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Abstract

Rationale & Objective: Ultraprocessed foods are widely consumed in the US and are 

associated with cardiovascular disease (CVD), mortality, and kidney function decline in the 

general population. We investigated associations between ultraprocessed food intake and chronic 

kidney disease (CKD) progression, all-cause mortality, and incident CVD in adults with CKD.

Study Design: Prospective cohort study.

Setting & Participants: Chronic Renal Insufficiency Cohort (CRIC) Study participants who 

completed baseline dietary questionnaires.

Exposure: Ultraprocessed food intake (servings/day), classified according to the NOVA system

Outcomes: CKD progression [≥50% decline in estimated glomerular filtration rate (eGFR) or 

initiation of kidney replacement therapy], all-cause mortality, and incident cardiovascular disease 

(myocardial infarction, congestive heart failure, or stroke).

Analytical Approach: Cox proportional hazards models adjusted for demographic, lifestyle, 

and health covariates.

Results: There were 1047 CKD progression events observed over a median follow-up of 7 years. 

Greater ultraprocessed food intake was associated with higher risk of CKD progression (tertile 3 

vs. 1: HR 1.22, 95% CI: 1.04, 1.42; P-trend=0.01). The association differed by baseline kidney 

function, such that greater intake was associated with higher risk among people with CKD stages 

1 and 2 (eGFR≥60 mL/min/1.73 m2; tertile 3 vs. 1: HR 2.61, 95% CI: 1.32, 5.18) but not stages 

3a-5 (eGFR<60 mL/min/1.73 m2; P-interaction=0.003). There were 1104 deaths observed over a 

median follow-up of 14 years. Greater ultraprocessed food intake was associated with higher risk 

of mortality (tertile 3 vs. 1: HR 1.21, 95% CI: 1.04, 1.40; P-trend=0.004).

Limitations: Self-reported diet.

Conclusions: Greater ultraprocessed food intake may be associated with CKD progression in 

earlier stages of CKD, and is associated with higher risk of all-cause mortality in adults with 

CKD.

Plain Language Summary
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Ultra-processed foods are industrial formulations produced using ingredients and processes that 

are not commonly used in culinary preparations and contain few, if any, intact unprocessed foods. 

Ultra-processed foods are widely consumed in the US, and high intakes of such foods have been 

linked to cardiovascular disease, kidney disease, and mortality in the general population. In this 

study, we found that greater intake of ultra-processed foods was associated with higher risk of 

kidney disease progression and mortality in adults with chronic kidney disease. Our findings 

suggest that patients with kidney disease may benefit from greater consumption of fresh, whole, 

and homemade or hand-prepared foods and fewer highly processed foods.

Keywords

CRIC study; dietary intake; epidemiology; kidney disease; nutrition; NOVA; ultraprocessed foods

Introduction

Ultra-processed foods are industrial formulations produced through chemical and physical 

modifications of foods that typically contain nonculinary ingredients and additives.1 These 

foods are often higher in salt, sugar, and unhealthy fats, and lower in fiber than less 

processed foods.1 More than half of the calories consumed by Americans come from 

ultra-processed foods.2,3 Greater consumption of ultra-processed foods is associated with 

adverse health outcomes including cardiovascular disease (CVD) incidence and mortality,4–8 

all-cause mortality,9–13 and kidney function decline14–16 in general population cohorts.

The higher sodium content and highly bioavailable inorganic phosphate additives in ultra-

processed foods may be particularly harmful to people with chronic kidney disease (CKD), 

due to the effects of these nutrients on blood pressure, fluid balance, and bone mineral 

metabolism.17,18 However, such foods may be favored for their convenience, palatability, 

and affordability. Whether higher ultra-processed food intake is associated with worse 

disease prognosis in people with CKD is unknown. Therefore, we assessed ultra-processed 

food intakes in a cohort of US adults with CKD and investigated the association between 

greater ultra-processed food consumption and risk of CKD progression, all-cause mortality, 

and incident CVD.

Methods

Study Population

The Chronic Renal Insufficiency Cohort (CRIC) Study is a multicenter prospective cohort 

study.19 The original cohort (n=3939) consisted of adults (21–74 years) with reduced 

estimated glomerular filtration rate (eGFR; 20–70 mL/min/1.73 m2) enrolled between 2003 

and 2008 at seven US clinical centers. Follow-up occurred every 6 months, with annual 

in-person clinic visits and interim 6-month telephone calls. The institutional review board at 

each clinical site approved the study protocol, and participants provided informed consent. 

Procedures were followed in accordance with the Declaration of Helsinki.

Our analytic sample excluded participants who skipped >12 items on the baseline diet 

assessment or had implausible energy intakes (men: <800 or >5000 kcal; women: <600 
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or >4000 kcal) (Figure S1). We further excluded participants with missing covariates, 

leaving 2778 participants for the analysis of all-cause mortality. For the analysis of CKD 

progression, we further excluded 162 participants who did not attend any clinic visits after 

the baseline visit, as in-person visits were required to estimate GFR. For the analysis 

of incident CVD, we excluded 897 participants with prevalent CVD at baseline and 13 

people who were not followed beyond baseline. The final sample sizes were 2616 for CKD 

progression, 2778 for all-cause mortality, and 1868 for incident CVD.

Dietary Assessment and Classification of Ultra-Processed Foods

Usual dietary intake was assessed at baseline, year 2, and year 4 using the Diet 

History Questionnaire (DHQ)-1, a validated food frequency questionnaire developed by 

the National Cancer Institute.20,21 Using paper forms, participants selected the portion size 

and consumption frequency of 124 foods and beverages over the past year. Responses were 

converted into average daily nutrient and Pyramid food group serving totals through linkage 

to the DHQ nutrient and food group database using Diet*Calc software (Diet*Calc Analysis 

Program, Version 1.4.3; National Cancer Institute, Epidemiology and Genomics Research 

Program).

We averaged dietary data across all visits (baseline, year 2, and year 4) to improve 

estimation of usual intake.22 Only baseline dietary data was used for participants who died, 

were lost to follow-up, or experienced the event of interest (CKD progression or CVD) 

within the first 2 study years. Baseline and year 2 data were averaged for participants who 

died, were lost to follow-up, or experienced an event between year 2 and year 4. Dietary data 

from all three visits were averaged for all other participants.

We categorized items into four groups using the NOVA classification system, which groups 

foods according to the degree and purpose of processing.1 We chose the NOVA classification 

system because it is the most well described and commonly used processing classification 

system in the published literature. Group 1 consists of unprocessed or minimally processed 

foods, which are derived from nature with no or minimal alteration. Group 2 consists of 

processed culinary ingredients, which are derived from Group 1 foods (e.g. by pressing, 

milling, and refining) and used in culinary preparations. Group 3 consists of processed 

foods, which are made by combining foods from Groups 1 and 2 to preserve or enhance 

the palatability of Group 1 foods. Group 4 consists of ultra-processed foods, which are 

industrial formulations of substances extracted from foods combined with additives and 

processed using methods not typically used in culinary preparations (e.g. hydrogenation, 

extrusion). Two researchers independently categorized all items, with substantial agreement 

(Cohen’s kappa=0.73). Discordantly classified items were conservatively assigned to the 

lesser processed group. In a sensitivity analysis, assigning these items to the more processed 

group did not substantially change estimated associations (Table S1).

Total ultra-processed food consumption was defined as daily average servings of Group 4 

foods. Serving sizes were based on reference amounts customarily consumed.23 We adjusted 

for total energy intake using the residual method24 and divided participants into tertiles 

based on their energy-adjusted intake of ultra-processed foods.
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Outcome Ascertainment

The primary outcome was CKD progression, defined as 50% reduction in eGFR from 

baseline or initiation of kidney replacement therapy (KRT; dialysis or transplant). GFR was 

estimated based on age, sex, and serum creatinine using the 2021 CKD-EPI equation.25 To 

calculate time to eGFR halving, a linear decline in eGFR between visits was assumed.26,27 

KRT was self-reported, confirmed by review of dialysis unit or hospital records, and 

supplemented by data from the US Renal Data System.

Secondary outcomes included all-cause mortality and incident CVD. Deaths were 

ascertained by report from next of kin, death certificates, hospital records, and linkage to the 

Social Security Death Master File. Incident CVD was defined as a composite of myocardial 

infarction, congestive heart failure, or stroke.19,29 Cardiovascular events were ascertained 

by self-report of cardiovascular-related hospitalizations, outpatient tests, and interventions 

every 6 months. Events were adjudicated by at least 2 study physicians by medical record 

review.

Covariate Assessment

Sociodemographic information (age, sex, race/ethnicity, education, income), smoking status, 

and medication use were self-reported on questionnaires at baseline. Physical activity was 

assessed using the Typical Week Physical Activity Survey and expressed in total weekly 

metabolic equivalent of task (MET)-hours. Body mass index (BMI) was calculated from 

weight and height measured at clinic visits. Seated blood pressure was measured according 

to a standardized protocol, and the average of three readings was calculated. Diabetes 

was defined by meeting any of the following criteria: fasting blood glucose ≥126 mg/dL, 

non-fasting glucose ≥200 mg/dL, or use of insulin or oral anti-diabetes medications. Diet 

quality was scored using the Healthy Eating Index-2015, which assesses adherence to the 

2015–2020 Dietary Guidelines for Americans, with higher scores indicating better alignment 

with dietary guidelines.30

Statistical Analyses

Participant characteristics and dietary intakes were summarized as means (± standard 

deviation) or medians (25th-75th percentiles) and proportions. We used multivariable Cox 

proportional hazards models to assess the association between ultra-processed food intake 

and CKD progression, all-cause mortality, and incident CVD, with person-years calculated 

from study baseline until the date of an event, study withdrawal, or administrative censoring 

(May 2020). Analyses of CKD progression and incident CVD were also censored for 

death. The primary analysis compared participants according to tertiles of ultra-processed 

food intake, with tertile 1 as the reference group. We tested for trends across tertiles 

using the median value within each tertile. Model 1 adjusted for age (continuous), sex, 

total energy intake (continuous), race/ethnicity (non-Hispanic white, non-Hispanic black, 

or other), education (less than high school, high school graduate, some college, or college 

graduate), income (<$20,000, $20,001–50,000, $50,001–100,000, >$100,000, or “do not 

wish to answer”), smoking status (current, former, never), physical activity (continuous 

MET-min/week), and study site. We considered model 1 as the main model for interpretation 

of results. Model 2 adjusted for model 1 covariates plus baseline eGFR (linear spline 
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with knots at 30, 45, and 60 mL/min/1.73 m2) and proteinuria (<0.1, 0.1-<0.5, 0.5-<1.5, 

≥1.5 g/day). Model 3 adjusted for model 2 covariates plus BMI (continuous), systolic 

blood pressure (continuous), number of blood pressure medications (continuous), diabetes 

(yes/no), antiplatelet medication use (yes/no), and lipid-lowering medication use (yes/

no). Model 4 adjusted for HEI-2015 scores in addition to our main model (model 1) 

covariates to understand whether associations were explained by diet quality. We tested the 

proportional hazards assumption using Schoenfeld residuals. We also examined associations 

between continuous ultra-processed food intake (servings/day) and outcomes and visualized 

associations using a restricted cubic spline with knots at the 5th, 35th, 65th, and 95th 

percentiles.31

We assessed the consistency of findings across subgroups defined by sex, diabetes status, 

hypertensive status (defined as systolic/diastolic blood pressure ≥140/≥90 mmHg), CKD 

stage (stages 1 and 2 [eGFR≥60 mL/min/1.73 m2] versus stages 3a to 5 [eGFR<60 

mL/min/1.73 m2)]), and proteinuria (<1.5 versus ≥1.5 g/day) using likelihood ratio tests 

that compared model 1 with an interaction term to model 1 without an interaction term. 

As the rate of CKD progression and its association with other dietary factors differs in 

these subgroups, we hypothesized that the relative risk associated with ultra-processed food 

consumption might differ according to these groups.

In order to understand whether associations between ultra-processed foods and outcomes 

were driven by particular types of foods, we examined associations with individual ultra-

processed foods. In a secondary analysis, we also investigated associations between energy-

adjusted servings of unprocessed or minimally processed foods (NOVA Group 1) and 

outcomes.

All statistical tests were two-sided with a 0.05 level of significance. Analyses were 

performed using Stata version 16.1 (StataCorp, LLC).

Results

Among the 2616 participants included in the analysis of CKD progression, the median 

ultra-processed food intake was 5.6 servings/day (25th-75th percentile: 3.7–8.0). Beverages 

were the primary type of ultra-processed food consumed (25%), followed by snacks and 

sweets (20%) and grains (19%) (Figure 1).

Participants with the highest ultra-processed food intakes were less educated, had higher 

BMI and lower eGFR, and were more likely to identify as female, have diabetes, and use 

lipid-lowering medications compared to those with the lowest intakes (Table 1). Participants 

with higher ultra-processed food intakes had lower diet quality, lower intakes of dietary 

fiber, potassium, and phosphorus, and higher intakes of sodium and added sugars than 

participants with lower ultra-processed food intakes (Table 2).

Compared to our study sample, those who were excluded from our analysis were similar 

in age, BMI, and smoking status (Table S2). Among excluded participants who had dietary 

data, average energy intakes and ultra-processed food intakes were comparable to our study 

sample. Those who were excluded were more commonly men and were less likely to 
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identify as non-Hispanic white, attain college-level education, or report income >$50,000. 

They also reported lower physical activity, had lower eGFR, higher proteinuria, and higher 

systolic blood pressure, and were more likely to have diabetes.

CKD Progression

There were 1047 CKD progression events (of which 837 were KRT initiation) observed over 

a median follow-up of 7 years. Higher ultra-processed food consumption was associated 

with a 33% higher risk of CKD progression, comparing tertile 3 versus 1 (Table 3). After 

accounting for demographic characteristics (age, sex, race/ethnicity, education, income), 

lifestyle covariates (smoking status, physical activity), energy intake, and study site (model 

1), higher ultra-processed food consumption remained significantly associated with a higher 

risk of CKD progression (tertile 3 versus 1: HR 1.22, 95% CI: 1.04, 1.42; P-trend: 

0.01). The association was approximately linear, such that each additional serving/day was 

associated with a 3% higher risk of CKD progression (Figure 2). The association was no 

longer significant after adjustment for baseline kidney function (eGFR and proteinuria; 

model 2). Hazard ratios were only marginally altered by further adjustment for other 

potential mediators (model 3). Additionally adjusting our main model for diet quality 

attenuated associations (tertile 3 versus 1: HR 1.15, 95% CI: 0.97, 1.36; P-trend: 0.1).

When we assessed associations with individual ultra-processed foods, greater intakes of 

ultra-processed beverages and fats and oils were associated with higher risk of CKD 

progression (Table S3). Unprocessed or minimally processed food consumption was not 

associated with CKD progression (Table S4).

Associations differed by CKD stage (P=0.003), whereas results were similar for subgroups 

defined by sex, diabetes status, hypertensive status, and proteinuria (Figure 3). Among 

participants with CKD stages 3a to 5 (eGFR<60 mL/min/1.73 m2), there was no association 

between ultra-processed food consumption and CKD progression (tertile 3 versus 1: HR 

1.12, 95% CI: 0.95, 1.32). Among those with CKD stages 1 and 2 (eGFR≥60 mL/min/1.73 

m2), greater ultra-processed food consumption was associated with a higher risk of CKD 

progression (tertile 3 versus 1: HR 2.61, 95% CI: 1.32, 5.18), and the association persisted 

after further adjustment for diet quality (tertile 3 versus 1: HR 2.95, 95% CI: 1.41, 6.16).

All-Cause Mortality

There were 1104 deaths observed over a median follow-up of 14 years. Death was more 

common in the highest tertile of ultra-processed food consumption compared to the lowest 

tertile (HR 1.28, 95% CI: 1.11, 1.47) (Table 3). After adjustment for model 1 covariates, 

tertile 3 had a 21% higher risk of all-cause mortality compared to tertile 1. The association 

remained statistically significant after further adjustment for baseline kidney function 

(model 2, tertile 3 versus 1: 1.24, 95% CI: 1.07, 1.44; P-trend=0.002) and other potential 

mediators (model 3, tertile 3 versus 1: HR 1.21, 95% CI: 1.04, 1.40; P-trend=0.006). Further 

adjusting model 1 for diet quality attenuated the association (HR 1.12, 95% CI: 0.96, 1.31). 

Associations were consistent across subgroups (all P-interaction>0.05).

There was an approximately linear association between ultra-processed food intake and 

all-cause mortality beyond the 35th percentile of intake, such that each additional serving of 
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ultra-processed food intake was associated with a 7% higher risk of mortality (HR 1.07, 95% 

CI: 1.04, 1.10; P<0.001) (Figure 4).

Considering specific types of ultra-processed foods individually, greater intakes of ultra-

processed beverages were significantly associated with higher risk of death (Table S3). 

Greater consumption of unprocessed or minimally processed foods was not associated with 

lower risk of all-cause mortality (model 1, tertile 3 vs. 1: HR 0.91, 95% CI: 0.78, 1.06, 

P-trend=0.2; Table S4).

Incident CVD

Over a median follow-up of 12 years, 406 participants developed CVD. Ultra-processed 

food consumption was not significantly associated with incident CVD (Table 3; Figure S2). 

Associations were consistent across subgroups (all P-interaction>0.05). Unprocessed and 

minimally processed food consumption was not associated with incident CVD (Table S4).

Discussion

Greater ultra-processed food consumption was associated with a higher risk of CKD 

progression in this cohort of adults with CKD, overall. The association differed by baseline 

kidney function, such that ultra-processed food consumption was associated with a higher 

risk of CKD progression among people with higher baseline kidney function but was not 

associated in people with more advanced CKD. Greater ultra-processed food intake was also 

associated with a higher risk of all-cause mortality, but was not associated with incident 

CVD.

Previous studies reported an association between greater ultra-processed food consumption 

and higher odds of kidney function decline and incident kidney disease among adults 

with eGFR ≥60 mL/min/1.73 m2.14–16 This is consistent with our observation that 

greater ultra-processed food intake was associated with CKD progression in adults with 

higher baseline kidney function (eGFR ≥60 mL/min/1.73 m2). Greater ultra-processed 

food consumption has also been associated with increased all-cause mortality in general 

population cohorts,8–13,32 which aligns with our findings in people with CKD. In contrast, 

we did not replicate the association between ultra-processed food intake and incident CVD 

that was observed in healthy populations.4–6 However, the high baseline prevalence of CVD 

in our study population substantially limited our sample size for the analysis of incident 

CVD. Our study contributes to the mounting evidence implicating ultra-processed foods as 

contributors to non-communicable disease morbidity and mortality.32,33

Several potential mechanisms may explain associations between ultra-processed food intake, 

CKD progression, and mortality. Many ultra-processed foods are of poor nutritional value 

– high in sodium and added sugars and low in fiber and overall diet quality – and may 

thereby contribute to adverse clinical outcomes such as CKD progression and cardiovascular 

disease,34 the leading cause of death in CKD.35 We observed that people with higher 

ultra-processed food intakes had lower diet quality, consumed less potassium and fiber, 

and more sodium and added sugars. The nutrient profile and altered food matrix of 

highly processed diets may adversely affect gut microbial composition, thereby increasing 
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inflammation36 and production and absorption of uremic toxins.37 Novel compounds 

formed during processing, such as advanced glycation end products, may also increase 

gut permeability, contributing to inflammation and kidney damage.38,39 In addition, highly 

processed foods commonly contain phosphate additives,40 which may be particularly 

problematic in the context of CKD due to dysregulated phosphorus homeostasis and its 

association with vascular calcification,41,42 CKD progression, and mortality.43 Though we 

did not observe higher phosphorus intakes with greater ultra-processed food consumption, 

inorganic phosphate additives are more bioavailable (90–100%) than plant-derived organic 

phosphates (<50%),44 resulting in proportionally more phosphate absorption from highly 

processed foods. It is also likely that phosphate contents reported in nutrient databases are 

incomplete,45,46 as the Food and Drug Administration does not require manufacturers to 

report phosphorus content.47

Finally, while dietary patterns rich in fruits, vegetables, whole grains, lean proteins, low-fat 

dairy, nuts, and legumes have been associated with reduced risk of CKD progression and 

mortality in people with CKD,48,49 the highest proportions of ultra-processed foods are 

often consumed in the context of low-quality diets.50,51 We observed that participants 

in the highest tertile of ultra-processed food intake had lower diet quality, explained by 

lower scores for nearly all food groups. Displacement of healthier foods by ultra-processed 

foods may partly explain the association with mortality, as adjustment for diet quality 

attenuated the association between ultra-processed food intake and all-cause mortality. 

However, diet quality did not appear to explain the association between ultra-processed 

food intake and CKD progression among adults with higher baseline kidney function. 

Improved understanding of the mechanisms by which ultra-processed foods contribute to 

kidney function decline is needed to inform effective strategies to minimize their harms.52

The lack of association between ultra-processed food intake and CKD progression among 

people with lower eGFR is surprising. We hypothesize that this finding could be explained 

by reverse causation, as people with poor kidney function may be limiting consumption 

of ultra-processed foods to manage more severe disease and related complications (e.g. 

hyperphosphatemia). A previously reported paradoxical inverse association between ultra-

processed sweet snack foods and incident diabetes risk was similarly explained, as people 

with higher baseline diabetes risk avoided consuming ultra-processed sweets.53 It is also 

possible that the lower protein intakes associated with greater ultra-processed food intake 

may help to slow CKD progression in people with more advanced CKD,54 thereby 

counterbalancing the harms and resulting in a null association.

Strengths of our study include the prospective design, with nearly 17 years of follow-

up, in a geographically and racially diverse study sample and incorporation of repeat 

dietary assessments to improve estimation of ultra-processed food intakes. However, 

several limitations must be acknowledged. First, self-reported dietary intakes are subject 

to both random and systematic measurement error. However, we adjusted for total energy 

intakes to reduce bias55 and averaged multiple diet assessments to reduce random error.22 

Second, the DHQ was not designed to assess ultra-processed food intake. Consequently, 

composite dishes could not be disaggregated into component ingredients, and assumptions 

about food preparation, source, and ingredients were made when classifying foods into 
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NOVA groups. Though misclassification is possible, a sensitivity analysis reclassifying 

discordant classifications did not meaningfully change results. Third, residual confounding 

by unmeasured factors may have contributed to observed associations. For instance, ultra-

processed foods generally have a lower per-calorie cost than minimally processed foods56 

and consumption is greater among people with food insecurity.57 Though we adjusted for 

income and education, these covariates may not fully characterize food security status or 

related factors, such as neighborhood-level disparities in access to healthy foods, that may 

explain associations between ultra-processed food consumption and outcomes. Finally, we 

excluded individuals with missing or unreliable dietary data, which may have introduced 

selection bias.

In conclusion, greater consumption of ultra-processed foods was associated with CKD 

progression in this sample of adults with CKD. Specifically, greater ultra-processed food 

intake was associated with higher risk of CKD progression in people with higher baseline 

kidney function but not later stages of CKD. Ultra-processed food intake was also associated 

with greater risk of all-cause mortality, which may be partly mediated by lower diet quality. 

Consistent with current guidance for CKD management54,58,59 and CVD risk reduction,60 

these findings reinforce the potential value of encouraging patients to favor fresh, whole, and 

homemade or hand-prepared foods and fewer highly processed foods.
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Figure 1. 
Proportion of total ultra-processed foods (servings/day) contributed by each food category in 

the Chronic Renal Insufficiency Cohort Study.

Beverages: fruit drinks, meal replacement beverages, soft drinks; snacks and sweets: 

crackers, potato chips, corn chips, pretzels, energy bars, frozen yogurt, ice cream, cake, 

cookies, brownies, doughnuts, sweet rolls, Danish, fruit crisp/cobbler, pies, chocolate candy, 

other candy; grains: ready-to-eat breakfast cereals, bagels, English muffins, bread, rolls, 

corn bread, biscuits, sweet muffins, dessert breads; fats and oils: salad dressing, margarine, 

cream cheese, mayonnaise, non-dairy creamer; protein foods: roast beef, poultry cold cuts, 

deli-style ham, other cold cuts, hot dogs, bacon, sausage, fish sticks, fried fish, tofu* and 

soy meat products, egg substitute; mixed dishes: stuffing, dumplings, chili, Mexican foods, 

pizza; vegetables: French fries, home fries, hash browned potatoes, tater tots; condiments 

and sauces: cheese sauce, catsup, gravy; alcoholic beverages: liquor, mixed drinks; sugars: 

jams, jellies, honey*.

*While not ultra-processed, intake of these foods were queried in conjunction with other 

ultra-processed foods and could not be separately quantified.
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Figure 2. 
Hazard ratio and 95% confidence interval for risk of chronic kidney disease progression 

associated with ultra-processed food consumption in the Chronic Renal Insufficiency Cohort 

Study. Solid line represents the hazard ratio, modeled using restricted cubic spline with 

knots at the 5th, 35th, 65th, and 95th percentiles of ultra-processed food consumption 

(servings/day). Dashed lines represent 95% confidence intervals for hazard ratios. The 

reference level was set at the 35th percentile of intake. Hazard ratios adjusted for age, 

sex, total energy intake, race/ethnicity, education, income, smoking status, physical activity, 
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and study site. The underlying grey histogram presents the distribution of participants’ 

ultra-processed food consumption (servings/day).
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Figure 3. 
Association between ultra-processed food consumption and risk of chronic kidney disease 

progression in subgroups. Hazard ratios for tertile 3 versus tertile 1 adjusted for age, sex, 

total energy intake, race/ethnicity, education, income, smoking status, physical activity, 

and study site. P-values for likelihood ratio tests comparing adjusted models with versus 

without interaction terms for subgroups. Abbreviations: CI, confidence interval; CKD, 

chronic kidney disease; eGFR, estimated glomerular filtration rate; HR, hazard ratio; LR, 

likelihood ratio
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Figure 4. 
Hazard ratio and 95% confidence interval for risk of all-cause mortality associated with 

ultra-processed food consumption in the Chronic Renal Insufficiency Cohort Study. Solid 

line represents the hazard ratio, modeled using restricted cubic spline with knots at the 

5th, 35th, 65th, and 95th percentiles of ultra-processed food consumption (servings/day). 

Dashed lines represent 95% confidence intervals for hazard ratios. The reference level 

was set at the 35th percentile of intake. Hazard ratios adjusted for age, sex, total energy 

intake, race/ethnicity, education, income, smoking status, physical activity, and study site. 
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The underlying grey histogram presents the distribution of participants’ ultra-processed food 

consumption (servings/day).
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Table 1.

Participant characteristics by tertile of energy-adjusted servings/day of ultra-processed food consumption in 

the Chronic Renal Insufficiency Cohort Study (n=2616).a

Participant characteristic Tertile 1 (n=872) Tertile 2 (n=872) Tertile 3 (n=872) P-valueb

Ultra-processed food intake, servings/dayc 4.5 (3.6–5.0) 6.2 (5.8–6.5) 8.3 (7.5–9.8)

Age, y 58 ± 10 59 ± 11 57 ± 11 <0.001

Female, n (%) 378 (43) 438 (50) 439 (50) 0.004

Race/ethnicity, n (%) <0.001

 Non-Hispanic white 429 (49) 440 (50) 460 (53)

 Non-Hispanic black 324 (37) 371 (43) 368 (42)

 Other 119 (14) 61 (7) 44 (5)

College graduate, n (%) 415 (48) 297 (34) 277(32) <0.001

Income, n (%) 0.05

 >$50,000 315 (36) 307 (35) 282 (32)

 Do not wish to answer 147 (17) 117 (13) 143 (16)

Total energy intake, kcal/d 1914 ± 758 1556 ± 621 1824 ± 734 <0.001

Physical activity, MET-min/wk 209 ± 135 196 ± 126 205 ± 139 0.1

Body mass index, kg/m2 31.0 ± 7.2 31.8 ± 7.4 33.1 ± 8.5 <0.001

eGFR, mL/min/1.73 m2 47 ± 16 44 ± 14 44 ± 15 <0.001

Proteinuria ≥1.5 g/day, n (%) 127 (15) 146 (17) 164 (19) 0.07

Smoking status, n (%) 0.05

 Current smoker 96 (11) 110 (13) 129 (15)

 Former smoker 353 (40) 370 (42) 376 (43)

Diabetes, n (%) 354 (41) 372 (43) 435 (50) <0.001

Systolic blood pressure, mmHg 127 ± 22 127 ± 21 126 ± 20 0.9

Diastolic blood pressure, mmHg 72 ± 12 71 ± 12 71 ± 12 0.1

Blood pressure medications, number 2 ± 2 3 ± 2 3 ± 1 <0.001

Lipid-lowering medication use, n (%) 478 (55) 547 (63) 546 (63) 0.001

Antiplatelet medication use, n (%) 411 (47) 419 (48) 398 (46) 0.6

a
Values are median (25th-75th percentile) or mean ± standard deviation

b
P-values for chi-square tests (categorical variables) or analysis of variance tests (continuous variables) comparing values across tertiles

c
Energy-adjusted intakes standardized at mean energy intake

Abbreviations: eGFR, estimated glomerular filtration rate; MET, metabolic equivalent of task
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Table 2.

HEI-2015 scores and nutrient intakes by tertile of energy-adjusted servings/day of ultra-processed food 

consumption in the Chronic Renal Insufficiency Cohort Study (n=2616).a

Nutritional factor Tertile 1 (n=872) Tertile 2 (n=872) Tertile 3 (n=872) P-valueb

HEI-2015 score 68.7 ± 9.5 65.1 ± 8.9 60.6 ± 9.0 <0.001

HEI-2015 component scores

 Total fruits 4.3 ± 1.2 4.3 ± 1.2 3.9 ± 1.4 <0.001

 Whole fruits 4.5 ± 1.2 4.4 ± 1.1 4.2 ± 1.3 <0.001

 Total vegetables 4.3 ± 1.1 4.0 ± 1.1 3.6 ± 1.3 <0.001

 Greens and beans 3.6 ± 1.6 3.0 ± 1.6 2.4 ± 1.5 <0.001

 Whole grains 3.4 ± 2.2 3.7 ± 2.2 3.6 ± 2.4 0.02

 Dairy 4.7 ± 2.8 4.5 ± 2.5 4.3 ± 2.5 0.005

 Total protein foods 4.7 ± 0.7 4.7 ± 0.7 4.6 ± 0.8 <0.001

 Seafood and plant proteins 4.3 ± 1.1 4.1 ± 1.2 3.8 ± 1.3 <0.001

 Fatty acids 6.3 ± 2.9 5.9 ± 2.6 5.7 ± 2.6 <0.001

 Refined grains 8.8 ± 1.8 8.4 ± 1.9 7.8 ± 2.3 <0.001

 Sodium 4.8 ± 2.7 4.4 ± 2.6 4.3 ± 3.1 <0.001

 Added sugars 8.2 ± 2.2 7.0 ± 2.8 6.2 ± 3.5 <0.001

 Saturated fats 6.8 ± 2.9 6.4 ± 2.8 6.2 ± 2.9 <0.001

Protein, g/kg body weight 0.9 ± 0.4 0.7 ± 0.3 0.7 ± 0.4 <0.001

Protein, %kcal 16 ± 3 16 ± 3 15 ± 4 <0.001

Carbohydrate, %kcal 50 ± 10 51 ± 9 51 ± 10 0.1

Total fat, %kcal 34 ± 7 34 ± 7 34 ± 7 0.3

Saturated fat, %kcal 10 ± 3 11 ± 3 11 ± 3 <0.001

MUFA, %kcal 13 ± 3 13 ± 3 13 ± 3 0.9

PUFA, %kcal 8 ± 2 8 ± 2 8 ± 2 0.2

Alcohol, g/day 8 ± 19 4 ± 9 5 ± 15 <0.001

Alcohol, g/1000 kcal 4 ± 7 3 ± 5 3 ± 7 0.001

Dietary fiber, g/1000 kcal 11 ± 4 10 ± 3 9 ± 3 <0.001

Potassium, mg/1000 kcal 1876 ± 448 1742 ± 374 1549 ± 401 <0.001

Phosphorus, mg/1000 kcal 663 ± 133 638 ± 115 629 ± 141 <0.001

Sodium, mg/1000 kcal 1571 ± 307 1605 ± 264 1621 ± 358 0.003

Added sugar, %kcal 9 ± 5 12 ± 6 15 ± 11 <0.001

a
Values are mean ± standard deviation. HEI-2015 ranges from 0–100.

b
P-value for analysis of variance comparing mean intakes across tertiles

Abbreviations: HEI, Healthy Eating Index; MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty acids
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Table 3.

Hazard ratios for chronic kidney disease progression, all-cause mortality, and incident cardiovascular disease 

by tertile of energy-adjusted servings/day of ultra-processed food consumption in the Chronic Renal 

Insufficiency Cohort Study.a

Tertile 1 Tertile 2 Tertile 3 P-valueb

CKD progression

 Events (IR per 1000 py) 312 (43.8) 354 (50.4) 381 (58.3)

 Crude 1 (reference) 1.15 (0.98, 1.33) 1.33 (1.14, 1.54) <0.001

 Model 1 1 (reference) 1.10 (0.93, 1.29) 1.22 (1.04, 1.42) 0.01

 Model 2 1 (reference) 1.05 (0.89, 1.23) 1.09 (0.93, 1.28) 0.3

 Model 3 1 (reference) 1.08 (0.92, 1.27) 1.07 (0.91, 1.25) 0.5

 Model 4 1 (reference) 1.06 (0.90, 1.25) 1.15 (0.97, 1.36) 0.1

All-cause mortality

 Events (IR per 1000 py) 343 (31.4) 347 (32.2) 414 (39.8)

 Crude 1 (reference) 1.03 (0.88, 1.19) 1.28 (1.11, 1.47) 0.001

 Model 1 1 (reference) 0.93 (0.80, 1.09) 1.21 (1.04, 1.40) 0.004

 Model 2 1 (reference) 0.95 (0.81, 1.12) 1.24 (1.07, 1.44) 0.002

 Model 3 1 (reference) 0.97 (0.83, 1.13) 1.21 (1.04, 1.40) 0.006

 Model 4 1 (reference) 0.89 (0.76, 1.04) 1.12 (0.96, 1.31) 0.07

Incident cardiovascular disease

 Events (IR per 1000 py) 123 (18.5) 139 (21.6) 144 (23.0)

 Crude 1 (reference) 1.16 (0.91, 1.48) 1.24 (0.98, 1.58) 0.08

 Model 1 1 (reference) 1.02 (0.79, 1.31) 1.09 (0.85, 1.40) 0.5

 Model 2 1 (reference) 1.06 (0.82, 1.38) 1.08 (0.83, 1.39) 0.6

 Model 3 1 (reference) 1.06 (0.82, 1.38) 1.05 (0.81, 1.36) 0.7

 Model 4 1 (reference) 0.97 (0.75, 1.26) 1.01 (0.77, 1.32) 0.9

a
Estimates are hazard ratios (95% confidence interval) from Cox proportional hazard models. Model 1 adjusted for age, sex, total energy intake, 

race/ethnicity, education, income, smoking status, physical activity, and study site. Model 2 adjusted for model 1 covariates plus estimated 
glomerular filtration rate and proteinuria. Model 3 adjusted for model 2 covariates plus body mass index, systolic blood pressure, number of blood 
pressure medications, diabetes status, antiplatelet medication use, and lipid-lowering medication use. Model 4 adjusted for model 1 covariates plus 
Healthy Eating Index (HEI)-2015 scores.

Boldface denotes P-value<0.05.

b
P-value for test of trend using median value within each tertile

Abbreviations: CKD, chronic kidney disease; IR, incidence rate; py, person-years
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