
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Data and Label Efficient Representation Learning

Permalink
https://escholarship.org/uc/item/1hj7b2pt

Author
Reed, Colorado

Publication Date
2023
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1hj7b2pt
https://escholarship.org
http://www.cdlib.org/


Data and Label Efficient Representation Learning

by

Colorado James Reed

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Kurt Keutzer, Chair
Professor Trevor Darrell

Assistant Professor Manuela Girotto

Spring 2023



Data and Label Efficient Representation Learning

Copyright 2023
by

Colorado James Reed



1

Abstract

Data and Label Efficient Representation Learning

by

Colorado James Reed

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Kurt Keutzer, Chair

Recent advances in unsupervised representation learning have led to a host of widely used AI tools,
such as ChatGPT and Stable Diffusion. These tools have been the result of applying relatively
simple training algorithms to massive models on massive GPU clusters, even larger amounts of
unlabeled training data, and by tuning the algorithms on a host of labeled evaluation tasks. In
this dissertation, we present methodologies to address removing each of these components when
training models for representation learning, i.e. limited compute, limited training data, and limited
evaluation data. This dissertation contains four main chapters that focus on data and label-efficient
representation learning.

Data efficient representation learning focuses on learning useful representations with less data
(labeled or unlabeled), which as discussed throughout this dissertation, can be particularly important
for applications with limited data availability. Label efficient representation learning focuses on
learning useful representations with little or no human annotations for the training data. As will
be discussed, this is important for applications where it is often difficult or impossible to obtain
accurately labeled data, such as in privacy sensitive fields or for applications with highly ambiguous
label definitions.

The four chapters in this dissertation that address these topics include: (1) SelfAugment: Automatic
Augmentation Policies for Self-Supervised Learning, which explored how to develop augmentation
policies with little/no labeled training data and small amount of unlabeled data for unsupervised
learning pipelines. (2) Data Efficient Self-Supervised Representation Learning, which explored
how to leverage a form of hierarchical pretraining for 80x more data efficient pretraining. (3)
Region Similarity Representation Learning, which explored one of the first methods for learning
region-level representation by performing contrastive learning at a region (patch-based) level
and let to substantial improvements for downstream tasks such as object detection/segmentation
when few labeled data were available. (4) Scale-MAE: A Scale-Aware Masked Autoencoder for
Multiscale Geospatial Representation Learning, which explored methods for leveraging known
scale information for geospatial representation learning.
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Chapter 1

Introduction

Solving a problem simply means representing it so as to make the solution transparent.

-Herbert Simon

This dissertation centers around representation learning: a branch of machine learning that
focuses on learning to extract useful signals, or representations, from data. Representation learning
builds upon traditional signal processing methodology by training machine learning models to
automatically extract useful representations of data. These representations are typically represented
computationally as high-dimensional vectors, but the underlying concept is simply to usefully
represent the key information within the data – see Fig. 1.1. Practically, representation learning
methods learns to extract features that are relevant to a given task, such as classifying images or
translating text.

While representation learning has been around for 100+ years [124], recent advances in deep
learning have led to a renewed interest in representation learning, as deep neural networks have
proven to be very effective at learning useful representations from raw data [8]. Before this period,
human-driven feature engineering was the dominant form of practical representation learning,
where human knowledge, ingenuity, and experimentation were used to extract useful signals from
noisy data. The past decade of research in deep learning has largely focused on replacing and
augmenting manual feature engineering with learned representations. This saves time compared to
requiring human input and experimentation, but perhaps more importantly, this better aligns with
how an autonomous AI agent would need to operate in order to understand the world around it. As
eloquently written in [8]:

An AI must fundamentally understand the world around us, and we argue that this can
only be achieved if it can learn to identify and disentangle the underlying explanatory
factors hidden in the observed milieu of low-level sensory data.

This dissertation focuses on data and label efficient self-supervised representation learning.
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Figure 1.1: Representation learning extracts useful signals from observed data. In this case, we
sample a state of the world, x ∈ X of a cat (the author’s cat) sleeping on a classic machine learning
textbook. An observer (e.g. a person, a sensor, or model) is viewed as a function, f : X → R,
that maps the world to some representation space, such as RGB values, a word, or a simplified
representation (such as a vector graphic) of the cat. (Note: this figure was adapted from course
materials from the CS159 course material at Caltech [url].)

Data efficient representation learning focuses on learning useful representations with less data,
which as discussed throughout this dissertation, can be particularly important for applications
with limited data availability, e.g. medical applications or certain scientific applications. Label
efficient representation learning focuses on learning useful representations with little or no human
annotations for the training data. As will be discussed, this is important for applications where it
is often difficult or impossible to obtain accurately labeled data, such as in privacy sensitive fields
(e.g. medical imaging [145]), applications with highly ambiguous label definitions (e.g. fashion or
retail categorization [187]). Self-supervised learning is a type of unsupervised learning that creates
target objectives without human annotation and has recently led to a dramatic increase in the ability
to capture salient feature representations from unlabeled data across many domains [16, 73, 68].

The chapters in this dissertation are comprised of the research articles that define this body of
work, where each chapter provides an introduction, motivation, summary of related work, method-
ology, experiments, and conclusions. The first two chapter focus on data efficient representation
learning techniques. Chapter 2 presents the publication “SelfAugment: Automatic Augmentation
Policies for Self-Supervised Learning” [137], published in CVPR 2021. This paper presented an
AutoML approach to determine optimal augmentations to use for contrastive learning pipelines.
Before this work, popular papers such as SimCLR [17] determined which augmentations to use
in contrastive learning pipelines by exhaustively evaluating all possible combinations of augmen-
tations using labeled evaluation data. This process, as we argued, leaks supervised information
into the unsupervised pipeline and is not possible when working with a limited amount of (un-
labeled) training data. Therefore, SelfAugment provides a direct method for determining high
performing augmentation policies without requiring massive amounts of data, labels, or exhaustive

https://sites.google.com/view/cs159/home
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computational searches.
Chapter 3 presents the publication “Self-Supervised Pretraining Improves Self-Supervised

Pretraining” [136], published in WACV 2022. Before this work, self-supervised pretraining methods
had focused on pretraining from scratch using massive unlabeled datasets. This work showed that
similar (or better) quality representations could be learned by simply finetuning a very small number
of parameters in the network using a very small amount of unlabeled data and an appropriate
self-supervised finetuning pipeline. Following this work, the unsupervised learning community
adopted the term “Foundation Models,” [9], which cited this work, adopted a similar unsupervised
training/finetuning process as this work.

The next two chapters focus on label-efficient representation learning techniques. Chapter 4
presents the publication “Region Similarity Representation Learning” (ReSim) [168], published in
ICCV 2022. Before ReSim, all self-supervised learning methods in computer vision had focused on
developing methods for learning scene-level representations (which captured all information in an
entire image). ReSim presented a method for learning region-level representation by performing
contrastive learning at a region (patch-based) level. The region level representations could then
be used for downstream region-level tasks such as object detection or segmentation, and as we
showed, leads to several state-of-the-art results. Furthermore, this led to a particularly large increase
in performance when there was a limited amount of labeled downstream data.

Chapter 5 presents the article “Scale-MAE: A Scale-Aware Masked Autoencoder for Multiscale
Geospatial Representation Learning” [135], currently under review at CVPR 2023. Scale-MAE
focused on representation learning for remote sensing imagery, which provides comprehensive
views of the Earth, where different sensors collect complementary data at different spatial scales.
Before Scale-MAE, large, pretrained models were commonly trained with imagery that is heavily
augmented to mimic different conditions and scales, with the resulting models used for various tasks
with imagery from a range of spatial scales. Such models overlooked scale-specific information in
the data. Scale-MAE presented a pretraining method that explicitly learns relationships between
data at different, known scales throughout the pretraining process. Scale-MAE pretrains a network
by masking an input image at a known input scale, where the area of the Earth covered by the image
determines the scale of a Vision Transformer (ViT) positional encoding, not the image resolution.
We found that tasking the network with reconstructing both low/high frequency images led to robust
multiscale representations for remote sensing imagery and led to several state-of-the-art results.

At a high level, this dissertation presents complementary and exploratory methods for data
and label efficient representation learning. These methods have been adopted by several industry
partners and collaborators throughout this work, formed a key part of our entry to DARPA’s LWLL
competition [33], and provided a foundation for other works to build upon (indeed, even the
foundational Foundation Models work [9]!). Since the public release of these publications, several
works have been published in the field that directly build upon this work, and each of the subsequent
chapters contain a discussion and additional information on the impact that each work has had since
publication.
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Chapter 2

SelfAugment: Automatic Augmentation
Policies for Self-Supervised Learning

Iin this chapter, we present several methods for both label and data efficient representation learning.
In particular, we present a method called SelfAugment that allows a user to construct a self-
supervised learning pipeline without requiring labeled data for a supervised evaluation in order to
determine the settings of the pipeline, e.g. the hyperparameters and data augmentations.

2.1 Introduction
Self-supervised learning, a type of unsupervised learning that creates target objectives without hu-
man annotation, has led to a dramatic increase in the ability to capture salient feature representations
from unlabeled visual data. So much so, that in an increasing number of cases these representations
outperform representations learned from the same data with labels [16, 73, 68]. At the center of
these advances is a form of instance contrastive learning where a single image is augmented using
two separate data augmentations, and then a network is trained to distinguish which augmented
images originated from the same image when contrasted with other randomly sampled augmented
images, see [16, 68, 21, 167].

As illustrated in Figure 2.1, recent works [16, 21, 156] have used extensive supervised eval-
uations to determine which augmentation policies to use for training. The best policies obtain
a sweet spot, where the augmentations make it difficult for the contrastive task to determine the
corresponding image pairs while retaining salient image features; finding this sweet spot can be the
difference between state-of-the-art performance or poor performance for various tasks [156].

However, it is often difficult or impossible to obtain accurately labeled data in privacy sensitive
fields (e.g. medical imaging [145]), applications with highly ambiguous label definitions (e.g. fashion
or retail categorization [187]), or not practical when one set of representations is used for a diverse
set of downstream tasks (e.g. in autonomous driving systems [181]). This leads to the open question:
How can we evaluate self-supervised models, especially to efficiently select augmentation policies,
when labeled data is not available? We address this question via the following contributions:
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Data Augmentation
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Head

H

Self-Supervised Evaluation
(this paper)

Supervised Evaluation
(prior work)

D T (D)

Fully Unsupervised Training

T ∗
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Figure 2.1: The blue box highlights our fully unsupervised training pipeline for instance contrastive
representation learning: data D are augmented with policy T , then encoded into representations, H,
which are fed into a projection head yielding features that determine the InfoNCE loss (Eq. 2.1). As
shown by the red arrow, prior work uses supervised evaluations of the representations to inform
the training process, e.g. to update the augmentation policy T → T ∗. In this chapter, we show that
self-supervised evaluation can be used in lieu of supervised evaluation and show how to use this
evaluation for automatic and efficient augmentation selection.

• We show that a linear, image-rotation-prediction evaluation task is highly correlated with the down-
stream supervised performance (rank correlation ρ > 0.94) on six standard recognition datasets
(CIFAR-10 [91], SVHN [58], ImageNet [142], PASCAL [44], COCO [101], Places-205 [189])
and tasks (image classification, object detection, and few-shot variants) across hundreds of learned
representations, spanning three types of common evaluation techniques: linear separability perfor-
mance, semi-supervised performance, and transfer learning performance.

• Using self-supervised evaluation, we adapt two automatic data augmentation algorithms for
instance contrastive learning. Without using labeled evaluations, these algorithms discover
augmentation policies that match or outperform policies obtained using supervised feedback and
only use a fraction of the compute.

• We further show that using linear image rotation prediction to evaluate the representations works
across network architectures, and that image rotation prediction has a stronger correlation with
supervised performance than a jigsaw [121] or color prediction [186] evaluation task.

Based on these contributions and experiments, we conclude that image rotation prediction is a
strong, unsupervised evaluation criteria for evaluating and selecting data augmentations for instance
contrastive learning.
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2.2 Background and Related Work
In this chapter, we study evaluations for self-supervised representations, particularly through the
lens of learning data augmentation policies. We discuss these topics next.

Self-supervised representation learning: The general goal of representation learning is to
pre-train a network and then either fine-tune it for a particular task or transfer it to a related
model, e.g. see [73, 68, 136, 39, 43, 185, 57, 95, 132, 35]. Recently, [16] and [21] demonstrated
substantial improvements by using similar forms of instance contrastive learning whereby one
image is augmented using two separate data augmentations and then a network is trained to identify
this positive pair contrasted with a large set of distractor images. A common loss function for
contrastive methods is the InfoNCE loss, where given two images originating from the same image
i and Kd distractor images we have:

LNCE =−E

[
log

exp(sim(z1,i,z2,i)

∑
Kd
j=1 exp(sim(z1,i,z2,j))

]
(2.1)

where z1,i,z2,i are the two different image representations from image i following the encoder
network and projection head as shown in Figure 2.1, and sim(·, ·) is a similarity function such as a
weighted dot product.

The InfoNCE loss [122, 73] has been shown to maximize a lower bound on the mutual informa-
tion I(h1;h2). The SimCLR framework [16] relies on large batch sizes to contrast the image pairs,
while the MoCo framework [21] maintains a large queue of contrasting images. Given the increased
adoption, broad application, and strong performance of instance contrastive learning [73, 16, 21],
we focus our work on this type of self-supervised learning, specifically using the MoCo algorithm
and training procedure for experimentation [21].

Self-supervised model evaluation is typically done via:

• separability: the network is frozen and the training data trains a supervised linear model (the
justification is that good representations will reveal linear separability in the data) [27, 54,
37, 121, 53, 86]

• transferability: the network is either frozen or jointly fine-tuned, with a transfer task model
that is fine-tuned using a different, labeled dataset (the justification is that good representations
will generalize to a number of downstream tasks) [73, 68, 132, 35]

• semi-supervised, in which the network is either frozen or jointly fine-tuned using a fraction
of labeled data with either the separability or transferability tasks mentioned above (the
justification is that a small set of labeled data will benefit good representations) [73, 16].

While these evaluations characterize the unsupervised model in several ways, they have limited
use for making training decisions because: (i) accessing labels as a part of the training process is not
possible for unlabeled datasets, and (ii) evaluating the model on a different, labeled dataset requires
an integrated understanding of the relationship between the transfer task, datasets, and models (see
[181, 129, 139]). We seek a label-free, task-agnostic evaluation.
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Learning data augmentation policies: Data augmentation has played a fundamental role in
visual learning, and indeed, has a large body of research supporting its use [146]. In this work,
we use a self-supervised evaluation to automatically learn an augmentation policy for instance
contrastive models. To formulate our automatic data augmentation framework, we draw on several,
equally competitive recent works in the supervised learning space [30, 74, 98, 31], where [30, 74,
98] use a separate search phase to determine the augmentation policy and [31] use a simplified
augmentation space and sample from it via a grid search. For instance contrastive learning, we
adapt a search-based automatic augmentation framework, Fast AutoAugment (FAA) [98], and a
sampling-based approach, RandAugment [31]. We discuss these two algorithms in greater detail in
the next section.

2.3 Self-Supervised Evaluation and Data Augmentation
Our central goals are to (i) establish a strong correlation between a self-supervised evaluation task
and a supervised evaluation task commonly used to evaluate self-supervised models, and (ii) develop
a practical algorithm for self-supervised data augmentation selection. The following subsections
defines these goals in more detail.

Self-supervised evaluation
With labeled data, augmentation policy selection can directly optimize the supervised task perfor-
mance [74, 98]. With unlabeled data, we seek an evaluation criteria that is highly correlated with
the supervised performance without requiring labels. Inspired by [102], where the authors show that
self-supervised tasks can be used to evaluate network architectures, we investigate the following
self-supervised tasks to evaluate representations:

• rotation [54]: the input image undergoes one of four preset rotations {0o,90o,180o,270o}, and
the evaluation metric is the 4-way rotation prediction classification accuracy

• jigsaw [121]: the four quadrants of the input image are randomly shuffled into one of 4! = 24
permutations, and the evaluation metric is the 24-way classification accuracy

• colorization [186]: the input is a grayscale image, and the evaluation metric is formulated as a
pixel-wise classification on pre-defined color classes (313, from [186])

A key point to emphasize is that these self-supervised tasks are used to evaluate the representa-
tions learned from instance contrastive algorithms, e.g. MoCo. These self-supervised tasks were
originally used to learn representations themselves, but in this work, we evaluate the representations
using these tasks. In §2.4, we compute the correlation of each of these evaluations with a supervised,
top-1 linear evaluation on a frozen backbone trained using a cross entropy loss on the training data.
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Self supervised data augmentation policies
We study and adapt two approaches for augmentation policy selection from the supervised do-
main: a sampling-based strategy, RandAugment [30] and a search-based strategy, Fast AutoAug-
ment (FAA) [98]. Using the notation from [98], let O represent the set of image transfor-
mations operations O : X → X on input image X . Following [98, 31], we define O as the
set: {cutout, autoContrast, equalize, rotate, solarize, color, posterize,
contrast, brightness, sharpnes, shear-x, shear-y, translate-x,
translate-y, invert}.

Each transformation O has two parameters: (i) the magnitude λ that determines the strength of
the transformation and (ii) the probability of applying the transformation, p. Let S represent the
set of augmentation sub-policies, where a sub-policy τ ∈ S is defined as the sequential application
of Nτ consecutive transformation {Ō(τ)

n (x; p(τ)n ,λ
(τ)
n ) : n = 1, . . . ,Nτ} where each operation is applied

to an input image sequentially with probability p. Applying sub-policy τ(x) is then a composition
of transformation x̃(n) = Ō(τ)

n (x̃(n−1)) for n = 1, . . . ,Nτ , where the full sub-policy application has
shorthand x̃(Nτ ) = τ(x) and the first application is x̃(0) = x. The full policy, T , is a collection of NT
sub-policies, and T (D) represents the set of images from D obtained by applying T .

SelfRandAugment: RandAugment makes the following simplifying assumptions: (i) all
transformations share a single, discrete magnitude, λ ∈ [1,30] (ii) all sub-policies apply the same
number of transformations, Nτ (iii) all transformations are applied with uniform probability, p=K−1

T
for the KT = |O| transformations. RandAugment selects the best result from a grid search over
(Nτ ,λ ). To adapt this algorithm for instance contrastive learning, we simply evaluate the searched
(Nτ ,λ ) states using a self-supervised evaluation from §2.3 and refer to this as SelfRandAugment.

SelfAugment: We adapt the search-based FAA algorithm to the self-supervised setting; we call
this adaptation SelfAugment. Formally, let D be a distribution on the data X . For model M(·|θ) : X
with parameters θ , define the supervised loss as L(θ |D) on model M(·|θ) with data D ∼D. For
any given pair of Dtrain and Dvalid, FAA selects augmentation policies that approximately align the
density of Dtrain with the density of the augmented T (Dvalid). This means that the transformations
should help the model bolster meaningful features and become invariant to unimportant features
after retraining with the augmented dataset. In practice, FAA splits Dtrain into DM and DA, where
DM is used to train the model and DA is used to determine the policy via:

T ∗ = argmin
T

L(θM|T (DA)) (2.2)

where θM is trained using DM. This approximates minimizing the distance between the density
of DM and T (DA) by using augmentations to improve predictions with shared model parameters,
θM; see [98] for derivations. FAA obtains the final policy, T ∗, by exploring B candidate policies
B= {T1, . . . ,TB} with a Bayesian optimization method that samples a sequence of sub-policies from
S and adjusts the probabilities {p1, . . . , pNT } and magnitudes {λ1, . . . ,λNT } to minimize L(θ |·) on
T (DA) (see §2.5 for details). The top P policies from each data split are merged into T ∗. The
network is then retrained using this policy on all training data, T ∗(Dtrain), to obtain the final network
parameters θ ∗. SelfAugment has three main differences from Fast AutoAugment that we discuss
next.
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Select the base policy: A base augmentation policy is required to perform the first pass
of training to determine θM. SelfAugment determines this policy by training a MoCo net-
work [21] for a short period of time on each of the individual transformations in O as well as
random-resize-crop (the top performing single transformation in [16]). Each transformation
is applied at every iteration, with p = 1 and a magnitude parameter λ stochastically set at each
iteration to be within the ranges from [98]. Each network is trained until the loss curves separate –
we found this to be around 10% of the total training epochs typically used for pre-training. The
backbone is then frozen and a linear self-supervised evaluation task, φss, is trained for each network
and evaluated using held out training data. The base policy is then the transformation with the best
evaluation.

Search augmentation policies: Given the base augmentations, we split the training data into
k-folds. For each fold, we train a MoCo network, θmoco, using the base augmentation, freeze the
network, and train a self-supervised evaluation layer, φss. We use the same Bayesian optimization
search strategy as FAA to determine the policies. However, as the loss function L(θ |D) cannot use
supervised accuracy as in FAA, we explore four variants of a self-supervised loss function. § 2.5
discusses and compares each of these loss functions in more detail and §2.6 compares these loss
functions with a supervised variant:

• Min. eval error: T SS = argminT Lss(θM,φss|T (DA)) where Lss is the self-supervised evaluation
loss, which yields policies that would directly result in improved performance on the evaluation
task if the linear layer was retrained on top of the same base network. Minimizing the self-
supervised error encourages augmentation policies that bolster distinguishable image features.

• Min. InfoNCE: T I-min = argminT LNCE(θM|T (DA)) where LNCE is the InfoNCE loss from
Eq. 2.1, which yields policies that make it easier to distinguish image pairs in the contrastive
feature space. It is worth noting that a trivial way to distinguish image pairs is to use weak
augmentations so paired images have high similarity.

• Max InfoNCE: T I-max = argminT −LNCE(θM|T (DA)) negates the previous loss function, yield-
ing policies that make it difficult to distinguish image pairs in the feature space. Optimizing this
loss function encourages a challenging augmentation policy, which may be overly challenging for
training a network to learn meaningful representations.

• Min Lss max LNCE: T minmax = argminT Lss −LNCE yields policies that simultaneously maxi-
mize InfoNCE, encouraging challenging augmentation policies, and minimize Lss, encouraging
distinguishable image features.

Retrain MoCo using the full training dataset and augmentation policy: SelfAugment uses
the selected policy from the loss functions and then retrains from scratch on the full dataset Dtrain.
It is worth noting that because the augmentation policy learned from SelfAugment is used for
an instance contrastive task, and not for the evaluation task, the augmentations that minimize the
self-supervised evaluation loss are not necessarily the best augmentations for instance contrastive
pre-training. Rather, this method provides the set of augmentations that would lead to high
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Figure 2.2: Top row: Correlation between supervised linear classification accuracy and linear image
rotation prediction accuracy for three datasets. Bottom row: Correlation between rotation prediction
and three transfer tasks from the ImageNet pretraining. ρ is the rank correlation between rotation
prediction and the supervised task. ρs is the rank correlation between ImageNet supervised linear
classification and the transfer task performance.

evaluation performance if the linear layer were directly retrained on top of the backbone used
during augmentation selection [98]. Hence, incorporating the InfoNCE loss balances the instance
contrastive task with the downstream task; we observe strong empirical evidence for this in §2.4
and §2.5.

2.4 Key Experiments
Through the following experiments, we aim to establish that (i) a self-supervised evaluation task is
highly correlated with the supervised performance of standard visual recognition tasks (image classi-
fication, object detection, and few-shot variants) on common datasets (CIFAR-10 [91], SVHN [58],
ImageNet [142], PASCAL [44], COCO [101], Places-205 [189]) and (ii) SelfAugment provides a
competitive approach to augmentation selection, despite being fully unsupervised. All experiments
used MoCo training [21] with the standard ResNet-50 backbone [148] on 4 GPUs, using default
training parameters from [68], see § 2.5.

Self-supervised evaluation correlation
As evaluating all possible data augmentations for every dataset, training schedule, and downstream
task is intractable, we evaluate a diverse sampling of RandAugment, SelfAugment, MoCoV2,
and single-transform policies and training schedules. For CIFAR-10 [91], SVHN [58], and Im-
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Figure 2.3: For SVHN, we plot the supervised classification accuracy (y-axis) vs the InfoNCE loss
function (left), contrastive top-1 accuracy (middle), and self-supervised linear rotation accuracy
(right), for a self-supervised model trained using one of each transformation used by SelfAugment.
Neither of the left two training metrics are a consistent measure of the quality of the representations,
while the rotation prediction accuracy provides a strong linear relationship.

ageNet [142] we use augmentation policies: (i) random horizontal flip and random resize crop,
(ii) RandAugment on top of (i) grid searched over parameters λ = {4,5,7,9,11},Nτ = {1,2,3} at
{100,500} epochs for CIFAR-10/SVHN and λ = {5,7,9,11,13}, Nτ = 2 at {20,60,100} epochs
for ImageNet, (iii) each individual RandAugment transformations at 100 and 10 epochs for CIFAR-
10 and ImageNet, respectively, (iv) scaling the magnitude λ from its min to max value for each Nτ at
500 epochs for CIFAR-10/SVHN and {20,60,100} epochs for ImageNet, (v) for CIFAR-10/SVHN
we also performed RandAugment using KT = {3,6,9} transformations at each of λ = {4,7} with
Nτ = 2, at 500 epochs, (vi) MoCoV2 augmentations at 100, 200 epochs for ImageNet, (vii) the five
SelfAugment policies at 750 epochs for CIFAR-10/SVHN and 100 epochs for ImageNet. In total,
this yields a diverse set of 61 models for CIFAR-10/SVHN and 43 models for ImageNet.

Linear Evaluation: We first compare the rotation, jigsaw, and colorization evaluation tasks on
the models obtained by MoCo pre-training with the above augmentation policies (full details in §2.5).
We compute the Spearman rank correlation [147] between the top-1 supervised linear classification
accuracy and each evaluation task, where a higher correlation indicates a better evaluation task. As
shown below, the rotation prediction task has a uniformly higher correlation with the supervised
linear classification compared to the jigsaw and colorization tasks:

Evaluation CIFAR-10 (ρ) SVHN (ρ) ImageNet (ρ)
Rotation 0.966 0.948 0.986

Jigsaw 0.919 0.904 0.881
Colorization 0.612 0.806 0.627

The rotation evaluation correlations indicate a very strong relationship with the supervised
evaluations, and based on its improvement over the jigsaw and colorization evaluations, we focus
our main experiments, ablations, and SelfAugment/SelfRandAugment implementation of the au-
tomatic augmentation algorithms on this evaluation task. §2.5 and 2.5 contain further details and
analyses between the self-supervised evaluation tasks, where for instance, we also observe that the
network activations from the rotation layer are more similar to the activations from the supervised
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classification layer compared to the other evaluations. We note that a rotation-based evaluation
will not work for rotation invariant images (similarly, a color-based evaluation will not work for
black-and-white images), and discuss this direction for future work in § 2.5.

The top row of Figure 2.2 shows scatterplots of the correlation between the supervised and
self-supervised evaluations for the rotation evaluation task, where the poorer performing models
come from single transformation augmentation policies and early evaluation schedules, and the
better performing models come from the RandAugment, SelfAugment, and MoCoV2 augmentation
policies. We observe that the rank correlation is maintained for both the poor and strong performing
models, indicating that the rotation evaluation can be used across a wide range of model performance.

Transfer Learning: A central goal of representation learning is to learn transferable fea-
tures. We therefore study the correlation between rotation evaluation and the ImageNet transfer
performance for the following datasets/tasks:

• VOC07 [44] object detection: Following the specifics from [68], we transfer the pre-trained
models to a Faster R-CNN R50-C4 model and fine-tune all layers. Over three runs, we evaluate
the mean results on VOC07 using the challenging COCO metric, AP50:95, and report these
results in Table 2.1. Further, we report the AP50/AP75 in § 2.5. Fine-tuning is performed on the
train2007+2012 set and evaluation is on the test2007 set.

• COCO2014 [101] multi-class image classification Following [59], we train linear SVMs [10]
on the frozen network and evaluate the accuracy over three end-to-end runs, denoted as COCO-C.
instance segmentation, We use Mask-RCNN [66] with R50-FPN [100] as our base model and
add new Batch Normalization layers before the FPN parameters. Unlike the classification, training
is performed on train2017 split with ∼118k images, and testing is performed on val2017
split. We report the Average Precision on masks (APmk) for the standard 1x schedule, denoted as
COCO-mk.

• Places205 [189] low shot scene classification: Following [59], we train linear SVMs on the
frozen network using k = {1,4,8,16,32,64} labeled examples and evaluate the accuracy over
five runs, with the average across all k used as the evaluation criteria, see § 2.5 for a breakdown.

For VOC07, COCO2014, and Places205, the bottom row of Figure 2.2 shows the ImageNet
rotation performance vs the transfer task performance, yielding strong rank correlations of ρ =
{0.968,0.988,0.982}, respectively. For comparison, the rank correlation of the supervised linear
classification on ImageNet is ρs = {0.936,0.952,0.947}. For each transfer task, the rotation
correlation is stronger than the supervised correlation. In [21], the authors observe that “linear
classification accuracy is not monotonically related to transfer performance in detection,” an
observation that we find further evidence for across more transfer tasks. Furthermore, we observe
that rotation prediction has a stronger transfer correlation than linear classification.

Finding the best individual image transformations Similar to the exhaustive evaluation of
single-transform augmentation policies performed in [16], Figure 2.3 shows the performance of
single-transform policies for SVHN (additional datasets in § 2.5). The left and middle plots show the
supervised classification accuracy compared with the InfoNCE loss and top-1 contrastive accuracy
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(how well the instance contrastive model predicts the augmented image pairs), while the right
plot shows the rotation prediction accuracy for the image transformations in O evaluated after 100
training epochs. Using high or low values of InfoNCE or contrastive accuracy to select the best
transformations would select a mixture of mediocre transformations, missing the top performing
transformation in the middle. By using the rotation prediction, each transformation has a clear
linear relationship with the supervised performance, enabling the unsupervised selection of the best
transformations.

Selecting augmentation policies across architectures In [86], the authors showed that when
training an entire network to classify image rotations, rather than just a linear layer, the rotation
prediction performance did not correlate across architectures. We study this same problem but using
only a linear evaluation layer. Specifically, for CIFAR-10 we study the rotation and supervised
evaluation correlation for ResNet18, ResNet50, Wide-ResNet-50-2, using RandAugment with a
grid search over the number of transformations Nτ = {1,2,3} and magnitudes λ = {4,5,7,9,11}
evaluated after 100 epochs. Figure 2.4 shows the results for each architecture: the overall Spearman
rank correlation across all architectures is ρ = 0.921, between the Wide-ResNet-50-2 and ResNet18
Spearman correlations of 0.924 and 0.914 and less than the ResNet50 correlation of 0.957.
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Figure 2.4: The Spearman rank correlation for CIFAR-10 RandAugment grid search for ResNet18,
ResNet50, and Wide-ResNet-50-2, as well as the combined rank correlation.

Overall, these strong correlations indicate that a linear rotation prediction evaluation is effective
across architectures. In § 2.5, we show that a drop in correlation occurs when using a two-layer MLP
for rotation evaluation instead of a linear layer. Combined with the lack of correlation discovered
when using a full network in [86], we surmise that using a linear evaluation layer to classify
rotations is important as it disentangles the learned representations from the ability of the network
to learn its own rotation features.

Performance benchmarks
Here, we evaluate the SelfAugment and SelfRandAugment augmentation policies with the goal of
establishing comparable results to the state-of-the art policies obtained through supervised feedback.

Setup: We evaluate: (i) linear classification performance on top of the frozen network using
CIFAR-10, SVHN, and ImageNet, (ii) transfer performance of ImageNet models on PASCAL
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Table 2.1: Top-1 accuracy of SelfAug on CIFAR-10, SVHN, ImageNet, as well as ImageNet transfer
tasks and semi-supervised experiments. An “R” superscript denotes best rotation accuracy. COCO-c
denotes multi-label image classification on COCO2014 and COCO0-mk denotes mask-RCCN
instance segmentation on COCO2017. Bold results are greater than one standard deviation better
across multiple runs, see Appendix 2.5. Without using labels or hand-tuning hyperparameters,
SelfAugment results in better performance than MoCoV2 for 2 out of 3 benchmark datasets it was
directly trained on and comparable transfer performance.

Self-Supervised Transfer Semi-Supervised

unsup. feedback C10 SVHN IN VOC COCO-c COCO-mk Places IN-1% IN-10%
Base Aug 89.1 89.2 46.7 47.1 33.6 29.9 5.4 16.0 33.6
SelfRandAug 90.3 96.8R 64.1 53.1 58.4 33.8 19.8 36.1 53.4
SelfAug (min rot) 91.0 94.9 57.4 50.2 50.9 31.9 13.6 26.4 45.1
SelfAug (min Info) 87.5 86.0 51.7 49.2 44.80 31.2 9.9 20.5 38.6
SelfAug (max Info) 90.1 96.2 63.3 52.6 57.8 33.8 19.4 34.4 52.7
SelfAug (minimax) 92.6R 95.8 64.4 53.0 58.7 34.4 21.2 36.2 54.1
supervised feedback
MoCoV2 [21] 92.3 96.4 64.2R 54.0 59.6 34.5 20.8 37.9R 54.9R

VOC07 object detection, COCO2014 multi-class image classification, and Places205 few-show
scene classification as described in the previous subsection, (iii) semi-supervised ImageNet top-1
accuracy with using only 1% or 10% of labels for linear training. All methods were evaluated
with the same number of epochs and hyperparameters: 750 pre-train and 150 linear epochs for
CIFAR-10/SVHN, 100 pre-train and 50 linear epochs for ImageNet, 24k fine-tuning iterations
on VOC07, and the exact training parameters/schedules from [59] for COCO2014 and Places205.
For SelfAugment, we used the settings from [98]: P = 10 policies, T = 2 transformations, and
K = 5 folds of training. For SelfRandAugment, we used the grid search described in the previous
subsection. See § 2.5 for all details.

Linear classification: Table 2.1 compares all versions of SelfAugment to the MoCoV2 augmen-
tation policies [21] that were based on the extensive study of supervised policy evaluations in [16].
For linear classification with CIFAR-10, SVHN, and ImageNet, SelfAugment policies outperform
MoCoV2’s policy. Where the largest gain occurs in the SVHN dataset. SVHN, consisting of images
of house numbers, is the most distinct from ImageNet’s diverse, object centric images. Since
MoCoV2’s policy is the result of extensive, supervised study on ImageNet, it does not transfer as
well to a distributionally distinct dataset such as SVHN. These results indicate that SelfAugment is
a stronger approach to obtaining quality representations for datasets that are distributionally distinct
from ImageNet.

Transfer and semi-supervised: For the VOC07 object detection and COCO2014 image classi-
fication transfer tasks, the MoCoV2 policy performed best. For COCO2017 instance segmentation,
SelfAugment and MoCoV2 had similar transfer performance (0.1 mask AP difference), while
SelfAugment had a stronger transfer performance for few-shot scene classification on the Places205
dataset at each k value (see § 2.5 for all details). Like ImageNet, VOC07 and COCO are natural
images containing objects, while Places205 is a scene classification benchmark, consisting of
complex scenes and diverse settings. SelfAugment’s policies, as with the linear classification,
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perform better for the dataset and task that substantially differs from ImageNet.
While the SelfAugment policy outperformed MoCoV2 for the linear classification with 100% of

the labels used for training, MoCoV2 performed better when using only 1% and 10% of the labeled
data for training the linear classifier. These results indicate that using supervised evaluation to select
a policy can lead to strong semi-supervised performance on the same dataset, but as indicated by
the Places205 results, this policy may not transfer to other semi-supervised tasks.

Rotation prediction: The mean rank correlation for the supervised linear classification and
rotation prediction for all results in this subsection is ρ = 0.978, indicating that the strong correlation
holds when removing the poorer performing models from the previous subsection. For every linear
classification result except ImageNet, the top performing augmentation policy also corresponds
to the top performing rotation prediction performance, as indicated with an “R” superscript. For
ImageNet, MoCoV2’s rotation prediction performance was significantly better than all other policies:
76.7±0.2% compared to 73.6±0.2% for SelfAugment’s minimax, over three linear evaluations.
While for a similar analysis, the linear classification performance for MoCoV2 performed worse:
64.2±0.1% compared to 64.4±0.1%.

As shown in the previous subsection, however, the rotation prediction has a stronger correlation
to transfer performance than the supervised linear classification, and indeed, that is the case here:
on the VOC07 and COCO2014 transfer tasks and the ImageNet 1% and 10% semi-supervised eval-
uations, the MoCoV2 policy significantly outperformed all other policies, while the SelfAugment
minimax policy had the best transfer performance for the Places205 task. In other words, across the
transfer and semi-supervised evaluations, rotation prediction was more indicative of performance
than supervised linear classification.

2.5 Additional Ablations
CIFAR-10, SVHN, ImageNet: Table 2.4 lists the training and experimental parameters for CIFAR-
10, SVHN, and ImageNet. The training parameters were taken from [68] and adjusted for 4 GPUs,
i.e. the learning rate and batch size were scaled by 0.5 since [68] experiments were conducted on 8
GPUs. Consult [68] and [21] for MoCo parameter information. For the linear classifier, we used 50
training iterations where the learning rate was 10× reduced at 30 and 40 epochs for ImageNet and
20 and 30 epochs for CIFAR-10 and SVHN. In [68], the linear layer was trained over 150 iterations
with a reduction at 80 and 100 iterations. In early experiments, we found the performance converged
much earlier, and to reduce computational resources, we reduced all linear training iterations.

VOC07 Following [68], we transfer the ImageNet ResNet-50 weights to perform object de-
tection using a Faster R-CNN R50-C4, with BN tuned. We fine-tuned all layers end-to-end. The
image scale is [480, 800] pixels during training and 800 at inference. Training was on the VOC
trainval07+12 set and evaluation was on the test2007 set. The R50-C4 backbones is
similar to those available in Detectron21, where the backbone stops at the conv4 stage, and the
box prediction head consists of the conv5 stage followed by a BN layer. Table 2.3 displays the
AP/AP50/AP75 breakdown for three fine-tunings.

1https://github.com/facebookresearch/detectron2

https://github.com/facebookresearch/detectron2
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Table 2.2: Transfer results: Places205 top-1 accuracy for frozen ResNet50 encoder after pre-training,
with a linear SVM trained for scene classification, with k = {1,4,8,16,32,64} labeled training
images for each class, averaged over five SVM trainings, where the errors indicate the standard
deviation (see text for details).

Labeled samples 1 4 8 16 32 64
Base Aug 1.35± .03 2.8±0.05 4.18± .11 5.88± .12 8.04± .16 10.13± .15
SelfRandAug 6.17± .05 13.01± .15 18.36± .12 23.13± .11 27.18± .11 30.89± .09
SelfAug (min rot) 3.58± .06 7.85±0.09 11.77± .10 15.60± .17 19.66± .10 23.26± .05
SelfAug (min Info) 2.46± .04 5.36±0.07 8.11± .11 11.04± .07 14.52± .09 17.75± .29
SelfAug (max Info) 5.87± .06 12.73± .14 17.88± .16 22.64± .21 26.95± .12 30.56± .17
SelfAug (minimax) 6.73± .08 14.51± .20 19.89± .18 24.72± .10 28.77± .13 32.35± .09
MoCoV2 6.65± .11 14.06± .13 19.59± .14 24.57± .13 28.56± .08 32.24± .10

Table 2.3: Transfer Result: For VOC07 test, this table reports the average AP50 and COCO-style
AP/AP75 over three runs of fine-tuning the ResNet50 encoder from ImageNet pre-training, where
the errors indicate the standard deviation (see text for details).

Evaluation AP AP50 AP75
Base Aug 47.08±0.17 74.80±0.17 50.26±0.24
SelfRandAug 53.06±0.21 80.09±0.14 57.58±0.29
SelfAug (min rot) 50.13±0.20 77.66±0.18 53.94±0.21
SelfAug (min Info) 49.18±0.21 76.31±0.17 53.17±0.18
SelfAug (max Info) 52.66±0.18 79.69±0.15 57.33±0.25
SelfAug (minimax) 52.72±0.22 79.79±0.21 57.62±0.27
MoCoV2 53.94±0.23 80.64±0.18 59.34±0.31

COCO2014/Places205: Following [59], we train Linear SVMs on frozen feature representations.
We train a linear SVM per class for (80 for COCO2014, 205 for Places205) for the cost values
C ∈ 2[−19,−4]∪10[−7,2] We used 3-fold cross-validation to select the cost parameter per class and
then further calculate the mean average precision. The features are first normalized in a (N, 9k)
matrix, where N is number of samples in data and 9k is the resized feature dimension, to have
norm=1 along each feature dimension. This normalization step is applied on evaluation data
too. We use the following hyperparameter setting for training using LinearSVC sklearn class:
class weight ratio of 2:1 for positive:negative classes, penalty=l2, loss=squared hinge,
tol=1e-4, dual=True and max iter=2000. Table 2.2 displays the Places205 results across five
linears SVM trainings for all k values.
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Table 2.4: Detailed training parameters for CIFAR-10, SVHN, and ImageNet experiments carried
out in this chapter.

-MoCo Params CIFAR 10/SVHN ImageNet
Batch Size 512 128
moco-dim 128 128
moco-k 65536 65536
moco-m 0.999 0.99
moco-t 0.2 0.2
num-gpus 4 4
lr 0.4 0.015
schedule 120, 160 60, 80
momentum 0.9 0.9
weight decay 1e-4 1e-4
Classifier Params
lr 15 30
batch size 256 256
momentum 0.9 0.9
weight decay 0.0 0.0
schedule 20, 30 30, 40
epochs 50 50

Correlation study

In this section, we detail the full experimental setup, investigation, and results from our study
of the correlation between rotation prediction performance with a linear network and supervised
downstream task performance. We also include additional preliminary and ablation studies.

Correlation study details We study RandAugment, SelfAugment, and MoCoV2 augmentation
policies, and then evaluate the performance using self-supervised rotation prediction with a linear
layer. For CIFAR-10 and SVHN, we evaluate:

• A base augmentation of random left-right horizontal flips with p = 0.5 of being applied
and random resize and crop transformation with magnitude range (0.2,1.0), trained for 750
epochs.

• On top of the base augmentation2, we performed a RandAugment grid search with magni-
tude λ = {4,5,7,9,11} and number of transformations applied Nτ = {1,2,3}, evaluated at
{100,500} epochs. We initially included Nτ = 4 in the grid search, but this always led to a

2Using this base augmentation systematically improved all RandAugment results over not using a base augmentation,
both in terms of its rotation prediction performance and supervised linear classification performance.
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degenerate solution, whereby the training loss would not minimize the objective function and
the evaluation would yield a chance result (25% self-supervised rotation prediction and 10%
supervised classification for CIFAR-10).

• Following [31], we also experimented with scaling the magnitude parameter λ from [4,11]
linearly throughout the training. We did this for each of the three Nτ values and evaluated the
results at 500 epochs.

• As part of the SelfAugment algorithm, we trained an augmentation policy consisting of each
of the fifteen individual transformations in RandAugment (transformations listed in §2.3).
In addition, we include the random resize crop transformation, as it was shown to be the
best performing individual transformation in [16]. The magnitude for each transformation
was stochastically selected from its magnitude range defined at each iteration. Each of
these 16 transformations were evaluated after a short training cycle of 100 epochs. Each of
these transformations were applied on top of a random left-right horizontal flip applied with
p = 0.5.

• Using the rotation prediction results from each of the individual transformation policies, we
selected the top KT = {3,6,9} augmentations, and trained RandAugment using only these
transformations. We performed this training for λ = {4,7} with Nτ = 2, evaluated at 500
epochs.

• We further include the four SelfAugment policies from each of its loss functions, evaluated at
750 epochs.

In total, this yields 61 different models for each of CIFAR-10/SVHN. For ImageNet we evaluate:

• A base augmentation of random left-right horizontal flips with p = 0.5 of being applied
and random resize and crop transformation with magnitude range (0.2,1.0), trained for 100
epochs.

• On top of the base augmentation3, we performed a RandAugment grid search with magnitude
λ = {5,7,9,11,13} and number of transformations applied Nτ = 2, evaluated at {20,60,100}
epochs.

• Following [31], we also experimented with scaling the magnitude parameter λ from [5,13]
linearly throughout the training. We did this for Nτ = 2 and evaluated the results at 100
epochs.

• As part of the SelfAugment algorithm, we trained an augmentation policy consisting of
each of the fifteen individual transformations in RandAugment. In addition, we include the
random resize crop transformation, as it was shown to be the best performing individual

3Using this base augmentation systematically improved all RandAugment results over not using a base augmentation,
both in terms of its rotation prediction performance and supervised linear classification performance.
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Figure 2.5: The ImageNet rotation prediction correlations with transfer performance to VOC07
for all AP, AP50, and AP75 evaluations. The Spearman rank correlation with rotation prediction is
indicated with ρ , while the rank correlation with the supervised ImageNet classification performance
is indicated with ρs.

transformation in [16]. The magnitude for each transformation was stochastically selected
from its magnitude range at each iteration. Each of these 16 transformations were evaluated
after a short training cycle of 100 epochs. Each of these transformations were applied on top
of a random left-right horizontal flip applied with p = 0.5.

• We further included the five SelfAugment policies from each of its loss functions, evaluated
at 100 epochs.

• To further compare with state-of-the-art models, we compare with the MoCoV2 augmentation
policy evaluated at 100,200 epochs

In total, this yields 43 different models for ImageNet.
Supplementing the main correlation results shown in the experiments section, Figure 2.5 shows

the the ImageNet rotation prediction correlations with transfer performance to VOC07 for all
AP, AP50, and AP75 evaluations. Figure 2.6 shows the ImageNet rotation prediction correlations
with transfer performance to Places205 few label scene classification using k = {1,4,8,16,32,64}
labels per scene class. For both VOC07 and Places205, the Spearman rank correlation with rotation
prediction is indicated with ρ , while the rank correlation with the supervised ImageNet classification
performance is indicated with ρs. Across all evaluation metrics, the rotation correlation is higher
than the supervised correlation.

Correlation with an MLP rotation prediction
When following the same evaluation protocol, except using a 2 layer MLP instead of a linear layer
for rotation prediction, we find that the CIFAR-10 Spearman rank correlation with the supervised
linear classification drops from 0.966 to 0.904 while the rotation prediction performance increases
by 3.4±1.4% across all evaluations. This correlation drop indicates that using a simple linear layer,
rather than a more complicated network, is ideal for evaluation of the learned representations. A
more complicated network can learn its own representation, which distances the evaluation from
the learned representations.
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Figure 2.6: The ImageNet rotation prediction correlations with transfer performance to Places205
few label scene classification using k = {1,4,8,16,32,64} labels per scene class. The Spearman
rank correlation with rotation prediction is indicated with ρ , while the rank correlation with the
supervised ImageNet classification performance is indicated with ρs.

Correlation demonstration: finding and tuning transformation parameters
Figure 2.7 shows the performance of single-transform policies for CIFAR-10. The left and middle
plots show the supervised classification accuracy compared with the InfoNCE loss and top-1
contrastive accuracy (how well the instance contrastive model predicts the augmented image pairs),
while the right plot shows the rotation prediction accuracy for the image transformations in O
evaluated after 100 training epochs. Using high or low values of InfoNCE or contrastive accuracy
to select the best transformations would select a mixture of mediocre transformations, missing the
top performing transformation in the middle. By using the rotation prediction, each transformation
has a clear linear relationship with the supervised performance, enabling the unsupervised selection
of the best transformations.

Next, Figure 2.8 demonstrates that the individual image transformation parameters can also be
determined through rotation prediction. Specifically, we pre-trained CIFAR-10 using the default
MoCoV2 augmentation policy. Then, for each of the fifteen transformation in O, we applied
the transformation with probability 1.0 and a magnitude λ randomly selected between 0 and
{0.25,0.5,0.75,1.0}. We evaluate the individual transformation’s magnitude parameter using
the supervised top-1 linear accuracy (classification) and self-supervised top-1 rotation prediction
(rotation) as shown in Figure 2.8. Overall, the supervised linear classification and self-supervised
rotation prediction select the the same magnitude parameter for 13 of the 15 transformations and
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Figure 2.7: Similar to Figure 2.3, for CIFAR-10, we plot the supervised classification accuracy
(y-axis) vs the InfoNCE loss function (left), contrastive top-1 accuracy (middle), and self-supervised
linear rotation accuracy (right), for a self-supervised model trained using one of each transformation
used by SelfAugment. Neither of the left two training metrics are a consistent measure of the quality
of the representations, while the rotation prediction accuracy provides a strong linear relationship.

have a strong Spearman rank correlation of 0.929. Taken together, these results indicate that rotation
prediction can be used to both select individual transformations as well as the parameters of the
transformations for an augmentation policy.

Rotation correlation shows the benefit of Gaussian blur on ImageNet
In [16], the authors conducted a thorough, supervised investigation of a diverse set of image
transformations that could be used in an augmentation policy for instance contrastive learning
with ImageNet. The Gaussian blur augmentation was shown to be one of the most effective
image transformations for ImageNet, and indeed, [21] released a follow-up paper showing that the
MoCo framework [68] significantly benefits from its use. We find that our rotation-based evaluation
similarly indicates that Gaussian blur is an effective image transformation for ImageNet under the
same conditions studied in [21]:

Augmentation Policy Top-1 Supervised Acc. Rotate Acc.
MoCoV1 60.6 72.1

MoCoV2 no G-Blur 63.6 74.1
MoCoV2 67.7 77.0

Rotation invariant and black-and-white images
We note that certain types of images are not amenable to certain self-supervised evaluations. For
instance, rotation evaluation will not work for rotation invariant images (such as images of textures)
as the self-supervised evaluation task will not be able to discern the rotations. Similarly, a jigsaw
task will not be able to discern images with a interchangeable quadrants (such as centered images
of flowers), and a color prediction tasks will not work on black and white images (such as x-ray
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images). Therefore, for each image dataset, we recommend using a self-supervised evaluation that
does not evaluate an invariant factor of the image dataset, e.g. use rotation prediction if the images
are black-and-white. We leave an investigation of the trade-offs between image invariances and
self-supervised evaluations to future work.

Modified RV similarity analysis
To obtain a better understanding of why the the rotation evaluation has the best correlation with the
supervised evaluation performance, we conduct a similarity analysis of the activations from the
linear evaluation layers. Specifically, we use a modified RV coefficient (as in [154]) to measure the
similarity between the activations from the rotation, jigsaw, and colorization evaluation layers on
top of the frozen encoder network. The RV coefficient is a matrix correlation method that compares
paired comparisons X and Y with different number of columns, and is defined as:

RV (X ,Y ) =
tr(XX ′YY ′)√

tr[(XX ′)2]tr[(YY ′)2]
(2.3)

The RV coefficient approaches 1 when datasets are small, even for random and unrelated
matricies. To fix this issue, the modified RV coefficient (RV2) ignores the diagonal elements of XX ′

and YY ′, which pushes the numerator to zero when X and Y are random matricies. Hence, the RV2
similarity metric is less sensitive to dataset size.

RV2(X ,Y ) =
Vec( ˜XX ′)′Vec( ˜YY ′)√

Vec( ˜XX ′)′Vec( ˜XX ′)×Vec( ˜YY ′)′Vec( ˜YY ′)
(2.4)

Where ˜XX ′ = XX ′−diag(XX ′) and similarly for ˜YY ′. This metric is invariant to orthogonal
transformations and isomorphic scaling, but critically not invariant to arbitrary linear invertible
linear transformations between representations (e.g. batch normalization). In [154], the authors
show that the RV2 metric could recover expected similarity patterns in neural networks and that it
could be used to suggest hypotheses about intermediate representations in deep neural networks.

To study the similarity between linear layers trained using the rotation prediction, jigsaw,
and colorization tasks and linear layers trained using supervised learning, we evaluated the RV2
coefficient of 32 different linear layers trained on top of frozen encoders using the CIFAR-10 dataset.
Each of the 32 encoders used a different augmentation policy during training. We evaluated the
activations at the final linear layer across the entire validation set of CIFAR-10. We used the same
set of image transformations before feeding each image into the the network (center crop to 28x28,
and normalization across each channel by it’s mean and std deviation across the dataset) across all
self supervised tasks. As demonstrated in Figure 2.9, activations from rotation prediction layers had
significantly stronger similarities with activations from supervised layers than other self supervised
tasks. This demonstrates that the rotation prediction task uses the learned representation in a
significantly more similar way for evaluation compared to the other evaluation tasks, and provides
evidence that rotation evaluation performance not only correlates, but so does the activations from
the evaluation layer.
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Augmentation policy exploration via Bayesian optimization
As in [98], we used policy exploration search to automate the augmentation search. Since there are
an infinite number of possible policies, we applied Bayesian optimization to explore augmentation
strategies. In line 11 in Algorithm 1, we employed the Expected Improvement (EI) criterion as an
acquisition function to explore B candidate policies efficiently: EI(T ) = E[min(L(θ ,φ |T (DA)−
L†,0)]. Here L† represents a constant threshold determined by the quantile of observations amongst
previously explored policies. As in [98], we used variable kernel density estimation on a graph-
structured search space to approximate the criterion. Since this method is already implemented in
the tree-structured Parzen estimator algorithm we used Ray4 and Hyperopt to implement this in
parallel.

In [98], the authors try to align distributions of data using supervised loss, then retrain the
network using supervised loss. Since we do not directly retrain with the loss functions used to
find augmentations, our method can instead be thought of as finding distributions of the data - via
augmentation policies - that minimize (or maximize) alignment as defined by our loss functions.

SelfAugment Loss Functions
In this section we discuss the loss functions used for SelfAugment in greater detail and their resulting
augmentation policies which are summarized in Figure 2.10.

• Min. eval error:
T SS = argminT LSS(θM,φss|T (DA))

where LSS is the self-supervised evaluation loss, which yields policies that should result
in improved performance of the evaluation if we were to retrain the linear classifier with
the selected augmentations. However, since the augmentations are instead used to create a
contrastive learning task, it is important that we find a different set of augmentations that
take the contrastive task into consideration. Indeed, using this loss function results in weak
expected augmentation strengths (see Figure 2.10), resulting in relatively poor downstream
performance (see Table 2.1).

• Min. InfoNCE:
T I-min = argminT LNCE(θM|T (DA))

where LNCE is the InfoNCE loss from Eq. 2.1, which yields policies that make it easier to
distinguish image pairs in the contrastive feature space. This loss function should results
in small magnitude augmentations, since a trivial way to minimize InfoNCE is to apply
no transforms - resulting in trivial minimization of the InfoNCE loss. Indeed, the loss
function yields (i) lower expected augmentation strengths and (ii) emphasizes transformations
like Sharpness, Figure 2.10. We did not expect this loss function to perform well, and
was primarily included as a sanity check that minimizing InfoNCE would result in light
augmentations.

4https://github.com/ray-project/ray

https://github.com/ray-project/ray
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• Max InfoNCE:
T I-max = argminT −LNCE(θM|T (DA))

negates the previous loss function, yielding policies that make it difficult to distinguish image
pairs in the feature space. In practice, this results in high magnitude augmentations and
emphasizes augmentations like Invert. We hypothesized that maximizing InfoNCE could
result in strong augmentations that could create a challenging contrastive task. However, the
augmentations do not have any regularizing that would ensure the image maintains important
features, leading to relatively suboptimal performance (see Table 2.1).

• Min Lss max LNCE: T minmax = argminT Lss−LNCE yields policies with difficult transforma-
tions that maximize InfoNCE, while maintaining salient object features that minimize the
self-supervised evaluation. When using a linear rotation evaluation prediction, we found this
loss function to have the strongest performance for contrastive learning (§2.4). In practice,
we normalized Lrot and LNCE by their expected value for the training data across the K-folds
when training with the base augmentation, since LNCE was usually higher than Lrot, but
had each loss contribute equally for augmentation policy selection. Policies that optimized
this loss emphasized transformations like Equalize, AutoContrast and Contrast
more than others. For ImageNet, these transformations proved to be challenging yet useful.
Notably, they closely resemble the effects of MoCov2 and SimCLR’s Color Jitter [21].

Finally, while min Lrot max LNCE works well, one could potentially gain performance by
weighting the importance of minimizing Lrot vs maximizing LNCE. Hence we propose experiment-
ing with different values of λNCE and λrot when optimizing the following objective: min λrotLrot
max λNCELNCE.

Using the Original MoCoV2 [21] policy as the base policy
We replicated our SelfAugment results in Table 2.1 for the CIFAR10 dataset, where instead of using
a single augmentation as the base policy, we used the full augmentation policy from [21] as the base
policy. Results are shown in Table 2.5. This improved performance when we used the augmentation
policies learned using min Lrot as feedback. Minimizing rotation may be the best approach for
learning augmentation policies on top of established augmentation policies, because it produces
augmentations that would improve performance if we retrained the linear classifier with the selected
augmentations. Since the augmentation policy for contrastive learning is already quite strong when
we use the MoCov2 augmentations as the base policy, this likely allows us to focus on improving
generalization [98], leading to improved performance. Interestingly, the other SelfAugment Loss
functions (see §2.5 for more detail) all deteriorated performance. This is likely because trying
to change the contrastive performance of such a finely tuned set of augmentations requires more
careful tuning. It is possible the minimax approach may result in improved performance with more
careful tuning of the weighting of the rotation and contrastive losses.

It is also worth noting that using the best policy using the MoCov2 augmentations as the base
augmentation set, then using SelfAugment with min Lrot as feedback slightly outperformed the
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full SelfAugment pipeline with min Lrot max LICL as feedback. For datasets where researchers are
confident that the augmentations from [21] are a strong base set of augmentations, this approach
is worth exploring, and can be easily done using our pipeline. However, it is not possible when a
good base augmentation policy is unknown. We leave further exploration of this approach as future
research, as we chose to focus on the case where no existing augmentation policy is known.

unsup. feedback C10
SelfAug (min rot) 92.8

SelfAug (min Info) 92.2
SelfAug (max Info) 90.5
SelfAug (minimax) 90.9

supervised feedback
MoCov2[21] 92.3

Table 2.5: Results on CIFAR10 when using SelfAugment but using the augmentation policy from
[21] as the base policy. Because the base augmentation policy is already strong, minimizing rotation
loss during the augmentation policy search produces the best results. The results with the MoCoV2
augmentations as the base policy and minimization of rotation prediction slightly outperform the
best results using SelfAugment and the minimax loss as feedback (92.6, see Table 2.1).

Computational Efficiency
SelfAugment can be broken up into three steps:

1. Finding the base augmentation. This entails training 16 instances of MoCoV2 for 10-15%
of the total epochs typically used for pre-training, using all of the training data available.

2. Training on K-Folds using the base augmentation. For CIFAR-10/SVHN we used the
entire training dataset for this step, and evaluated for the same number of epochs as we use
to train the final models, using all the training data from each fold. For ImageNet, we used
a subset of 50,000 images and trained for 5x longer, to make up for the smaller amount of
images. This was done to improve the computational efficiency of step 3.

3. Finding augmentation policies. Because we only need to complete forward passes of the
network, this is relatively efficient. We use the held out data from each of the K-folds to
evaluate the model with different augmentation policies applied.

It is important to note that steps 1 and 2 are shared across all augmentation policies found with
SelfAug, meaning that they do not need to be repeated to find a new augmentation policy using
a different loss function. This could allow for rapid experimentation with new loss functions for
SelfAugment in the future.
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Meanwhile, SelfRandAug’s computational time is completely determined by the user-defined
search space over λ and Nτ . However, because it requires training multiple models to completion on
the entire dataset, it is more computationally intensive than SelfAug. SelfRandAug’s computation
time could be reduced by training on a subset of Images in a large training set.

Finally, it is worth noting that evaluating a single augmentation’s various hyperparameters for
MoCoV2 can be extremely computationally expensive. Because pre-training MoCoV2 for 100
epochs then training a linear head for evaluation takes a total of 244 GPU Hours on a Tesla V100
GPU, searching over various augmentations and their strength and probability parameters can easily
require thousands of GPU hours. Hence, an additional contribution of this work is providing a fast,
automatic method for selecting augmentations for instance contrastive learning.

Table 2.6: Computational time, measured in one hour on one NVIDIA Tesla V100 GPU for
SelfAugment and SelfRandAug on ImageNet. SelfAug times are evaluated when using the minimax
loss function, which takes the most time because we evaluate both InfoNCE and rotation loss. For
SelfRandAug, computational time reflects our grid search over λ = {5,7,9,11,13}, Nτ = 2, plus
the time to train a rotation head on top of each representation. This time could be larger or smaller
depending on the parameters λ and Nτ a user wants to search over.

Algorithm Find Base Aug Train Find Aug Total
SelfAug 476.6 155.0 97.7 729.4
SelfRandAug 1220.0

2.6 Discussion
We have shown that a self-supervised rotation evaluation has a strong correlation with supervised
evaluation (outperforming jigsaw/colorization tasks) and that this evaluation can be incorporated
into an effective loss function for efficient augmentation selection (§2.4). Here, we further reflect
on the utility of the self-supervised rotation evaluation task.

If rotation prediction is highly correlated with supervised evaluations, why not directly
train on it? As discussed in §2.5, the authors of [86] found that rotation accuracy from training
a full network on rotation prediction was only weakly correlated with supervised performance.
Furthermore, as discussed in §2.5, using a 2-layer MLP for rotation prediction drops the correlation
from ρ =.97 to .90 even though the prediction accuracy improves. This indicates that while rotation
prediction using a linear combination of the learned representations is an effective evaluation,
actually learning the representations via rotation prediction is not as strongly correlated.

Shouldn’t minimizing rotation error yield the best policies? We evaluate policies only after
contrastive training, so minimizing rotation error yields policies that improve rotation prediction
if we were to retrain the linear classifier. However, as indicated by the poor performance of
using the rotation-error as the loss function, it is important to also take the contrastive task into
consideration when retraining the entire network. To explore this idea further, we minimize a
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supervised classification loss function for SelfAugment. Due to the strong correlation between
the rotation task and supervised evaluation, this results in similar performance to minimizing
rotation loss with SelfAugment: we observe an accuracy of 90.7 on CIFAR-10 and 94.9 on SVHN
using supervised feedback (rotation evaluation yields an accuracy of 91.0 on CIFAR-10 and 93.7
on SVHN). This performance is worse than the loss functions that simultaneously maximize the
InfoNCE loss, which encourage difficult augmentation policies (see § 2.5).

Which SelfAugment loss function should be used on a new, unlabeled dataset? When
training with a new unlabeled dataset, we recommend starting with the minimax SelfAugment loss
function for augmentation policy selection. This recommendation stems from its superior perfor-
mance across all datasets and tasks. For comparison, the SelfAugment loss function minimizing the
InfoNCE produced results that were often worse than the baseline policy, while both maximizing
the InfoNCE or minimizing rotation prediction exceeded the baseline, but generally did not surpass
MoCoV2’s policy. In § 2.5, we show the effective magnitude of each individual transformation for
each loss functions. We see that, as expected, the minimax loss function produces policies with
intermediate magnitudes across all datasets. Its strong performance indicate that these intermediate
magnitudes have found a sweet spot where the augmentations strike a balance between creating
difficult instance contrastive tasks and retaining salient image features.

It is worth noting that across both SVHN and CIFAR-10, SelfAugment with min InfoNCE loss
function results in worse results than simply using the baseline augmentation. We believe this is
because the selected augmentations make it easier to tell samples apart using weak augmentations
that do not actually add meaningful contrastive tasks (see § 2.5). These augmentations minimize
InfoNCE but do not appear to be helpful in improving the model’s ability to generalize to new data.
Accordingly, the model performs poorly when retrained with these augmentations.

Computational efficiency: Importantly, SelfAugment and RandAugment provide an efficient
framework for finding augmentations for instance contrastive learning without using labels. Prior
work [16] performed grid searches over various augmentation policies, requires training many
models to completion. Training a single instance of MoCoV2 on ImageNet using 4 V100 GPUs for
100 epochs takes 52 hours (208 GPU hours). SelfAugment finds useful, and typically improved,
augmentation policies in 730 GPU hours, and can learn additional augmentation policies in an
additional 98 GPU Hours (see §2.5 for details). This is less than the computational cost of training
just four total instances. For comparison, [16] reported at least 49 full training runs.

2.7 Conclusion
In this chapter, we identified the problem that self-supervised representations are evaluated using
labeled data, oftentimes using the labels from the “unlabeled” training dataset itself. We established
that a self-supervised image rotation task is strongly correlated with the supervised performance
for standard computer vision recognition tasks, and as a result, can be used to evaluate learned
representations. Using this evaluation, we establish two unsupervised data augmentation policy
selection algorithms and show that they can outperform or perform comparably to policies obtained
using supervised feedback.
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Figure 2.8: Result of magnitude sweeps on CIFAR-10 for the 15 transformations optimized in
SelfAugment. For each augmentation, we train MoCoV2 for 250 epochs using the usual MoCoV2
augmentations, and then added the single augmentation on top. We then vary the range of possible
augmentation strength λ parameter to be between 0 and the value on the x-axis, and randomly
select a value in that range, and apply the augmentation with 100 % probability. Rotation accuracy
and classification accuracy have Spearman rank correlation ρ = .929, demonstrating how the
relationship between rotation accuracy and classification accuracy can be used to select the
parameters of individual transformations.
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Figure 2.9: Comparisons of RV2 Similarity [154] between each self supervised task studied and
supervised linear layers. Rotation prediction layers have stronger similarity with supervised linear
layers than either of the jigsaw and colorization self supervised tasks (p < 2.3x10−5, Wilcoxon
one-tailed signed rank test). The datapoint with highest similarity was using the strongest settings
of SelfRandAugment, which learned poor representations with near chance performance on the
supervised downstream task, explaining why similarity was so high across tasks. The strong
similarity between rotation prediction and supervised linear layers suggests that they use the
underlying representations in a similar way for evaluation, explaining why rotation prediction makes
for a strong evaluation metric that correlates more strongly with supervised evaluation than the
jigsaw and colorization evaluations.
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Figure 2.10: Visualization of the augmentation policies found with SelfAugment as well as Fast
AutoAugment for supervised learning. This figure shows expected augmentation strength (mean
magnitude×normalized probability) of each augmentation, evaluated across all datasets and loss
functions. As expected, minimizing InfoNCE results in augmentations with smaller magnitude,
and emphasizes augmentations that do not alter the image much (e.g. Sharpness). Maximizing
InfoNCE results in augmentations with a larger magnitude and emphasizes augmentations (e.g.
Invert, Solarize) which heavily alter the image. The minimax loss function yields an
augmentation policy that strikes a middle ground between the two, with strong augmentations, but
reduced emphasis on heavy augmentations like Invert. Comparison of the policies that worked
best with contrastive learning relative to the original FAA policies reveals that our policies are (i)
stronger, and (ii) have more variability in a single augmentation’s E(λ*p) relative to policies that
were used for supervised learning.
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Chapter 3

Data Efficient Self-Supervised
Representation Learning

This chapter discussed various methods for data-efficient representation learning. In particular, this
chapter focuses on how a model can be trained via self-supervised learning using the least amount
of data possible.

3.1 Introduction
Recently, self-supervised pretraining – an unsupervised pretraining method that self-labels data
to learn salient feature representations – has outperformed supervised pretraining in an increasing
number of computer vision applications [16, 21, 14]. These advances come from instance contrastive
learning, where a model is trained to identify visually augmented images that originated from the
same image from a set [41, 167]. Typically, self-supervised pretraining uses unlabeled source data
to pretrain a network that will be transferred to a supervised training process on a target dataset.
Self-supervised pretraining is particularly useful when labeling is costly, such as in medical and
satellite imaging [145, 25].

However, self-supervised pretraining requires long training time on large datasets, e.g. Sim-
CLR [16] showed improved performance out to 3200 epochs on ImageNet’s 1.2 million images [142].
In addition, instance contrastive learning is sensitive to the data augmentation policies and many
trials are needed to determine the right settings [137, 170].

The computational intensity and sensitivity of self-superivsed pretraining may lead researchers
to seek self-supervised models from model zoos and research repositories. However, models
pretrained on domain-specific datasets are not commonly available. In turn, many practitioners do
not use a model pretrained on data similar to their target data, but instead, use a pretrained, publicly
available model trained on a large, general dataset, such as ImageNet. We refer to this process as
generalist pretraining. A growing body of research indicates that pretraining on domain-specific
datasets, which we refer to as specialist pretraining, leads to improved transfer performance [133,
115, 120].
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Figure 3.1: Methods of using self-supervision. The top row are the two common prior approaches to
using self-supervised (SS) pretraining. In Generalist Pretraining, a large, general, base dataset is
used for pretraining, e.g. ImageNet. In Specialist Pretraining, a large, specialized source dataset
is collected and used for pretraining, e.g. aerial images. In this chapter, we explore Hierarchical
Pre-Training (HPT), which sequentially pretrains on datasets that are similar to the target data, thus
providing the improved performance of specialist pretraining while leveraging existing models.

Figure 3.1 formalizes this categorization of self-supervised pretraining methods. Generalist
and specialist pretraining are as described above, with one round of self-supervised pretraining
on a domain-general and domain-specific dataset, respectively. Hierarchical Pretraining refers
to models pretrained on datasets that are progressively more similar to the target data. HPT first
pretrains on a domain-general dataset (referred to as the base pretrain), then optionally pretrains
on domain-specific datasets (referred to as the source pretrain), before finally pretraining on the
target dataset (referred to as the target pretrain). In all cases, pretraining is followed by supervised
finetuning on the target task.

Specialist pretraining presents the same core challenge that transfer learning helps alleviate: a
sensitive training process that requires large datasets and significant computational resources [89].
While transfer learning has been carefully investigated in supervised and semi-supervised settings
for computer vision [149], it has not been formally studied for self-supervised pretraining, itself.
Furthermore, several recent papers that apply self-supervised learning to domain-specific problems
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did not apply transfer learning to the pretraining process itself, which motivated our work [151, 3,
93].

In this chapter, we investigate the HPT framework with a diverse set of pretraining procedures
and downstream tasks. We test 16 datasets spanning visual domains, such as medical, aerial, driving,
and simulated images. In our empirical study, we observe that HPT shows the following benefits
compared to self-supervised pretraining from scratch:

• HPT reduces self-supervised pretraining convergence time up to 80× compared to pretraining
from scratch.

• HPT consistently converges to better performing representations than generalist or specialist
pretraining for 15 of the 16 studied datasets on image classification, object detection, and
semantic segmentation tasks.

• HPT is significantly more resilient to the set of image augmentations and amount of data used
during self-supervised pretraining.

The following sections provide the background, methodology, and experiments used to reach
these conclusion and the appendix significantly broadens the scope of our analyses. From this
experimental effort, our key conclusion is straightforward: self-supervised pretraining improves
self-supervised pretraining.

3.2 Background and Related Work
Transfer learning studies how a larger, more general, or more specialized source dataset can be
leveraged to improve performance on target downstream datasets/tasks [134, 131, 7, 35, 73, 68,
39, 43, 185, 57, 95, 132]. this chapter focuses on a common type of transfer learning in which
model weights trained on source data are used to initialize training on the target task [183]. Model
performance generally scales with source dataset size and the similarity between the source and
target data [133, 115, 120].

A fundamental challenge for transfer learning is to improve the performance on target data when
it is not similar to source data. Many works have tried to increase performance when the target and
source datasets are not similar. Recently, [129] proposed first training on the base dataset and then
training with subsets of the base dataset to create specialist models, and finally using the target data
to select the best specialist model. Similarly, [118] used target data to reweight the importance of
base data. Unlike these works, we do not revisit the base data, modify the pretrained architecture, or
require expert model selection or reweighting.

Self-supervised pretraining is a form of unsupervised training that captures the intrinsic
patterns and properties of the data without using human-provided labels to learn discriminative
representations for the downstream tasks [37, 38, 186, 53, 160]. In this work we focus on a type
of self-supervised pretraining called instance contrastive learning [41, 167, 68], which trains a
network by determining which visually augmented images originated from the same image, when
contrasted with augmented images originating from different images. Instance contrastive learning



CHAPTER 3. DATA EFFICIENT SELF-SUPERVISED REPRESENTATION LEARNING 34

has recently outperformed supervised pretraining on a variety of transfer tasks [68, 18], which has
lead to increased adoption in many applications. Specifically, we use the MoCo algorithm [21]
due to its popularity, available code base, reproducible results without multi-TPU core systems,
and similarity to other self-supervised algorithms [84]. We also explore additional self-supervised
methods in the appendix.

Our focus is on self-supervised learning for vision tasks. Progressive self-supervised pretraining
on multiple datasets has also been explored for NLP tasks, e.g. see [64, 127] and the citations
within. In [64], the authors compare NLP generalist models with models trained on additional
source and task-specific data. While our work is similar in spirit to the language work of [64], our
work focuses on computer vision, includes a greater variation of pretraining pipelines, and allows
for adaptation with fewer parameter updates.

Label-efficient learning includes weak supervision methods [110] that assume access to
imperfect but related labels, and semi-supervised methods that assume labels are only available
for a subset of available examples [18, 87, 174]. While some of the evaluations of the learned
representations are done in a semi-supervised manner, HPT is complementary to these approaches
and the representations learned from HPT can be used in conjunction with them.

3.3 Hierarchical pretraining
In this section, we formalize each of the HPT components as depicted in Figure 3.1.

Base pretraining: We use the term base pretraining to describe the initial pretraining step where
a large, general vision dataset (base dataset) is used to pretrain a model from scratch. Practically,
few users will need to perform base pretraining, and instead, can use publicly available pretrained
models, such as ImageNet models. Because base pretraining, like many prior transfer learning
approaches, is domain agnostic, most practitioners will select the highest performing model on a
task with a large domain [88].

Source pretraining: Given a base trained model, we select a source dataset that is both larger
than the target dataset and more similar to the target dataset than the base dataset. Many existing
works have explored techniques to select a model or dataset that is ideal for transfer learning with a
target task [139]. Here, we adopt an approach studied by [89, 139] in a supervised context called
a task-aware search strategy: each potential source dataset is used to perform self-supervised
pretraining on top of the base model for a very short amount of pretraining, e.g. ∼5k pretraining
steps as discussed in Section 4.4. The supervised target data is then used to train a linear evaluator
on the frozen source model. The source model is then taken to be the model that produces the
highest linear evaluation score on the target data, and is then used for additional target pretraining.

Experimentally, we have found that using a single, similar, and relatively large (e.g. > 30K
images) source dataset consistently improves representations for the target task. Furthermore, we
view source pretraining as an optional step, and as shown in Section 4.4, HPT still leads to improved
results when directly performing self-supervised pretraining on the target dataset following the base
pretraining. We further discuss source model selection in the appendix.
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Target pretraining: Finally, we perform self-supervised pretraining with the target dataset,
initialized with the final source model, or the base model in the case when no source model was
used. This is also the stage where layers of the model can be frozen to prevent overfitting to the
target data and enable faster convergence speed. Experimentally, we have found that freezing all
parameters except the modulation parameters of the batch norm layers leads to consistently strong
performance for downstream tasks when the target dataset is relatively small (< 10K images).

Supervised finetune: Given the self-supervised pretrained model on the target dataset, we
transfer the final model to the downstream target task, e.g. classification.
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Figure 3.2: Linear separability evaluation. For each of the 16 datasets, we train a generalist model
for 800 epochs on ImageNet (Base). We either train the whole model from 50-50k iters (HPT
Base-Target) or just the batch norm parameters for 5k iters (HPT Base-Target (BN)). We compare
HPT to a Specialist model trained from a random initialization (Target). For each, we train a linear
layer on top of the final representation. HPT obtains the best results on 15 out of 16 datasets without
hyperparameter tuning.
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3.4 Experiments
Through the following experiments, we investigate the quality, convergence, and robustness of
self-supervised pretraining using the HPT framework.

Datasets
We explored self-supervised pretraining on the following datasets that span several visual domains
(see the appendix for all details). Dataset splits are listed with a train/val/test format in square
brackets after the dataset description.

Aerial: xView [92] is a 36-class object-centric, multi-label aerial imagery dataset. RESISC [25]
is a 45-class scene classification dataset for remote sensing [18900/6300/6300]. UC-Merced [180]
is a 21-class aerial imagery dataset [1260/420/420].

Autonomous Driving: BDD [184] is a high resolution driving dataset with 10 object detection
labels and 6 weather classification labels. We evaluate HPT performance over the object detection
task, as well as the weather classification task [60k/10k/10k]. VIPER [140] is a 23-class simulated
driving dataset for which we perform multi-label each object in the image [13367/2868/4959].

Medical: Chexpert [79] is a large, multi-label X-ray dataset, where we determine whether each
image has any of 5 conditions [178731/44683/234]. Chest-X-ray-kids [83] provides pediatric
X-rays used for 4-way pneumonia classification [4186/1046/624].

Natural, Multi-object: COCO-2014 [101] is an 81-class object detection benchmark. We
perform multi-label classification for each object, and we further use the 2017 split to perform
object detection and segmentation [82783/20252/20252]. Pascal VOC 2007+2012 [47] is a
standard 21-class object detection benchmark we use for multi-label classification to predict whether
each object is in each image. We also use the object detection labels for an object detection transfer
task [13.2k/3.3k/4.9k].

Assorted: DomainNet [126] contains six distinct datasets, where each contains the same 345
categories. The domains consist of real images similar to ImageNet, sketch images of greyscale
sketches, painting images, clipart images, quickdraw images of binary black-and-white
drawings from internet users, and infograph illustrations. We use the original train/test splits
with 20% of the training data used for validation. Oxford Flowers [119]: we use the standard split
to classify 102 fine-grain flower categories [1020/1020/6149].

Evaluations
The features of self-supervised pretrained models are typically evaluated using one of the following
criteria:

• Separability: Tests if a linear model can differentiate classes in a dataset using learned
features. Good representations should be linearly separable [122, 27].

• Transferability: Tests the performance of the model when finetuned on new datasets and
tasks. Better representations will generalize to more tasks [68].
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Figure 3.3: Semi-supervised evaluation. We compared the best semi-supervised finetuning perfor-
mance from the (B)ase model, (T)arget pretrained model, HPT pretrained model, and HPT-BN
pretrained model using a 1k labeled subset of each dataset. Despite performing 10x-80x less
pretraining, HPT consistently outperformed the Base and Target. HPT-BN generally showed im-
provement over Base model transfer, but did not surpass HPT’s performance.

• Semi-supervised: Test performance with limited labels. Better representations will suffer
less performance degradation [73, 16].

We explored these evaluation methods with each of the above datasets. For all evaluations, unless
otherwise noted, we used a single, centered crop of the test data with no test-time augmentations.
For classification tasks, we used top-1 accuracy and for multi-label classification tasks we used the
Area Under the ROC (AUROC) [11].

In our experiments, we used MoCo-V2 [21] as the self-supervised training algorithm. We
selected MoCo-V2 as it has state-of-the-art or comparable performance for many transfer tasks, and
because it uses the InfoNCE loss function [122], which is at the core of many recent contrastive
pretraining algorithms [105]. Unless otherwise noted, all training is performed with a standard
ResNet-50 backbone [148] on 4 GPUs, using default training parameters from [68]. We also
explored additional self-supervised pretraining algorithms and hyperparameters in the appendix.

In the following experiments, we compare implementations of the following self-supervised
pretraining strategies:
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Figure 3.4: Full finetuning evaluations. Finetuning performance on target datasets. For these
datasets, we evaluated the performance increase on the target dataset by pretraining on sequences of
(B)ase (ImageNet), (S)ource (left) dataset, and (T)arget (right) dataset. All HPT variants beat all
baselines, with HPT-BN getting slightly better performance on UC Merced and B+S+T having the
best performance elsewhere.

• Base: transfers the 800-epoch MoCo-V2 ImageNet model from [21] and also updates the
batch norm’s non-trainable mean and variance parameters using the target dataset (this
uniformly led to slightly improved performance for Base transfer).

• Target: performs MoCo-V2 on the target dataset from scratch.

• HPT: initializes MoCo-V2 pretraining with the 800-epoch MoCo-V2 ImageNet model from
[21], then optionally performs pretraining on a source dataset before pretraining on the target
dataset. The batch norm variant (HPT-BN) only trains the batch norm parameters (γ,β ),
e.g. a ResNet-50 has 25.6M parameters, where only ∼0.2% are BN parameters.

Existing work largely relies on supervised evaluations to tune the pretraining hyperparame-
ters [16], but in practice, it is not possible to use supervised evaluations of unlabeled data to tune the
hyperparameters. Therefore, to emphasize the practicality of HPT, we used the default pretraining
hyperparameters from [21] with a batch size of 256 (see the appendix for full details).

Pretraining Quality Analysis
Separability analysis: We first analyzed the quality of the learned representations through a linear
separability evaluation [16]. We trained the linear model with a batch size of 512 and the highest
performing learning rate of {0.3,3,30}. Similar to [89], we used steps rather than epochs to allow
for direct computational comparison across datasets. For Target pretraining, we pretrained for {5k,
50k, 100k, 200k, 400k} steps, where we only performed 400k steps if there was an improvement
between 100k and 200k steps. For reference, one NVIDIA P100 GPU-Day is 25k steps. We
pretrained HPT for much shorter schedules of {50, 500, 5k, 50k} steps, and HPT-BN for 5k steps –
we observed little change for HPT-BN after 5k steps.

Key observations: From Figure 3.2, we observe that HPT typically converges by 5k steps of
pretraining regardless of the target dataset size, and that for 15 out of 16 datasets, HPT and HPT-BN
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converged to models that performed as well or better than the Base transfer or Target pretraining at
400k steps (80x longer). The only dataset in which the Target pretraining outperformed HPT was
quickdraw – a large, binary image dataset of crowd-sourced drawings. We note that quickdraw
is the only dataset in Target pretraining at 5k steps outperformed directly transferring the Base
model, indicating that the direct transfer performance from ImageNet is quite poor due to a large
domain gap – an observation further supported by its relatively poor domain adaptation in [126].

HPT improved performance on RESISC, VIPER, BDD, Flowers, xView, and clipart,
infograph, and sketch: a diverse range of image domains and types. HPT had similar
performance as Base transfer for the datasets that were most similar to ImageNet: real, COCO-
2014, and Pascal, as well as for UC-Merced, which had 98.2% accuracy for Base transfer and 99.0%
accuracy for HPT and HPT-BN. The two medical datasets, Chexpert and Chest-X-ray-kids had com-
parable performance with HPT and Target pretraining, yet HPT reached equivalent performance in
5k steps compared to 200k and 100k, respectively. Finally, HPT exhibited overfitting characteristics
after 5k steps, where the overfitting was more pronounced on the smaller datasets (UC-Merced,
Flowers, Chest-X-ray-kids, Pascal), leading us to recommend a very short HPT pretraining schedule,
e.g. 5k iterations, regardless of dataset size (see appendix for additional experiments).

Semi-supervised transferability: Next, we conducted a semi-supervised transferability eval-
uation of the pretrained models. This experiment tested whether the benefit from the additional
pretraining is nullified when finetuning all model parameters. Specifically, we selected the top
performing models from the linear analysis for each pretraining strategy and fully finetuned the
pretrained models using 1000 randomly selected labels without class balance but such that each
class occured at least once. We finetune using a combination of two learning rates (0.01, 0.001) and
two finetuning schedules (2500 steps, 90 epochs) with a batch size of 512 and report the top result
for each dataset and model – see the appendix for all details.

Key observations: Figure 3.3 shows the top finetuning performance for each pretraining strategy.
The striped bars show the HPT pretraining variants, and we observe that similar to the linear analysis,
HPT has the best performing pretrained models on 15 out of 16 datasets, with quickdraw being
the exception. One key observation from this experiment is that HPT is beneficial in the semi-
supervised settings and that the representational differences from HPT and the Base model are
different enough that full model finetuning cannot account for the change. We further note that
while HPT-BN outperformed HPT in several linear analyses, HPT-BN never outperformed HPT
when finetuning all parameters. This result indicates that some of the benefit from pretraining only
the batch norm parameters is redundant with supervised finetuning. We also note that whether Base
or Target pretraining performed better depended on the dataset, while HPT had uniformly strong
performance.

Sequential pretraining transferability: Here, we explore HPT’s performance when pretrain-
ing on a source dataset before pretraining on the target dataset and finally transferring to the target
task. We examined three diverse target datasets: Chest-X-ray-kids, sketch, and UC-Merced. We
select the source dataset for each of the target dataset by choosing the source dataset that yielded
the highest linear evaluation accuracy on the target dataset after 5k pretraining steps on top of the
base model. This selection yielded: ImageNet then Chexpert then Chest-X-ray-kids, ImageNet then
clipart then sketch, and ImageNet then RESISC then UC-Merced.



CHAPTER 3. DATA EFFICIENT SELF-SUPERVISED REPRESENTATION LEARNING 40

Baseline Remove
grayscale

Remove
color

Crop+Blur
only

Crop
only

Augmentation Sets

6
5
4
3
2
1
0

Ac
cu

ra
cy

 C
ha

ng
e

RESISC

Basetrain
HPT: Base-Target
Target

Baseline Remove
grayscale

Remove
color

Crop+Blur
only

Crop
only

Augmentation Sets

2.5
2.0
1.5
1.0
0.5
0.0

Ac
cu

ra
cy

 C
ha

ng
e

BDD

Basetrain
HPT: Base-Target
Target

Baseline Remove
grayscale

Remove
color

Crop+Blur
only

Crop
only

Augmentation Sets

5
4
3
2
1
0

AU
RO

C 
Ch

an
ge

Chexpert

Basetrain
HPT: Base-Target
Target

Figure 3.5: Augmentation robustness. We compare the accuracy change of sequentially removing
data augmentations on linear evaluation performance. HPT performs better with only cropping than
any other policy does with any incomplete combination.

Key observations: Figure 3.4 compares finetuning the 1000-label subset of the target data after
the following pretraining strategies: directly using the Base model (B), Target pretraining (T), Base
then Source pretraining (B+S), Base then Target pretraining (B+T), Base then Source pretraining
then Target pretraining (B+S+T), and Base then Source pretraining then Target pretraining on the
batch norm parameters (B+S+T-BN). The full HPT pipeline (B+S+T) leads to the top results on all
three target datasets. In the appendix, we further show that the impact of an intermediate source
model decreases with the size of the target.

Object detection and segmentation transferability: For Pascal and BDD, we transferred HPT
pretrained models to a Faster R-CNN R50-C4 model and finetuned the full model; for COCO, we
used a Mask-RCNN-C4. Over three runs, we report the median results using the COCO AP metric
as well as AP50/AP75. For Pascal, we performed finetuning on the train2007+2012 set and
performed evaluation on the test2007 set. For BDD we used the provided train/test split, with
10k random images in the train split used for validation. For COCO, we used the 2017 splits and
trained with the 1x schedule (see appendix for all details).

Key observations: Tables 3.1-4.5 show the object detection and segmentation results. For
Pascal, we tested HPT instantiations of Base-Target, Base-Target (BN), and Base-Source-Target,
where COCO-2014 was selected as the source model using the top-linear-analysis selection criteria.
For the larger BDD and COCO datasets, we tested Base-Target and Base-Target (BN). Overall, the
results are consistent across all datasets for image classification, object detection, and segmentation:
HPT: both Base-Target and Base-Target (BN) lead to improvements over directly transferring the
Base model to the target task.

The Base-Source-Target Pascal results show an improvement when pretraining all model param-
eters, but remain consistent when only pretraining the batch norm parameters. This indicates that
while the batch norm parameters can improve the pretrained model, sequentially pretraining from
the source to the target on these values does not always yield an improved result. While the overall
gains are modest, these results indicate that HPT is not directly learning redundant information with
either the MoCo pretraining or the finetuning task. Furthermore, it is surprising that only tuning
the batch norm parameters on the target dataset leads to an improvement in object detection, and
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Table 3.1: Transfer Result: This table reports the median AP, AP50, AP75 over three runs of
finetuning a Faster-RCNN C4 detector. For Pascal, the Source dataset is COCO-2014. A bold result
indicates a +0.2 improvement over all other pretraining strategies.

Pretrain APbb APbb
50 APbb

75

Pascal VOC07
Target 48.4 75.9 51.9
Base 57.0 82.5 63.6
HPT: Base-Target 57.1 82.7 63.7
HPT: Base-Target (BN) 57.5 82.8 64.0
HPT: Base-Source-Target 57.5 82.7 64.4
HPT: Base-Source-Target (BN) 57.6 82.9 64.2

BDD
Target 24.3 46.9 24.0
Base 27.1 48.7 25.4
HPT: Base-Target 28.1 50.0 26.3
HPT: Base-Target (BN) 28.0 49.6 26.3

Table 3.2: Transfer Result: This table reports the median AP, AP50, AP75 over three runs of
finetuning a Mask-RCNN-C4 detector on COCO-2017. A bold result indicates at least a 0.2
improvement over all other pretraining strategies.

Pretrain APbb APbb
50 APbb

75 APmk APmk
50 APmk

75

Target 36.0 54.7 38.6 19.3 40.6 49.1
Base 38.0 57.4 41.3 20.7 43.3 51.4
HPT: B-T 38.4 58.0 41.3 21.6 43.5 52.2
HPT: B-T (BN) 38.2 57.4 40.9 20.6 43.4 52.2

we note that pretraining specific subsets of object detector backbone parameters may provide a
promising direction for future work.

HPT Robustness
Here, we investigate the robustness of HPT to common factors that impact the effectiveness of
self-supervised pretraining such as the augmentation policy [16, 137] and pretraining dataset
size [117]. For these robustness experiments, we used the BDD, RESISC, and Chexpert datasets as
they provided a diversity in data domain and size.

Augmentation robustness: MoCo-V2 sequentially applies the following image augmentations:
RandomResizedCrop, ColorJitter, Grayscale, GaussianBlur, and
RandomHorizontalFlip. We studied the robustness of HPT by systematically removing these
augmentations and evaluating the change in the linear evaluation for HPT and Target pretraining.
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Figure 3.6: HPT performance as the amount of pretraining data decreases. The top axis shows the
number of images, and the bottom shows the percentage of pretraining data. HPT outperforms Base
model transfer or Target pretraining with limited data.

Key observations: Figure 3.5 shows separability results across datasets after sequentially
removing augmentations. In all three data domains, HPT maintained strong performance compared
to Target pretraining. Unlike BDD and RESISC, the Chexpert performance decreased as the
augmentation policy changed. This illustrates that changes to the augmentation policy can still
impact performance when using HPT, but that the overall performance is more robust. In turn, as a
practitioner explores a new data domain or application, they can either use default augmentations
directly or choose a conservative set, e.g. only cropping.

Pretraining data robustness: We pretrained with {1%, 10%, 25%, 100%} of the target dataset.
For HPT we used 5k pretraining steps. With 25% or 100% of the data, we used the same number of
steps as the top performing result in Figure 3.2, and 1/10 of the steps at 1% and 10%.

Key observations: Figure 3.6 shows separability results. CheXpert has 3x more training data
than BDD, which in turn has 3x more training data than RESISC. While more data always performed
better, the accuracy improvements of HPT increased as the amount of pretraining data decreased.
HPT-BN had minimal degradation in low data regimes – outperforming other methods with <5k
samples.

Domain Adaptation Case Study
In this section, we explore the utility of HPT through a realistic case study experiment in which we
apply HPT in a domain adaptation context. The training procedure is as follows: we performed
HPT to train a model using both source and target datasets on top of the standard MSRA ImageNet
model [65]. We used this model to initialize the feature encoder in a Minimax Entropy (MME)
Domain Adaptation (DA) method [143]. At the end of each budget level we evaluated accuracy on
the entire test set from the target domain. We perform two experiments on DomainNet datasets [126]
with 345 classes in 7 budget levels with increasing amount of target labels: (i) from real to clip
and (ii) from real to sketch and use a EfficientNet B2 [150] backbone.

Table 3.3 shows the benefit of adding HPT to the DA experiments. From the results, we observe
that HPT consistently outperforms the baseline on both domains by achieving a higher accuracy
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Table 3.3: Budget levels and test accuracy in target domain for semi-supervised DA with and
without HPT between real→clip and real→sketch.

Budget levels in target domains
# of shots 1 11 16 22 32 46 68

Test accuracy (%) for real→clip
MME 49.7 61.1 63.9 66.7 68.0 70.0 71.1
MME+HPT 57.2 64.36 66.7 68.2 69.7 71.5 72.4

Test accuracy (%) for real→sketch
MME 41.4 51.8 54.9 57.5 59.7 61.4 62.5
MME+HPT 50.2 56.4 58.8 60.7 62.8 63.9 64.9

across all the budget levels. On the extreme low data regime (one shot/class), HPT achieves nearly
8% better accuracy in both clipart and sketch domains in the extreme case of providing one
shot per class in the target domain. These results demonstrate HPT’s effectiveness in a realistic,
end-to-end inference system.

3.5 Discussion
We have shown that HPT achieves faster convergence, improved performance, and increased
robustness across domains. Here, we further reflect on the utility of the HPT.

What is novel about HPT? The transfer learning methodology underlying HPT is well estab-
lished in transfer learning. That is, transfer learning tends to work in a lot of situations, and our work
could be perceived as a natural extension of this general observation. However, our work provides
the first thorough empirical analysis of transfer learning applied to self-supervised pretraining in
computer vision. We hope this analysis encourages practitioners to include an HPT baseline in their
investigations – a baseline that is surprisingly absent from current works.

How should I use HPT in practice? We provide our code, documentation, and models to use
HPT and reproduce our results (see appendix). For existing codebases, using HPT is usually as
simple as starting training from an existing checkpoint. If working with a small dataset (e.g. < 10k
images), using HPT-BN is ideal.

Does this work for supervised learning? Yes. In the appendix, we reproduce many of these
analyses using supervised ImageNet base models and show that HPT further improves performance
across datasets and tasks.

3.6 Conclusion and Implications
Our work provides the first empirical analysis of transfer learning applied to self-supervised
pretraining for computer vision tasks. In our experiments, we have observed that HPT resulted in 80x
faster convergence, improved accuracy, and increased robustness for the pretraining process. These
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results hold across data domains, including aerial, medical, autonomous driving, and simulation.
Critically HPT requires fewer data and computational resources than prior methods, enabling wider
adoption of self-supervised pretraining for real-world applications. Pragmatically, our results are
easy to implement and use: we achieved strong results without optimizing hyperparameters or
augmentation policies for each dataset. Taken together, HPT is a simple framework that improves
self-supervised pretraining while decreasing resource requirements.
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Chapter 4

Region Similarity Representation Learning

This chapter focuses on representation learning for localization-sensitive tasks, such as object
detection and semantic segmentation. As I discuss, in several applications, localization-sensitive
representation learning leads to improved performance with fewer labeled and unlabeled data.

4.1 Introduction
Recently, self-supervised pre-training has outperformed supervised pre-training for a number of
computer vision applications such as image classification and object detection [14, 17, 22]. Much of
this recent progress comes from exploiting the instance discrimination task [6, 40, 111, 167, 182],
in which a network learns image-level features that are invariant to certain image augmentations.
Specifically, instance discrimination maximizes the similarity of two views of an image, where each
view is an augmented version of an image, while minimizing its similarity to views which originate
from other images [14, 17, 19].

Chen et al. [17] compared a diverse set of possible augmentations, and found that random
cropping and scaling have the largest impact on downstream ImageNet [34] classification perfor-
mance. Several follow-up works have further explored augmentation policies and confirmed this
finding [137, 156, 170]. Through cropping and scaling augmentations and similarity maximization,
the network learns to map various scales and crops of an image to the same feature representations.
For example, an image crop of the top half of a dog’s body and the right half of a dog’s body
would map to the same representation in the embedding space, which a downstream task could then
classify as “dog”.

However, instance discrimination uses global image-level feature representations for these views,
which is obtained by average pooling the final convolutional feature map. It does not enforce any
type of spatial consistency in the convolutional features (see Figure 4.1, “instance discrimination”
path). For example, different crops that scale and shift the dog’s ear will not necessarily have a
corresponding scale and shift in the convolutional feature maps throughout the network – instance
discrimination only optimizes the final globally pooled features. This is problematic for downstream
tasks such as object detection that leverage the spatial information from the convolutional feature
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ReSim: view regions map to 
similar spatial features 

Instance Discrimination: the entire 
views map to similar semantic features

view 1 view 2

Figure 4.1: Existing instance discrimination-based self-supervised learning frameworks learn
representations by augmenting an image into two different views (e.g., cropping/scaling the input
image) and then maximizing the similarity between the image features for the entire views. In this
work, we present Region Similarity Representation Learning (ReSim), which learns representations
by maximizing the similarity of corresponding sub-image regions throughout the convolutional
layers of a network. In the above example, instance discrimination learns to map both views to the
same features, despite the fact that the dog’s eyes and ears are in different locations. On the other
hand, ReSim learns features which explicitly align these changes with corresponding changes in the
convolutional feature maps.

maps for object localization.
To address this issue, we introduce Region Similarity Representation Learning (ReSim): a

self-supervised pre-training method which learns spatially consistent features across multiple
convolutional layers. Inspired by the Region Proposal Network (RPN) used in Faster-RCNN [138],
ReSim operates by sliding a fixed-size window across the overlapping region between two image
views, mapping the corresponding regions in each view to their associated regions in the convolutions
layers throughout the network, and then maximizing the similarity of these convolution feature
regions, along with the global similarity objective. See Figure 4.1 for a high-level difference
between ReSim and existing instance discrimination techniques, and see Figure 4.2 for a detailed
description of the full ReSim pipeline.

As we show, maximizing the similarity of these convolutional feature map regions leads to
representations that improve object localization for downstream detection and instance segmentation
tasks. Furthermore, we extend the framework to learn features at various scales by using sliding
windows of multiple sizes at different feature maps. We adopt the Feature Pyramid Network (FPN)
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Figure 4.2: ReSim takes two different views of an image as input, i.e., a query and key view obtained
by cropping/scaling an image. The views have an associated overlapping area as highlighted in each
of the above views. Both views are encoded using the same network (CNN), e.g., a ResNet-50 [65].
Before the final convolutional layers in the network, ReSim slides a fixed-size window over the
overlapping area between the two views, aligns window regions with corresponding regions in the
convolutional feature maps using Precise RoI Pooling from [82], and then maximizes the similarity
between these features. Earlier layers use smaller sliding windows as the feature maps have higher
spatial resolution. Furthermore, similar to Feature Pyramid Networks [100], the feature maps are
combined with semantic top-down features from later convolution layers, as indicated by the blue
arrows and “[P3]/[P4]/[P5]” layers. The feature maps following the final convolutional layer are
used for instance discrimination learning following either [22] or [19].

design from Lin et al. [100], a design which naturally incorporates feature hierarchies and propagates
stronger semantic features to earlier convolutional layers through the top-down path. Region-level
self-supervised similarity learning trains feature pyramid layers without labeled supervision and
leads to further improvement on downstream tasks.

We conduct object detection, instance segmentation, and dense pose estimation experiments on
PASCAL VOC [46], COCO [101], and Cityscapes [29] and show that ReSim learns representations
which significantly improve the classification and localization performance compared to a MoCo-v2
baseline, i.e., +2.7 APbb

75 on VOC, +1.1 APbb
75 on COCO, and +1.9 APmk on Cityscapes.

4.2 Related work
Self-supervised representation learning. The goal of representation learning is to reveal the
intrinsic qualities of data in such a way that they are informative and effective for a desired task [8].
Practically, this often manifests as pre-training a deep network so that it can be finetuned for a
particular downstream task, see [35, 39, 43, 57, 68, 73, 95, 132, 185]. Recently, SimCLR [17]
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and MoCo [22, 68] demonstrated substantial improvements by using similar forms of instance
contrastive learning where a network was trained to identify a pair of views originating from the
same image when contrasted with a large set of views from other images. Following SimCLR and
MoCo, later works, such as SwAV [14] and BYOL [60], reported substantial improvements for
image classification tasks, but as several follow-up works have shown [36, 171, 177], SwAV and
BYOL do not tend to lead to improvements on localization-based tasks such as object detection and
segmentation. This decrease in performance indicated that strictly optimizing global, image-level
representations could decrease performance for tasks which require localization.

In contrast to prior work that leveraged instance discrimination to learn global, image-level
representations, we propose a region-based pretext task to learn representations for tasks which
require both localization and semantic classification. In earlier work, several authors proposed
representation learning at the pixel or region level via color prediction [159, 186], key-point
encoding [153, 112], optical flow similarity [42], and cycle consistency or frame prediction in
videos [97, 162]. Our work differs in that we build on instance discrimination pretext task and
simultaneously learn semantic features from an entire image as well as regional features across
multiple scales, shifts, and resolutions.

Object detection and instance segmentation. Object detection and segmentation localize and
classify object bounding boxes or pixels within an image – see [103] for a survey and review. Many
commonly used object detection and instance segmentation techniques such as Fast-RCNN [56],
Faster-RCNN [138], and Mask-RCNN [66] operate through a two-stage process in which they
extract region features from convolutional feature maps, regress the location of the region to align
with a ground truth bounding box, and then classify the region.

When regressing the location of the regional features, small adjustments to the region location
within the convolutional feature map can have a large impact on the classification, e.g., shifting
a region may cause it to overlap with different objects in the input pixel space. As a result, the
regional features of the convolutional feature maps require spatial sensitivity for regression as well
as semantic sensitivity for classification. Existing self-supervised methods have largely focused on
learning strong semantic representations by average pooling the final convolutional layer, and they
do not explicitly maintain spatial consistency throughout the convolutional layers. In this work, we
propose a self-supervised learning method which learns both spatially consistent and semantically
sensitive regional features.

Pixel and grid-based contrastive learning. Recently, several related papers emerged: [128]
explored pixel-level contrastive learning, whereas our work examines region-level consistency
across the convolutional features. Wang et al. [163] proposed contrastive learning using a grid of
feature vectors over the feature maps. Rather than maximizing the similarity of the regions, their
solution was more akin to clustering, in that they compared all combination of feature vectors from
the feature grid and maximized the similarity of the most similar pair. As we show below, our
method demonstrates superior performance over these models.



CHAPTER 4. REGION SIMILARITY REPRESENTATION LEARNING 49

key (feat map)

query (feat map)

other image (feat map)

: positive
: negative

Figure 4.3: At each of the final convolutional layers, ReSim maximizes the similarity of aligned
convolutional feature map regions across the query and key views of an image – the positive samples.
ReSim simultaneously minimizes the similarity with a set of negative samples: the non-positive
regions from the same key view (potentially overlapping with the positive region) and any other
region from other images.

4.3 Region Similarity Representation Learning
This section presents ReSim: a self-supervised pre-training method which learns spatially consistent
representations on feature pyramids.

Preliminaries
State-of-the-art self-supervised representation learning frameworks overwhelmingly exploit instance
discrimination as their pretext task, see [80]. In instance discrimination, a reference image is
augmented by a set of predefined augmentation modules T = [T1,T2, · · · ,Tn], yielding two views:
query and key. For instance, Figure 4.2 shows the query and key view after cropping and scaling
augmentations. The features from the final convolutional layer from the two views are average-
pooled into image features that are subsequently enforced to be similar in the embedding space by a
learning objective, such as contrastive loss [17] or cosine similarity [19].

In the context of representation learning, an ideal encoder for localization-sensitive tasks should
consistently encode the same image region, e.g., the same object components across different views
of an image, to the same point in the representational embedding space. This is necessary for tasks
such as object detection with Faster-RCNN [138] or related detectors [66, 103], which localize and
then classify regions within the convolutional feature maps. When regressing the location of the
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regional features, small adjustments to the region within the convolutional feature map can have a
large impact on the object classification prediction at the pixel level, e.g., shifting a feature map
region by a few pixels may cause the region to overlap with different objects in the input pixel space,
changing the ground-truth classification and regression target.

Similarly, different image regions, e.g., different object components across two different views
of an image, should map to different points in the embedding space. By aligning similar image
regions to the same representations and dissimilar image regions to dissimilar representations,
downstream tasks can leverage the representations to localize and classify the underlying image
components. As illustrated in Figure 4.2, the key and query views of the dog image correspond to
the same image even though the two views are scaled and translated differently.

When learning representations for image classification, existing works map all regions of
an image to similar representations [17, 22]. This occurs because the widely adopted set of
augmentations from Chen et al. [17] include Random Resized Crop (RRC), which enforces that
the query and key views always correspond to different regions in the original image. Therefore,
we propose a region-level similarity learning component (Figure 4.2) which enforces that the
same regions within the views encode to the same spatially and semantically consistent feature
representations.

Framework Overview
The full ReSim framework, shown in Figure 4.2, operates as follows: First, ReSim augments an
input image into two different views – a query and key, where each view is passed through a common
encoder, e.g., a ResNet-50. On a subset of the final convolutional layers, e.g., conv3 and conv4,
ReSim slides a fixed-size window over the query view, but only within the overlapping region
between the query and key view – this area is highlighted in Figure 4.2. Following a foundational
idea from feature pyramids [100], earlier layers use a smaller window because they have a higher
spatial resolution. ReSim then uses Precise RoI Pooling [82] to extract a feature vector from the
associated feature map region for both views.

ReSim uses a similarity optimization function to maximize the similarity of the aligned fea-
ture vectors from the corresponding view regions. We chose a contrastive optimization function
from [68], which also takes dissimilar regions from the same image as well as other images as nega-
tive examples, as illustrated in Figure 4.3. Note: we also explored a cosine similarity optimization
function from [19] which does not require negative examples – see §4.4.

Finally, following the final convolutional layer, ReSim adopts the global average pool of the
final feature map for an instance-level contrastive optimization from [68] or a cosine similarity
optimization from [19]. As shown by the blue dotted arrows in Figure 4.2, ReSim uses 1x1
convolutional layers to propagate semantically strong features to the earlier convolutional layers;
these are known as top-down connections in the original FPN work [100].
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Region-level Similarity
We formulate a region as a rectangular sub-area of an image I described by its top, left, bottom,
and right coordinates (t, l,b,r). An encoder f yields the representation of any region of a given
image, i.e., f (I,(t, l,b,r)). Figure 4.2 shows a CNN encoder taking two image regions as input.
Our objective is to perform self-supervised pre-training of the encoder in such a way that the
learned representations are tailored for downstream tasks such as object detection and instance
segmentation.

Aligning corresponding regions. As shown in Figure 4.2, ReSim performs self-supervised similar-
ity learning on sub-image level regions across two views of an image. Given two augmented views
Iq and Ik from the same input image I, and a region in the query view denoted by its coordinates
(tq, lq,bq,rq), we need to find its corresponding region in the key view. From the set of widely
adopted augmentations listed in the previous subsection, the only spatial transformations which
affect the image coordinates are RRC and horizontal flips. We ensure that the query and key views
are either both horizontally flipped or both not flipped, as otherwise they should have difference
ground-truth regression term for downstream tasks (see object regression in [56]). Thus, it leaves us
with RRC alone. Denote the operator as R, the problem can be formulated as, given Iq =Rq(I),
Ik = Rk(I) and (tq, lq,bq,rq), find (tk, lk,bk,rk) = Rq→k(tq, lq,bq,rq). The solution is trivial as
RRC is simple linear translations, therefore Rq→k =Rk(R−1

q ), where R−1 is the inverse translation
of the applied spatial transformations.

Generating candidate regions and extracting features. ReSim generates candidate regions for
the region-level contrastive learning by sliding a small window across the overlapping region
between the query and key view – see Figure 4.2. The overlapping areas between the query and key
views are selected as valid areas for the sliding window because they can be mapped between the
views.

Rather than cropping regions from query/key images and feeding them into encoders, we encode
an entire image and extract region features through Precise RoI Pooling [82] which takes in a
rectangular window and a convolutional feature map, and yields features of the input window in the
size of h×w×c, where we set h = 1 and w = 1 to create a feature vector from the region, and c is
the same as the number of input feature map channels. Given a candidate region on the input views,
ReSim performs region-level similarity across multiple convolutional feature maps at the end of the
network, e.g., using C3 and C4 as shown in Figure 4.2.

Region similarity on feature pyramids. Lin et al. [100] proposed Feature Pyramid Networks
(FPNs), an object detection architecture which combined the low-resolution, semantically strong
features from later convolutional layers with high-resolution, semantically weak features from
earlier layers via top-down connections. As shown by the blue dotted arrows in Figure 4.2, we
add top-down connections to propagate semantically strong features to the earlier convolutional
layers used for region similarity learning — we call this variant ReSim-FPN. We follow the
proposed methodology from [100]: we use lateral convolutional connections to map the output of
the convolutional layers to FPN layers (indicated with {P3,P4,P5} in Figure 4.2), and then directly
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add the top-down layers after using nearest neighbor sampling to match the spatial resolutions and
1×1 convolutional layers to match the channel dimensions.

Similarity learning objectives. Denote the 4-tuple of a region (t, l,b,r) as u, the set of valid
region pairs in query and key from image I as {(u1

q,u
1
k),(u

2
q,u

2
k), . . . ,(u

n
q,u

n
k)}, and the region-level

similarity function

E{k+,k−}
i, j = exp

(
f (Iq,ui

q) · f (I{k+,k−},u
j
{k+,k−})/τ

)
, (4.1)

where the positive sample Iq = Tq(I), Ik = Tk(I), f (I,u) is the Precise RoI-pooled feature of region
u from image I , and the negative pairs can be any image and region pairs not identical to Iq and uq
– see Figure 4.3. τ is a temperature parameter to regularize the similarity distribution. We learn the
region-level similarity for a query via the following objective:

Lrs
q =
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n

n

∑
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Ek+
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Ek+
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i, j +∑k−, j Ek−
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, (4.2)

Denote the image-level similarity function with global average pooling (GAP) as

D{k+,k−} = exp
(

f (Iq,GAP) · f (Ik{+,−},GAP)/τ
)
. (4.3)

We use the global image-level similarity objective from [68]:

Lis
q =

Dk+

Dk+ +∑k− Dk−
. (4.4)

We combine the region-level similarity and global image-level similarity objective via a weight-
ing hyperparameter, λ , to yield the final objective:

Lq = Lrs
q +λLis

q . (4.5)

Framework Configurations
We use two 3×3 convolutions on C4/P4 or P3 to project the feature maps to 128 channels. The
first convolution is followed by Batch Normalization and ReLU activation. The similarity boxes
shown in Figure 4.2 compute the similarity between aligned convolutional feature map regions. For
this similarity computation, we use a momentum contrastive similarity with the associated settings
from [22] as default, while we also investigated a cosine similarity with settings from [19] – see
§4.4.

For the region-based contrastive similarity, we take negative samples to be both the non-positive
regions from the same key view and any other region from other images, see Figure 4.3. While
MoCo uses a momentum-based queue to maintain a large number of negative image-level samples,
we find that such a queue is unnecessary for region-level samples as there are a large number of
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pre-train AP AP50 AP75

random init. 33.8 60.2 33.1
supervised 44.0 72.8 45.5
MoCo-v2 54.4 80.1 60.0
ReSim-C4 55.9 (+1.5) 81.3 (+1.2) 62.1 (+2.1)

Table 4.1: Comparisons of ReSim and MoCo-v2 [68] on PASCAL VOC object detection task.
The models are pre-trained on IN-100, the weights of which are transferred to a Faster R-CNN
R50-C4 subsequently finetuned on VOC trainval07+12, and evaluated on test2007. APk is
the average precision at k IoU threshold, and AP is the COCO-style metric which averages scores
from [0.5:0.95:0.05]. In the brackets are the deltas to the MoCo-v2 baseline.

negative region samples within each batch, i.e., we can generate over 30,000 negatives within a
mini-batch of 256 images on C4 – see the appendix for more details.

We design two variations of ReSim: 1) ReSim-C4, which applies region-similarity learning on
ResNet C4 feature map without FPN; and 2) ReSim-FPN, which applies region-similarity learning
on FPN P3 and P4 feature maps. When applying the Precise RoI Pooling operator to obtain the
features for the convolutional feature map regions, we apply the pooling operator on C4/P4 with
a down-sampling rate of 16, and on feature map P3 with a down-sampling rate of 8. By default,
we use a sliding window of 48 pixels with a stride of 32 pixels on the input image on C4/P4, and a
sliding window of 32 pixels with a stride of 24 pixels on P3. We ablate these settings in § 4.4.

4.4 Experiments
We study the transfer capability of ReSim for localization-dependent downstream tasks. We
perform self-supervised pre-training on two splits of the ImageNet dataset [34]: 1) 1000-category
ImageNet (IN-1K), the standard ImageNet training set containing ∼1.25M images; and 2) 100-
category ImageNet (IN-100), a subset of IN-1K split containing ∼125k images, following previous
works [155, 170]. The pre-trained model is subsequently finetuned on PASCAL VOC [45] for object
detection, COCO [101] for instance segmentation, Cityscapes [29] for instance segmentation, and
DensePose [62] for dense pose estimation. For the ablation studies, we use IN-100 for pre-training
and report full IN-1K pre-trained results for selected best models.

Training. Our hyperparameters closely follow the adopted self-supervised learning framework
MoCo-v2 [22]. We use a ResNet-50 [65] backbone, pre-training for 200 epochs for IN-1K, 500
epochs for IN-100, with a mini-batch size of 256 on 8 GPUs. The initial learning rate is set as
0.03 and follows a cosine decaying schedule [108]. The weight decay is 0.0001, SGD momentum
is 0.9, and the augmentations are the same as [22]. We use 1.0 for loss balancing term λ . We
use a momentum queue of 65,536 for IN-1K experiments, and of 16,384 for IN-100 experiments.
ReSim-FPN takes ∼62 hours to train 200 IN1K-epochs with 8 NVIDIA V100 GPUs, compared to
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pre-train AP AP50 AP75

SimSiam 54.6 80.6 60.7
+ReSim-C4 55.7 (+1.1) 81.2 (+0.6) 61.9 (+1.2)

MoCo-v2 54.4 80.1 60.0
+ReSim-C4 55.9 (+1.5) 81.3 (+1.2) 62.1 (+2.1)

Table 4.2: Building ReSim on various self-supervised representation learning frameworks,
i.e., SimSiam [19] and MoCo-v2. All models are obtained by self-supervised pre-training on
IN-100, transferring weights to a Faster R-CNN R50-C4 detector subsequently finetuned on
VOC trainval07+12, and evaluated on test2007. We use the prediction and projection
heads as in [19] for ReSim on SimSiam. The improvement over SimSiam shows that ReSim is
applicable to multiple frameworks.

∼53 hours for MoCo. Note that the design of ReSim does not affect the complexity of its transferred
downstream model.

IN-100 Study
We first experiment with various ReSim implementation decisions using IN-100, and from these
results, we then study the performance of ReSim on IN-1k.

Setup. Throughout these experiments, we adopt the commonly used PASCAL VOC object detection
task [47]. We use a Faster R-CNN [138] with R50-C4 [66] backbone. As in [68], we unfreeze all
Batch Normalization layers and synchronizing their statistics across GPUs [125] during training.
The short-side length of input images is randomly selected from [480, 800] pixels during training and
fixed at 800 for inference. Training is performed on trainval07+12 set (∼16.5k images), and
testing is performed on test2007 set (∼4.9k images), unless otherwise specified. The network
is trained on 8 GPUs of mini-batch size 16. Training takes 24,000 iterations with a base learning
rate 0.02. The learning rate is decreased by a factor of 1/10 at the 18,000 and 22,000 iteration. All
settings follow [68].

Comparisons with baselines. We first compare the ReSim framework with similarity learning on
C4 (ReSim-C4) to the MoCo-v2 baseline. Since ReSim is built on MoCo-v2, the key difference
between the two frameworks is the presence of similarity learning across the convolutional feature
map regions in ReSim. Table 4.1 shows the VOC transfer results of the two frameworks, as well as
the models which are supervise pre-trained on ImageNet and randomly initialized. Albeit competing
against a strong reference, ReSim surpasses MoCo-v2 by a large margin of 1.5, 1.2 and 2.1 at AP,
AP50, and AP75, respectively. The performance gap at high AP metric (AP75) is larger than it at low
AP metric (AP50) which is less localization-dependent.

Self-supervised learning frameworks. We investigated ReSim with an additional self-supervised
learning framework. Specifically, we selected the recently proposed Siamese-based framework,
SimSiam [19], for its simplicity and effectiveness. We use identical designs of its projection and
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pre-train window AP AP50 AP75

MoCo-v2 N/A 54.4 80.1 60.0
ReSim-C4 W16-S16 55.0 80.7 61.3
ReSim-C4 W48-S16 55.8 81.2 61.6
ReSim-C4 W48-S32 55.9 81.3 62.1
ReSim-C4 W64-S48 56.0 81.0 62.7

(a) Full finetuning setting on VOC
pre-train window AP AP50 AP75

MoCo-v2 N/A 47.1 75.4 50.6
ReSim-C4 W16-S16 48.7 76.0 53.2
ReSim-C4 W48-S16 49.5 76.7 54.1
ReSim-C4 W48-S32 50.0 77.2 55.0
ReSim-C4 W64-S48 49.7 77.2 54.3

(b) Frozen-backbone setting, finetuning on VOC

Table 4.3: Comparisons of various sliding window sizes and strides under (a) full-finetuning
and (b) frozen-backbone settings. “Wl-Sk” denotes sliding a window of size l×l at stride k. ReSim-
C4 by default uses W48-S32 setting. Inspired by the linear classification metric for classification, in
the frozen-backbone setting the backbone of object detector is frozen from finetuning to directly
evaluate the quality of features for object detection. The more significant improvement in the
frozen-backbone setting implies ReSim learns features of better quality for localization-dependent
task.

prediction heads (see their reference for details) for ReSim as the image-level similarity learning
heads presented in SimSiam for consistency. Note that since those heads have several sequentially
connected 2048 channel layers rather than a single 2048-128 channel connection used in MoCo-v2,
the design significantly increases computational complexity over ReSim on MoCo, i.e., ReSim-FPN
based on SimSiam takes 46.7 hours to train on IN-100, compared to 15.5 hrs for ReSim-FPN based
on MoCo.

Table 4.2 shows the results. ReSim built upon SimSiam improves the baseline by 1.1, 0.6 and
1.2 at AP, AP50, and AP75, respectively, and is comparable to ReSim built upon MoCo. Due to the
extra pre-training time, we choose MoCo as our backbone framework.

Frozen backbone for finetuning on VOC. Linear classification, i.e., training a linear classifier on
a frozen backbone is widely adopted to evaluate the representations for classification [14, 17, 19, 68,
60, 167]. We design a similar feature evaluation experiment on object detection. After transferring
the self-supervise pre-trained weights to a Faster R-CNN object detector, we freeze the backbone and
finetune the RPN and object classifier head on labeled object data, as RPN is randomly initialized
and object classifier is task-specific. For the Faster R-CNN R50-C4 detector, specifically, all weight
layers from C1 to C4 feature map, along with statistics of Batch Normalization layers are frozen;
weights in RPN and C5 (object classification head) are finetuned. According to Goyal et al. [59],
this type of evaluation is ideal for representation learning because finetuning an entire network
“evaluates not only the quality of the representations but also the initialization and optimization
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pre-train AP AP50 AP75

random init. 33.8 60.2 33.1
supervised 53.5 81.3 58.8
Jigsaw [59] 48.9 (−4.6) 75.1 (−6.2) 52.9 (−5.9)

Rotation [59] 46.3 (−7.2) 72.5 (−8.8) 49.3 (−9.5)

NPID++ [113] 52.3 (−1.2) 79.1 (−2.2) 56.9 (−1.9)

SimCLR [17] 51.5 (−2.0) 79.4 (−1.9) 55.6 (−3.2)

PIRL [113] 54.0 (+0.5) 80.7 (−0.6) 59.7 (+0.9)

BoWNet [55] 55.8 (+2.3) 81.3 (+0.0) 61.1 (+2.3)

MoCo [68] 55.9 (+2.4) 81.5 (+0.2) 62.6 (+3.8)

MoCo-
v2 [22]

57.0 (+3.5) 82.4 (+1.1) 63.6 (+4.8)

SwAV [14] 56.1 (+2.6) 82.6 (+1.3) 62.7 (+3.9)

DenseCL [163] 58.7 (+5.2) 82.8 (+1.5) 65.2 (+6.4)

ReSim-C4 58.7 (+5.2) 83.1 (+1.8) 66.3 (+7.5)

ReSim-FPN 59.2 (+5.7) 82.9 (+1.6) 65.9 (+7.1)

Table 4.4: Comparison with previous works on PASCAL VOC trainval07+12, evaluated
on test2007. Jigsaw and Rotation results are from [113]. SimCLR result is from [163]. Both
ReSim-C4 and ReSim-FPN improve MoCo-v2 baseline, and achieve state-of-the-art over compet-
itive concurrent work DenseCL [163]. In the brackets are the deltas to the ImageNet supervised
pre-training baseline. Green: deltas at least +1.0.

method.”
Table 4.3(b) shows the results. ReSim improves the baseline MoCo-v2 (default W48-S32) by

2.9, 1.8, 4.4 at AP, AP50, and AP75, respectively, a much larger margin compared to the full-finetune
setting. The improvement is particularly significant at high IoU metric AP75. It indicates ReSim
yields features of higher quality for localization-dependent tasks, particularly when limiting the
impact of the initialization and optimizations used during finetuning.

Region size and stride. We vary the size and stride of sliding windows in ReSim-C4 to determine
the optimal combination. The results are reported in Table 4.3(a,b). “Wl-Sk” denotes sliding
a window of size l×l at stride k. By considering the performance both at frozen-backbone and
standard full-finetune settings, we choose W48-S32 setting as the default for ReSim-C4.

RoI Align vs. Precise RoI Pooling. We compare Precise RoI Pooling [82] and RoI Align [66] as
the region feature extraction operator. On VOC, ReSim using RoI Align achieves AP/AP50/AP75 of
55.7/81.0/62.0 with all parameters finetuned, and 48.9/76.6/53.0 with a frozen backbone. Comparing
these results with Table 4.3 indicates that both RoI Align and Precise RoI Pooling work well, but in
the frozen-backbone setting, RoI Align performs worse than Precise RoI Pooling. We conjecture this
is because Precise RoI Pooling does not heuristically set the number of sampling points, enabling a
more robust and simpler optimization.
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pretrain APbb APbb
50 APbb

75 APmk APmk
50 APmk

75
random init 31.0 49.5 33.2 28.5 46.8 30.4
supervised 38.9 59.6 42.7 35.4 56.5 38.1
MoCo-v2 38.9 (+0.0) 59.2 (−0.4) 42.4 (−0.3) 35.4 (+0.0) 56.2 (−0.3) 37.8 (−0.3)

VADeR [128] 39.2 (+0.3) 59.7 (+0.1) 42.7 (+0.0) 35.6 (+0.2) 56.7 (+0.2) 38.2 (+0.1)

DenseCL [163]† 39.4 (+0.5) 59.9 (+0.3) 42.7 (+0.0) 35.6 (+0.2) 56.7 (+0.2) 38.2 (+0.1)

ReSim-C4 39.3 (+0.4) 59.7 (+0.1) 43.1 (+0.4) 35.7 (+0.3) 56.7 (+0.2) 38.1 (+0.0)

ReSim-FPN 39.5 (+0.6) 59.9 (+0.3) 43.3 (+0.6) 35.8 (+0.4) 57.0 (+0.5) 38.4 (+0.3)

ReSim-FPNT 39.8 (+0.9) 60.2 (+0.6) 43.5 (+0.8) 36.0 (+0.6) 57.1 (+0.6) 38.6 (+0.5)

ReSim-FPNT (400 ep) 40.3 (+1.4) 60.6 (+1.0) 44.2 (+1.5) 36.4 (+1.0) 57.5 (+1.0) 38.9 (+0.8)

(a) Mask R-CNN R50-FPN, 1× schedule

APbb APbb
50 APbb

75 APmk APmk
50 APmk

75
36.7 56.7 40.0 33.7 53.8 35.9
40.6 61.3 44.4 36.8 58.1 39.5
40.9 (+0.3) 61.5 (+0.2) 44.6 (+0.2) 37.0 (+0.2) 58.4 (+0.3) 39.6 (+0.1)

- - - - - -
41.2 (+0.6) 61.9 (+0.6) 45.1 (+0.7) 37.3 (+0.5) 58.9 (+0.8) 40.1 (+0.6)

41.1 (+0.5) 61.5 (+0.2) 44.8 (+0.4) 37.1 (+0.3) 58.6 (+0.5) 39.8 (+0.3)

41.4 (+0.8) 61.8 (+0.5) 45.4 (+1.0) 37.5 (+0.7) 59.1 (+1.0) 40.4 (+0.9)

41.4 (+0.8) 61.9 (+0.6) 45.4 (+1.0) 37.5 (+0.7) 59.1 (+1.0) 40.3 (+0.8)

41.9 (+1.3) 62.4 (+1.1) 45.9 (+1.5) 37.9 (+1.1) 59.4 (+1.3) 40.6 (+1.1)

(b) Mask R-CNN R50-FPN, 2× schedule

Table 4.5: Results on COCO object detection and instance segmentation tasks. The models are
pre-trained on IN-1K for 200 epochs (except the final entry, which shows extended performance out
to 400 epochs), the weights of which are transferred to Mask R-CNN R50-FPN model, subsequently
finetuned on train2017 (1× and 2× schedules) and evaluated on val2017. Averaging precision
on bounding-boxes (APbb) and masks (APmk) are used as benchmark metrics. All ReSim models
outperform VADeR [128] and the MoCo-v2 counterpart, surpassing the supervised pre-training
under all metrics (we report VADeR results from their paper which did not include a 2x schedule).
In the brackets are the gaps to the ImageNet supervised pre-training baseline. Green: deltas at least
+0.5. †: Pre-trained weights are downloaded from the official releases of the authors and trained on
our COCO frameworks, as [163] adopted a different COCO finetuning baseline settings from the
common approach used in this paper and other previous works [68].

IN-1K Results
Following the IN-100 experiments, we studied pre-training on the full IN-1K and report the results
on PASCAL VOC, Cityscapes, COCO detection and COCO dense pose estimation. We evaluate
two models as introduced in §4.3: 1) ReSim-C4, which performs region-level similarity on C4
feature map of ResNet; and 2) ReSim-FPN, which performs region-level similarity on the P3 and
P4 feature maps on the top-down path of FPN. Only the backbone ResNet weights are transferred
for finetuning downstream tasks. On the other hand, if the network of a downstream task adopts
the FPN design, then we can transfer the FPN weights from ReSim-FPN to the new network. We
term this as ReSim-FPNT , and report the results on selected downstream tasks which use FPN as its
baseline.

PASCAL VOC. We use the Faster R-CNN R50-C4 detector on VOC and adopt the same setup for
PASCAL VOC as described in §4.4. We first report the results of finetuning on trainval07+12
and evaluating on test2007. Table 4.4 compares our method with a series of previous state-
of-the-arts. Respectively, ReSim-C4 and ReSim-FPN improve over their baseline MoCo-v2 by
1.7/0.7/2.7 and 2.2/0.5/2.3 at AP/AP50/AP75, and claims state-of-the-art results over the competi-
tive concurrent work DenseCL [163].

In Figure 4.4 we show the AP improvements of ReSim over MoCo-v2 at IoU threshold from 0.5
to 0.9. Not only do both ReSim methods outperform MoCo-v2, the larger improvement at high IoU
indicates superior localization accuracy, particular for ReSim-FPN. The growing performance gap
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Figure 4.4: ∆AP of ReSim over MoCo-v2 at various IoU thresholds on PASCAL VOC. As the
IoU threshold increases, both ReSim methods perform considerably better than MoCo-v2, especially
at higher IoU threshold, indicating that the ReSim features have better localization capability.

as the IoU threshold increases indicates that ReSim has led to improved localization of the objects.
We also report the results of finetuning on PASCAL VOC trainval2007 and evaluat-

ing on test2007. ReSim-C4 achieves 48.9/75.4/53.5 at AP/AP50/AP75, in comparison with
46.6/72.8/50.9 for MoCo-v2.

COCO Object Detection and Instance Segmentation. We use Mask-RCNN [66] with R50-
FPN [100] as our base model and add new Batch Normalization layers before the FPN parameters.
All Batch Normalization statistics are synchronized across GPUs. The short-side length of input
images is randomly selected from [640, 800] pixels during training and fixed at 800 for infer-
ence. Training is performed on train2017 split with ∼118k images, and testing is performed
on val2017 split. Two metrics are used, Average Precision on bounding-boxes (APbb), and Aver-
age Precision on masks (APmk). We report finetuning results on the standard 1x and 2x schedules,
the latter of which trains twice as long as the former.

Table 4.5 shows the results. All variations of ReSim improve over its MoCo-v2 counterpart
under both box and mask metrics, outperforming the supervised pre-training baseline. Unlike
MoCo-v2, ReSim improves with the 1× schedule. We note that ReSim-FPN outperforms ReSim-
C4, and in turn ReSim-FPNT , in which FPN weights are transferred, outperforms ReSim-FPN,
demonstrates the effectiveness of our framework on feature pyramids. Furthermore, the final row in
Table 4.5 shows a continued increase in performance after 400 epochs of pre-training, indicating
that ReSim continues to its representations in longer pre-training regimes.

COCO DensePose Estimation. We use DensePose R-CNN [62] with R50-FPN as our base model.
As in COCO object detection and instance segmentation, we add Batch Normalization layers in
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COCO dense pose estimation

pre-train APgpsm APgpsm
50 APgpsm

75
supervised 65.8 92.6 77.8
MoCo-v2 66.2(+0.4) 93.1(+0.5) 77.4(−0.4)

ReSim-C4 66.6(+0.8) 92.9(+0.3) 78.5(+0.7)

ReSim-FPN 67.1(+1.3) 93.2(+0.6) 80.0(+2.2)

ReSim-FPNT 66.8(+1.0) 92.8(+0.2) 79.2(+1.4)

Cityscapes Instance Seg.

pre-train APmk APmk
50

supervised 33.0 59.8
MoCo-v2 33.7(+0.7) 61.8(+2.0)

ReSim-C4 35.4(+2.4) 63.1(+3.3)

ReSim-FPN 35.6(+2.6) 63.4(+3.6)

ReSim-FPNT 35.4(+2.4) 63.3(+3.5)

Table 4.6: Results on COCO dense pose estimation and Cityscapes instance segmentation
tasks. The performance deltas with the supervised baseline is shown in the brackets. Green: deltas
at least +0.5.

FPN, and finetune and sync all such layers during training. We use the DensePose implementation
in [165]. The model is trained on train2014 split (1× schedule) and evaluated on val2014.
We report results under masked-GPS (APgpsm). Table 4.6 upper shows the comparisons of ReSim
versus MoCo-v2 and supervised pre-training counterparts. Our ReSim-FPN improves over the
supervised baseline by 2.2 points under APgpsm

75 .

Cityscapes Instance Segmentation. We use Mask R-CNN [66] with R50-FPN as our base model,
add Batch Normalization layers before the FPN, and finetune and sync all such layers during
training. The model is trained on the standard splits and training settings from [165]. Table 4.6
lower shows the comparisons of ReSim versus MoCo-v2 and supervised pre-training counterparts.
All of the ReSim variants substantially improve over the supervised baseline, e.g., by 3.3-3.6 points
under APmk

50 .

4.5 Conclusion
We presented ReSim, a novel self-supervised representation learning algorithm for localization-
based tasks such as object detection and segmentation. ReSim performs both global and region-level
contrastive learning to simultaneously learn semantic and spatial feature representations. The
spatially consistent feature representations are learned on regions of the convolutional feature maps,
while the global representations are learned over the entire image. In order to learn hierarchical
representations, we further incorporated feature pyramids into the ReSim pre-training, and showed
how these parameters can also be transferred to popular FPN-based frameworks for downstream
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tasks. Our method shows significant improvements for various localization-based tasks, such as
object detection, instance segmentation, and dense pose estimation.
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Chapter 5

Scale-MAE: A Scale-Aware Masked
Autoencoder for Multiscale Geospatial
Representation Learning

Continuing with the notion of data and label efficiency, this chapter explores a key missing compo-
nent for data and label efficient representation learning for geospatial imagery. Similar to the prior
chapters, this chapter will explore the necessity of label-efficient representation learning, however,
in this case we focus on a key area for scientific and industrial applications: geospatial imagery.

5.1 Introduction
Remote sensing data is captured from satellites and planes through a mixture of sensors, processing
pipelines, and viewing geometries. Depending on the composition and relative geometry of the
sensor to the Earth, each image’s Ground Sample Distance (GSD - the physical distance between
two adjacent pixels in an image) can vary from 0.3m to 1km, so a 100x100 pixel image could span
anywhere from an Olympic-size swimming pool (900 m2) to almost the entire country of Jamaica
(10,000 km2). The data within each image, and the corresponding objects and points of interest,
can therefore vary across wide spatial ranges. Data from these multiscale sensors provide critical
and complementary information for various operational and research applications in areas such as
atmospheric, hydrologic, agricultural, and environmental monitoring [152, 114].

Few modern computer vision methods have explicitly addressed multiscale remote sensing
imagery [90]. Nevertheless, the remote sensing vision community has increasingly used large,
pretrained models [50, 28], where such applications finetune a pretrained model for a single
source of data at a specific scale [50, 28, 51, 78, 106]. In this chapter we present Scale-MAE, a
masked reconstruction model that explicitly learns relationships between data at different, known
scales throughout the pretraining process. By leveraging this information, Scale-MAE produces a
pretrained model that performs better across a wide range of GSDs and tasks.

Scale-MAE is a self-supervised pretraining framework based on the Masked Autoencoder
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Ground TruthInput Image Scale-MAE Vanilla MAE

Correct Incorrect

0.3m GSD0.3m GSD

3.0m GSD3.0m GSD

Figure 5.1: Scale-MAE learns better representations for multiscale tasks compared to vanilla
MAE. (Column 1) The top image spans an area at 0.3m GSD and the bottom image shows the
same region at a coarser GSD. (Columns 2-4) The following columns show a ground truth building
segmentation, Scale-MAE segmentation from a finetuned UperNet, and segmentation from an
analogously finetuned UperNet from a vanilla MAE, respectively. Scale-MAE demonstrates better
performance across images at both scales. See the supplementary material for more examples.

(MAE) [67]. A standard MAE resizes/crops an image, masks the majority of the transformed
image, and then tasks a Vision Transformer (ViT) based autoencoder with embedding the unmasked
components. A decoding ViT then decodes the full image from these learned embeddings, where
the decoder is later discarded and the encoder is used to produce representations for an unmasked
input image.

Scale-MAE has two key differences that lead to its strong performance across spatial scales
(Figure 5.1). First, a standard MAE uses relative positional encodings to inform the ViT of the
position of the unmasked components. Scale-MAE uses a GSD-based positional encoding derived
from the land area covered in the image which informs the ViT of both the position and scale of the
input image. Second, Scale-MAE uses a Laplacian-pyramid decoder to encourage the network to
learn multiscale representations. The embeddings are decoded to two images containing low and
residual high frequency information, respectively – see Figure 5.2. As we discuss in Section 5.3,
this structure allows the ViT decoder to use fewer parameters than MAE while still producing strong
representations across multiple scales.

We show that Scale-MAE leads to better performing, more robust multiscale representations
than both a standard MAE and a recently proposed, state-of-the-art remote sensing MAE called
SatMAE [28] across remote sensing datasets with a variety of scale and resolution characteristics.
Our contributions can be summarized as follows:
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Figure 5.2: Scale-MAE architecture. Following the Masked Autoencoder framework, an input
image is patchified and masked before being passed into an MAE encoder. A Ground Sample
Distance Positional Encoding (GSDPE) is added to the encoder input, which scales the positional
encodings to the area of ground covered. The ReSim decoders has three stages: (1) Decoding,
which uses a smaller number of transformer layers than MAE to decode the encoded values (2)
Upsampling, which progressively deconvolves the decoded feature map to a larger size before being
passed through the Laplacian Blocks (abbreviated LB, see Section 5.3), (3) Reconstruction, which
then reconstructs low and high frequency features at different scales. These outputs are used to
compute an aggregate loss with ground truth low and high frequency features, where following
super resolution literature [2], an L1 loss is used for high frequency output to better reconstruct
edges and an L2 loss is used for low frequency output to better reconstruct average values.

1. We present Scale-MAE, a pretraining method that leads to better representations for remote
sensing data that are more robust across a range of spatial scales. Scale-MAE has two key
contributions: a scale-aware positional encoding and a Laplacian pyramid decoder that
decodes low and high frequency features at multiple scales.

2. Scale-MAE achieves an average of a 5.0% nonparametric kNN classification improvement
across eight remote sensing datasets compared to current state-of-the-art.

3. Scale-MAE obtains a 0.9 mIoU to 3.8 mIoU improvement on the SpaceNet building segmen-
tation transfer task for a range of evaluation scales (see Figure 5.1).

5.2 Related Work
Representation learning and the Masked Autoencoder. Representation learning aims to extract
meaningful, intrinsic features from data for downstream use [8]. In practice, this often entails
pretraining a deep network so that a lightweight learning routine can then finetune it for a particular
downstream task, see [35, 39, 43, 57, 69, 72, 95, 132, 185]. The Masked Autoencoder (MAE)
is a recent state-of-the-art self-supervised representation learning method in computer vision that
pretrains a ViT encoder by masking an image, feeding the unmasked portion into a transformer-
based encoder, and then tasking the decoder with reconstructing the input image [67]. Scale-MAE
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builds upon the MAE and learns representations specifically designed to be robust with multiscale
remote sensing imagery.

Remote Sensing Representation Learning Neumann et al. [116] were one of the first to exhaus-
tively share results on existing representation learning and semi-supervised learning techniques
for remote sensing imagery. Gao et al. [51] demonstrated the effectiveness of MAE pretraining
for remote sensing image classification. Ayush et al. [4] leveraged the metadata from remote
sensing images via spatially aligned but temporally separated images as positive pairs for contrastive
learning and predicted the latitude and longitude as pretext tasks. Gupta et al. [63] demonstrated
the use of MAEs as a pretraining approach for passive and active remote sensing imagery. Their
method introduced flexible “adapters” which could be used interchangeably with an encoder for a
set of input imagery modes. Cong et al. [28] introduced the SatMAE, which used temporal and
spectral metadata in a positional encoding to encode spatio-temporal relationships in data. The
temporal data contains the year, month, and hour enabling understanding of long-term change with
the year, weather information from the month, and hour information for the time of day. Further
Liu et al. [106] and Ibañez et al. [78] have shown that MAE architectures can be used for band
selection in hyperspectral remote sensing images, significantly reducing data redundancy while
maintaining high classification accuracy. Scale-MAE leverages inherent absolute scale information
present in remote sensing data as a way to learn robust, multiscale features that reduce data usage
downstream.

Super-resolution Super-resolution has proven effective in improving accuracy within remote
sensing images due to the extremely small size of objects within the image [144]. Previous works
have aimed to learn continuous implicit representations for images at arbitrary resolutions to aid
the super-resolution task. These representations are used to upsample the images either to specific
scales [96] or to arbitrary resolutions [173, 23, 75]. Most super-resolution work aims to increase
the resolution of the input image, whereas Scale-MAE produces both higher and lower resolution
images. There is some work on super-resolution for satellite imagery, but much of this work is
focused on synthetically creating high-resolution datasets for use with models trained specifically
for high-resolution data [70, 90]. Scale-MAE, however, utilizes super-resolution as a means to
obtain multiscale representations during pretraining.

Features at multiple scales. Because images can contain objects of many different pixel resolutions,
the vision community has proposed many methods to extract multiscale features. These include
spatial pyramids [94, 12, 141, 85] and dense sampling of windows [175, 81, 176]. These approaches
have been combined by methods such as [49], in which dense histogram-of-gradient features are
computed for each feature pyramid level. Rather than using classical computer vision techniques to
extract multiscale features, convolutional neural networks have been used to build deep multiscale
features. CNNs with subsampling layers inherently build feature pyramids, a property exploited
explicitly by [104, 99, 52]. Recently, this multiscale idea has been extended to vision transformers
by [48], who show that this architecture improves various video recognition and image classification
tasks. Scale-MAE reconstructs a version of Laplacian pyramids as a way to force an encoder to
learn multi-scale features.
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5.3 Scale-MAE
This section describes the Scale-MAE pretraining framework as illustrated in Figure 5.2. Scale-MAE
is a self-supervised pretraining framework based on the Masked Autoencoder (MAE) [67]. Our
method has two key differences: first, a standard MAE uses relative positional encodings to inform
the ViT of the position of the unmasked components, where an image at resolution r will have the
same positional encodings regardless of the image content. Scale-MAE, however, uses a Ground
Sample Distance (GSD) based positional encoding that scales in proportion to the area of land in
an image, regardless of the resolution of the image. Second, to encourage the network to learn
multiscale representations, Scale-MAE uses a Laplacian-pyramid decoder, where the embeddings
are decoded to a lower resolution image that captures the lower frequency information and a higher
resolution image that captures the high-frequency information. We formalize Scale-MAE in the
following subsections by first specifying the necessary MAE background, describing the GSD-based
positional encoding, and then explaining the Laplacian-pyramid decoder.

Setup Let I ∈RH×W×C represent an input image of height H, width W , and C channels. The MAE
patchifies I into a sequence S of independent patches of height and width P pixels, where each of
the Np patches, s ∈ S has dimension s ∈ RP2C. A fraction, m, of the patches are then removed and
the remaining patches are then passed through a projection function (e.g., a linear layer) to project
the patches S into D dimensions, fE : RP2C → RD, to obtain embedded patches SE = fE(S). An R2

positional encoding vector, is then added to the embedded patches with

vx(pos,2i) = sin
pos

10000
2i
D

(5.1)

vy(pos,2i+1) = cos
pos

10000
2i
D

(5.2)

where pos is the position of the patch along the given axis and i is the feature index (visualized
in Figure 5.3), exactly as introduced in [158]. These positional encodings are then concatenated
and added to the embedded patches, which are then fed into a ViT encoder. After the encoder, the
removed m patches are then placed back into their original location in the sequence of patches where
a learned mask token represents the masked patches that were not encoded. Another positional
encoding vector is added to all patches and a sequence of transformer blocks decodes these patches
to form the original input image, which is used as the learning target.

Input Unlike MAE, Scale-MAE performs a super resolution reconstruction, where the input
image I is downsampled from a higher resolution image Ihr at the ground truth GSD. Instead
of targeting the input image, Scale-MAE targets high frequency and low frequency components
of Ihr, which is common in Laplacian pyramid super resolution models [178], where the high
frequency component is at the same resolution as the ground truth image Ihr and the low frequency
component is at the same resolution as the input image I, as shown in Figure 5.2. Following
many works in super resolution[178], the low frequency target image is obtained by interpolating
Ihr to a much lower resolution, rlow and then interpolating to the same resolution as the input
image I. The high frequency target image is obtained by downsampling Ihr to another lower
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resolution rhigh-low, and then upsampling to the same resolution as the ground truth image Ihr and
subtracting this image Ihf = Ihr − Ihigh-low. The supplementary material provide more information
on the upsampling/downsampling methodology. The key components for Scale-MAE are described
next.

GSD Positional Encoding Remote sensing images inherently have the concept of GSD, a metric
which defines the absolute scale for the image. GSD is critical to understanding, conceptually, the
kinds of features that will be available in an image. An image with finer GSD (lower number) will
have higher frequency details than an image with coarser GSD (high number). Models are generally
unaware of absolute scale when learning over a set of data. Specifically, even if they implicitly learn
that all images in a dataset share a varying resolution from input-space augmentations, then these
models do not explicitly condition on the GSDs encountered in unseen data.

We extend the positional encoding from Equation (5.2) to include GSD by scaling the positional
encoding relative to the land area covered in an image as depicted in Figure 5.3 and mathematically:

vgsd,x(pos,2i) = sin
G
g

pos

10000
2i
D

(5.3)

vgsd,y(pos,2i+1) = cos
G
g

pos

10000
2i
D

(5.4)

where g is the GSD of the image and G is a reference GSD, nominally set to 1m. Intuitively, an
object imaged at a finer resolution has more pixels representing it. When imaging the same object
at a coarser resolution, those pixels must map to fewer pixels. In Equation (5.4), we interpolate the
positional encoding by a factor of G

g to account for the ordering of the coarser set of pixels. This
simple idea underpins the GSD Positional Encoding, visualized in Figure 5.3.

Scale-MAE decoder The standard MAE learns representations by tasking a network with re-
constructing an image after masking out most of its pixels. While the standard MAE decoder
reconstructs the input image at the same scale as its input, the objective of Scale-MAE is to learn
multiscale representations. We draw on works from progressive super-resolution such as [164], that
learn a high resolution, high frequency image and a lower resolution low frequency image, that
when combined together, yield the input image at a higher resolution.

The standard MAE decoder reconstructs to the input image scale by using a series of transformer
layers. The Scale-MAE decoder, on the other hand, decodes to multiple scales by replacing the
majority of the MAE decoder’s transformer layers with a progressive Laplacian decoder architecture.
This architecture consists of three stages: decoding, upsampling, and reconstruction, which are
shown in Figure 5.2 and detailed below.

Decoding follows the standard MAE decoder where following the encoder, the removed m
patches are then placed back into their original location in the sequence of patches where a learned
mask token represents the masked patches that were not encoded, a positional encoding is added,
and then a series of transformer layers decode all patches. In contrast to the standard MAE decoder,
the Scale-MAE decoder uses fewer transformer layers (e.g. 3 layers instead of 8), which more than
offsets the parameter complexity as quantified in Section 5.5. The output of these layers is then fed
into the upsampling stage.
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Figure 5.3: The difference between GSDPE and a standard Positional Encoding (PE). (Left)
Input images at the same pixel resolution but different GSDs are shown. The image on the top
is a subset of the image on the bottom. (Center) This overlap in location, albeit at a different
resolution, is reflected in the GSDPE. The finer image with smaller spatial extent is represented by
a corresponding subsection of the overall sine wave on the bottom. (Right) A standard positional
encoding is strictly dependent on the image resolution and uses the same embedding for both. The
colors behind the sine waves show the intensity and quantization of the encoding.

Upsampling The latent feature maps from the decoding stage are progressively upsampled to 2x
and 4x resolution using deconvolution blocks, where the first deconvolution is 2x2 with stride 2 that
outputs a feature map at 2x the input resolution (28 in Figure 5.2), followed by a LayerNorm and
GELU, and then another 2x2 deconvolution layer that outputs a feature maps at 2x the previous
resolution (56 in Figure 5.2). See the supplementary material for a full architectural diagram.

Reconstruction After having been upsampled, the lower resolution and higher resolution feature
maps are passed into Laplacian Blocks (LBs in Figure 5.2) that reconstruct high and low resolution
images for the high and low frequency reconstruction, respectively. Architecturally, the Laplacian
Blocks consist of a sequence of three sub-blocks: a Laplacian Feature Mapping Block, a Laplacian
Upsample Block, and a Laplacian Pyramid Reconstruction Block. The Feature Mapping Block
is used to project features within a particular layer of the Laplacian Pyramid back to the RGB
space. The Laplacian Upsample Block represents a learnable upsample function that maps latent
features from one layer of the Laplacian Pyramid to a higher level. Finally, the Laplacian Pyramid
Reconstruction Block is used to reconstruct information at the different frequencies in RGB space.
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Figure 5.4: (top) The Laplacian Block (LB) is a fully convolutional architecture consists of a chain
of Feature Mapping Block followed by one final Reconstruction Block. (bottom) The UpSampling
Block (UB) consists of a series of transpose convolution layers separated by LayerNorm and GELU
activation.

Following super resolution literature [2], an L1 loss is used for high frequency output to better
reconstruct edges and an L2 loss is used for low frequency output to better reconstruct average
values.

Figure 5.4 illustrates the architecture of Laplacian and Upsampling block architectures described
below.

Laplacian Block Details
Laplacian Blocks are used to reconstruct the target at a specific resolution and frequency. A
Laplacian Block consists of a chain of Feature Mapping Block, which distills information at a
specific frequency, followed by one final Reconstruction Block, which generates the final output.
A Feature Mapping Block consists of a 3x3 depth-wise convolution layer with GELU activation,
followed by 1x1 convolution. A Reconstruction Block consists of a 4x4 transpose convolution
layer followed by a 3x3 depth-wise convolution layer, a 1x1 convolution layer, and a 2x2 transpose
convolution layer. In our experiments, we have two Feature Mapping Blocks per Laplacian Block.

Upsampling Blocks are used to upsample the feature map to a higher resolution. It consists of a
series of 2x2 transpose convolution layers with LayerNorm and GELU activation between them.
The number of such transposed convolution layers are a function of the output and input resolution.
This is a progressive process in which we repetitively upsample the feature map by a factor of 2 until
we reach the desired target resolution. Figure 5.4 illustrates the architecture of these two blocks.
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Input Image Mask Low Frequency High Frequency Reconstruction

Figure 5.5: Scale-MAE reconstruction. Examples from Functional Map of the World are shown.
From left to right, an input image at 224x224 resolution is shown. Its corresponding mask is
visualized as well. Columns 3 and 4 show the low and high frequency produced by the Scale-MAE
decoder. The last column is the reconstruction obtained from summing the low and high frequency
features together.

5.4 Experiments
We investigate the quality of representations learned from Scale-MAE pretraining through a set of
experiments that explore their robustness to scale as well as their transfer performance to additional
tasks. First, we present our main experiments in Section 5.4 and compare with SatMAE [28], a
current state-of-the-art MAE for remote sensing imagery, as well as several other approaches detailed
throughout. The exact implementation of Scale-MAE for the main experiments was determined
through a set of ablation experiments presented in Section 5.4.

Experimental Datasets
In our experiments, we used a total of ten datasets (Table 5.1) for the tasks of land-use/land-cover
classification and semantic segmentation. There are a large amount of remote sensing datasets in
existence. Many remote sensing datasets fundamentally capture the same data with minor changes
in location or distribution. We selected datasets with key, representative properties. These properties
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Figure 5.6: Learning better representations at all scales. Scale-MAE (orange) features perform
better than state-of-the-art. We evaluate kNN accuracy on eight datasets with a large variance in
GSD. Scale-MAE consistently produces better results at coarser resolutions. In addition to using
evaluation datasets at different GSDs, to further test the multiscale representations, we create
multiple test sets for each dataset in which we downsampled the full resolution validation set to
coarser GSDs at fixed percentages: XG%

val ,G ∈ {12.5,25,50,100}, where Eurosat does not include
the 12.5% because the images are at a resolution of 64px, our patch size is 16px, and an input image
of 8px is too small.

include (1) a diversity in the amount of kinds of classes/objects represented, (2) a large spectrum
of ground sample distances from (ideally) known sensor configurations, and (3) pansharpened,
othrorectified, and quality controlled imagery and labels. We capture these properties in Table 5.1.

Diversity in classes For both pretraining and downstream evaluations, it is a desirable property
to include as much geographic and class diversity as possible. In order to capture a wide amount
of classes in remote sensing, it is necessary to include multiple localities and environments. This
property serves as a proxy for the amount of unique “features” available in the dataset.

Evaluation Details
As discussed in the main experimental section, we investigated the quality of representations learned
from Scale-MAE pretraining through a set of experiments that explore their robustness to scale as
well as their transfer performance to additional tasks. We provide more information and details
on these evaluations here. In order to compare with SatMAE [28], for our main experiments, we
pretrained Scale-MAE with a ViT-Large model using the Functional Map of the World (FMoW)
RGB training set, which consists of 363.6k images of varying image resolution and GSD. The
initial higher resolution image Ihr is taken as a random 448px2 crop of the input image, and the
input image I is then a downsampled 224px2 from Ihr. The low frequency groundtruth is obtained
by downscaling Ihr to 14px2 and then upscaling to 224px2, while the high frequency groundtruth is
obtained by downscaling Ihr to 56px2 and then upscaling to 448px2 and subtracting this image from
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Dataset Res (px) GSD (m) Num Images Num Classes Task
AiRound [109] 500 0.3 - 4800 11,753 11 C

CV-BrCT [109] 500 0.3 - 4800 24,000 9 C

EuroSAT [71] 64 10 27,000 10 C

MLRSNet [130] 256 0.1 - 10 109,161 46 C

Optimal-31 [161] 256 0.5 - 8 1,860 31 C

RESISC-45 [24] 256 0.2 - 30 31,500 45 C

UC Merced [179] 256 0.3 2,100 21 C

WHU-RS19 [32] 256 0.5 950 19 C

fMoW [26] Various 0.3 1,047,691 62 C

SpaceNet v1 [157] Various 0.5 6,940 2 SS

Table 5.1: Statistics of all datasets used in our experiments. Task types are classification (C) and
semantic segmentation (SS).

Ihr. This is a common method for band pass filtering used in several super resolution works, where
a high to low to high resolution interpolation is used to obtain only low frequency results, and then
high frequency results are obtained by subtracting the low frequency image.

As further discussed in the main experimental section, we evaluate the quality of representations
from Scale-MAE by freezing the encoder and performing a nonparametric k-nearest-neighbor (kNN)
classification with eight different remote sensing imagery classification datasets with different GSDs,
none of which were encountered during pretraining. The kNN classifier operates by encoding all
train and validation instances, where each embedded instance in the validation set computes the
cosine distance with each embedded instance in the training set, where the instance is classified
correctly if the majority of its k-nearest-neighbors are in the same class as the validation instance.
The justification for a kNN classifier evaluation is that a strong pretrained network will output
semantically grouped representation for unseen data of the same class. This evaluation for the
quality of representations occurs in other notable works [13, 20, 166].

Representation Quality
In order to compare with SatMAE [28], for our main experiments, we pretrain Scale-MAE with a
ViT-Large model using the Functional Map of the World (FMoW) [26] RGB training set, which
consists of 363.6k images of varying image resolution and GSD. The initial higher resolution image
Ihr is taken as a random 448px2 crop of the input image, and the input image I is then a downsampled
224px2 from Ihr. The low frequency groundtruth is obtained by downscaling Ihr to 14px2 and then
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Method Backbone Model mIoU
Sup. (Scratch) ResNet50 PSANet 75.6

GASSL [4] ResNet50 PSANet 78.5

Sup. (Scratch) ViT-Large PSANet 74.7
SatMAE[28] ViT-Large PSANet 78.1

Sup. (Scratch) ViT-Large UperNet 71.6
Vanilla MAE ViT-Large UperNet 77.9

SatMAE ViT-Large UperNet 78.0

Scale-MAE ViT-Large UperNet 78.9

Table 5.2: Semantic segmentation results on SpaceNet v1. Scale-MAE outperforms other methods
across backbone and segmentation architectures, where Sup. (Scratch) indicates a supervised model
trained from scratch (a randomly initialized network).

upscaling to 224px2, while the high frequency groundtruth is obtained by downscaling Ihr to 56px2

and then upscaling to 448px2 and subtracting this image from Ihr.
Figure 5.5 shows examples of the masked input, low resolution/frequency, high resolution/fre-

quency, and combined reconstruction of FMoW images during training. The low resolution/fre-
quency images capture color gradients and landscapes, while the residual high resolution/frequency
images capture object edges, roads, and building outlines.

We evaluate the quality of representations from Scale-MAE by freezing the encoder and perform-
ing a nonparametric k-nearest-neighbor (kNN) classification with eight different remote sensing
imagery classification datasets with different GSDs, none of which were encountered during pre-
training. The kNN classifier operates by encoding all train and validation instances, where each
embedded instance in the validation set computes the cosine distance with each embedded instance
in the training set, where the instance is classified correctly if the majority of its k-nearest-neighbors
are in the same class as the validation instance.

The reasoning behind the kNN classifier evaluation is that a strong pretrained network will
output semantically grouped representation for unseen data of the same class. This evaluation for the
quality of representations occurs in other notable works [13, 20, 166]. In addition to using evaluation
datasets at different GSDs, to further test the multiscale representations, we create multiple test
sets for each dataset. Since we cannot synthesize data at a finer GSD than the provided ground
truth, we only downsample the full resolution validation set to coarser GSDs at fixed percentages:
XG%

val ,G ∈ {12.5,25,50,100}.
Our analysis uses eight different land-use classification datasets: RESISC-45 [24], the UC

Merced Land Use Dataset [179], AiRound and CV-BrCT [109], MLRSNet [130], EuroSAT [71],
Optimal-31 [161], WHU-RS19 [32], SpaceNet v1 and v2 [157], and Functional Map of the World
[26]. The datasets used span a wide range of GSDs, e.g., MLRSNet consists of data captured from
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Average Accuracy (%)
Dataset Scale-MAE SatMAE
AiRound 62.7 (+4.9) 57.8
CV-BrCT 69.6 (+3.4) 66.2
EuroSAT 86.2 (+1.8) 84.4
MLRSNet 80.8 (+5.8) 75.0

OPTIMAL-31 64.1 (+8.4) 55.7
RESISC 69.1 (+8.1) 61.0

UC Merced 74.0 (+4.2) 69.8
WHU-RS19 81.5 (+3.0) 78.5

Table 5.3: Scale-MAE performs better, across all GSDs (as in Figure 5.6), for all datasets we exper-
imented with compared to SatMAE. The average improvement across all dataset for Scale-MAE
compared to SatMAE is 5.0%.

aerial platforms with 0.1m GSD, while RESISC45 has imagery from medium-resolution satellites
at >30m GSD. In some cases, the datasets present imagery at mixed GSDs which are not specified,
in which case we assume an approximate constant GSD: see the supplementary material for all
details. Furthermore, we provide an expanded set of experiments with linear probing and finetuning
in the supplementary material.

We run kNN classification with k = 20. Figure 5.6 shows that Scale-MAE outperforms SatMAE
across GSD scales in the different evaluation datasets and across relative GSD scales within
individual datasets. At the lowest fixed GSD, UC Merced has a GSD of 0.3m, where evaluating at
scales [12.5%,100%] provides an artificial GSD range of [0.3m, 2.4m], we see that Scale-MAE has
the largest performance gap at the 2.4m GSD, with similar performance at 0.3m.

Across the other datasets and range of GSDs, Scale-MAE outperforms SatMAE, where the
performance gap tends to grow as the GSD varies from the original GSD, indicating that Scale-MAE
learns representations that are more robust to changes in scale for remote sensing imagery. We
outperform SatMAE by an average of 5.0% across all resolutions and datasets (see Table 5.3). UC
Merced at 100% of the true GSD is the only evaluation where SatMAE outperforms Scale-MAE.
The supplementary material contains an extensive table demonstrating kNN classification results
with varying k.

Semantic segmentation transfer We use the SpaceNet v1 building segmentation dataset [157]
to evaluate semantic segmentation results on contrastive and MAE-based pretraining methods.
Prior methods relied on the PSANet [188] segmentation architecture, while Scale-MAE uses the
UperNet[169] segmentation architecture which is more common for ViT backbones. For even
comparison, we test the current state-of-the-art SatMAE method with UperNet as well. Results are
detailed in Table 5.2.

Scale-MAE outperforms SatMAE by 0.9 mIoU and a vanilla MAE (with the same pretraining
settings) by 1.0 mIoU. Scale-MAE outperforms all other prior work, including GASSL [4], which
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Figure 5.7: SpaceNet v1 evaluation across downscaled images for both Scale-MAE and SatMAE.
Scale-MAE maintains higher semantic segmentation performance over SatMAE, even with images
of coarser GSD.

SatMAE did not outperform on the mean Intersection over Union (mIoU) metric for semantic
segmentation. Particularly, Scale-MAE increases the gap in performance as the resolution of input
imagery becomes coarser, highlighting the absolute scale-invariance introduced by our method.

In Figure 5.7, we compare SpaceNet v1 evaluations across downscaled images (at 50%, 75%,
and 100% of the original image size) for Scale-MAE and SatMAE. Similar to the classification
results, Scale-MAE maintains higher semantic segmentation performance over SatMAE, even with
images at a coarser GSD. In fact, the performance gap grows at coarser GSDs, where at the input
GSD, Scale-MAE is 0.9 mIoU higher, at 75% GSD Scale-MAE is 2.9 mIoU higher, and at 50%
Scale-MAE is 3.8 mIoU higher.

Linear Classification Results
We perform Linear classification on the RESISC-45 and FMoW-RGB datasets. We fine-tune for 50
epochs using the same hyperparameter settings as SatMAE [28]: a base learning rate of 5×10−3,
a weight decay of 5×10−3. We do not use temporal data for classification. For RESISC-45, we
fine-tune for 100 epochs with a base learning rate of 4×10−3, a weight decay of 5×10−3, and a
global batch size of 256 across 2 GPUs. The learning rate on the backbone is multiplied by a factor
of 0.1. We use RandomResizedCrop for augmentation. We train on 224x224 images and evaluate
256x256 images because we found evaluating at a higher scale improves the performance of all
models. We report both the performance of end-to-end fine-tuning and linear probing with a frozen
backbone. The linear probing setup was the same as finetuning except the learning rate was 0.1.
The results are shown in Table 5.4 and Table 5.5.

Visualization of SpaceNet Segmentation
Figure 5.8 shows an additional set of segmentation examples comparing Scale-MAE and vanilla
MAE pre-trained on FMoW and finetuned on SpaceNet v1. The left, center, right columns are
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Model Frozen/Finetune
Scale-MAE 89.6/95.7

SatMAE [28] 88.3/94.8
MAE [67] 88.9/93.3

Table 5.4: Transfer classification results on RESISC-45. Frozen indicates a linear probe and
finetune is a full end-to-end finetuning of the entire model.

Model Backbone Top-1/Top-5
Scale-MAE ViT-Large 77.9/94.3

SatMAE † [28] ViT-Large 72.4/91.9
MAE [67] ViT-Large 68.4/90.3

SatMAE ∗ [28] ViT-Large 77.8/-
GASSL [5] ResNet-50 71.55/-

MoCo-V2 [69] ResNet-50 64.34/-

Table 5.5: Linear probe and finetune classification results on FMoW-RGB. †: We reproduce the
SatMAE by taking the publicly available codebase and pretrain on FMoW dataset for 800 epochs.
The results differ from their reported results, but are evaluated consistently with ours. * Reports the
results from the SatMAE paper [28].

Method GSDPE KNN 50% KNN 100%
Vanilla MAE 72.8 77.8
Vanilla MAE ! 75.4 78.5

Scale-MAE 75.3 79.6
Scale-MAE ! 78.1 80.7

Table 5.6: Ablation results indicating the importance of GSDPE as determined by a KNN classifica-
tion on RESISC-45 at a relative GSD of 50% and 100% of its native GSD. Using the GSDPE leads
to better performance for both Scale-MAE and the Vanilla MAE.

ground truth labels, Scale-MAE and vanilla MAE respectively. The top row shows a 0.3m GSD
image and the bottom row shows a 3.0m GSD image. As shown in the figure, Scale-MAE performs
better at both higher and lower GSDs.

Ablations
We ablate the key components of the Scale-MAE pretraining framework. For these experiments,
we use a lightweight pretraining setting, where we pretrain for 300 epochs on FMoW (rather than
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Figure 5.8: Visualization of Segmentation Results on SpaceNet. The left, center, right columns are
ground truth labels, Scale-MAE and vanilla MAE, respectively. The top row shows a 0.3m GSD
image and the bottom row shows a 3.0m GSD image. As shown in the figure, Scale-MAE performs
better at both higher and lower GSDs.

800) and use a ViT-Base encoder (rather than ViT-Large), and evaluate using a kNN evaluation
on RESISC-45 at 100% and 50% of its native GSD. The key contributions that we ablate are as
follows: the GSD positional encoder in Table 5.6, in which we find that the GSD postional encoder
benefits both Scale-MAE and Vanilla MAE across resolutions. In Table 5.7, we see that the number
of transformer layers can be reduced from 8 to 3 compared to a Vanilla MAE, which results in a
performance improvement. The standard masking rate of 75% still appears optimal for Scale-MAE
according to the results in Table 5.8.

In Table 5.9 we ablate the necessity of the low and high resolution reconstructions. Specifically,
we test reconstructing the low resolution image only, the high resolution image, and a combined
image (rather than independent low/high reconstructions). In this case, when the high resolution
component is reconstructed, we do not use the low-resolution residual, but rather, directly recon-
struct the high resolution result. The “Combined” entry combines the low and high resolution
results instead of treating them as separate learning objectives. The separate low/high resolution
reconstructions obtain the best performance and robustness to changes in scale.
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Decoding Layers KNN 50% KNN 100%
1 76.0 78.4
2 77.9 80.4
3 78.1 80.7
4 77.5 80.0
8 77.7 78.9

Table 5.7: Ablation results indicating that fewer transformer layers in the decoding stage tend to
work better for Scale-MAE as determined by a KNN classification on RESISC-45 at a relative GSD
of 50% and 100% of its native GSD.

Mask Rate KNN 50% KNN 100%
70% 77.3 79.3
75% 78.1 80.7
80% 78.1 79.9

Table 5.8: Ablation results indicating that a 75% mask rate is optimal as determined by a KNN
classification on RESISC-45 at a relative GSD of 50% and 100% of its native GSD.

Low Res High Res Combined KNN 50% KNN 100%

! 77.6 80.2
! 72.9 74.3

! 77.2 80.3
! ! 78.1 80.7

Table 5.9: These ablation results indicate that reconstructing both the low resolution and high
resolution components lead to robust performance. Note: when the high resolution component
is reconstructed, the low-resolution residual is not used—the high resolution result is directly
reconstructed. The “Combined” entry merges the low and high resolution results instead of treating
them as separate losses. The evaluations are a kNN classification (k=20) on RESISC-45 at relative
GSDs 50% and 100% of its native GSD.

5.5 Discussion
In this section, we share observations about Scale-MAE, sketch our vision for future work, and
discuss high-level questions about Scale-MAE.

Computational complexity. Scale-MAE requires a much smaller decoder than vanilla MAE—
instead of a decoder depth of eight, Scale-MAE works well with a depth of three. In fact, with
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322.9M vs 329.5M parameters using ViT-Large, Scale-MAE is smaller than vanilla MAE. However,
GPU memory usage for equal batch sizes are higher for Scale-MAE since we reconstruct a higher
resolution image in the Scale-MAE Decoder.

Multi-spectrality and modality. Electro-optical (EO) satellites, such as the ones comprising the
datasets mentioned in this work, capture light at different wavelengths. Each wavelength has a
different sensor, and each sensor can have a different resolution. Scale-MAE requires input tensors
to be stacked to pass through the model. This means that we are unable to use Scale-MAE when
the input image’s bands are all of different GSDs. Additionally, synthetic aperture radar (SAR)
imagery is another form of remote sensing where resolution varies across a single band. Extending
Scale-MAE to work with different resolution bands and modalities is reserved for future work.

Can the Scale-MAE methodology be applied to other backbones? Methods such as Con-
vNeXt[107] provide competitive performance compared to Transformers. The core components
of our work can be integrated, with additional work, into different architectures. The Laplacian
Decoder in Scale-MAE can be engineered to ingest convolutional feature maps. Existing work on
scale-aware CNNs can be extended to work with the Laplacian Decoder.

Evaluating on more remote sensing datasets. The field of remote sensing has had a renaissance in
the last five years with the amount of available datasets. These can be generic, like Functional Map
of the World, to highly specific, such as identifying illegal airstrips in Brazil[1, 15] or identifying
illegal fishing vessels[123]. In fact, there are so many small, specific remote sensing datasets that
entire review papers are written to enumerate them[172]. We chose to focus datasets with properties
of remote sensing that are relevant to multi-scale representation learning.
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Chapter 6

Conclusion

In the past few years, representation learning research has dramatically shifted from supervised
approaches to (unsupervised) contrastive approaches to (unsupervised) reconstructive approaches.
In retrospect, it’s easy to think “well, of course, there’s way more unlabeled data so this transition is
necessary,” or “reconstructive approaches have fewer inductive biases and scale; all of that work on
contrastive approaches was a waste of time.” But of course, the reality is that these realizations are
hard-earned through careful experimentation and refinement of ideas through a broad community.
This dissertation summarizes my contribution to this progress, and I look forward to continuing this
collective journey.

Scale has been one of the latent factors for progressing this line of research, where the research
community has cyclically revisited existing ideas with new architectures, datasets, and hardware
that better enable scaling. While one thrust of research has examined scale, another complementary
thrust of research (including this dissertation) has asked: how can we do more with less? This
dissertation provided a number of approaches to improve the label and data efficiency in modern
representation learning pipelines, and the methods and directions presented in this dissertation are
reflective of the macroscopic research directions taken by the community as a whole.

Chapter 2, “SelfAugment: Automatic Augmentation Policies for Self-Supervised Learning” [137]
presented an AutoML approach to determine optimal augmentations to use for contrastive learning
pipelines. Several notable works have cited and built upon this paper [76, 61], and the community
as a whole recognized that handcrafted augmentation policies were inherently brittle [170]. Since
this work, reconstructive representation learning methods such as the Masked AutoEncoder (MAE)
have found that image augmentations are, in fact, unnecessary to obtain strong performing visual
representations.

Chapter 3 presented “Self-Supervised Pretraining Improves Self-Supervised Pretraining” [136],
which showed that high-performing representations could be learned by simply finetuning a very
small number of parameters in the network using a very small amount of unlabeled data and an
appropriate self-supervised finetuning pipeline. Following this work, the unsupervised learning
community adopted the term “Foundation Models,” [9], which cited this work, and adopted a similar
unsupervised training/finetuning process as proposed this work. Of course, the nature of research is
cyclical, and my work built upon similar proposals from others. The resulting branding of the term
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“Foundation Models”, though not novel, appears here to stay, with thousands of papers adopting this
term and direction in the past two years alone [9].

Chapter 4 presented “Region Similarity Representation Learning” (ReSim) [168], a method for
learning region-level representation by performing contrastive learning at a region (patch-based)
level. The region level representations could then be used for downstream region-level tasks
such as object detection or segmentation, and as we showed, led to several state-of-the-art results,
particularly when there was a limited amount of labeled downstream data. Many works have built
upon ReSim since its publication, and in fact, this area has garnered so much attention that there
is an entire survey devoted to this exact problem [77]. Current research directions have explored
applying the same concepts presented in ReSim to transformer architectures and MAEs [TODO].

Chapter 5 presented “Scale-MAE: A Scale-Aware Masked Autoencoder for Multiscale Geospa-
tial Representation Learning,” [135], my most recent publication before this dissertation. Remote
sensing imagery has accelerated the rate of scientific discovery in a broad set of disciplines. With
increasingly precise methods to extract environmental indicators using computer vision methods,
automated understanding of remotely sensed sources has become a mainstay in scientific literature.
Remote sensing payloads are diverse and capture data at a wide range of resolutions, a feature
heavily utilized by scientists. Current computer vision methods for remote sensing necessitate
the training of a new model per input resolution. Not only is the training process expensive, but
the overhead of curating a dataset at multiples scales makes this a daunting task. Scale-MAE
is a pretraining framework that directly introduces scale invariance into encoders that are used
for a diverse set of downstream tasks. Our insights into scale-inclusive positional encodings and
progressive multi-frequency feature extraction result in models that perform significantly better
than state-of-the-art pretraining methods across (1) multiple scales and (2) many benchmarks. Our
goal was to take the extremely diverse and rich source of information present in remote sensing
imagery and make it simple to use with minimal training iterations required. With the introduction
of Scale-MAE, I hope to have further accelerated the rate at which scientific disciplines create
impact in this space.

At a high level, this dissertation presents complementary and exploratory methods for data
and label efficient representation learning. These methods have been adopted by several industry
partners and collaborators throughout this work, formed a key part of our entry to DARPA’s
LWLL competition [33], and provided a foundation for other works to build upon (indeed, even
the foundational Foundation Models work [9]!). I look forward to continuing this journey in
representation learning and further contributing and drawing from the wonderful progress in our
collective field.
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