xp. The integral that calculates ρjkp(x; t) for any

observable vector x and finite error standard deviation on ve sin i, σvp, is

ρjkp(x; t) =

∫
dx′ Ḡ

(
x− x′;σ′

xp

)
ρjk(x

′; t). (4.24)

Here, σ′
xp is the vector of residual standard deviations for data point p and Ḡ(·) is the

normalized Gaussian error kernel. Unlike ρjk(x
′; t), we only need ρjkp(x; t) at a single

value of x, namely xp.

Convolving the minimum error probability density with a normalized error kernel

preserves its normalization. However, it does not necessarily preserve its normalization

over a restricted subset of the domain, e.g., our ROI. In order to treat the result of

Equation (4.24) as a probability density, we must therefore ensure it remains normalized

over the ROI. This section describes the procedure we follow in order to make sure that

this requirement is met. We term this procedure denormalization correction.

Applying an additional error kernel can denormalize the probability density in mag-

nitude m and color c, the dimensions where the ROI is finite. If the probability density
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has a nonzero gradient across the boundary of the ROI, a convolution will move different

amounts of probability from inside to outside the ROI as vice versa.

In particular, at m just inside the ROI, there is a contribution to ρjkp(m; t) due to

ρjk(m
′; t) at m′ outside the ROI. In other words, some amount of probability leaks into

the ROI. Similarly, at m just outside the ROI, some amount of probability leaks out. In

general, the amount that leaks in is not equal to the amount that leaks out, so that some

net leakage occurs. This is a form of selection bias, where the selection is applied to the

observed, rather than the intrinsic, properties of each star.

Accordingly, before performing the calculation of probability densities in Equation

(4.24) at x = xp for each data point, we compute the net leakage of probability into or

out of the ROI in the course of such calculation as a function of σ′
xp. We perform this

calculation separately for the integration inm and in c. For example, for integration inm,

rotational population j, and multiplicity population k, we compute the de-normalization

correction δmjk for a given age t, as a function of residual standard error σ′
m:

δmjk(σ
′
m; t) =

∫

ROI

dx

∫
dm′ Ḡ (m−m′;σ′

m)× ρjk(m
′, c, v; t)− 1, (4.25)

Once we obtain δmjk(σ
′
m; t) on a discrete grid of σ′

m, we approximate the corresponding

continuous function via cubic interpolation, extrapolating when σ′
mp is outside the grid.

We obtain this function for c in addition to m in a similar fashion. The result, for both

observables and a particular combination of t, j and k, is shown in Figure 4.8. The

discrete grids of σ′
m and σ′

c are identical for all combinations of these parameters; for the
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combinations where the maximum absolute value of de-normalization drops below 10−5

on the grids, we set the function equal to zero.

Rotational Measurement Status

All of our stars have measured colors and magnitudes. Some have positive measured

values for ve sin i, while others either have no measurement due to inadequate signal-to-

noise, or have upper limits on their ve sin i, with a reported ve sin i = 0. Each of these

cases must be treated differently.

When a data point p includes a positive ve sin i measurement, i.e., when vp > 0, the

probability density associated with the point is 3-dimensional, given by Equation (4.24).

Recall that we evaluate the integral in this equation, and thus the resulting density, only

at the data point’s observable vector, x = xp.

Even though a star cannot have ve sin i ≡ v < 0, density ρjkp(x; t) can be non-zero

at negative v as a result of measurement error. This does not affect the densities for

data points with vp > 0, since these points never result from v < 0 instrument readings.

However, a vp = 0 measurement corresponds to v ≤ 0 instrument readings. Thus, the

2-dimensional probability density at age t for such a measurement, ρv0jkp(m, c; t), results

from integration over v ≤ 0:

ρv0jkp(m, c; t) =

∫ 0

−∞
dv ρjkp(x; t), (4.26)

which we evaluate before applying the de-normalization correction, and only at the data
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Figure 4.8 De-normalization, i.e., the net probability that leaks into the region of interest upon
the convolution of a minimum-error probability distribution with a residual error kernel, versus
the kernel’s standard deviation σ′. Negative values correspond to net leakage out of the region.
The left panel is due to convolution in the magnitude dimension, right panel – in the color
dimension. Black open circles indicate the σ′ grid where we calculate the de-normalization
precisely, with grid range similar to that of the σ′ values among the data points. Green lines
indicate the cubic interpolant of the function, which we use to approximate the de-normalization
between the grid points. The specific combination of age, rotational population, and multiplicity
population are the same as in the lower right panel of Figure 4.5. De-normalization due to
integration in magnitude remains on the order of 0.1%. On the other hand, that due to color
can be on the order of several percent, indicating that the corresponding correction is necessary.
These orders of magnitude for the de-normalization correction are typical for the two observables
among the probability distributions.
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point’s observables m = mp and c = cp.

About half the stars in the ROI have no measurements of v. For these stars, the ap-

propriate probability density is integrated over v and becomes a two-dimensional density

ρjkp(m, c; t) in m and c, evaluated at m = mp and c = cp.

Consequently, theoretical probability takes the form of the 3-dimensional density

function ρjkp(x; t) only for 0 < v < v1. Here, v1 = 280 km s−1 is an upper limit on ve sin i,

which is larger than any of the ve sin i measurements. The theoretical probability density

is 2-dimensional at v = 0 and at v = v1. In particular, the density at v = 0 is ρv0jkp(m, c; t)

and we do not need to calculate the density at v = v1. The sum of the integral of the

3-dimensional density and the integrals of the 2-dimensional densities over the functions’

respective domains equals 1.

The discussion of de-normalization in Section 4.3.4 applies to the 2-dimensional

probability densities ρv0jkp(m, c; t) and ρjkp(m, c; t) the same way it applies to the 3-

dimensional density ρjkp(x; t). Accordingly, for example, ρjkp(m, c; t) is multiplied by

the de-normalization correction factor,

Cjk(σ
′
mp, σ

′
cp; t) =

1

1 + δmjk(σ
′
mp; t)

× 1

1 + δcjk(σ
′
cp; t)

, (4.27)

where functions of the form δmjk(σ
′
mp; t) are defined in Equation (4.25).

In the limit of a narrow residual error kernel, the kernel acts as a Dirac delta function.

Multiplying with this error kernel and integrating simply picks out a value within the

minimum error probability density. We therefore linearly interpolate within the minimum
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error density for the dimension(s) in which the residual error σ′ is smaller than 1
2
the

minimum error σ. Otherwise, we integrate the product of the minimum uncertainty

density and the error kernel using a Riemann sum.

Once we have evaluated the probability densities ρjkp(x; t), ρ
v0
jkp(m, c; t), and ρjkp(m, c; t)

at x = xp, we can compute the counterparts of these densities that take the age prior into

account: ρjkp(x;µt, σt), ρ
v0
jkp(m, c;µt, σt), and ρjkp(m, c;µt, σt), which are similar to the

minimum-error density ρjk(x;µt, σt) in Equation (4.23). For example, we can evaluate

the following at x = xp:

ρjkp(x;µt, σt) =

∫
dt π̄(t;µt, σt) ρjkp(x; t), (4.28)

where π̄(t;µt, σt) is the normalized age prior.

4.3.5 Background Densities

We do not expect our cluster model to describe all the stars in the ROI. Some stars

will be interlopers physically unassociated with the cluster. Others will be poorly fit by

the cluster model, whether because of neglected binary interactions, imperfect treatment

of relevant physics in the stellar model, or something else. We include a background

population to account for all of these stars.

We model the distribution of these data points in the space of observable vectors x,
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instead of model space:

π(x) = H(v), (4.29)

where v ≡ ve sin i and H(v) is the Heaviside step function, with H(0) = 1. In other

words, we take these background data points to be uniformly distributed over color,

magnitude, and v, subject to the constraint that v ≥ 0. The densities, after convolving

with an error kernel, remain uniform in c and m, but are not uniform in v because of the

physical constraint that v ≥ 0. The background density becomes

ρbp(x) =

∫
dx′ π(x)G(x− x′;σxp) =

1

Vx

× 1

2

(
1 + erf

[
v

σvp

√
2

])
, (4.30)

where erf is the error function, G(·) is the appropriate Gaussian error kernel, σvp is the

error in v for point p, and Vx is a normalization constant. The density ρbp(x) in Equation

(4.30) plays the same role for the background population as density ρjkp(x;µt, σt) in

Equations (4.18) and (4.28) for the modeled population. A key difference is in the

treatment of the upper boundary at v = v1. In the case of the modeled population, we

had allowed for the possibility of data points with v measurement vp > v1 = 280 km s−1,

even if no such points were realized in our data set. For the background population, we

assume that all data points with vp > v1 are ignored, so that no integrated probability

value accumulates at this boundary, and we set Vx so that ρbp(x) integrates to 1 on the

ROI that is restricted to v ≤ v1. With v1 taken to be much greater than σvp for all p, we
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obtain Vx = (m1 −m0)(c1 − c0)v1.

On the other hand, we treat the v = 0 boundary for the background population

density the same way we treat it in the case of modeled population densities. Thus,

similarly to the manner of Section 4.3.4, we calculate the respective uniform background

probability densities relevant for the data points with vp = 0 and σvp =∞ as

ρv0bp(m, c) =

∫ 0

−∞
ρbp(x) =

1

Vx

σvp√
2π

(4.31)

and

ρbp(m, c) =

∫ v1

−∞
ρbp(x) =

1

(m1 −m0)(c1 − c0)
. (4.32)

4.4 Statistical Model

In this section, we describe our statistical model, which combines theoretical probability

densities for different rotational and multiplicity populations to infer the population

parameters of the MSTO in NGC 1846 from the measurements of the turnoff’s individual

stars.

4.4.1 Combined Probability Densities

The cluster model in Section 4.3.1 allows for 6 combinations of rotational population

and multiplicity in the case when a data point is due to the stellar model, as well as the
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possibility that the datum is not due to the stellar model, but rather the background

population. We now combine the probability densities for these 7 populations from Sec-

tion 4.3 to obtain normalized densities for a given set of cluster parameters. For example,

when a data point p has rotational measurement vp > 0, the combined probability density

ρp(x;ϕ) is

ρp(x;ϕ) = q(1− b)
∑

i

wi ρi0p(x;µt, σt) + qb
∑

i

wi ρi1p(x;µt, σt) + (1− q)ρbp(x),

(4.33)

where the cluster parameters ϕ are composed of fit quality q (the fraction of stars de-

scribed by the model), binary fraction b, rotational population proportions (w0, w1, w2),

and parameters of the age prior (µt, σt). These parameters obey q ∈ (0, 1), b ∈ (0, 1),

wi ∈ (0, 1)∀ i, and w0 + w1 + w2 = 1. Additionally, the second subscript k in ρikp(·) is

zero for the unaries and one for the binaries, x ≡ (m, c, v) is the observables vector, and

ρbp(x) is the background density for point p. We similarly obtain densities ρv0p (m, c;ϕ)

and ρp(m, c;ϕ), relevant for the other two cases of rotational measurement status. Much

like in Section 4.3, each probability density is only evaluated at the corresponding data

point’s observables, x = xp. Additionally, we define a partial vector of cluster parameters

ϕ′ = {µt, σt, w0, w2} and, for every point p with vp > 0, likelihood factor

ϱp ≡ ϱp(ϕ) ≡
ρp(xp;ϕ)

ρbp(xp)
. (4.34)
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Quantity ϱp is similarly defined when each relevant probability density has 2 dimensions

instead of 3.

Next, we describe the statistical model that allows us to combine ρp(x;ϕ) and its

lower-dimensional counterparts to obtain probabilities of all data under different cluster

parameter combinations.

4.4.2 The Likelihood of a Cluster Model

Our model of data generation assumes stars to arise as from a Poisson process. It

is closely related to an existing method for fitting data to stellar model distributions in

color-magnitude space (Naylor & Jeffries, 2006), which was recently adapted to the space

with dimensions of mass and rotational period (B21).

Given cluster parameters ϕ, we assume that the np data points with positive rota-

tional measurement vp > 0 result from an np-sized subset of Np ≫ np Poisson processes,

each non-homogeneous in x-space and limited to the ROI. In other words, we assume

a very large number of draws from underlying stellar probability distributions, a small

fraction of which result in stars that appear in our data set. When we consider all the

Poisson processes, we index them by h ∈ {1, . . . , Np}. When we consider only the subset

that produces data points, we use the same index we use for the points, p ∈ {1, . . . , np}.

Let us say we have partitioned x-space into a large number of bins, with widths ∆m, ∆c

and ∆v in each of the observable dimensions. In this case, the expected number of stars
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(≪ 1) resulting from process h at location x is

λh(x) = ϵ ρh(x)∆x, (4.35)

where ϵ≪ 1, so that a given process does not produce more than one data point, ρh(x)

is a probability distribution normalized on the ROI and given by Equation (4.33), and

we have suppressed ϕ in this distribution’s definition. In this case, ∆x ≡ ∆m∆c∆v.

If kh(x) is the number of data points produced by process h in a bin centered on x,

the probability of all data is

∏

h

∏

x

λh(x)
kh(x)e−λh(x)

kh(x)!
, (4.36)

where ! represents the factorial. The different Poisson processes indexed by h are distin-

guished by differing uncertainties on the measured color, magnitude, and ve sin i. In this

case, since each Poisson process produces at most one star, the denominator is unity.

If all data points had the same uncertainties, then each distribution h would be

identical. In this case, the total number of stars in the bin would be a Poisson random

number with expectation value

λ(x) =
∑

h

λh(x) (4.37)
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and an actually detected number of stars

k(x) =
∑

h

kh(x). (4.38)

The probability of observing the data would then be

∏

x

λ(x)k(x)e−λ(x)

k(x)!
. (4.39)

This differs from Equation (4.36), but if all Poisson processes h are identical, it differs

only by a constant independent of the model that gives λ. Specifically, the denominator

in the two equations depends only on the number of stars actually observed in a given

bin, and their exponential term is identical given Equation (4.37). The term λ(x)k(x)

will differ by a constant, equal to N
k(x)
p , from its corresponding term in Equation (4.36).

In sum, Equation (4.36) is more general than Equation (4.39) but the former equation

reduces to the latter (up to a constant) if the uncertainties on all stellar measurements

are identical.

Equation (4.36) gives the probability of detecting a given number of stars in discrete

bins of color-magnitude-v sin i space. In color and magnitude alone, these bins form a

Hess diagram (Bastian & Silva-Villa, 2013; Rubele et al., 2013), where an integer number

of stars are present in each bin. Hess diagram approaches based on Equation (4.39) have

often been used to infer cluster properties. However, they cannot account for differences

in uncertainties between different stars and they cannot naturally account for v sin i as the
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third dimension. Our approach is different: we take the limit where ∆m → 0, ∆c → 0,

and ∆v → 0. In this limit, with k(x) either 0 or 1, the probability of all data in Equation

(4.36) becomes

∏

h


∏

x

e−λh(x)
∏

x: kh(x)=1

λh(x)


 . (4.40)

In this limit, the probability distributions are continuous rather than discrete and v sin i

information can be naturally incorporated. It does, however, require us to use the con-

tinuous probability distributions that we have computed in Section 4.3.4.

Equation (4.40) contains two components within the parentheses. The first term is

nontrivial for all Poisson processes indexed by h. The second term, however, is unity

unless Poisson process h actually results in a detected star, i.e., unless kh(x) = 1 for

some x (otherwise λh is always raised to the zero power). Consequently, for the second

term in Equation (4.40), we switch to indexing by p to indicate the processes that produce

data points. Expression (4.40) becomes

(∏

h

∏

x

e−λh(x)

) (∏

p

λp (xp)

)
, (4.41)

where the right product is only over the Poisson processes that produce data points, since

the product factor for other processes is equal to 1. Additionally, for now, this product

is restricted to the data points with vp > 0. With the help of Equation (4.35), the left
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product in Expression (4.41) can be written as

∏

h

exp

(
−ϵ
∑

x

ρh(x)∆x

)
=
∏

h

exp

(
−ϵ
∫

ROI

ρh(x) dx

)
= e−ϵNp , (4.42)

where we have applied the limit that turns ∆x into dx and the sum into an integral. We

also used the fact that ρh(x) is normalized on the ROI.

Application of Equation (4.35) allows us to write the right product in Expression

(4.41) as

∏

p

ϵ ρp (xp) ∆x = ϵnp (∆x)np
∏

p

ρp (xp) . (4.43)

Multiplying Expressions (4.42) and (4.43) together, we see that the probability of the

data points with vp > 0, given by Expression (4.41), is

e−ϵNpϵnp (∆x)np

np∏

p

ρp (xp) . (4.44)

We repeat the above procedure in this section for the data points with each of the remain-

ing possibilities of the rotational measurement status, in each case substituting ρp (xp)

with the appropriate 2-dimensional distribution and ∆x with ∆m∆c. The probability

of all data points with vp = 0 turns out to be

e−ϵN0ϵn0 (∆m∆c)n0

n0∏

p

ρp (mp, cp) , (4.45)
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and similarly for the data points with σv =∞ (i.e., those without measured v sin i). Now,

we denote ρp (xp), ρp (mp, cp) and ρv0p (mp, cp) collectively as ρp. Multiplying together

Expressions (4.44), (4.45) and the remaining, similar expression, we obtain the probability

of all the data:

e−ϵNϵn (∆v)np (∆m∆c)n
n∏

p

ρp, (4.46)

where N is the total number of Poisson processes. We are free to define the likelihood

of cluster parameters ϕ as Equation (4.46) times any factor that doesn’t depend on ϕ.

We first retain only the right-most product over the data points indexed by p in this

expression, since all other factors are independent of ϕ. We then divide this product by

the product of the appropriate 2- and 3-dimensional background densities at data point

observables, which is also independent of ϕ. This yields the following likelihood function:

L(ϕ) =
n∏

p

ϱp, (4.47)

where ϱp are the data point likelihood factors, defined in Equation (4.34). Appendix C.1

describes the procedure that leads to ϕ̂, the cluster parameters that maximize L(ϕ) in

Equation (4.47). We split the data set into subsets that correspond to the three statuses

of rotational measurement and calculate the relative differences in ln ρp at ϕ̂ within each

subset. These differences are presented in Figure 4.9. The exponent of the sum of these

over all stars gives the likelihood of the set of cluster parameters ϕ̂ that maximizes the
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likelihood function.

4.4.3 Posterior Cluster Parameters

Equation (4.47) gives the likelihood of a set of cluster parameters. Our final step is

to normalize the likelihood to obtain a posterior probability distribution of these cluster

parameters. We do not use MCMC, but rather directly integrate the likelihood multiplied

by our adopted priors on cluster parameters ϕ. We assume log-uniform priors on µt and

σt and uniform priors on all other components of ϕ. This way, likelihood as a function

of ϕ can already be seen as the un-normalized posterior. We then define

L(ϕ′) =

∫
dq dbL(ϕ). (4.48)

Details of the integration procedure that we use to evaluate Equation (4.48) can be found

towards the end of Appendix C.1.

If we normalize L, we can interpret it as a Bayesian probability density, P (ϕ) =

L(ϕ)Z−1
L , where

ZL =

∫
dϕL(ϕ) (4.49)

is an integral over some formal region of normalization.

We wish to obtain P (ϕ′) ∝ L(ϕ′) after evaluating the likelihood over a subset of the
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Figure 4.9 Color scheme shows the relative likelihood factors ∆ ln ϱp for individual points
(defined due to Section 4.4.2) in our portion of the data from K20, at the maximum-
likelihood cluster parameters ϕ̂. Comparison of two factors is only meaningful when their
rotational measurement status is the same. Thus, the top left panel compares the 1042
points without ve sin i measurements, the top right panel – the 74 points with ve sin i = 0,
and the bottom two panels – the 1237 points with ve sin i > 0. Likelihood factor difference
of ∆ ln ϱp = 2, such as between a yellow point and a green point, indicates a 7.4-fold
difference in probability density between the locations of the two points in observable
space, since e2 ≈ 7.4. Cluster model parameters AV , [M/H]M, and σω are the same as in
Figure 4.7.
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normalization region. We can also marginalize P (ϕ′) in w0 and w2:

P (µt, σt) =

∫
dw0 dw2 P (ϕ′) ∝

∫
dw0 dw2 L(ϕ′), (4.50)

which would provide us with a confidence region for the age distribution parameters.

Similarly, we can get a confidence region for the rotational population proportions by

calculating P (w0, w2). Appendix C.2 describes the integration procedures that produce

P (µt, σt) and P (w0, w2) in the fashion suggested by Equation (4.50).

Our final step is to assess the goodness of fit: whether the maximum likelihood cluster

parameters, together with the stellar model, provide a good description of the cluster.

We assess goodness of fit by the maximum likelihood value of parameter q, the fraction of

stars that are described by the cluster model, given the maximum likelihood values of all

the cluster parameters. The remainder of the stars, a fraction 1− q, must be accounted

for in a background population. Our sample of stars near the main sequence turnoff

is overwhelmingly dominated by real cluster members. A formally good model, then,

should have q very close to one (≳0.95). Lower values of q indicate that many cluster

stars cannot be well-fit by the stellar model, and that the rest of the cluster parameters

should be interpreted cautiously.
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4.5 Results

In this section, we present the maximum-likelihood (ML) cluster parameter estimates

that result from the evaluation of likelihoods that we defined in Section 4.4.2. We also

offer bounds on these estimates, which are based on the integration of the likelihoods,

as described in Appendix C.1 and the integration of Bayesian probabilities in Appendix

C.2. We caution that, due to the intermediate quality of the fit between the evolutionary

model and the data, our cluster parameter estimates are only somewhat reliable. In this

section and, especially, in Sections 4.6 and 4.7, we discuss the degree of reliability and

the ways in which one might calibrate the stellar evolutionary model to better fit cluster

data and consequently produce cluster parameter estimates that are more trustworthy.

Our ML estimate of the probability that an observed star is due to the evolutionary

model is q̂ = 0.78. In other words, 22% of the stars are better explained by a uniform

background distribution. The actual fraction of contaminants is expected to be much

lower (≈ 190/3189 = 6%, based on Sections 3.4 and 3.5 of K20). Even though our q̂

indicates that the stellar model can account for the observed photometry and ve sin i

measurements of most stars in the ROI, the remainder of the stars constitute a signficant

minority. The ∼80% of stars that are accounted for by the stellar model contribute to the

inference of cluster parameters w0, w2, µt, σt, and b in this work. An evolutionary model

with a higher q̂ would fit the data better, thus producing cluster parameter estimates

that would be more reliable. Since 1 − q̂ = 0.22 is appreciable, such new estimates

could be very different from this work’s. The parameter q̂ can serve as a measure of the
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goodness-of-fit of the stellar model.

Roughly speaking, the non-zero value of 1− q̂ results from 22% of the data points with

the lowest likelihood factor offset ∆ ln ϱp within each subset of the rotational measurement

status in Figure 4.9. These are the stars that are most inconsistent with our cluster model.

The bottom panels of this figure present relative likelihood factors ∆ ln ϱp for individual

stars with ve sin i > 0 at ML cluster parameters. Of these stars, 316/1237 = 26% have

∆ ln ϱp ≤ −4 . We define these as the ve sin i > 0 data points that poorly match the

evolutionary model. Near the middle of the turnoff, at a magnitude m ≈ 20.7, nearly all

stars are satisfactorily accounted for by the model. At brighter magnitudes, the model

predicts a smaller proportion of stars (see Figure 4.7). At fainter magnitudes, it predicts

the stars to exist only in a narrow color spread around c = 0.75 and at very low rotational

speeds (see Figure 4.6). As we discuss later, in Section 4.6, it is likely that reduction in

the evolutionary model’s magnetic braking may significantly improve the model’s match

to the dimmer points.

As furthermore discussed in Section 4.6, our ML estimate of the binary fraction,

b̂ = 0.58, is almost certainly higher than the parameter’s real value; a reduction in

magnetic braking is likely to reduce our estimate significantly. Thus, we do not compute

the formal confidence region for b, although Section C.1 shows that, generally, ∼ 99.9%

of the integrated likelihood lies between b0 = 0.40 and b1 = 0.76. We similarly treat

the confidence region for q, with the following limits from Section C.1: q0 = 0.70 and

q1 = 0.84.
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In Section 4.3.1, we state our rotational population model, with slow rotators dis-

tributed according to a wide half-Gaussian peaked at zero rotation, fast rotators – ac-

cording to a narrow half-Gaussian peaked at critical rotation, and intermediate rotators

– according to a narrow Gaussian with a peak at the location where the other two prob-

ability densities are equal. We chose the widths of the three distributions to ensure

that the ML estimates of the corresponding population proportions are all appreciably

greater than zero, i.e., that the data distinguish between three separate populations to

a large degree. The population proportion estimates are between the corresponding 1-

dimensional boundaries of the 2-dimensional 95% confidence region in the right panel of

Figure 4.10: ŵ0 = 0.11 ∈ [0.03, 0.21] and ŵ2 = 0.42 ∈ [0.19, 0.68] for the slow and the

fast rotators, respectively. The width of the confidence region in the w2 dimension is

significantly larger than that in the w0 dimension, indicating that the slow rotator pop-

ulation is more distinct from the fast and intermediate rotators than the latter are from

each other. This interpretation makes sense in view of a qualitative comparison between

the three populations’ theoretical probability densities in Figure 4.5 and suggests that

the true rotational distribution is bimodal instead of trimodal.

The population proportion of the intermediate and fast rotators is ŵ1+ŵ2 = 0.89–the

vast majority of stars. This combined population is somewhat larger than the population

with high ve sin i in K20 with a distribution that peaks around ve sin i = 140 km s−1 and

a population proportion of ∼ 0.55. The correspondence is very rough, considering both

the difference in the estimated proportions between the two studies and the fact that all
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rotational populations in this work have probability distributions that extend over most

of the ve sin i range (e.g., see Figure 4.6). Nonetheless, it is encouraging that our results,

like those of K20, point to a bimodal rotational distribution.

Our ML estimates of the age distribution parameters are within the 95% confidence

region in the left panel of Figure 4.10: µ̂t = 9.1600 ∈ [9.1569, 9.1628] and σ̂t = 0.0225 ∈

[0.0193, 0.0260]. The corresponding non-logarithmic values are 1.445 ∈ [1.435, 1.455]Gyr

and 75 ∈ [64, 87]Myr, where the non-logarithmic equivalent of a logarithmic standard

deviation σt is 10
µ̂t+(σt/2)− 10µ̂t−(σt/2). Parameters µ̂t = 9.160 and σ̂t = 0.023 correspond

to an age distribution with high probability of log t = 9.14, the age adopted in K20.

The left panel of Figure 4.10 shows that the Bayesian probability distribution covariance

between µ̂t and σ̂t is small, which suggests that our age and age dispersion estimates

are not greatly affected by the specific log-normal shape of the prior on stellar age.

Furthermore, since the posteriors on µt and σt are both rather narrow, we conclude that

our estimates of these parameters are not greatly affected by our specific choices of their

relatively uninformative priors.

4.6 Discussion

Both the theory of stellar evolution and the theory of cluster formation have ingredi-

ents that are subject to considerable uncertainty. On the other hand, well-established

ingredients of one of these theories could help reduce uncertainty in the other. We are

specifically interested in a better understanding of the rotational and age distributions
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Figure 4.10 Contours designate 35%, 65% and 95% confidence regions due to marginalized
Bayesian probability densities of cluster model parameters. Left panel: density over
mean stellar age and age standard deviation, marginalized in all other parameters. Right
panel: same, over the rotational population proportions. Intervals for q̂ and b̂ indicate
the ranges of maximum-likelihood values of q and b over all combinations (w0, w2, µt, σt)
in this figure.
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of stars within clusters, as well as the internal transport processes that are linked to the

rotation and evolution of individual stars. Our work offers a robust statistical framework

that connects the theory of rotating star evolution and the theory of cluster formation in

view of spectro-photometric data from many stars in a given cluster. Much of this work

builds on the studies by G19 and BH15.

Our case study is based on the photometry and projected equatorial velocities ve sin i

of main sequence turnoff (MSTO) stars in the intermediate-age globular cluster NGC

1846. We assume the MIST stellar evolution model and allow for rotational and age

distributions in the cluster, constraining them using free parameters. We build a detailed

statistical framework to obtain these constraints as posterior probability densities, but

this entire framework operates under the fundamental assumption that the MIST models

are accurate. Our probability distributions lead to estimates of cluster parameters that

are tightly linked to the particulars of the evolutionary model.

When allowing for the cluster stars to possess a range of rotation rates, we obtain an

age dispersion that is about half the previous estimates due to non-rotating models. This

result agrees with the conjecture that rotational variation is at least partially responsible

for eMSTOs. Still, both the age dispersion and the binary fraction that we obtain are

greater than those suggested by previous, independent studies. Our relatively large age

variations and binary frequencies may be compensating for other sources of physical vari-

ation that are not present (or insufficiently present) in the MIST models. Consideration

of the fit suggests specific rotation-related processes that one may be able to tune in the
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model to simultaneously improve the fit to individual data, produce a lower estimate of

the binary fraction, and further lower the estimated age spread.

In sum, a comparison of theoretical probability distributions to individual star data

and a comparison of inferred cluster parameters to independent estimates lead to sug-

gestions of evolutionary processes that can improve both fits. In the remainder of this

section, we offer a detailed account of this reasoning process and the evolutionary model

tuning that it suggests. In future work we will apply our approach in the other direction:

tuning stellar evolutionary parameters to better match the properties of cluster stars.

4.6.1 Reduced Magnetic Braking Of Low-Mass Stars

A population of single, nonrotating, coeval stars follows a line in color-magnitude space.

Rotational variation, binarity, and age distributions will all broaden the main sequence,

while rotational variations and age distributions can broaden the turnoff in particular.

As an example, consider that the single-age probability distributions in the left panels

in Figure 4.5 are significantly narrower in color than the corresponding age-dispersed

distributions in the left panels of Figure 4.7. Additionally, comparison between the left

and the right panels in Figures 4.5 and 4.7 shows that binarity could be broadening

the MSTO area in its own way, as well. BN15 obtain an age dispersion of 136 Myr

from the eMSTO of NGC 1846 under the assumptions of zero binarity and rotation. In

view of the discourse in Section 1, one wonders whether the inclusion of rotational and

multiplicity degrees of freedom in the evolutionary model might allow for a narrower age

151



distribution. As mentioned in Section 4.5, the inclusion of these degrees of freedom, in

addition to the rotational information inherent in projected equatorial velocities, yields

an age dispersion estimate of 75 ∈ [64, 87]Myr. This estimate is, indeed, significantly

lower than the above-mentioned estimate due to unary, non-rotating models.

A close look at Figures 4.5 and 4.7 reveals that the unary probability distributions

at m ≳ 21.0 are generally narrow in color, even though they include dispersions in the

initial rotation rate. This portion of the CMD contains relatively low-mass MIST models

(1.25M⊙ ≲ Mi ≲ 1.5M⊙) that have spun down magnetically towards zero rotation rate,

so that the corresponding rotational broadening is small. Age dispersion in MIST also

does not widen this part of the distribution to match the observed color spread, although

binarity does. Hence, our high estimate of the binary fraction, b̂ = 0.58. We emphasize

that this estimate is driven by the lower portion of the main sequence turnoff, with

magnitudes above 21.0 that correspond to masses below 1.5M⊙.

According to Figure 4.6, as m increases from 21.0, predicted probability densities

become small beyond a decreasing upper limit in ve sin i, although there are many ob-

served stars beyond that limit, i.e., that remain rapidly rotating at the observed age of

NGC 1846. In other words, the MIST implementation leads to a Kraft break that is higher

on the CMD than it ought to be. We hypothesize that there is room for reduction in

the magnetic braking efficiency of the MIST models in the dim portions of the CMD to

significantly increase the models’ rotational speeds and produce better-fitting probability

densities. Such calibration of magnetic braking theory to an intermediate-age massive
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cluster might both resemble and complement the recent calibrations of magnetic braking

to open clusters by Gossage et al. (2021) and B21. Since the models with reduced braking

would spin faster, the probability densities would also broaden at m ≳ 21.0 on the CMD,

up to significant fractions of the current rotational broadening at m ≲ 21.0. This would,

in turn, reduce the need for a high binary fraction to broaden the dimmer portion of the

MSTO on the CMD.

A lower estimate of the binary fraction would better agree with independent estimates

for NGC 1846 and similar clusters. For example, K20 use the radial velocity (RV)

variation technique to estimate that unresolved binaries constitute ∼6% of the stars

in NGC 1846. Based on the CMD of this cluster’s main sequence, Goudfrooij et al.

(2009) estimate that its binary fraction is ∼ 15%, which is somewhat different than

K20’s estimate but still significantly lower than this work’s value. Additionally, Galactic

clusters that are similar to NGC 1846 appear to have comparatively low binary fractions,

on the order of a few percent (Milone et al., 2012).

The reduction in magnetic braking that we suggest would not rotationally broaden the

part of the CMD at m ≲ 21.0 in Figures 4.5 and 4.7, since the stars with corresponding

masses, Mi ≳ 1.5M⊙, do not brake very much in the first place. The poor agreement at

the bright end of the MSTO must have another explanation; one possibility is

an age dispersion that is similar to this work’s 75 Myr. On the other hand, several

lines of evidence in Section 1.3.2 suggest that the age dispersion in NGC 1846 and similar

clusters is lower than 10 Myr. In particular, BN15 find that the CMD spreads of the

153



cluster’s sub-giant branch (SGB) and red clump (RC) regions are consistent with zero

age spread. Furthermore, Bastian et al. (2013) find that clusters as young as 10 Myr and

otherwise similar to NGC 1846 exhibit no evidence of on-going stellar formation. We

now turn to possible physical explanations of the disagreement at the top of the turnoff

other than a real age dispersion.

4.6.2 Enhanced Effect of Rotation on Internal Mixing

In looking for rotation-related processes other than magnetic braking that one could

tune to further reduce the inferred age spread, we turn to the work of Brandt & Huang

(2015b). Instead of MIST, these authors compare the SYCLIST library (Georgy et al.,

2013) with NGC 1846 MSTO photometry. They find that the eMSTO of NGC 1846

is qualitatively consistent with instantaneous star formation, if rotational variation is

present. A comparison of MIST and SYCLIST models at the MSTO suggests that rotation

increases internal mixing in SYCLIST more than it does in MIST. As a result, rotating

models age more slowly in SYCLIST, so that a distribution of rotation rates in this model

library has a greater propensity to mimic an age distribution (Gossage et al., 2018, 2019;

Brandt & Huang, 2015c). Future work might modify MIST v1.0 with enhanced internal

mixing to test whether these changes to the mixing physics can explain the extent of this

MSTO without any need for an age dispersion. Enhanced rotational mixing, combined

with decreased magnetic braking for stars ≈1.3M⊙, could also modify the lower-end of

the MSTO.
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Future work could also re-construct MIST with a more recent version of MESA, a version

that better incorporates the extreme effects of near-critical rotation (see the introduction

to Section 4 in Paxton et al., 2019). In addition, our statistical approach offers a path

to tune the coefficients that regulate the onset and the degree of mixing due to rotation

in MESA (fc and fµ in Gossage et al., 2018).

4.6.3 Additional Remarks

On the whole, we have suggested several modifications to stellar evolution models, in-

cluding reduction in magnetic braking for stars with Mi ≲ 1.5M⊙ and enhancement of

rotation’s effect on internal chemical mixing. Future work will show how effectively such

modifications can bring evolutionary models to an ideal fit with the data. It is possible,

for example, that an increase in the models’ internal chemical mixing will fail to account

for the poorly matching points with magnitudes brighter than 21. In this case, an anal-

ysis such as ours will continue to largely model these points as part of the background

distribution. As in all other such cases, the interpretation would be that the points are

stars that are not included as a possibility in our stellar evolution model.

The current MIST library has an important limitation that might be affecting our

conclusions: the library only allows for stellar models with initial dimensionless rotation

rates ωi ≤ 0.8590. If rotation rates of a sizeable fraction of stars are above this limit,

inclusion of models with 0.8590 < ωi < 1 would increase rotational broadening of the

MSTO and consequently may reduce the required binary fraction and age spread. We
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can estimate the extent of this putative effect, based on the evidence that near-critical

rotation, i.e., with ω approaching 1, is quite common in clusters (Townsend et al., 2004;

Bastian et al., 2017). The largest ve sin i measurements in our data set, ≳ 200 km/s,

likely correspond to critical or near-critical rotation (e.g., see Section 5.5.1 and Figure

A.1 in K20). Part of the uncertainty in this correspondence is due to the complications

induced by gravity darkening (Townsend et al., 2004). Consequently, we can approximate

the requirement that ωi > 0.8590 with ve sin i > 200 km/s. Since 32 stars in our data set

meet the latter requirement, this is a rough estimate of the number of stars that would

receive a more accurate treatment given models with 0.8590 < ωi < 1. This constitutes

∼24% of the poorly modeled stars at m ≳ 21 and high ve sin i (see the bottom-right

panel of Figure 4.9).

In conclusion of this section, we recall from the beginning of Section 4.5 that better-

fitting evolutionary models would produce cluster parameter estimates that would be

more trustworthy and could be very different from this work’s. In this section, we show

how this can happen for binary fraction b and age dispersion σt. However, the same is

true for cluster age µt and rotational population proportions w0 and w2. Accordingly,

we recommend that the reader treat our numerical estimates of all cluster parameters

with caution, pending the creation of better-fitting evolutionary models. Furthermore,

we expect likelihoods of cluster parameters to drop less steeply away from the ML values

for models that fit better, resulting in parameter confidence regions that are wider than

the ones in Section 4.5.
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4.7 Summary and Future Work

We jointly infer the age dispersion, the rotational distribution, and the binary fraction

of the main sequence turnoff (MSTO) stars in the massive intermediate-age Large Mag-

ellanic Cloud cluster NGC 1846. This inference is based on cluster photometry and

projected equatorial velocity measurements ve sin i, as well as the MIST stellar evolution

model library in combination with the PARS rotating star magnitude calculator. Our age

dispersion estimate is ∼ 70−80Myr, about half the earlier estimates due to non-rotating

evolutionary models. This finding is consistent with the conjecture that rotational vari-

ation is at least partly responsible for the extended MSTO (eMSTO) in NGC 1846 and

similar clusters. At the same time, independent lines of evidence indicate that the true

age dispersion is probably even lower than the value we find. In addition, our binary

fraction estimate is an order of magnitude higher than previous independent estimates

for NGC 1846 and similar clusters.

Our methodology captures the pattern of the fit between the evolutionary model and

the individual cluster stars in intricate detail. This, in combination with a poor quality

of the fit, allows us to posit that a reduction in the magnetic braking of MIST models

with initial masses between ∼ 1.25M⊙ and ∼ 1.5M⊙ would improve our fit to individual

observed stars at magnitudes ≳ 21.0, increase rotational broadening in this portion of

the CMD, and subsequently remove the need for broadening by the implausibly high

inferred binary fraction.

However, due to the fact that reduction in magnetic braking would have little effect

157



at magnitudes ≲ 21.0, this change would not improve the fit via increased rotational

broadening in this brighter portion of the CMD and thus would probably not significantly

alter the age dispersion estimate. On the other hand, our analysis, in combination

with previous work, suggests that a greater enhancement of internal chemical mixing

with rotation may provide the extra rotational broadening that would improve the fit

throughout the CMD and would allow the inferred age dispersion to decrease.

Consequently, a fruitful future direction would be to calibrate magnetic braking and

the effect of rotation on chemical mixing to better fit the individual data points in NGC

1846. If such work were to produce an age dispersion for NGC 1846 that is significantly

lower than this work’s estimate, this decrease would bring the analysis of photometry and

ve sin i in MSTO stars closer to concordance with the evidence of ≲ 10Myr age dispersion

in young clusters that are similar to NGC 1846.

In this work, we have assumed a stellar model and used it to infer cluster parameters.

Future work can apply the same tools but in the other direction, or as a hierarchical

model. By tuning both the cluster parameters and the stellar evolutionary model, our

approach can enable new constraints on the rotation and evolution of intermediate-mass

stars.

Finally, we point out that another worthwhile future direction would be to repeat

this work’s analysis for additional young and intermediate-age massive clusters in the

Magellanic Clouds with photometry and ve sin imeasurements, in order to provide further

constraints on the theory that combines stellar evolution with cluster formation.
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The Python code that produces the analysis in this chapter is available for download,

along with the accompanying pseudo-code and usage instructions (Lipatov & Brandt,

2022).
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Appendix A

Piecewise Integration in PARS

The following algorithm computes piecewise definite integrals of intensity in the azimuthal

direction on the surface of a rotating star (see Section 2.3.2).

Require:
pkj(z̃, ϕ) = 0 for {z̃, ϕ} s.t. µ(z̃, ϕ) /∈ mj ≡ [µj, µj+1]

Ensure:

Pkj(z̃) =

∫ ϕb(z̃)

0

µ(z̃, ϕ) pkj (z̃, ϕ) dϕ

is calculated ∀ {k, j} at a given z̃

1: a← sin i / n(z̃)
2: b← − cos i [f × r̃′(z̃)] / n(z̃)
3: function µ(ϕ) ▷ µ as a function of ϕ
4: return a cosϕ+ b

5: function ϕ(µ) ▷ ϕ as a function of µ
6: return cos−1 [ (µ− b ) / a ]

7: procedure int(ϕa, ϕb,mj) ▷ integrate w.r.t. ϕ on a fixed µ interval
8: require µ(ϕ) ∈ mj ∀ϕ ∈ [ϕa, ϕb]

9: Pkj ← Pkj +
∫ ϕb

ϕa
µ(z̃, ϕ) pkj (z̃, ϕ) dϕ ∀k
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10: global Pkj ← 0 ∀ {k, j} ▷ the integrals we aim to compute
11: ϕ0 ← 0 ▷ variable lower ϕ integration bound
12: µu ← µ (ϕ0) ▷ fixed upper µ integration bound
13: j ← maxµu∈mk

k ▷ index of the variable µ interval
14: if a ̸= 0 then ▷ if µ changes during integration
15: if z < zb then ▷ if ϕb < π
16: µl ← 0 ▷ the fixed lower µ integration bound is zero
17: else ▷ if ϕb = π
18: µl ← µ(π) ▷ the fixed lower µ integration bound is above zero

19: while µj > µl do ▷ while the µ interval’s lower bound is above µl

20: int(ϕ0, ϕ(µj), mj) ▷ integrate from ϕ0 to ϕ at the µ interval’s lower bound
21: ϕ0 ← ϕ(µj) ▷ set ϕ0 to ϕ at the µ interval’s lower bound
22: j ← j − 1 ▷ move to the next µ interval down

23: int(ϕ0, ϕ(µl), mj) ▷ integrate from ϕ0 to ϕ at µl

24: else ▷ if µ is constant during integration
25: int(ϕ0, π, mj) ▷ integrate from the lower ϕ integration bound to π
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Appendix B

Refinement of the MIST Model Grid

B.1 Initial Stellar Parameters

Recall, from Section 4.3.2 and Equation (4.18), that we wish to compute ρjkp(x;µt, σt),

the theoretical probability density in observable space:

ρjkp(x;µt, σt) =
1

Z

∫
dθ πjk(θ;µt, σt) G(x− x(θ);σxp). (B.1)

Evolutionary theory implies that the observables vector x is a continuous function of

stellar model parameters θ ≡ (Mi, r, ωi, i, t), where Mi is the initial mass of the primary,

r is the binary mass ratio, ωi is the initial rotation rate of the primary, i is the inclination

of its rotation axis, and t is age. In practice, however, we only evaluate x at a finite

set of discrete θ. This discrete evaluation approximates the continuous x(θ) sufficiently

well when the x spacing between neighboring θ is ∼ σx, i.e., on the order of minimum-

error vector σx. Such a spacing requirement guarantees that a discrete approximation
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of the integral that involves Gaussian error kernel G(·) as one of the integrand factors

in Equation (B.1) takes into account all θ with x(θ) within about the data point error

of the target observables, i.e., within ∼ σxp ≥ σx of x. These are the values of θ

where G(x−x(θ);σxp), and thus the entire integrand, is appreciable. We can state the

spacing requirement in terms of the error kernel: G(x−x(θ);σx) at neighboring θ have

to overlap or at least come close to overlapping. This requirement is uniform in x space;

however, it translates to potentially non-uniform separations in θ space. In particular,

when the derivatives of x(θ) with respect to θ have high magnitudes, neighboring θ have

to be close.

The original set of discrete MIST models does not satisfy our spacing requirement.

For example, Figure 4.4 shows PARS observables for these models at a fixed age, two

inclinations, and zero binary mass ratio. In this figure, consider the magnitude spacing

between neighboring discrete θ that differ only in Mi. This spacing is often significantly

greater than the magnitude uncertainty σm, especially at bright magnitudes, where a

stellar model is likely to have high Mi and to be near the end of its main sequence life.

Thus, we have to refine the Mi grid at high Mi. At the same time, we may be able to

coarsen the grid at low Mi. Similar reasoning applies to all other components of θ.

The spacing requirement on the MIST grid in this section is numerically similar to

the spacing characteristics of the PARS grid in Section 4.2.3: both the PARS grid and

the final MIST grid should have observable distances between neighboring models that

are on the order of observation error. These requirements, however, are distinct and
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have different reasons. In the former case, the requirement makes the interpolation on

the PARS grid more accurate. In the latter case, it makes the subsequent integration,

described in Section 4.3.4, more accurate.

We aim to satisfy the above spacing requirement with a new grid of initial model pa-

rameters θ′ ≡ (Mi, r, ωi, i), but without making the grid so large as to be computationally

prohibitive. To do so, we begin with a relatively sparse {Mi, ωi, i} grid at constant t and

r = 0 and calculate x (Mi, ωi, i) via the interpolations on the MIST and PARS grids in Sec-

tion 4.2. We then refine and coarsen the grid in Mi, according to the following algorithm.

First, for each pair of neighboring Mi, we calculate the maximum absolute difference in

any one observable over all (ωi, i), divided by three minimum-error standard deviations,

d ≡ max |∆x/3σx|. We then divide the corresponding interval into ⌈d⌉ equal segments.

For all original intervals with a size greater than 10−4M⊙, we re-calculate the observables

on the new grid. In the remaining cases, we interpolate the observables in Mi. We order

the new, subdivided intervals according to decreasing d and go through them until we

can merge one with a neighboring interval without violating d ≤ 1. After the merge, we

re-start at the beginning of the ordered interval list and repeat the procedure until no

merges are possible.

For tM, values of age t in the original MIST grid, we repeat the refinement and coarsen-

ing procedure in ωi, then go on cycling through the three elements of {Mi, ωi, i}, until the

grid satisfies d ≤ 1 everywhere. Here, the threshold interval sizes are 10−4 and 10−4 rad

for ωi and i, respectively. Our iterative refinement procedure takes exponentially longer

164



with the addition of each new model dimension. Thus, for t not in the original MIST grid,

we only refine and coarsen in Mi, adopting the ωi and i grids from the largest tM that

satisfies tM < t.

We now propose an approximation that will allow us to refine the binary mass ratio

r grid independently of all other θ grid dimensions, so that we do not have to include

r in the iterative refinement procedure. Specifically, solely for the purpose of r grid

refinement, we approximate the radiative flux from a star as proportional to its initial

mass to some power s, e.g. F ∝M s
i for the primary. Under this approximation, Equation

(4.15) can be written as

m = −2.5 log (Fp + Fc) = mp −
2.5

ln 10
ln

(
1 +
Fc

Fp

)
≈ mp −

Fc

Fp

= mp − rs, (B.2)

where Fp, Fc, and mp stand for the flux of the primary, the flux of the secondary,

and the magnitude of the primary, respectively. Furthermore, the functionality of this

procedure is not impaired when we approximate ln 10 as 2.5 and retain only the first

term in the Taylor expansion of the natural logarithm around Fc/Fp = 0. Equation

(B.2) suggests that if we subdivide rs ∈ [0, 1] into at least 1/3σm ≈ 34 intervals, the

resulting {Mi, r, ωi, i} grid should satisfy d ≤ 1 in the r dimension. In practice, the

condition is satisfied for r ∈ [0, r1] with 66 intervals, s = 4.6 and r1 ≥ 0.98 for all t.

For each t, r ∈ [0, r1] becomes the range over which we integrate. Figure B.1 shows

the maximum distances between neighboring models in each of the θ′ dimensions for the

resulting grid at a specific value of t that is also one of the ages in the original MIST
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library. Although parameter spacing between models is large in some parts of Figure

B.1, such as at low r, this corresponds to small enough distances in observable space

that the integration remains accurate. We emphasize that we do not use approximation

F ∝M s
i for magnitude calculations, which are outlined in Section 4.2.4.
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Figure B.1 Observable distances between neighboring models in each θ′ dimension, max-
imized over the remaining 3 dimensions. The corresponding 4-dimensional θ′ grid results
from the model grid refinement procedure in Section 4.3.3 at log t = 9.1544, one of the
ages in the original MIST library. Horizontal axes show interval midpoints. Note that the
density of models in the Mi dimension is especially high near the maximum value of Mi,
where the derivatives of magnitude and color as functions of this parameter can be large.
For each θ′ dimension, the distances generally do not vary by more than a factor of 2,
indicating a relative uniformity in the accuracy of integration on this grid.
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B.2 Refinement of Model Age

Our spacing requirement for the θ′ grid is rather stringent. It is necessary if one cannot

assume that numerical integration in Equation (B.1) is performed sequentially in each

component of θ′. We make the requirement more lenient with respect to t by integrating

with respect to this parameter after all the others in Equation (B.1). To characterize the

resulting requirement on spacing in t, we re-write Equation (B.1) as

ρjkp(x;µt, σt) =
1

Z

∫
dt π̄(t;µt, σt) ρjkp(x; t), (B.3)

where

ρjkp(x; t) =

∫
dθ′ πjk(θ

′)G (x− x(θ′; t);σxp) (B.4)

is the theoretical probability density over observable space at age t, based on a Gaussian

error kernel with width σxp.

Let us define Θ as the full range of θ, Θ(t) as the subset of this range at age t,

and Θ(a, t) as Θ(t) restricted to EEP a. Every Θ(a, t) extends over all i and r, but

the requirement that EEP equals a selects for an age-specific range of Mi and ωMi. We

further define X(a, t) as the image of Θ(a, t) due to the function x(θ). The continous

volume X(t) = ∪aX(a, t) in x-space is an isochrone in the general sense of Section 4.2.1,

specified for three observables, i.e., components of x, and four model parameters, i.e.,

components of θ′. Section 4.2.1 introduces the idea that shortest distances on the CMD

between traditional isochrones, which are parametrized by Mi, are at fixed EEPs. Here,

we extend this concept to three observable dimensions and four isochrone parameters.
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Thus, we define the x-space distance ∆x(a, t1, t2) between the t = t1 and t = t2 isochrones

at fixed EEP = a as the average distance between X(a, t1) and X(a, t2); the overall

distance ∆x(t1, t2) between these isochrones is the same average, taken across all a.

Intuitively, accurate integration in Equation (B.3) requires the order of ∆x(t1, t2) to be

no larger than about the minimum error σx for neighboring t1 and t2.

More formally, we require that appreciable ρjkp(x; t) in Equation (B.3) at neighboring

t overlap in x-space. This is equivalent to the error kernel formulation of the spacing re-

quirement in Section B.1, with θ replaced by t and G(x−x(θ);σx) replaced by ρjkp(x; t).

To determine where ρjkp(x; t) is appreciable, let us assume that the prior πjk(θ
′) in Equa-

tion (B.4) is appreciable over the entirety of Θ(t). In this case, Equation (B.4) tells us

that the locus of points in x-space with appreciable ρjkp(x; t) is X(t) broadened by at

least σx. More precisely, ρjkp(x; t) is the convolution of a function that is appreciable

solely over X(t) and an error kernel that is at least as wide as G (x− x(θ′; t);σx). Hence,

we confirm our intuition that X(t) at neighboring t should be separated by ∼ σx. This

is equivalent to the formulation of the spacing requirement in Section B.1, with x(θ)

replaced by X(t).

The original MIST age grid is spaced uniformly with ∆ (log tM) = 0.020. We start

with the portion of this grid between log tM = 9.0537 and log tM = 9.2550 and insert

intermediate ages, so that the new grid is spaced uniformly with ∆ (log t) = 0.005.

Additionally, for the lowest 5 values of log tM, we append the grid with (3/4) log tM +

(1/4) [log tM +∆(log t)]. The resulting grid becomes our age grid for the rest of the arti-
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Figure B.2 Left panel: histogram of differences in each observable, averaged over θ′ and
scaled by minimum-error standard deviation, between log t = 9.1544 and log t = 9.1594.
Each difference is taken at one of the EEPs where each age has at least one stellar
model. Most absolute differences for color and ve sin i are below 1; most differences
for magnitudes are below 3. Negative values for color and ve sin i correspond to EEPs
where average value of the observable decreases with increasing age. The space between
vertical dashed lines is equal to the width of the Gaussian error kernels in our numerical
integration procedure. Right panel: histogram of scaled differences in magnitude (as
opposed to differences in each observable) between model grids for all neighbor pairs on
the age grid (as opposed to one pair, as in the left panel). Absolute differences are below
3, indicating that integration in t is likely accurate.

cle. For two neighboring ages t1 and t2 on this grid, the left panel of Figure B.2 presents

the distribution of ∆x(a, t1, t2) across all a. This figure shows that most differences are

no larger than a few σx, suggesting that the isochrone spacing requirement is met for t1

and t2. For every such pair of neighboring ages on the grid, we further obtain ∆x(t1, t2)

and focus on ∆m(t1, t2)/σm, generally the largest component of ∆x(t1, t2)/σx. The right

panel of Figure B.2 shows that the absolute value of ∆m(t1, t2)/σm across all neighbor

pairs (t1, t2) is less than 3, supporting the idea that the isochrone requirement is met for

all age neighbor pairs.

The main focus of this subsection has been to check and make sure that our inter-
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polation between isochrones results in a model grid on which we accurately compute the

probability densities, e.g., in Equations B.3 and B.4. We also want to check that this

interpolation is accurate, in itself. To this end, we compare models on the isochrone at

log t = 9.1544 from the original MIST grid with the models we obtain by interpolating

between this isochrone’s neighbors, at log t = 9.1342 and log t = 9.1745. Specifically we

compare two model parameters that determine magnitude – luminosity L and specially

averaged radius RM. Figure B.3 shows that most differences in luminosity between the

original isochrone and the interpolated version are ∼ 1% and most differences in radius

are lower. In the course of actual interpolation that yields our model grid, the average

age difference between known isochrones is half the difference in this test case. Thus,

we expect interpolation errors to be even lower for the actual interpolation procedure,

by a factor of ∼ 4 if linear and quadratic terms dominate the local series expansions of

luminosity and radius as functions of age.
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Figure B.3 Accuracy of interpolation between the isochrones. Left panel: proportional
difference between the luminosity at the original MIST isochrone with log t = 9.1544
and the luminosity that is interpolated between the isochrone’s neighbors in age space.
Right panel: same, for the specially averaged radius RM. Average luminosity is Lavg =
(Lorig + Linterp)/2 and average radius is similar. Different colors indicate different initial
rotational velocities in the same way they do in Figure 4.4. For example, gray markers
correspond to ωM = 0.7, pink – to ωM = 0.6, and so on. Average distance between known
isochrones in the course of actual interpolation that produces our model grid is half the
distance in this test case, so that we expect the former interpolation procedure to be
significantly more accurate than that which is pictured here.
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Appendix C

Computation of Cluster Parameters

C.1 Likelihood

From the latter portions of Section 4.4.2, recall that we want to compute integrals of the

form

P (µt, σt) =

∫
dw0 dw2 P (ϕ′) ∝

∫
dw0 dw2 L(ϕ′), (C.1)

where the likelihood function L over a limited set of cluster parameters ϕ′ = {µt, σt, w0, w2}

is

L(ϕ′) =

∫
dq dbL(ϕ) (C.2)

and the full likelihood function over all cluster parameters ϕ = {q, b, µt, σt, w0, w2} is

the product of data point likelihood factors ϱp:

L(ϕ) =
n∏

p

ϱp. (C.3)
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We also recall that Bayesian probability density is P (ϕ) = L(ϕ)Z−1
L , where ZL is a

normalization constant, equal to

ZL =

∫
dϕL(ϕ). (C.4)

In order to evaluate the rightmost integral in Equation (C.1), we first wish to deter-

mine L(ϕ) up to a multiplicative constant for all ϕ where the function is appreciable.

The naive approach to this task, suggested by Equation (C.3), can easily encounter nu-

merical overflow and underflow, due to the fact that the number of factors n = 2353 in

Equation (C.3) is large and the fact that the differences between individual factors are

also large.

In particular, standard, positive floating point values in the Python programming

language cannot be closer than fmin = 2.2 × 10−308 to zero or farther than fmax =

1.8× 10308 from zero. Thus, for example, if each factor is below n
√
fmin = 0.74, Equation

(C.3) evaluates to zero. If each factor is above n
√
fmax = 1.35, the equation evaluates to

infinity. In practice, log ϱp are more or less randomly distributed throughout some range

in our implementation of the analysis. When ϕ is closer to its maximum-likelihood value,

this range is higher, and products of the form
∏k

p ϱp with k ∈ [1, . . . , n] can evaluate to

values greater than fmax.

A solution to this problem that is relatively slow but guaranteed to work involves

taking the logarithm of every ϱp, at every ϕ. In this case, we can first evaluate

lnL(ϕ) =
n∑

p

ln ϱp ∀ϕ, (C.5)

then compute likelihood as
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exp

[
lnL(ϕ)−max

ϕ
lnL(ϕ)

]
, (C.6)

which is Equation (C.3) divided by maxϕ L.

We offer an alternate solution, one that is faster by about a factor of two in our

implementation. Towards this end, we define ρjp(µt, σt) =
∑

i wi ρijp(xp;µt, σt) and use

equations (4.33) and (4.34) to express likelihood factors ϱp as

ϱp ≡ ϱp(ϕ) = 1 + qAp(ϕ
′) + qbBp(ϕ

′), (C.7)

where ϕ′ ≡ {µt, σt, w0, w2},

Ap(ϕ
′) =

ρ0p(µt, σt)

ρbp(xp)
− 1, (C.8)

and

Bp(ϕ
′) =

ρ1p(µt, σt)− ρ0p(µt, σt)

ρbp(xp)
. (C.9)

For each ϕ′, we choose some constant C, divide every ρp by this constant and multiply

the resulting factors together. The constant should be large enough that there is no

overflow, i.e.,

n∏

p

ϱp
C

=
1

Cn

n∏

p

ϱp < fmax ∀k, q, b, (C.10)

yet small enough that the maximum of the product is much greater than fmin:

max
q,b

n∏

p

ϱp
C

=
1

Cn
max
q,b

n∏

p

ϱp ≫ fmin. (C.11)

In this case, the likelihood in Equation (C.3) is divided by Cn. To obtain a value of C

that satisfies Equations (C.10) and (C.11), we aim to find the maximum of L across b

and q, for a given set of the remaining cluster parameters ϕ′. Towards this goal, we use
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Equations (C.3), (4.34), (C.8), and (C.9) to write down

∂ lnL
∂q

=
∑

p

1

q + qp(b)
and

∂ lnL
∂b

=
∑

p

1

b+ bp(q)
,

(C.12)

where

qp(b) =
1

Ap +Bpb
,

bp(q) =
1/q + Ap

Bp

,

(C.13)

Ap and Bp are given by Equations (C.8) and (C.9), and we have suppressed arguments

ϕ′. Further differentiating (C.12), we get

∂2 lnL
∂q2

= −
∑

p

1

[q + qp(b)]
2 and

∂2 lnL
∂b2

= −
∑

p

1

[b+ bp(q)]
2 .

(C.14)

One can show that neither qp(b) nor bp(q) can be on the open interval (−1, 0). Thus, as

long as q ∈ (0, 1) and b ∈ (0, 1), second derivatives in Equation (C.14) are always defined

and negative. This suggests that the likelihood function has a single extremum on this

domain – a maximum. We assume that the latter assertion is true, solely for the purposes

of finding a constant to divide ϱp. We set both derivatives in Equation (C.12) to zero

and solve the system of equations using a modified Powell’s method to find q̃ and b̃ – the
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values of q and b where the likelihood reaches L̃, which is probably its maximum. We

set C =
n
√
L̃ and perform the procedure discussed around Equations (C.10) and (C.11).

Consider that, in the course of this procedure, we reduce the order of magnitude of every

ϱp by the average order of magnitude at maximum likelihood:

log
ϱp(q, b)

C
= log ϱp(q, b)−

1

n

∑

p

log ϱp(q̃, b̃). (C.15)

In other words, even at (q̃, b̃), the average order of magnitude is now zero. Thus, Equation

(C.11) is satisfied, and it is very likely that Equation (C.10) is satisfied as well. On the

other hand, the reduction in the magnitude of ϱp has made underflow more probable.

We can think of the multiplication on the left hand side expression of Equation (C.10)

as a biased pseudo-random walk in the magnitude of the running product, starting at

zero. The longer the walk, the more likely it is to reach log fmin and result in underflow.

To minimize the probability of such an occurrence, we split the multiplication into 10

products, each composed of ∼ 235 factors. Having completed the multiplication, we

compute

lnL(ϕ) = ln
∏

p

ϱp(ϕ)

C(ϕ′)
+ ln L̃(ϕ′), (C.16)

and determine ϕ̂, where L(ϕ) has its maximum over ϕ. The additive term ln L̃ removes

the effect of dividing ϱp by ϕ′-dependent C and ϕ have been restored as arguments. We

compute the logarithm of L(ϕ), since the function itself could be larger than fmax.

In addition to maximum log likelihood in Equation (C.16), we now aim to calculate

the logarithm of the likelihood marginalized in q and b, on a grid of ϕ′:
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lnL(ϕ′) = ln

∫
dq db

∏

p

ϱp(ϕ)

C(ϕ′)
+ ln L̃(ϕ′), (C.17)

with L(ϕ) and L(ϕ′) as defined in Equations (C.3) and (C.2), respectively. The integrand

in Equation (C.17) is a negligible fraction of its maximum over most of its domain.

When this kind of an integrand is approximated via Monte Carlo methodologies, frequent

sampling of the domain where the integrand is large ensures accuracy. Although our

integration method is deterministic, we will similarly sample the domain densely where

the integrand is large by making the (q, b) grid in such portions of the domain relatively

fine. We apply the following procedure to find a grid that meets this requirement. First,

we define a subset of the domain R ≡ [q0, q1] ∩ [b0, b1] where the grid will be fine. We

initialize q0 = b0 = 0, q0 = q1 = 1, an equally spaced grid of 11 values between q0 and q1,

and similarly in the b dimension. Then, at every other value of each component of ϕ′, we

compute the integrand value I versus the fraction of the total integral that accumulates

at the locations where the integrand is above I, fit this dependence to a linear spline,

and use the latter to compute I corresponding to 99.9% of the total integral. We next

narrow down R as much as possible under the condition that the integrand is always

below I outside the new R. In each dimension, we allot 11 points to R as before and 4

additional points to the complement of R and repeat computation of I. We repeat this

procedure, starting with the narrowing down of R, until the new R does not differ much

from its value in the previous iteration. After three iterations, this procedure results in

[q0, q1] = [0.70, 0.84] and [b0, b1] = [0.40, 0.76].

At this point, we perform the integral in Equation (C.17) for every ϕ′, on an equally
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spaced grid of 21 values in each dimension to cover R and 7 additional points allotted to

the complement of R in each dimension. We check that 99.9% of the integral still always

falls within R, so that most of the integration is over the fine grid. We then subtract

from lnL(ϕ′) its maximum and take the exponent of the result, which gives us a new

version of L(ϕ′), one that is below fmax and with a maximum significantly above fmin.

It turns out that L(ϕ′) is unimodal.

C.2 Bayesian Probability Density

Computation of L(ϕ′) in Section C.1 is on a grid of 21 equally spaced values in each

component of ϕ′, centered around ϕ̂′. This grid covers set T ∩ W . Here, T is the

intersection of µt ∈ [9.154, 9.165] and σt ∈ [0.036, 0.047]; W is the intersection of w0 ∈

[0.025, 0.225] and w2 ∈ [0.4, 0.9]. However, the integral in Equation (C.4), for example,

is over a much larger formal region of normalization in ϕ. To calculate such integrals,

we make the following approximations with respect to L(ϕ′) outside T ∩W .

We assume that when the likelihood integral in Equation (C.1) is limited to W , it is

multiplied by some value that is slightly less than 1 and doesn’t depend on (µt, σt). This

ensures that the limited integral, which we call L(µt, σt), is still proportional to P (µt, σt).

We now wish to compute the corresponding normalization constant,

Zt =

∫
dµt dσt L(µt, σt). (C.18)

On T , we numerically approximate the integral in Equation (C.18) in the usual fashion.

To estimate the integral outside T , we calculate p = Lp/Lmax. Here, Lp is the average
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L(µt, σt) on the perimeter of T and Lmax is the maximum L(µt, σt) over T . We then

approximate P (µt, σt) as a two-dimensional normal density distribution with zero covari-

ance and a maximum at the location of Lmax. In this case, cumulative density over the

locations where density drops below fraction p of its peak is simply equal to p. Thus, we

assume that fraction p of the integral in Equation (C.18) is outside T , so that

Zt =
1

1− p

∫

T
dµt dσt L(µt, σt) (C.19)

and P (µt, σt) = L(µt, σt)/Zt. We exchange the roles of T andW in the above procedure

to calculate P (w0, w2). Figure 4.10 presents the 35%, 65% and 95% confidence regions

for P (µt, σt) and P (w0, w2).
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