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Behavioral/Cognitive

Distinct Oscillatory Dynamics Underlie Different
Components of Hierarchical Cognitive Control

Justin Riddle,1,2* David A. Vogelsang,3* Kai Hwang,3,4 Dillan Cellier,4,5 and Mark D’Esposito1,3
1Department of Psychology, University of California at Berkeley, Berkeley, California 94720-1650, 2Department of Psychiatry, University of North
Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, 3Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley,
California 94720-3370, 4Department of Psychology, University of Iowa, Iowa City, Iowa 52245, and 5Department of Cognitive Science, University of
California at Berkeley, Berkeley, California 94720-2306

Hierarchical cognitive control enables us to execute actions guided by abstract goals. Previous research has suggested that
neuronal oscillations at different frequency bands are associated with top-down cognitive control; however, whether distinct
neural oscillations have similar or different functions for cognitive control is not well understood. The aim of the current
study was to investigate the oscillatory neuronal mechanisms underlying two distinct components of hierarchical cognitive
control: the level of abstraction of a rule, and the number of rules that must be maintained (set-size). We collected EEG data
in 31 men and women who performed a hierarchical cognitive control task that varied in levels of abstraction and set-size.
Results from time-frequency analysis in frontal electrodes showed an increase in theta amplitude for increased set-size,
whereas an increase in d was associated with increased abstraction. Both theta and d amplitude correlated with behavioral
performance in the tasks but in an opposite manner: theta correlated with response time slowing when the number of rules
increased, whereas d correlated with response time when rules became more abstract. Phase-amplitude coupling analysis
revealed that d phase-coupled with b amplitude during conditions with a higher level of abstraction, whereby beta band may
potentially represent motor output that was guided by the d phase. These results suggest that distinct neural oscillatory
mechanisms underlie different components of hierarchical cognitive control.

Key words: abstraction; cognitive control; EEG; phase-amplitude coupling; set-size; time frequency

Significance Statement

Cognitive control allows us to perform immediate actions while maintaining more abstract, overarching goals in mind and to
choose between competing actions. We found distinct oscillatory signatures that correspond to two different components of
hierarchical control: the level of abstraction of a rule and the number of rules in competition. An increase in the level of
abstraction was associated with d oscillations, whereas theta oscillations were observed when the number of rules increased.
Oscillatory amplitude correlated with behavioral performance in the task. Finally, the expression of b amplitude was coordi-
nated via the phase of d oscillations, and theta phase-coupled with g amplitude. These results suggest that distinct neural os-
cillatory mechanisms underlie different components of hierarchical cognitive control.

Introduction
Cognitive control orchestrates thoughts and actions according to
internal goals (Norman and Shallice, 1986; Braver 2012). The
frontal cortex is central to cognitive control, where representations

of rules and goals provide top-down influences over motor and
perceptual systems to guide actions (E. K. Miller and Cohen,
2001; B. T. Miller and D’Esposito, 2005; Badre and Nee, 2018;
Vogelsang and D’Esposito, 2018). Previous research findings sug-
gest that the frontal cortex is organized hierarchically along the
rostral-caudal axis, where the caudal frontal cortex is involved in
the control of concrete action representations, whereas the rostral
PFC is involved in the control of abstract rules, goals, and con-
texts (Badre and Nee, 2018). We have previously demonstrated
that, at any particular level of representation, an appropriate action
can be chosen from a number of competing rules (number of rules
defined as set-size); and as competition increases, cognitive control
is required to adjudicate among alternatives (Badre and D’Esposito,
2007).
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It is proposed that rhythmic neural oscillations support a
diverse range of cognitive functions, whereby oscillations in dif-
ferent frequency bands, ranging from slow d oscillations to faster
g oscillations, are generated by distinct biophysical mechanisms
and are associated with different cognitive functions (for review,
see Sauseng et al., 2010; Roux and Uhlhaas, 2014; Helfrich and
Knight, 2016; Sadaghiani and Kleinschmidt, 2016; Helfrich et al.,
2019). Phase-amplitude coupling (PAC) between frequency
bands, in which the phase of a slow oscillation, such as theta, can
modulate the amplitude of faster oscillations, such as g (Lisman
and Jensen, 2013; Nácher et al., 2013, Arnal et al., 2015; Morillas-
Romero et al., 2015; Voytek et al., 2015; Heusser et al., 2016),
further supports interareal communication and interactions
between cognitive functions. However, whether or not there are
distinct neural oscillations associated with different components
of hierarchical cognitive control is unknown.

In our previous human electrocorticography study, we found
that tasks that required increased hierarchical cognitive control
were associated with increased theta-band synchronization
between the prefrontal and premotor/motor regions (Voytek et
al., 2015). Furthermore, the phase of prefrontal theta oscillations
showed increased coupling with the amplitude of g oscillations
in the motor cortex (Voytek et al., 2015). A series of nonhuman
primate experiments have also found that beta band oscillations
are associated with rule representation in the frontal cortex, in
which distinct neural populations represent different rules and
become more synchronized in b frequency when the rule is
behaviorally relevant (Buschman et al., 2012; Antzoulatos and
Miller, 2014, 2016; Wutz et al., 2018). Furthermore, updating the
active rule representation increases d oscillations in these same
neural populations, preceded by a modulation in b oscillations
(Antzoulatos and Miller, 2016). Together, these findings suggest
that theta-g and d -beta band oscillations are associated with
hierarchical cognitive control. However, in these experiments,
tasks that engaged more abstract rules also had higher set-size
(higher number of rules to select from), making it impossible to
determine whether the modulation of neural oscillations and
PAC by these cognitive processes are driven by set-size or
abstraction. In this study, our aim was to address this question.

Materials and Methods
Experimental design and statistical analysis. Thirty-one healthy par-

ticipants (18 females; mean age 20 years; range 18-34 years) with normal
or corrected-to-normal vision were recruited from the University of
California, Berkeley. Written consent was obtained before the start of
the experiment, and participants received monetary compensation for
their participation. The study was approved by the University of
California, Berkeley Committee for Protection of Human Subjects.

The experiment consisted of a single session of EEG during perform-
ance of the hierarchical cognitive control task. Behavioral performance,
response time (RT), and accuracy were analyzed using two-way
repeated-measures ANOVA with two factors: abstraction (high and low)
and set-size (high and low). Time-frequency analysis was conducted
using stimulus and response-locked epochs for the abstraction and set-
size contrast. The time-frequency analysis was restricted to a midfrontal
electrode cluster that was defined using hierarchical clustering of the
time-frequency data independent of the contrasts of interest. We cor-
rected for multiple comparisons and spurious findings using permuta-
tion testing with significance determined by cluster mass across all seven
electrode clusters for the abstraction and set-size contrast. Next, the sig-
nificant time-frequency bands were correlated with RT as a function of
abstraction and set-size using Pearson correlation. Finally, PAC was
computed between d phase and b amplitude and theta phase and g am-
plitude for each task condition. PAC values were input to a two-way
repeated-measures ANOVA with two factors: abstraction and set-size.

Experimental task. The task used in this study was adapted from two
previously published studies (Badre and D’Esposito, 2007, 2009; Voytek
et al., 2015). We manipulated two components of hierarchical cognitive
control: abstraction and set-size (Fig. 1A). During the response task
(low-abstraction conditions), participants learned the association between a
colored square and a button response. The response task had two levels of
set-size: a low set-size condition (in which four colored squares had to be
associated with four responses) and a high set-size condition (in which eight
different colored squares had to be associated with eight response options;
Fig. 1A). In the dimension task (high abstract conditions), participants were
presented with a colored square that contained two objects. The color of the
square indicated the dimension (shape or texture) by which the participant
had to evaluate the two objects. Importantly, the abstraction task contained
two levels of set-size similar to the response task: a low level of set-size and
yet still higher in abstraction and a higher level of set-size and also high in
abstraction (Fig. 1A). In the high-abstraction, low set-size condition, partici-
pants made a judgment along only one dimension (either shape or texture)

Figure 1. Hierarchical cognitive control task. A, The hierarchical cognitive control task used a 2 � 2 design with four conditions. On the x axis, the set-size increases within a fixed level of
abstraction. On the y axis, the level of abstraction increases. Behavioral results for RT (B) and accuracy (C). Error bars indicate SEM.
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as both colored squares mapped to a single dimension (e.g., a purple square
or a green square signal that participants must judge whether the two
objects have the same or different shape). In the high-abstraction, high set-
size condition, two colored squares mapped to two different dimensions
(e.g., red represents a perceptual judgment along the shape dimension, blue
represents the texture dimension).

Our previous versions of the experiment (Badre and D’Esposito,
2007; Voytek et al., 2015) did not match performance between the low-
and high-abstraction tasks, as the highest set-size condition of a low-
abstraction task showed worse performance than the lowest set-size of a
high-abstraction task. By matching performance across levels of abstrac-
tion, we remove a potential confound of task difficulty in isolating the
processing of abstract rule representations (Todd et al., 2013). To match
performance between levels of abstraction, we ran multiple pilot experi-
ments, in which we increased the difficulty of the response task into a
comparable performance range as the dimensions task. In particular, we
iteratively increased the number of competing rules in the response task
and shortened the response window from 3 to 2 s to increase RT and
reduce the accuracy of participants for the response task. At the comple-
tion of this pilot testing, we selected two conditions to be defined as low
set-size based on performance levels: the response task with four
responses and the dimensions task with one dimension. For the high set-
size conditions, we used the response task with eight responses and the
dimension task with two dimensions.

In the experiment, participants performed eight blocks, two of each
of the four conditions. Each block contained 48 trials; thus, each partici-
pant completed 96 trials per experimental condition. Each trial was pre-
sented on the screen for 2 s, and participants were instructed to provide
their response within that time window. Each trial was separated by a
fixation cross that varied exponentially in length from 3 to 10 s.
The experiment was programmed in Psychtoolbox implemented in
MATLAB 2015a (The MathWorks). Before the start of the experi-
mental task, participants were instructed to maintain their gaze on a
fixation point and to remain still for 5 min with eyes open followed
by 5 min eyes closed. This resting-state EEG data were not analyzed
for the purpose of this paper.

EEG recording and preprocessing. EEG data were recorded from 64
active electrodes using a BioSemi ActiveTwo amplifier with Ag-AgCl
pin-type active electrodes mounted on an elastic cap according to the
extended 10-20 system (BioSemi). In addition, four electrodes were used
to monitor horizontal and vertical eye movements, and two electrodes
recorded electrical activity from the mastoids. Signals were amplified
and digitized at 1024Hz and stored for offline analysis. Participants were
trained before the experiment to minimize eye movements, blinking,
and muscle movement before the experiment.

The EEG data were analyzed with the software package EEGLab14
(Delorme and Makeig, 2004), which used MATLAB2015a (The
MathWorks). The continuous EEG data were rereferenced to an average
of the mastoid electrodes and filtered digitally with a bandpass of 0.1–
100 Hz (two-way least-squares finite impulse response filter). The con-
tinuous data were then divided into epochs ranging from 1000 ms before
stimulus onset until 2000 ms after stimulus onset. The epochs in the
EEG data were visually inspected and trials that contained excessive
noise, such as muscle artifacts, were removed, resulting in an average of
4.5% of trials that were removed across participants. Furthermore, elec-
trode channels with excessive noise were identified by visual inspection
and reconstructed using the average of neighboring electrodes. Eye-
blinks and other EEG-related artifacts were identified and rejected using
the extended info-max independent component analysis using the
EEGLab toolbox with default mode training parameters (Delorme and
Makeig, 2004).

Electrode clustering. Electrode clusters were defined based on a data-
driven hierarchical clustering approach that grouped electrodes based on
the similarity of the evoked oscillatory amplitude that ranged from 2 to
30 Hz (for similar procedure, see Clarke et al., 2018). Time-frequency
decomposition was averaged across all trials, conditions, and partici-
pants. Data from each electrode were vectorized such that it included all
time points and frequencies. A distance metric was calculated for each
electrode based on the similarity in evoked spectral response. An

agglomerative hierarchical clustering algorithm was applied that
grouped pairs of electrodes with the most similar spectral response. The
two most similar electrode pairs were averaged. This process continued
until all electrodes were paired under a single tree. A dendrogram of the
hierarchical clusters was created, and only clusters that fit an a priori
cluster scheme based on Clarke et al. (2018) were included in the time-
frequency analysis. Each electrode cluster was defined to only included
contiguous electrodes, and we excluded electrode clusters with less than
three electrodes. This hierarchical clustering approach resulted in six
electrode clusters that were used in the main analysis (Fig. 2). Results
reported here for an electrode cluster is the averaged spectral response of
all electrodes within the cluster. Our previous evidence using this task in
fMRI (Badre and D’Esposito, 2007) and electrocorticography (Voytek et
al., 2015) found task-modulated activity related to cognitive control in
lateral PFC. However, due to the problem of volume conduction and
electric field properties in EEG, activation of bilateral sites is commonly
found in the midline (Sasaki et al., 1996; Stropahl et al., 2018). Therefore,
we focused our analysis on the frontal midline electrode cluster and capi-
talized on the temporal resolution afforded by EEG. We hypothesized
that the frontal midline electrode clusters (highlighted in Fig. 2) would
show the strongest effects of hierarchical cognitive control (for review,
see Cavanagh and Frank, 2014).

Time-frequency analysis. Time-frequency analysis was applied using
six cycle Morlet wavelet in the frequency range of 2–50Hz with steps of
1Hz between each wavelet center. The Morlet wavelets were applied to
sliding time windows of 20 ms increments in the entire epoch ranging
from �1000 ms to 2000 ms with stimulus onset as time 0. To minimize
the problem of edge artifacts, we concatenated mirrored (i.e., time
inverted) segments before and after the task epoch (Cohen, 2014). Time-
frequency analysis was performed on these extended epochs, and
mirrored segments were discarded from the final analysis (for similar
procedure, see Fell and Axmacher, 2011; Vogelsang et al., 2018). Results
reported here were not baseline-corrected since we were interested in
differences across conditions; therefore, baseline correction is not neces-
sary (for similar approaches, see Fell and Axmacher, 2011; Gruber et al.,
2013; Vogelsang et al., 2018). For each of the four experimental condi-
tions, only trials in which the participant made a correct response were
included in the analysis. Trial numbers used in the analysis were as fol-
lows: low-abstraction, low set-size [mean (SD)] = 92.4 (4.8), range 76–96;

Figure 2. Electrode clusters used for EEG analysis. Hierarchical clustering of the time-fre-
quency data for each electrode revealed six distinct electrode clusters. The analysis focused
on the frontal midline electrode cluster (outlined). The other electrode clusters were used for
cluster-mass permutation testing in time-frequency analysis.
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low-abstraction, high set-size = 88.1 (8.0), range 56–96; high-abstraction,
low set-size 91.8 (6.8), range 68–96; high-abstraction, high set-size 87.1
(7.4), range 68–96. Our main analysis was two contrasts: one for
“abstraction” (high vs low) and one for “set-size” (high vs low)

An across-participant nonparametric statistical approach was applied
to test for significant time-frequency differences between the contrasts of
interest. We ran cluster-mass permutation testing in which the average t
value within a significant cluster (p, 0.05) is used to evaluate signifi-
cance. The permutation testing procedure consisted of the following
steps. First, we computed the cluster mass for each of the contrasts of in-
terest (abstraction and set-size) for each of the six electrode clusters.
Second, the experimental conditions for the abstraction (or set-size) con-
trast were randomly swapped for 50% of the participants such that any
systematic differences between the conditions were eliminated. We ran
the contrast for this randomized pairing and calculated the largest abso-
lute cluster mass across all electrode clusters. This randomization pro-
cess was repeated 1000 times to create a null distribution of the largest
negative and positive cluster mass values. Using an a level of 0.05 with
1000 permutations, we used the 25th and 975th values to represent the
critical mass values, and values below or higher than these values were
considered to be significant effects. This stringent procedure allowed us
to control for multiple comparisons across the electrode clusters (Blair
and Karniski, 1993; Maris and Oostenveld, 2007).

PAC analysis. In addition to a time-frequency analysis, we also
sought evidence for how different frequency bands may interact with
each other during hierarchical cognitive control. One possible mecha-
nism is PAC, which involves examining the relationship between the
phase of a lower-frequency band (e.g., d and theta) and the amplitude of
a higher-frequency band (e.g., b and g ). To examine whether the phase
of slow oscillatory bands modulated the amplitude of faster-frequency
bands as a function of increased rule abstraction and rule set-size, we
computed PAC for the phase of slow-frequency bands in the range of
2–7Hz, which includes d and theta, with the amplitude of the higher-
frequency spectrum ranging from 10 to 49Hz separately for each task
condition. We narrowed our analysis to the coupled pairs motivated by
our time-frequency analysis and a priori based on our previous findings
(Voytek et al., 2015).

To compute PAC, we extracted the phase of the d and theta fre-
quency bands using a three cycle Morlet wavelet convolution and the
amplitude of the higher frequencies using a five cycle Morlet wavelet
convolution. We selected these parameters such that the half width full
mass of the low and high frequencies were more closely matched
(Cohen, 2019). We calculated PAC using the phase and amplitude values
from the significant time windows observed in the time-frequency con-
trast for d band (200–1400 ms) and theta band (600–1200 ms). For each
participant, the phase (u ) and amplitude (M) values of each trial were
concatenated into a single continuous time series (n is the number of
time points) and PAC was calculated according to Equation 1 as follows:

PAC ¼
Pn

t¼1
M p eiu

n
j�

�
�
�
�
� (1)

We applied nonparametric permutation testing to determine
whether the obtained PAC values would be expected given the null hy-
pothesis of no relationship between phase and amplitude. The permuta-
tion procedure involved temporally shifting the amplitude values with a
random temporal offset of at least 10% the length of the time series and
calculating PAC (Cohen, 2014). After 1000 repetitions, PAC is converted
into a z score from the null distribution, resulting in PACz. We were
interested in changes in PACz with increased abstraction and set-size. In
order to reduce multiple comparisons, we used a priori coupled pairs for
the hypothesized coupled frequencies based on the time-frequency anal-
ysis and ran a two-way repeated-measures ANOVA of within-partici-
pant factors: abstraction and set-size.

Code and data availability. Custom code used for these analyses is
available on request to the corresponding author. The authors assert that

all requests for raw data within reason will be fulfilled by the correspond-
ing author.

Results
Behavioral results
The task was designed to separately manipulate abstraction and
set-size during hierarchical cognitive control. To test the effects
of our behavioral manipulation, we performed separate two-way
repeated-measures ANOVA.We entered two independent varia-
bles: abstraction (low, high) and set-size (low, high), and RT and
accuracy as dependent variables. For RT, the ANOVA revealed a
significant main effect of abstraction (high-abstraction mean =
1132.0, SD=105.3 ms; low-abstraction mean=974.1, SD=95.0
ms; F(1,30) = 398, p, 0.0001, h 2

p = 0.93), a main effect of set-size
(high set-size mean= 1176.0, SD= 95.7 ms; low set-size mean =
930.1, SD= 95.5 ms; F(1,30) = 92.1, p, 0.0001, h 2

p = 0.75), and an
interaction (F(1,30) = 53.1, p, 0.0001, h 2

p = 0.64) (Fig. 1B).
Participants were slower as a function of abstraction and set-size.
For accuracy, the ANOVA revealed a main effect of set-size (high
set-size mean= 94.7%, SD= 5.0%; low set-size mean = 97.7%,
SD=2.9%; F(1,30) = 10.2, p=0.003, h

2
p = 0.25) but did not reveal a

significant main effect of abstraction (F(1,30) = 0.11, p=0.75, h
2
p =

0.0036) or interaction (Fig. 1C). Participants were less accurate for
the conditions that required maintenance of a larger set-size, but
behaviorwasmatched across levels of abstraction.

Time-frequency results
We performed time-frequency analyses to determine how set-
size and abstraction modulate patterns of neural oscillations dur-
ing hierarchical cognitive control. The time-frequency analyses
focused on the spectral amplitude differences ranging from 2 to
50Hz in the entire epoch time window (�1000 to 2000 ms rela-
tive to stimulus onset) for both the abstraction and set-size con-
trast (vs low-abstraction and vs low set-size). For the abstraction
contrast (Fig. 3A), across all electrode clusters, there was a signif-
icant increase in the d frequency band (2–3Hz) from 100 to
2000 ms after stimulus onset and a significant decrease in the b
frequency band (peak at 12–22Hz) from 500 to 1500 ms after
stimulus onset (peak at 500-1000 ms) for all electrode clusters. In
the topographic plots, it can be seen that, in the abstraction con-
trast, d amplitude showed the strongest increase in mid and right
frontal electrode clusters (Fig. 3B), whereas b amplitude showed
the strongest decrease in the mid frontal electrode cluster (Fig.
3C). For the set-size contrast (Fig. 3D), across all electrode clus-
ters, there was a significant increase in amplitude in the theta fre-
quency band (4–6Hz) from 850 to 1700 ms after stimulus onset.
There was a significant decrease in amplitude in the b frequency
band (12–30Hz) at;500–1500 ms after stimulus onset in frontal
midline electrode cluster, and 500-1800 ms after stimulus onset
in central and posterior electrode clusters. In the topographic
plots, it can be seen that, in the set-size contrast, theta amplitude
showed the strongest increase in the frontal midline electrode
cluster and b amplitude showed the strongest decrease in the
frontal midline and central midline electrode clusters. Together,
two different low-frequency bands increased in amplitude in the
midfrontal electrode cluster. d amplitude increased for abstrac-
tion and theta amplitude increased for set-size. However, b
band amplitude decreased for both higher abstraction and higher
set-size, but with a slightly different spread in frequency within
the beta band. Peak b amplitude modulation for the abstraction
contrast occupied a lower-frequency range, from 12 to 18Hz,
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compared with the wider frequency range in peak b amplitude
modulation for the set-size contrast from 12 to 22Hz.

In order to better understand the time course of amplitude
modulations found for the contrasts of interest, the time course
for the amplitude of d , theta, and b frequency bands in the fron-
tal midline cluster is plotted in Figure 4. At;500 ms after stimu-
lus onset, the high-abstraction, high set-size condition showed
the greatest d amplitude increase followed by high-abstraction,
low set-size, and then both low-abstraction conditions (Fig. 4A).

At ;1200–1800 ms after stimulus
onset, the two high set-size conditions
showed an increase in theta amplitude
(Fig. 4B). Thus, both d and theta fre-
quency bands showed increased ampli-
tude sustained throughout stimulus
processing for greater abstraction or
set-size. Finally, there was a decrease in
amplitude in the b frequency band for
all four conditions for the first 600 ms
(Fig. 4C). However, only the high-
abstraction, high set-size condition
showed a significant and prolonged
decrease in b amplitude relative to the
other three conditions from 600 to
1600 ms after stimulus onset.

Since the stimulus-locked time-fre-
quency effects persist after the probe
for .1 s, it is possible that decreased
b amplitude was related to a system-
atic difference in RT between condi-
tions, and low-frequency activity in d
and theta band might only be signifi-
cantly elevated after a response is
made reflecting post-response moni-
toring processes. If decreased b ampli-
tude was indeed driven by motor-related

processes, then it would not be observed in a response-locked analy-
sis. If low-frequency activity reflects post-response monitoring proc-
esses, then it would only be observed after the response in a
response-locked analysis. We performed a response-locked time-
frequency analysis on the abstraction and set-size contrast in the
midfrontal electrode cluster (Fig. 5). For the abstraction contrast
(Fig. 5A), there was a significant decrease in amplitude in the b fre-
quency band (10–20Hz) just before a response, whereas there was
no change in beta band amplitude for the set-size contrast (Fig. 5B).
Thus, the modulation of b amplitude by set-size was most likely
driven by a difference in RT, whereas the modulation of b ampli-
tude as a function of task abstraction is more likely driven by stimu-
lus processing. No significant d band amplitude was observed time-
locked to the period just before the response. For the set-size con-
trast (Fig. 5B), there was a significant increase in amplitude in the
theta frequency band (3-8Hz), starting at 1500ms before a response
and persisted after the response. Thus, the significant change in
theta amplitude as a function of set-size most likely does not only
reflect post-response processes, but also was related to preresponse
stimulus processing.

Relationship between neuronal oscillations and behavior
Next, we investigated whether the significant changes in spectral
amplitude during different task conditions correlated with
behavior. To test this, we extracted spectral amplitude values
from the significant time-frequency clusters for the abstraction
(2–3Hz d and 18–22Hz b ; Fig. 3A) and set-size (4–6Hz theta
and 18-22Hz b ; Fig. 3B) contrasts from the frontal midline elec-
trode cluster, since this cluster showed the strongest peak in these
contrasts (Fig. 3). We correlated the change in b and d ampli-
tude with the change in RT as a function of abstraction. RT was
analyzed since accuracy was at ceiling for many participants. For
the abstraction contrast, task differences in b band amplitude
were significantly negatively correlated with RT (r(30) = �0.59,
p= 0.001), and task differences in d band amplitude were signifi-
cantly positively correlated with RT (r(30) = 0.45, p= 0.012; Fig.

Figure 3. Time-frequency analysis of hierarchical cognitive control along two dimensions: abstraction and set-size. A, In the
frontal-midline electrode cluster, there was a significant increase in d and decrease in b amplitude as a function of task abstrac-
tion. Dark outline indicates time-frequency clusters that were found to be significant at p, 0.05 and survived correction for mul-
tiple comparisons. B, d amplitude increase was localized to the frontal midline and right frontal. C, Beta amplitude decrease was
localized to the frontal and central midline. D, In the frontal-midline electrode cluster, there was a significant increase in theta
amplitude and decrease in b amplitude as a function of task set-size. E, The increase in theta amplitude was localized to the
frontal-midline electrodes. F, The decrease in b amplitude was localized to frontal-midline electrodes.

Figure 4. Time course of task-evoked oscillatory amplitude. At time 0, the stimulus for
the task is presented. A, d amplitude showed the greatest increase in the two high-abstrac-
tion conditions (red and orange). B, Theta amplitude showed the greatest in the
response task (dark blue and light blue) in the first 0.5 s and the greatest increase in
the high set-size conditions (dark blue and red) in the 1–2 s range. C, Beta amplitude
showed the greatest decrease in the high-abstraction, high set-size condition (red). Error
bars indicate SEM.
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6A). For the set-size contrast, we corre-
lated the change in b and theta ampli-
tude with the change in RT as a function
of task set-size. We found that the
increase in theta band amplitude was
significantly positively correlated with
RT (r(30) = 0.36, p= 0.047), whereas there
was no significant relationship between
b band amplitude and behavior (r(30) =
�0.24, p=0.20; Fig. 6B). Our time-fre-
quency results (Fig. 3) found that peak
b amplitude decreased from 12 to
18Hz by abstraction and decreased
from 12 to 22 Hz by set-size. Therefore,
we examined whether the observed be-
havioral correlation was consistent for
the high (18-22 Hz) and low (12-18 Hz)
b bands. Just as with the high beta
band, amplitude in the low beta band
significantly negatively correlated with
abstraction (r(30) = �0.47, p=0.008) but
did not show a significant relationship
with set-size (r(30) = �0.15, p=0.41).
Thus, we do not find evidence that low
and high b serve different functional
roles. Together, increased d and decreased
b amplitude correlated with increased RT
as a function of rule abstraction, and
increased theta amplitude correlated with
increased RT as a function of task set-size.

PAC results
Our results thus far provide evidence
that d and b oscillations may reflect the
cognitive processes related to increased
abstraction, whereas theta may reflect
the cognitive processes related to
increased set-size. To further probe the
interactions between these oscillations in different frequency
bands, we conducted a PAC analysis. We investigated the cou-
pling strength of the phase of the slower-frequency bands, d and
theta, with the amplitude of the higher-frequency bands, b and
g . The comodulograms for each condition were calculated for
the phase of low frequencies (2–7Hz) to the amplitude of high
frequencies (10–49Hz) (Fig. 7). Since both d and b amplitude
were modulated as a function of the abstraction of the task con-
dition, we focused our statistical analysis on the coupling
between d phase (2–3Hz) coupled to b amplitude (18–22Hz).
Given that we found theta-g PAC in our previous electrocorti-
cography study with a similar task (Voytek et al., 2015), we also
analyzed coupling of the phase of the theta frequency band (4–
6Hz) with the amplitude of the g frequency band (40–49Hz).
We found a significant increase in d –b PAC with increased
abstraction (F(1,30) = 7.62, p= 0.00976, h

2
p = 0.203; Fig. 7A,B), but

not set-size (F(1,30) = 2.63, p= 0.115, h
2
p = 0.0807), and there was

no interaction (F(1,30) = 2.79, p= 0.105, h
2
p = 0.0852). For theta-g

PAC, we found a significant increase in PAC for the low-abstrac-
tion conditions relative to the high-abstraction conditions
(F(1,30) = 4.56, p= 0.0409, h

2
p = 0.132; Fig. 7C,D), but no effect of

theta-g PAC for set-size (F(1,30) = 1.16, p= 0.290, h 2
p = 0.0372)

and no interaction (F(1,30) = 0.591, p=0.448 h 2
p = 0.0193).

During the high-abstraction, high set-size condition, we found a
significant increase in d –b PAC (t(30) = 2.377, p= 0.012, d =

0.427), one-tailed; Fig. 7B), and b amplitude was strongest at the
trough and rise of d phase (Fig. 8A). During the low-abstraction,
high set-size condition, we found a moderate increase in theta-g
PAC (t(30) = 1.665, p=0.053, d= 0.299, one-tailed; Fig. 7D), and
g amplitude was strongest at the rise of theta phase (Fig. 8B).
Therefore, d –b coupling may be how low-frequency oscillations
modulate high-frequency oscillations to execute abstract rules,
whereas theta-g coupling may be relevant for maintaining task
rules with higher set-size.

Discussion
In this experiment, we investigated the oscillatory neural dynam-
ics associated with two dissociable components of hierarchical
cognitive control: rule abstraction and set-size. Previous studies
found that various frequency bands from low-frequency d to
high-frequency g are associated with cognitive control (Helfrich
and Knight, 2016), but the specific contribution of each of these
bands to different control processes remains underspecified. We
found that the abstraction and set-size of task rules are each asso-
ciated with distinct oscillatory mechanisms. Specifically, when
the abstractness of the rule increased, d amplitude increased and
b amplitude decreased; whereas when the number of rules (set-
size) increased, theta amplitude increased and b amplitude
decreased. These task-dependent changes in oscillatory ampli-
tude correlated with behavioral performance. When the abstrac-
tion of the rule increased, slower RTs correlated with increased d

Figure 5. Response-locked time-frequency analysis for the abstraction (A) and set-size (B) contrast in the midfrontal elec-
trode cluster found a significant decrease in low b amplitude before response for abstraction and increase in theta amplitude
before and after response for set-size. The line at time 0 is the time that the participant made a response. Dark outline indi-
cates time-frequency clusters that were found to be significant at p, 0.05 with a cluster correction of k= 100.

Figure 6. Behavior to brain correlations. Correlation analysis for RT to spectral density for the significant clusters in abstrac-
tion (A) and set-size (B). Error bars indicate 95% CIs. *p, 0.05, **p, 0.005, n.s., not significant.
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amplitude and decreased b amplitude. When the set-size
increased, slower RTs correlated with increased theta amplitude.
Before the motor response, increased abstraction decreased b
amplitude, and increased set-size increased theta amplitude.
Finally, coupling between the phase of d oscillations and the am-
plitude of b oscillations strengthened as a function of task
abstraction.

Cognitive control is organized hierarchically such that super-
ordinate abstract representations influence subordinate, concrete
action representations. In our previous study using electrocorti-
cography with a similar version of the task (Voytek et al., 2015),
we found that tasks that engaged more abstract task rules
increased theta synchrony between the PFC and premotor cor-
tex. Furthermore, we found theta phase in the PFC coupled with
g amplitude in premotor regions, suggesting that the PFC com-
municates with the motor cortex for hierarchical control via
theta-g PAC (Voytek et al., 2015). However, one important limi-
tation of this previous study is that tasks that required more
abstract rules also had increased set-size; therefore, we could not

discern whether changes in oscillatory
activities were driven by differences in
abstraction or set-size. An important
feature of our current experiment was
to separately manipulate the abstrac-
tion of the rule and the number of
competing rules (set-size). We further
matched the performance (accuracy)
between high and low abstraction.
Therefore, we were able to dissociate
these two components of hierarchical
cognitive control.

Our findings suggest a relationship
between theta oscillations and set-size,
and this finding is consistent with pre-
vious studies that reported theta oscil-
lations scale with working memory
load (Jensen and Tesche, 2002; Meltzer
et al., 2007; So et al., 2017; Berger et al.,
2019). Other studies have also found
that theta oscillations (presumably
from frontal cortex) increase during
tasks that required cognitive control
(Cohen, 2011; Hsieh et al., 2011;
Kikumoto and Mayr, 2018). Theta-g
coupling has been suggested as a
mechanism by which multiple repre-
sentations are organized for working
memory (Bahramisharif et al., 2018)
and long-term memory (Heusser et al.,
2016). Therefore, the increased theta-
g PAC for higher set-size in our task
could reflect the maintenance or re-
trieval of an increased number of rules.
It should be noted that, in our previous
study using electrocorticography, we
found increased theta phase to high
g amplitude coupling for the high-
abstraction, high set-size condition
(Voytek et al., 2015). While we were
unable to measure theta to high g cou-
pling due to the limitations of EEG, we
did find increased theta amplitude for
this condition consistent with these
findings. Furthermore, this previous
study did not separately manipulate

abstraction and set-size, which we investigated in the current
study (see Materials andMethods).

We observed that b amplitude decreased after stimulus onset
as a function of increased abstraction and increased set-size. For
the response-locked analysis, b oscillations decreased only as a
function of increased abstraction, but not increased set-size.
Many studies have found that b oscillations decrease when
the motor system executes an action (Little and Brown, 2012).
While we also observed that b band amplitude decreased
before the button press, higher-abstraction conditions showed
a greater b amplitude decrease compared with lower-abstrac-
tion conditions. We also found decreased b amplitude as a
function of abstraction in the stimulus-locked analysis. Together,
these abstraction-dependent results indicate a role for b oscilla-
tions beyond motor preparation. We propose that b oscillations
may reflect top-down inhibitory signals for guiding action that
are most robustly disengaged when guided by hierarchical goal
representations.

Figure 7. Comodulograms of PAC for each task condition. For the high-abstraction conditions, there was increased coupling
between d phase (2–3 Hz) and b amplitude (18–22 Hz) in the high-set (B), but not low set-size condition (A). For the low-
abstraction conditions, there was increased coupling between theta phase (4–6 Hz) and g amplitude (40–49 Hz) in the low and
high set-size conditions (C,D).

Figure 8. Distribution of b and g amplitude across d and theta phase. Rose plots of d phase-coupled to b amplitude (A)
for the high-abstraction, high set-size condition and theta phase-coupled to g amplitude (B) for the low-abstraction, high set-
size condition. Amplitude values (z) were binned into 30 phase angles, averaged, and z-scored across phase bins. Error bars indi-
cate within-participant SEM. Legends in boxes represent the peak and trough values in radians.
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Our findings of increased d and decreased b oscillations
with increased abstraction are consistent with a previous study
that examined performance of a delayed-match-to-sample task
in which monkeys had to evaluate an object according to two dif-
ferent categorical judgements: left versus right or up versus
down (Antzoulatos and Miller, 2016). This study reported that
distinct neural populations carry information for each of these
two categories: vertically selective populations and horizontally
selective populations. For the cued category, b coherence
increased between the neural populations that coded for the rele-
vant category. This pattern of activity led the authors to conclude
that b oscillations were encoding rule categories. Our task also
required the maintenance of abstract rules and similarly found
an abstraction-related modulation of b amplitude in PFC.
Furthermore, when there was a shift in the boundary between
what was defined as “up” and “down,” there was an increase in d
synchrony between PFC and parietal cortex. This suggests that
updates to abstract categorical rules modulate d oscillations. In
our experiment, for the high-abstraction, high set-size condition,
participants had to evaluate the similarity of two different objects
based on different stimuli attributes (e.g., judge the similarity in
texture or shape), and the relevant attribute that participants
should focus on was instructed by a supraordinate task rule cued
by the color of the square surrounding the stimuli. Based on the
findings from Antzoulatos and Miller (2016), the increase in d
oscillations in our study may reflect an update to the relevant
supraordinate rule, and the change in b oscillations may reflect
rule selection.

Participants with the greatest increase in RT when responding
to the increased abstraction conditions showed the greatest
increase in d amplitude and decrease in b amplitude. Similarly,
participants with the greatest increase in RT when responding
to the increased set-size conditions showed the greatest inc-
rease in theta amplitude. These findings emphasize the behav-
ioral relevance of these low-frequency neuronal oscillations
and provide further support for a role of d oscillations in
processing task abstraction and theta oscillations in processing
increased set-size.

The interplay between slow and fast neuronal oscillations has
been investigated as a mechanism for cognitive control (Sauseng
et al., 2009, 2010; Roux et al., 2012; Voytek et al., 2015) as long-
range, low-frequency cognitive control signals from PFC couple
to more local high-frequency oscillations (Canolty and Knight,
2010; Sauseng et al., 2010). Our PAC analysis revealed that d
phase-coupled with b amplitude when task conditions became
more abstract. Specifically, d -b coupling increased in the high-
abstraction, high set-size condition in which participants decide
between two task rules (e.g., focus on texture or shape). We
observed that b amplitude decreased around the peak of the d
phase (see Fig. 8A). This finding is similar to Helfrich et al.
(2017) in which a-b amplitude was lowest at peak d -phase in
PFC during a perceptual judgment (Helfrich et al., 2017). Wyart
et al. (2012) also reported that the distribution of b oscillations
in motor cortex was updated every cycle of a prefrontal d signal,
and the amplitude of b was inversely related to the probability
of action of the underlying motor cortex (Wyart et al., 2012).
Consistent with Wyart et al. (2012), our PAC finding suggests
that d phase in frontal regions may guide action selection via
modulating beta band amplitude when cognitive tasks are hier-
archically organized such that participants have to rely on supra-
ordinate, abstract rules to guide concrete actions.

Together, low-frequency oscillations in the theta and d fre-
quency band may reflect different components of hierarchical

cognitive control that couple to different high-frequency oscilla-
tions. g oscillations play a primary role in carrying feedforward
sensory processing signals (Börgers and Kopell, 2008; Michalareas
et al., 2016). Theta oscillations in PFC couple with g oscillations to
support the organization of perceptual information during memory
encoding and retrieval (Osipova et al., 2006; Hsieh and Ranganath,
2014). When multiple items must be held in mind, theta-g cou-
pling is increased (Alekseichuk et al., 2016; Tamura et al., 2017;
Bahramisharif et al., 2018). Our findings suggest that increasing the
set-size of a task may recruit a similar neural mechanism. b oscilla-
tions play a role in sensory feedback (Bastos et al., 2015;
Michalareas et al., 2016) and motor control (Zhang et al., 2008;
Picazio et al., 2014). Therefore, d to b coupling may be a mecha-
nism by which low-frequency oscillations in PFC guide future
action according to abstract goals. Theoretical models on the role of
g and b oscillations in bottom-up and top-down attention (Fries,
2015; Riddle et al., 2019) may be extended to include theta and d
oscillations that show task-related modulations in the frontal cortex.
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