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Abstract

Two-dimensional (2D) turbulence features an inverse energy cascade that produces large-scale

flow structures such as hurricane-like large-scale vortices (LSVs) and unidirectional jets. We in-

vestigate the dynamics of such large-scale structures using extensive direct numerical simulations

(DNS) of stochastically forced, viscously damped 2D turbulence within a periodic rectangular

(Cartesian) domain [0, Lx]× [0, Ly]. LSVs form and dominate the system when the domain aspect

ratio δ = Lx/Ly ≈ 1, while unidirectional jets predominate at δ ≳ 1.1. At intermediate values of

δ, both structures are metastable, and fluctuation-induced transitions between LSVs and jets are

observed. Based on large-scale energy balance in the condensate, we derive and verify predictions

for the dependence of the total kinetic energy and the flow polarity on the nondimensional control

parameters. We further collect detailed statistics on the lifetimes of LSVs and jets from DNS runs

of up to 10738 viscous diffusive time units in length. The distribution of the lifetimes is consistent

with that of a memoryless Poisson process. The data are compatible with an exponential depen-

dence of the mean lifetime on the aspect ratio δ. In addition, the mean lifetimes depend sensitively

on the Reynolds number Re: as Re increases, the energy gap between LSV (lower energy) and

jet states (higher energy) arising from anisotropic dissipation increases, leading to an increase in

lifetimes that is approximately exponential in Re for both LSVs and jets. Similarly, as the ratio

of the forcing scale to the domain size increases, the transition rates increase sharply, confirming

earlier findings. We investigate the transition dynamics in terms of kinetic energy, flow polarity,

modal amplitude, and 2D phase-space diagrams, revealing that the transitions occur in two stages:

in the initial stage, an efficient redistribution of kinetic energy by nonlinear triadic interactions

facilitates a rapid transition from LSVs to jets and vice versa. In the second stage, the kinetic

energy of the newly formed structure slowly adjusts to its associated (higher or lower) equilibrium

value on a longer, viscous timescale, leading to a time delay that results in hysteretic transition

behavior. Fluctuation-induced transitions may also occur between different numbers of jets. Our

findings shed new light on the dynamics of coherent large-scale structures in anisotropic turbulence.

∗ avankan@berkeley.edu
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I. INTRODUCTION

Turbulent flows are ubiquitous in nature. In planetary atmospheres and oceans, fluid

motions are often restricted to being quasi-two-dimensional due to geometric confinement,

rapid rotation, and stratification [1, 2]. This provides a motivation for the study of highly

idealized two-dimensional (2D) turbulence [3]. A distinguishing feature of such 2D turbu-

lence is the fact that it displays an inverse energy cascade [4], leading in finite domains to

the formation of large-scale coherent structures such as vortices and jets [5–7]. These flow

structures, known as condensates by analogy with Bose-Einstein condensates in a boson gas,

were first observed in the pioneering experiments of Sommeria [8], and in numerical simu-

lations in a square periodic domain by Smith et al. [9]. In physical space, condensates take

different forms which resemble widely observed phenomena in geophysical flows, including

hurricane-like vortices and zonal jets. The formation of condensates is not limited to iner-

tial 2D turbulence, as this process has been observed in models of living fluids [10–12] and

is also present in various highly anisotropic, three-dimensional (3D) flows in the presence

of rotation, density stratification, thin-layer geometry and other effects [13–21]. However,

despite the prevalence of turbulent condensation phenomena across such a range of physical

systems, the formation and dynamics of the associated turbulent large-scale flow structures

remain incompletely understood.

In [22], the authors studied stochastically forced 2D turbulence within a rectangular

domain [0, Lx] × [0, Ly], with an aspect ratio Lx/Ly ≡ δ, subject to periodic boundary

conditions. The aspect ratio was varied, and two types of flow structures were observed. In a

square domain, a pair of counter-rotating large-scale vortices (LSVs) forms, whose properties

have been extensively studied in the past [6, 23–25]. When the domain is elongated in one

direction, jets oriented parallel to the short side of the domain emerge instead. The transition

between these two disparate regimes is of particular interest. As the aspect ratio increases

from δ = 1, the system traverses an interval of bistability, where the two different flow

structures persist metastably (with a finite lifetime) until they are disrupted by random,

fluctuation-induced transitions towards the competing structure. It has been confirmed

theoretically, using tools from statistical mechanics [26], that coherent structures in the

inviscid limit of the 2D Navier-Stokes equation (i.e. the 2D Euler equation) can indeed

take the form of LSVs or jets. Statistical equilibria of 2D flows were also recently revisited
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in [27]. Similar LSV and jet solutions were furthermore observed in anisotropically forced,

direct statistical simulations of planar 2D turbulence in [28], and in solutions of the Euler

equation on a sphere [29, 30], although in the latter case ergodicity breaking may prevent the

formation of a condensate in the absence of a forcing [31, 32]. Moreover, LSVs and jets were

reported in rotating convection within anisotropic domains [17, 18] and, more recently, in

convection with misaligned gravity and rotation axes [33–36]. Dipoles and unidirectional jets

were also found to play an important role in the inverse cascade of decaying 2D turbulence

prior to condensation [37].

Bistability between qualitatively distinct metastable turbulent flow states (i.e. states

whose lifetime is finite in the presence of fluctuations) is observed in a wide variety of phys-

ical systems, including body-forced three-dimensional (3D) turbulence within thin layers

[38, 39] and rotating turbulence [40], where, in both cases, LSVs and small-scale 3D tur-

bulence coexist over a range of the control parameter. A similar type of bistability was

identified in rotating Rayleigh-Bénard convection [41, 42]. Bistability was also found be-

tween states with and without super-rotation in a model of atmospheric dynamics [43] and

in experiments on a wide range of turbulent flows [44–46]. However, when observation times

are limited, multistability may not manifest itself through spontaneous transitions even in

the presence of fluctuations, provided the latter are appropriately small. For instance, in

[41], no spontaneous transitions between 3D turbulence and LSVs were observed in the

range of bistability in the simulations, despite the presence of turbulent fluctuations (whose

amplitude was small compared to the energy gap between the two states). Similarly, while

pronounced multistability was identified in instability-driven 2D turbulence between LSVs,

vortex crystals, and mixtures of these [47, 48], no spontaneous transitions were observed be-

tween these states, although metastable vortex crystals have been observed in body-forced

rotating 3D turbulence [49]. Another example of bistability and rare transitions is found

in barotropic (i.e. 2D) turbulence on the β-plane (an idealized model that includes a lat-

itudinally varying Coriolis force, featuring zonal jets [50]), where the number of zonal jets

can change randomly at fixed parameters [51–53]. Random transitions were also observed

in 2D horizontally periodic convection with stress-free boundaries, between convection rolls

and so-called windy states characterized by horizontal flow with strong vertical shear and

suppressed convection [54, 55]. Bistability and spontaneous transitions are also observed in

the paths of the Gulf Stream and the Kuroshio current [56], as well as in the thermohaline
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circulation [57]. More generally, multistability is common in the climate system [58].

An important class of random transitions in turbulent flows involves spontaneous rever-

sals. Such reversals are observed, for instance, in the polarity of the magnetic field of the

Earth [59] (where reversals occur randomly) and of the Sun [60] (where they are part of

the more regular 22 year solar cycle), a phenomenon reproduced qualitatively in laboratory

dynamo experiments [61] and subsequent theoretical developments, cf. [62]. An additional

example of a reversing flow is found at high altitudes in the Earth’s atmosphere, where the

quasi-biennial oscillation consists in reversals of the mean zonal wind approximately every

two years [63], a phenomenon that has also been studied using laboratory analogs [64, 65].

In fact, reversals are common in convectively driven flows and have been the subject of

detailed studies [66–72]. In addition, random reversals have also been observed and studied

in confined 2D or quasi-2D turbulence, both in the lab [8, 73–75] and in numerical as well

as theoretical work [76–79].

Beyond the specific case of turbulent flows, the study of fluctuation-induced transitions

in random processes has a long history [80]. A problem of particular importance concerning

metastable states such as those discussed above is that of computing first-passage times, e.g.,

the first time at which a certain random process crosses a given threshold [81]. Problems

of this type arise in a variety of areas from finance [82], chemistry [83] and biology [84,

85] to fluid flows [86]. The classic first-passage problem concerns escape from a potential

well due to small-amplitude noise, for which the mean first-passage time is given by the

Eyring-Kramers formula [87–89], which indicates that the mean first-passage time depends

exponentially on the depth of the potential well. In the context of chemical kinetics, this

result is associated with the name of Arrhenius [90–92]. A similar exponential dependence

of the mean lifetime of metastable zonal jets on a (frictional) control parameter was recently

identified in barotropic turbulence on the β-plane by Bouchet et al. in [51], where the

authors state that their results provide the first example of such an Arrhenius law in a

turbulent flow. In general, the lifetimes of metastable states in turbulence in different

systems have been found to depend on physical control parameters in a variety of ways,

depending on the system under consideration. In body-forced thin-layer turbulence, the

average lifetime of LSVs and 3D turbulence was found to change faster than exponentially

with the nondimensional layer height [39] and appears to diverge at a threshold height

[38]. By contrast, in windy convection, the mean lifetime of metastable states was recently
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reported to exhibit a power-law dependence on the Rayleigh number with an exponent close

to 4 [55].

Another important problem involving a highly non-trivial dependence of characteristic

timescales on the physical control parameter is the transition to turbulence in pipe flow [93].

There, localized turbulent puffs systematically meet one of two fates: they can randomly split

or decay, with each process having an associated time scale that follows a double-exponential

function of the Reynolds number. Importantly, due to limitations of the available data, early

works had misidentified this dependence as exponential, i.e. Arrhenius-like [94], but more

detailed measurements subsequently established the superexponential dependence as correct

[95], supported by theoretical arguments based on the insight that puff decay in pipe flow

is triggered when the pointwise maximum turbulent intensity drops below some threshold

[96]. The intersection of the two double-exponential curves representing the time scales of

turbulent puff decay and splitting, respectively, defines the critical Reynolds number for

the transition to turbulence in a pipe. Similar superexponential dependence of turbulence

lifetimes has also been reported for other transitional shear flows [97–100], disproving earlier

claims of diverging lifetimes at a critical Reynolds number.

Against the backdrop of this rich literature on metastable states in turbulence and be-

yond, the present study focuses on fluctuation-induced transitions in stochastically forced 2D

turbulence within anisotropic domains, arguably one of the simplest examples of a bistable

turbulent flow. In [22], which provides a major motivation for the work presented here, only

a small number of transition events between LSVs and jets could be observed due to the

relatively limited simulation time. For this reason, the statistical properties of this system

have not yet been comprehensively analyzed. In particular, the distribution of first-passage

times between LSVs and jets, and its dependence on the physical control parameters of the

system are unknown, as are the phase space paths traversed by the system during transi-

tions. Here, we go significantly beyond the scope of [22] by conducting direct numerical

simulations (DNS) over a very long time to obtain statistical information on the condensate

states and the transition events, and analyze the impact of the three nondimensional control

parameters (domain aspect ratio, Reynolds number, and nondimensional forcing scale).

The remainder of this paper is structured as follows. In Sec. II, we describe our simulation

set-up and introduce the relevant nondimensional control parameters. Next, in Sec. III, we

describe the large-scale structures arising in our system, introduce the quantitative measures
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FIG. 1. An illustration of the domain with side lengths Lx and Ly (Lx > Ly), and random forcing

acting on the length scale ℓ.

we use to identify them, and formulate a simple model based on large-scale energy balance.

In Sec. IV, we present the phenomenology of the random transitions between LSVs and

jets and discuss the impact of all nondimensional control parameters on the transitions. In

Sec. V, we examine the phase space trajectories traversed by the system during transitions,

while Section VI examines spontaneous transitions between different numbers of jets. The

paper concludes in Sec. VII with a discussion of our results and outlines remaining open

questions.

II. SIMULATION SET-UP

A. Equations and important quantities

We study incompressible flow of a constant density fluid within a planar rectangular

domain [0, Lx] × [0, Ly], illustrated in Fig. 1. The fluid motion is driven by a stochastic

force, and the domain is subject to periodic boundary conditions. The flow obeys the 2D

Navier-Stokes equation

∂tu+ u · ∇u = −(1/ρ)∇p+ ν∇2u+ f , ∇ · u = 0, (1)

where u = ux̂+ vŷ is the 2D velocity field, ρ is the constant density, p is the pressure, ν is

the kinematic viscosity and f is the driving force. The force f is chosen to have zero spatial

mean, to be random and white in time, acting within an isotropic forcing band centered on

a typical forcing scale ℓ (defined as the arithmetic mean of the largest and smallest length
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scales in the forcing band) and injecting energy at a rate ϵ. In Appendix A, we describe in

detail how the width of the (narrow) forcing band is selected. The forcing spectrum is flat

over the forcing band and the randomness consists in uniformly distributed phases of the

complex Fourier modes. To simplify Eq. (1), we introduce the stream function ψ(x, y, t) such

that u = (∂yψ,−∂xψ), satisfying the incompressibility constraint ∇ · u = 0. We note that

in our set-up, following [22], the only mechanism for saturation of large-scale condensates

in Eq. (1) is viscous dissipation, which decreases in strength as the length scale increases.

Many studies of 2D turbulence therefore include additional saturation mechanisms, such as

Rayleigh friction [3, 7]. In the interest of simplicity we retain here only viscous dissipation in

order to reduce the number of model parameters. It is known that the condensate properties,

including the qualitative spatial profile of the large-scale flow, depend explicitly on the choice

of saturation mechanism in 2D turbulence (specifically, whether the condensate saturates

by viscosity or Rayleigh friction [101, 102]). For this reason the dynamics of large-scale

structures described below are not expected to follow the results of [7], where Rayleigh

friction is considered.

The system is characterized by three a priori nondimensional control parameters: the

aspect ratio δ, the ratio ℓ̃ between forcing scale and domain size, and the forcing-scale

Reynolds number Re, defined as

δ ≡ Lx/Ly, ℓ̃ ≡ ℓ/Ly, Re ≡ ϵ1/3ℓ4/3/ν, (2)

respectively. The average kinetic energy density of the flow is given by

E ≡ 1

2
⟨|u|2⟩ = 1

2

(
⟨u2⟩+ ⟨v2⟩

)
, (3)

where ⟨·⟩ is the domain average. A typical velocity scale dictated by the forcing is uf =

(ϵℓ)1/3, giving the forcing energy scale

Ef =
1

2
(ϵℓ)2/3. (4)

In addition, an important time scale characterizing the evolution of the system is the time

it takes for momentum to diffuse across the entire domain (for specificity, in the y direction)

tν =
L2
y

4π2ν
. (5)

We emphasize that tν is a natural choice of time scale for analyzing the long-term behavior

of this system. In the presence of a strong condensate, the shortest characteristic time in
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the system is the large-scale turnover time tls = Ly/Uls. From large-scale energy balance, it

follows that E ≈ 1
2
U2
ls ∝ EfRe/ℓ̃

2, cf. Eq. (15). This implies that

tls ∝ (ℓ2/ϵ)1/3︸ ︷︷ ︸
≡tf

1√
Re
, (6)

in terms of the time scale of enstrophy injection by the forcing tf = (ℓ2/ϵ)1/3, which is the

second important time scale in the problem, and which also coincides with the eddy turnover

time in the forward enstrophy cascade. The slowest a priori characteristic time scale in the

system is tν ∝ tf Re. In the limit of large Re, these time scales are well separated,

tls ≪ tf ≪ tν . (7)

Hence, tν is the key time scale for analysing the long-time evolution of the system.

In the following, we denote the nondimensional time measured in viscous units by t̃ = t/tν

and the nondimensional energy measured in units of the forcing energy scale by Ẽ = E/Ef .

We integrate Eq. (1) subject to periodic boundary conditions using the Fourier pseudo-

spectral solver GHOST [103], where the 2/3 rule is adopted for dealiasing and a semi-implicit

fourth-order Runge-Kutta scheme is used for time integration. All simulations are initialized

with small amplitude random initial conditions.

Table I shows a summary of all simulations performed in this study. All the runs were

performed with Lx ≥ Ly, such that the aspect ratio δ ≥ 1. The runs are grouped into

several sets: in sets D1 and D2, the aspect ratio δ is varied over the relatively narrow region

of bistability between LSVs and jets 1 ≤ δ ≤ 1.1 for fixed Re = 459 or Re = 344, respectively,

and fixed nondimensional forcing scale. In set R the Reynolds number is varied between

Re = 275 and Re = 688, while keeping δ and ℓ̃ fixed, and in set L the nondimensional forcing

scale is varied between ℓ̃ = 0.173 and ℓ̃ = 0.49. Run T exhibits tristability between jets

in either direction and the LSV state in a square domain for ℓ̃ = 1/
√
5, while run J shows

a transition between distinct numbers of jets in a highly elongated domain with δ > 3.

All runs analysed here are long compared to the viscous time scale tν , with the shortest

runtime being 60 tν and the longest runtime being 10738 tν . We stress that the longest runs

reported here are more than two orders of magnitude longer than the simulations reported

in [22], which only reached ≲ 50 tν . In order to be able to integrate for such long times, a

requirement of the very long characteristic time scales in the problem, we adopt moderate

spatial resolutions of 128× 128 or 256× 256 grid points. The resolution is held fixed for any
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Set Re nx × ny δ ℓ̃ # runs maximum runtime in tν

D1 459 256× 256 1—1.1 0.34 16 2800

D2 344 128× 128 1.045—1.1 0.34 12 10738

R 275—688 128× 128, 256× 256 1.07 0.34 7 7219

L 69 256× 256 1.07 0.173—0.491 8 670

T 550 256× 256 1 = 1/
√
5 (≈ 0.45) 1 230

J 55 128× 64 3.1125 0.53 1 60

TABLE I. Summary of the runs described in this study. Columns show run label, Reynolds number,

the number of grid points in the x and y directions, the aspect ratio δ, the nondimensional forcing

scale ℓ̃, the number of runs performed within each set of simulations and the maximum runtime

within that set.

given Reynolds number as we vary δ, i.e., we consider grids with slightly differing spacing

in the x and y directions in the interest of efficiency gains in the Fourier transforms.

We ensure that all runs reported here are well resolved by verifying that the enstrophy

dissipation spectrum Dν(k) ≡ 2νk4E(k) decays toward the truncation scale, where E(k) is

the energy spectrum, binned in wave number intervals of 2π/Lx, namely

E(k) =
1

2

∑

p

k−π/Lx≤|p|<k+π/Lx

|û(p)|2, (8)

where the hat indicates a Fourier transform. The enstrophy dissipation and energy spectra

are shown in Fig. 2 for a sample run from set D1.

In Appendix B, we describe a remapping of the above setup to the square domain,

which reveals effective anisotropic diffusion and forcing. Similar features are also found

in the barotropic vorticity equation for quasi-geostrophic convection on a tilted f -plane

characterized by misaligned rotation and gravity axes [35, 36], where transitions between

LSVs and jets were observed at finite inclination angles, not unlike those which we explore

further below. We stress that in [35, 36] the anisotropy is not geometrical but rather derives

from the misalignment between gravity and the rotation axis.
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FIG. 2. Log-log plots of (a) energy spectrum and (b) enstrophy dissipation spectrum in the

LSV state (blue line) and in the jet state (orange line). Gray vertical shaded region indicates the

forcing region. Blue/orange shaded regions indicate one standard deviation (std) about the mean

spectrum (computed based on 310 outputs in the statistically stationary state for the LSV state,

and 458 outputs for the jet state. Data shown were obtained at δ = 1.07, Re = 459, ℓ̃ = 0.34 (set

D1). The large-scale maximum in panel (a) reveals the presence of the condensate, while panel (b)

highlights well-resolvedness of our simulations by the fact that the enstrophy dissipation spectrum

decays towards the grid scale.

III. BISTABLE DYNAMICS AND LARGE-SCALE STRUCTURES

A. Flow structures and proxies for their identification

Energy injected by the random force f in the forcing band centered on the scale ℓ < Ly ≤
Lx is transferred via the inverse cascade to larger scales. The viscous dissipation at large

scales is weaker than at small scales for a given velocity amplitude, allowing the energy to

accumulate at the scale of the domain. As the resulting condensate grows in amplitude, the

weakness of large-scale viscous dissipation is compensated by increased velocity amplitude,

thereby balancing the injection rate of energy and producing a statistically steady state
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FIG. 3. Large-scale structures from a run from set D1 in a domain with aspect ratio δ = 1.07 at

Re = 459, ℓ̃ = 0.34 (resolution nx = ny = 256 grid points) at two times t = t1, t = t2 from a

long simulation, visualized via the stream function ψ(x, y) (top row) and vorticity ω(x, y) (bottom

row). Left column: pair of LSVs present at t = t1. Right column: unidirectional jet state present

at t = t2.

where the total energy in the system fluctuates about a constant value.

In physical space, this condensation process results in the formation of large-scale coherent

structures, as shown in Fig. 3. Which type of structure form depends on the geometry of the

domain, specifically on the aspect ratio δ. In a square domain (δ = 1), large-scale vortices

(LSVs) form, while in a highly rectangular domain (δ ≫ 1), unidirectional jets along the

short side of the domain are found. Since the domain average of the vorticity ω = −∇2ψ,

expressed in terms of the stream function ψ, vanishes exactly due to the periodic boundary

conditions, LSVs and jets always occur in pairs. That is, the LSVs in the periodic domain

always appear as a pair of counter-rotating vortices, while jet states invariably consist of an
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even number of parallel bands with velocity of alternating sign.

We further note that in the infinite plane, Eq. (1) is invariant under arbitrary rotations,

i.e., the problem is isotropic. In the periodic square, by contrast, this symmetry is reduced

to invariance under rotations by 90◦. Hence, the set of solutions in the square domain is also

invariant under this transformation. This symmetry is broken when the domain becomes

rectangular, which is key for the transition from vortices (which are invariant under rotations

by 90◦) and unidirectional jets (which are not).

The acquisition of statistical data requires that we quantitatively distinguish between the

two large-scale structures. Thus we define the polarity m of the flow based on the difference

in the fraction of kinetic energy contained within the x and y components of the velocity,

m ≡ ⟨v2⟩ − ⟨u2⟩
⟨u2⟩+ ⟨v2⟩ , (9)

where ⟨·⟩ denotes the spatial average over the domain. When a pair of LSVs is present in the

domain, the kinetic energies in the x and y directions are approximately equal (⟨v2⟩ ≈ ⟨u2⟩),
implying m ≈ 0. When jets in the y direction are present, the flow is primarily oriented

along the y direction (⟨v2⟩ ≫ ⟨u2⟩), and m ≈ 1. Similarly, jets in the x direction correspond

to m ≈ −1. The quantity m has been used to distinguish jets and LSVs in rapidly rotating

convection within anisotropic domains [17] and an analogous measure was introduced in dy-

namo theory to distinguish between magnetic fields with dipolar and quadrupolar symmetry

[104].

Figure 4 shows a section of the time series of both the polarity m and the nondimensional

kinetic energy Ẽ = E/Ef , as defined in Eqs. (3) and (9), at an aspect ratio of δ = 1.065

and moderate Reynolds number Re = 459. The flow spontaneously transitions between

unidirectional jets in the (shorter) y direction, characterized by m ≈ 1, and LSVs, where m

is closer to zero (m differs slightly from zero in the LSV state since vortices in the anisotropic

domain are slightly elongated). The kinetic energy of the vortex state is seen to be lower

than that of the jet, an observation we discuss further below.

B. Energy balance of large-scale condensates

The parameter dependence of the polarity and the kinetic energy can be estimated by

considering the large-scale energy balance in the statistically steady state. For the analysis
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FIG. 4. The evolution of the polarity m and the nondimensional energy Ẽ = E/Ef in units of

the forcing energy Ef , defined in Eqs. (3) and (9), during random, fluctuation-induced transitions

between LSVs and jets. The x axis shows nondimensional time measured in viscous units. Here

δ = 1.065 and Re = 459 (set D1). When jets are present, m ≈ 1, and Ẽ is at a high value. By

contrast, when LSVs are present, m is closer to 0, and Ẽ is at a lower value.

of the spectral energy distribution, we introduce the combined kinetic energy in wave vectors

±ka,b = ± (aQx, bQy), with Qx = 2π/Lx, Qy = 2π/Ly, denoted by

Ea,b ≡
1

2

(
|û (ka,b)|2 + |û (−ka,b)|2

)
= |û (ka,b)|2 , (10)

where û (k) is the Fourier transform of the velocity with wave number k. Equation (10)

takes into account the fact that the velocity field is real, i.e., that û(k) = û∗(−k).

In a nearly square domain with δ ≳ 1, the two smallest wave numbers in the system areQx

and Qy, which are associated with the wave vectors k±1,0 = (±Qx, 0) and k0,±1 = (0,±Qy),

respectively. Energy is injected into the system at a rate ϵ within the forcing band centered

on the length scale ℓ, and transferred by the inverse cascade to the largest scales. A fraction

α1,0 ϵ of the injected energy is transferred to k±1,0 and another fraction α0,1 ϵ is transferred

to k0,±1, where α1,0+α0,1 ≲ 1 since a (small) part of the energy transferred upscale from the

forcing will be dissipated at scales other than the largest ones, and one expects α1,0 + α0,1

14



to increase with Re. In steady state, the nonlinear transfer of energy from the forcing scales

to the large-scale modes is balanced by the rate of dissipation, formally

2νQ2
yE1,0

δ2
= α1,0ϵ, 2νQ2

yE0,1 = α0,1ϵ. (11)

For any given wave number k, we can directly measure the rate of energy received from the

nonlinear transfer rate of energy to this mode, namely

T (k) = −2Re
[
û∗(k) · N̂(k)

]
, (12)

where hats indicate Fourier transforms and N = (u · ∇)u is the advection term. Time-

averaging this nonlinear transfer rate and adding up the contributions from ±ka,b yields

α1,0 ϵ and α0,1 ϵ, respectively,

αa,b ϵ = T (ka,b) + T (−ka,b), (13)

in terms of the time average (·) computed over several lifetimes of a given structure. The

particular cases (a, b) = (1, 0) and (a, b) = (0, 1) will be of relevance below.

Figure 5(a) shows the result of a direct measurement of α1,0 and α0,1 from set D1 of

our DNS at Re = 459 as a function of δ. In the jet state, one finds, as expected, that

α0,1 ≪ 1 while α1,0 is close to one: the inverse cascade exclusively feeds the mode k1,0 in

the x direction. Moreover, in the LSV state, one finds comparable values for α1,0 and α0,1,

with equality α1,0 = α0,1 at δ = 1. As the aspect ratio increases from δ = 1, the difference

between α1,0 and α0,1 increases, with a decrease in α1,0 and an increase in α0,1. Despite

some amount of dissipation at smaller scales, the kinetic energy is clearly dominated by the

large-scale contributions Els = E1,0 + E0,1, with Els/E ≳ 91% of the total energy residing

within the large-scale modes in the LSV state, as shown in Fig. 5(b). In the jet state, this

fraction increases to Els/E ≳ 96% of the total energy contained within the largest-scale

modes, cf. Fig. 5(b).

Since the kinetic energy E is dominated by the largest scales in the presence of a strong

condensate, Eq.(11) implies an approximate expression

E ≈ E1,0 + E0,1 =
ϵ

2Q2
yν

(
α1,0δ

2 + α0,1

)
. (14)

In nondimensional terms, this amounts to

Ẽ =
E

Ef

≈ Re

4π2ℓ̃2
(α1,0δ

2 + α0,1), (15)
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FIG. 5. (a) Fraction of the injected energy fluxes α1,0, α0,1 maintaining the large-scale energies

E1,0 and E0,1 against dissipation, cf. Eqs. (11), measured directly from the nonlinear transfer rate

according to Eq. (13) based on runs in set D1. As expected, in the LSV state, α1,0 = α0,1 at

δ = 1, with a slight dominance for the gravest (largest-scale) mode as δ increases, manifested by

an increase in α1,0 and a decrease in α0,1. In the jet state, α0,1 ≪ α1,0 as expected. A small

fraction of kinetic energy is lost during the transfer from the forcing scales to the largest scales,

so that α1,0 < 1 in the jet state. (b) Fraction of total kinetic energy E residing in the large-scale

contributions Els = E1,0 + E0,1. Owing to the presence of the condensate, this fraction is close to

one: in the LSV state Els/E ≳ 91% and in the jet state Els/E ≳ 96%.

where the forcing energy scale Ef is defined in Eq. (4). Similarly, from Eq. (11), we can also

estimate the polarity of the flow as

m ≈ E1,0 − E0,1

Els

=
α1,0δ

2 − α0,1

α1,0δ2 + α0,1

. (16)

Thus in the jet state, where α0,1 ≪ 1, the polaritym ≈ 1, while in the LSV state the polarity

m is expected to vanish at δ = 0 (since α1,0 ≈ α0,1) and to become positive at δ > 1, since

α1,0 > α0,1 at δ > 1 (cf. Fig. 5(a)). Next, we present detailed measurements of m and Ẽ

from DNS and confront the above predictions with the DNS results.
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Ẽ

0.0

0.1

P
(Ẽ
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FIG. 6. Bimodal histograms of m and Ẽ in a simulation with Re = 459, ℓ̃ = 0.34, and δ = 1.065

(set D1). The peak close to m ≈ 1 corresponds to the jet state, while the peak centered around

m ≈ 0.2 corresponds to the LSV state. In the kinetic energy histogram, the lower-energy peak

corresponds to the vortex state, while the higher-energy peak corresponds to the jet state. It is

interesting to note that the peaks in P (m) and P (Ẽ) are approximately Gaussian, except for the

peak at m ≈ 1, where m is bounded above by 1 by definition, leading to an asymmetric peak shape.

C. Measurements of polarity m and energy Ẽ from DNS

In all simulations, we record time series of polarity m and nondimensional energy Ẽ, and

compile histograms of these random variables in the turbulent flow. Figure 6 shows the

distributions P (m) and P (Ẽ) at δ = 1.065, Re = 459 (set D1). These are clearly bimodal,

indicating bistability between the jet and LSV states. This bimodality is observed over a

range of δ for given Re and ℓ̃. The structure of the observed peaks is close to Gaussian

(as verified by the fits shown in Fig. 6), except for the peak associated with the jet state

near m = 1, which is asymmetric due to the upper bound m ≤ 1. It is well known that

near-Gaussian statistics are obeyed by many observables in 2D turbulence, cf. [105, 106].

Figure 7 shows a comparison between the time-averaged values of m and Ẽ in the jet

and LSV states, measured in DNS at Re = 459, and the corresponding predictions from
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FIG. 7. Comparison between the values of the polarity m (panel (a)) and nondimensional energy

Ẽ (panel (b)) at different values of δ in set D1 at Re = 459, ℓ̃ = 0.34 measured in DNS and the

predicted values from Eqs. (14) and (16). (a) Polarity m in the LSV state is predicted correctly

albeit with a slight overestimate. (b) In agreement with Fig. 5(b), Ẽ in the jet state is close to that

in the large-scale modes, while in the LSV state there is a ≲ 10% difference between the large-scale

energy and the total energy. Sufficient statistics in the jet state were only obtained at aspect ratios

δ ≥ 1.05 and in the LSV state for aspect ratios δ ≤ 1.07.

Eqs. (14) and (16). In Fig. 7(a) one sees a satisfactory agreement between the DNS and the

predicted values of m based on the large-scale energy balance. In panel (b), one further sees

that the total kinetic energy in the jet state is close to the predicted value, while in the LSV

state the observed kinetic energy is slightly higher than the contribution from the large-scale

modes alone due to finite Re effects, in agreement with Fig. 5(b). Overall, we conclude that

there is agreement between the DNS results and our predictions based on large-scale energy

balance.

IV. LIFETIME STATISTICS

A key quantity to be measured in this problem is the nondimensional lifetime τ̃ of the

large-scale structures, i.e. the length of the time intervals between two consecutive tran-

sitions. Depending on the type of flow structure present, we denote the lifetime as τ̃LSV
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FIG. 8. Histogram of the lifetimes of LSVs and jets in a simulation with δ = 1.07 and Re =

275 (under-sampled tails are cut off). Data is from simulation set R. The dashed lines show an

exponential fit which is in good agreement with the data. The second row shows the y axis on a

logarithmic scale to further validate the approximately exponential trend. The histograms shown

are based on a total of 741 realizations of jets and 805 realizations of LSVs.

or τ̃jet. We measure these times in units of the viscous time tν defined in Eq. (5). For all

lifetimes reported here, we subtract 0.5tν to account for the duration of the transition, see

also Fig. 17.

Since the transitions take place at random times, τ̃ is a random variable whose statistics

we will analyze in the following. The lifetimes of each structure are observed to approxi-

mately follow exponential distributions, as shown in Fig. 8, indicating that they arise from

a memoryless Poisson process. Similar findings have been reported for a wide variety of

metastable states in turbulent flows, e.g. [38, 39, 42, 55, 99, 100].

In the following, we examine the dependence of the mean lifetime ⟨τ̃⟩ of LSVs and jets on

parameters. Specifically, we focus on the impact of the nondimensional control parameters

δ, Re and ℓ̃ on ⟨τ̃LSV⟩ and ⟨τ̃jet⟩.
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1. Aspect ratio δ = Lx/Ly

As δ is increased from unity, the system transitions from preferring the LSV state to

preferring the jet state. One expects that this is associated with ⟨τ̃LSV⟩ decreasing as δ

increases, and ⟨τ̃jet⟩ increasing as δ increases. To examine this, we measured ⟨τ̃⟩ in two

sets of simulations (D1 and D2) with Re = 459 and Re = 344, respectively, varying δ from

1.045 to 1.1, as shown in Fig. 9. We observe that ⟨τ̃LSV⟩ and ⟨τ̃jet⟩ intersect at δ = 1.07

for Re = 344 and at slightly lower δ for Re = 459, which we can identify as the transition

point between the LSV and jet states. The data in Fig. 9 show that ⟨τ̃jet⟩ increases by a

constant factor as Re increases, producing a simple shift on the logarithmic y axis, while

⟨τ̃LSV⟩ increases its slope as Re increases (Fig. 9). This appears to result in a slight shift

in the transition point towards smaller δ as Re increases, although this needs to be verified

with additional simulations.

1.05 1.06 1.07 1.08 1.09 1.10

δ

100

101

102

〈τ̃
〉

〈τ̃jet〉 ↗

〈τ̃LSV〉 ↘

∝ δn

∝ ek(δ−1)

〈τLSV〉,Re = 344

〈τjet〉,Re = 344

〈τLSV〉,Re = 459

〈τjet〉,Re = 459

FIG. 9. Mean lifetimes of LSVs (circles) and jets (squares) versus δ from simulations at two distinct

Reynolds numbers, Re = 344 (D2, blue) and Re = 459 (D1, orange). Error bars correspond to

∆⟨τ̃⟩ = ∆τ̃ /
√
N , where N is the sample size and ∆τ̃ is the sample standard deviation. A minimum

number of 20 (at δ = 1.05) up to a maximum number of 500 (at δ = 1.07) consecutive transitions

were observed. Dashed lines, which indicate best-fit exponential relations, are indistinguishable

from the solid lines representing best-fit power-law relations. This is due to the small range of

δ ≈ 1 over which the transitions are observed, implying δ ≈ log(δ) + 1.

In Fig. 9, we see that ⟨τ̃LSV⟩ and ⟨τ̃jet⟩ are consistent with the fitted exponential function
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FIG. 10. Time series of nondimensional energy Ẽ = E/Ef in simulations with different Re at

δ = 1.07 (set R). Smaller Re corresponds to lower energies and a smaller difference between ELSV

and Ejet, leading to more frequent random transitions.

of δ (solid lines). A similar exponential relationship (Arrhenius law) has been observed, for

instance, in the context of rare transitions between different numbers of jets in β-plane tur-

bulence [51]. However, we cannot discard the possibility that the dependence is a power law

with a large exponent (dashed lines), due to the narrow range in δ over which bistability is

observed. Both results, either power-law or Arrhenius form, differ from the case of rare tran-

sitions in anisotropic three-dimensional turbulence [38] (between 3D turbulence and LSVs),

where the time scales of LSV formation or decay clearly show a faster-than-exponential

dependence on the control parameter.

As discussed in [38], another possibility is that the mean lifetime of a given structure

diverges at some parameter threshold. This is numerically very difficult to ascertain since

the required simulation times become extremely long, which has led to false conclusions in

the past, cf. [107]. For instance, we cannot exclude, based on our data, that the mean

lifetime of the jet state might diverge at some δ = δc ≥ 1, where δc is an aspect ratio with

which ⟨τ̃LSV⟩ = ⟨τ̃jet⟩, for certain choices of Re and ℓ̃. However, in Sec. IV 3 we show that at

least for the special case ℓ̃ = 1/
√
5, the lifetime of the LSV state is finite and jets can form

spontaneously even in the square domain at δ = 1.
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FIG. 11. Histograms of total kinetic energy (nondimensionalized by the forcing scale energy) for

runs in set R at δ = 1.07, ℓ̃ = 0.34. The kinetic energy of jets and LSVs inceases with Re, and so

does the amplitude of fluctuations around either state.
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2. Reynolds number Re

The dependence of mean lifetimes on the Reynolds number Re in this system is somewhat

counter-intuitive. One might expect that larger values of Re correspond to larger fluctuation

amplitudes and thus more frequent transitions. However, as we will see below, transition

rates decrease (i.e. lifetimes increase) as Re is increased as a consequence of an increasing

energy gap between the two structures.

In our setting, Re is closely related to the total kinetic energy E, with larger Re cor-

responding to a higher E, cf. Eq. (14). This is consistent with the time series of kinetic

energy at different Reynolds numbers shown in Fig. 10, which show that energy of both

jets and LSVs increases with Re, as does the energy gap. Figure 11 shows histograms of

nondimensional energy at different Re from simulation set R, revealing that the energy of

the jet and LSV states, as well as the gap between them [Fig. 12(a)], all increase with Re,

as does the amplitude of the fluctuations in the total energy (dominated by the large-scale

contribution), although the energy gap increases more rapidly than the amplitude of the

total energy fluctuations [Fig. 12(b)]. Quantitatively, at a fixed δ and sufficiently large Re,

we expect the gap between the LSV energy ELSV and the jet energy Ejet to be approximately

proportional to Re based on the predictions of Sec. III B. This expectation is confirmed in

Fig. 12(a). A smaller energy gap compared to the forcing energy scale causes the system

to transition more frequently between the two structures because the system needs to dis-

sipate/absorb less energy when the transition happens. Therefore, lower Re result in more

frequent transitions and shorter τ̃ than higher Re, as observed in Fig. 10.

Next, we quantified the dependence of ⟨τ̃⟩ on the Reynolds number Re based on the runs

in set R, varying Re from 275 to 688. Figure 13 shows a lin-log plot of the resulting mean

lifetimes of LSVs and jets versus Re. One observes that there is again an approximately

exponential dependence, as shown by the best fits for LSVs and jets (solid lines). While

the exponential fit appears to be consistent with our data, a power-law dependence also

provides an acceptable, albeit slightly less accurate fit (not shown), giving ⟨τ̃jet⟩ ∝ Re3.65

and ⟨τ̃LSV⟩ ∝ Re0.98 at δ = 1.07 and ℓ̃ = 0.34. Incidentally, a similar power-law dependence

on the Rayleigh number Ra has recently been reported in [55] for metastable states in windy

convection, with ⟨τ⟩ ∝ Ra4.05.
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FIG. 12. (a) Energy gap between LSV and jet states versus Re at δ = 1.07, ℓ̃ = 0.34 (set R). A

close to linear trend is observed at large Re. (b) The energy gap divided by the standard deviation

of the total energy in the LSV state (cf. Fig. 11) increases with Re.
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FIG. 13. Lin-log plot of the mean lifetimes of LSVs and jets versus Re from simulation set R

(δ = 1.07 and ℓ̃ = 0.34). Solid lines show exponential best fits, which are consistent with the

lifetime data for jets and LSVs, respectively. A minimum number of 50 (at Re = 688) up to a

maximum number of 1000 (at Re = 275) consecutive transitions were observed.

3. Nondimensional forcing scale ℓ̃ = ℓ/Ly

Finally, the nondimensional ratio ℓ̃ = ℓ/Ly between the forcing and domain scales plays

a critical role in the transitions. Figure 14 shows that the results are highly sensitive to ℓ̃,

based on runs from simulation set L: the rate at which transitions occur between LSVs and

jets decreases sharply with ℓ̃: at ℓ̃ = 0.491, there are many transitions in the time interval
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FIG. 14. Segments of time series of the polarity m in simulations from set L with different nondi-

mensional forcing scales ℓ̃ = ℓ/Ly (increasing top to bottom) for δ = 1.06 and Re = 69. Larger

forcing scales lead to substantially more frequent random transitions.

shown (∼ 120tν), while the system switches between jets and LSVs four times at ℓ̃ = 0.341

and only once at ℓ̃ = 0.254 in the same time interval. Here, we mention that in the work

of Bouchet and Simonnet [22], the forcing was concentrated near wave number k = 2, i.e.

ℓ = π, with Lx = 2πδ and Ly = 2π [108], corresponding to ℓ̃ ≈ 0.5 in our notation. A

sensitive dependence of transition times on parameters was previously reported in [109].

Figure 15 shows that both jet and LSV energies are approximately proportional to ℓ̃−2,

in agreement with large-scale energy balance [cf. Eq. (15)]. This implies that Ẽjet − ẼLSV,

namely the size of the energy gap between the two states relative to the forcing energy, also

increases approximately as ℓ̃−2 when ℓ̃ is reduced. This observation suggests that, similar

to the decrease of transition rates with increasing Reynolds number, the decrease in the

mean transition rate with decreasing ℓ̃ appears to be related to the sharp increase in the

energy gap. However, the highly sensitive dependence of lifetimes on ℓ̃ prevents the type of

detailed, quantitative analysis of the dependence of the mean lifetimes on ℓ̃ that was done

for their Reynolds number and aspect ratio dependence.

In summary, we find that mean lifetimes depend approximately exponentially on the

domain aspect ratio δ (i.e. the anisotropy parameter), while for a given aspect ratio and ℓ̃,

the mean lifetimes also depend approximately exponentially on Re (which is approximately

proportional to the energy gap measured in units of the forcing energy), while the mean
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FIG. 15. Nondimensional energy Ẽjet of jet state and nondimensional energy ẼLSV of LSVs versus ℓ̃

from simulation set L (Re = 69, δ = 1.06). Both quantities scale approximately as ℓ̃−2, in agreement

with large-scale energy balance as expressed in Eq. (15). Thus the energy gap Ẽjet − ẼLSV grows

rapidly as ℓ̃ decreases.

FIG. 16. Time series of the polaritym on a square domain (aspect ratio δ = 1) with nondimensional

forcing scale ℓ̃ = 1/
√
5 and Reynolds number Re = 550 (from simulation set T). The polarity m

randomly jumps between −1, 0, and +1, indicating the coexistence of three types of large-scale

structures in the domain. The jets in both directions are present in the system for approximately

the same fraction of the simulation time, as expected from the symmetry under x↔ y.
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lifetimes also sharply increase when the energy gap widens due to a decreased nondimensional

forcing scale ℓ̃ (while keeping Re and δ fixed). These observations suggest that an underlying

Arrhenius law would be consistent with the measured exponential dependence of mean

lifetimes on parameters although we are unaware of any theoretical arguments supporting

this result. Should a quantity analogous to a quasi-potential exist for the present problem,

our simulations indicate it must necessarily depend on δ (which controls the relative mean

lifetimes of the two structures) and on the energy gap (controlling the absolute mean lifetimes

of both structures). The forcing energy Ef is likely an important measure of the fluctuation

amplitude, although the fluctuations of the total energy (dominated by large scales) may

also be relevant and may need to be taken into account.

Next, we briefly discuss a special case that arises when the forcing is concentrated near

ℓ̃ = 1/
√
5. In this case, shown in Fig. 16, a square domain with δ = 1 exhibits tristability and

spontaneous transitions are observed between the LSV state and jet states in either the x or

y direction. This contrasts starkly with the usual condensate state found in square domains,

where typically a highly stable pair of counter-rotating LSVs is observed [3]. We stress that

this tristable behavior in a square domain was only seen when the forcing range included

the scale Ly/(2π
√
5). We have explicitly verified that the metastable jets in the square

domain do not form when forcing at ℓ̃ ≥ 1/
√
5; specifically, we tested ℓ̃ = 1/2, 1/

√
2, 1 and

also showed that this phenomenon does not occur for forcing scales smaller than ℓ̃ = 1/
√
5.

While the precise origin of this phenomenon is as yet unknown, we note that the wave

number triads

k1,1 + k1,0 + k−2,−1 = 0, k1,1 + k0,1 + k−1,−2 = 0, (17)

which couple either one of the large-scale modes to a forcing-scale mode, facilitate a non-

linear interaction between the k1,0 and k0,1 modes and the forcing scales via the mediator

mode k1,1, which is the closest scale to the gravest modes, permitting a strong spectrally

local interaction. A full quantitative explanation of the observed dynamics remains to be

elucidated. It is interesting to note that similar turbulent jets alternating between the x

and y directions in a square domain were also observed in rotating convection [42].
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V. TRANSITION TRAJECTORIES

In addition to the lifetime statistics discussed above, it is also of interest to examine the

transitions themselves. In particular, we investigate whether the transition from LSVs to

jets and vice versa are time-reversible. In general, transition trajectories between distinct

attractors in multi-stable systems are asymmetric. For instance, in [53], the transitions

between states with 2 and 3 jets in β-plane turbulence follow different paths in Fourier

space in different directions (2 → 3 jets or 3 → 2 jets). This motivates us to examine the

similarity between transitions in the two directions in our system.

1. Evolution of m and Ẽ during transitions

As established in Sec. III, the polarity m and the kinetic energy Ẽ serve as key indicators

of the system state. Here, we focus specifically on the temporal evolution of these quantities

during the transitions from jets to LSVs and vice versa.

We consider a long-time simulation in the bistable range, with a large number of transi-

tions from LSVs to jets and vice versa. Figure 17 shows superimposed sections of the time

series of m and Ẽ centered on the point during transitions, at nondimensional time t̃ = t̃0,

where m minimizes P (m), cf. Fig. 6. Hence, by construction, all the time series shown in

Fig. 17 coincide at nondimensional time t̃ = t̃0. Point clouds indicate the instantaneous

states of the system during individual transitions, while the solid lines indicate an average

over the ensemble of all observed transitions (the data was additionally smoothed before the

ensemble average was computed).

The top row of Fig. 17 shows that the polarity rapidly transitions from LSVs to jets

and vice versa. Superimposing the two ensemble-averaged trajectories by reflecting the

time axis in the middle panel about t̃ = t̃0, one obtains the right panel, which shows that

m approximately follows the same transition path in either direction, within one standard

deviation. By contrast, the lower panel shows that the kinetic energy Ẽ displays a drastically

different transition behavior. Kinetic energy is approximately constant up to the shifted time

t̃ = t̃0 (defined in terms of m as described above). Then, the energy increases or decreases

on a viscous time scale to adapt to the equilibrium value appropriate for the newly formed

structure, given by Eqs. (11). When both curves are again superimposed by reflecting the
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FIG. 17. Top row: Evolution of the polarity m defined in Eq. (9) during transitions from LSVs to

jets and vice versa, shifted in time such that the m values coincide at nondimensional times t̃ = t̃0,

where m( t̃0 ) corresponds to the minimum of P (m). The rightmost panel shows the overlap of the

first two, where the time axis in the middle panel was reflected about t̃ = t̃0. The scatter points

show the instantaneous system states in different realizations, while the solid lines represent the

ensemble average. Bottom row: same for the nondimensional kinetic energy Ẽ. Vertical dashed

lines highlight t̃ = t̃0. Data are taken from a simulation in set D2 with δ = 1.07, ℓ̃ = 0.34 and

Re = 344, including 121 instances of transitions from LSVs to jets and 129 from jets to LSVs.

middle panel about t̃ = t̃0 (right panel), it becomes apparent that the time delay in the

energy evolution results in a markedly asymmetric, i.e. irreversible, transition behavior.

The distinct evolution of m and Ẽ reveals the two-stage nature of the fluctuation-induced

transitions in this system. First, a rapid nonlinear transfer of energy takes place, transform-

ing one large-scale structure into the other, as indicated by m, and the kinetic energy Ẽ

subsequently adjusts to the new equilibrium value. The role of the nonlinear transfer during

transitions can also be analyzed directly by measuring the energy transfer rate Ta,b defined in

29



FIG. 18. Time series of the nonlinear transfer T1,0 (top row) and T0,1 (bottom row), nondimension-

alized by the injection rate ϵ, during transitions shown over the same time axis as in Fig. 17. Scatter

points stand for the raw data (smoothed in time for clarity) and solid lines indicate the ensemble-

average over a large number of transitions. The constant value of the ensemble averaged Ta,b away

from the transition corresponds to αa,b in Eq. (13), while a pronounced overshoot/undershoot is

seen during the transition, indicating the presence of large nonlinear transfer rates that lead to the

rapid redistribution of energy reflected in the evolution of m during transitions shown in Figs. 17

and 19. Data are taken from the same simulation as in Fig. 17.

Eq. (12). Figure 18 shows ensemble-averaged time series of T1,0 and T0,1 (nondimensionalized

by the energy injection rate ϵ) during transitions from LSVs to jets and vice versa. Away

from the transition, the transfer rate is constant, corresponding to the fractions α1,0 and α0,1

of energy reaching the large-scale modes, cf. Eq. (13). In contrast, during the transition,

an overshoot or an undershoot is seen in the time series, reflecting the rapid change in the

large-scale energies E1,0 and E0,1.

Figure 19 shows a reduced phase space portrait of the bistable dynamics for a run in set
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FIG. 19. Dynamics in phase space (m, Ẽ) within the bistable range from a run in set D2 (δ = 1.07,

Re = 344, ℓ̃ = 0.34, same simulation as in Fig. 17). Raw data are represented as grey point clouds,

while ensemble-averaged transition trajectories are shown by colored, solid curves. Colors indicate

the nondimensional time elapsed during transitions (corresponding to the abscissa of Fig. 17).

Labels mark LSV and jet states, with arrows representing the counterclockwise transition direction

consisting of a fast phase (small change in t̃) and a slow phase (larger change in t̃). The phase

portrait is qualitatively reminiscent of relaxation oscillations [110], but the period at which the

system completes the loop is the sum of the lifetime of the jet and the lifetime of the LSV.

D2 at Re = 344, δ = 1.07 in the reduced phase space spanned by (m, Ẽ) as two key global

system properties. The grey point cloud indicates instantaneous system states, while the

colored lines represent the ensemble-averaged transition trajectories from LSV to jet and vice

versa. It can be seen that the system spends most of its time in the regions corresponding to

LSVs and jets, separated by occasional transitions from one region to the other, as expected.

Colors indicate the time elapsed during the transition relative to t̃ = t̃0. The evolution of

the system from LSVs to jets and back to LSVs corresponds to a loop in this phase space
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(a) (b)

FIG. 20. Alternative phase space plots of the bistable system in Fourier space from a simulation

in set D2 with δ = 1.07 and Re = 344. (a) Absolute contributions to the energy (Ẽ1,0, Ẽ0,1), whose

sum approximates the energy Ẽ. Grey points in both plots indicate the instantaneous system

states, while the purple and green symbols indicate the averaged trajectories the system traverses

during a transition. (b) Fraction of the energy contained in the large scales (Ẽ1,0/Ẽ, Ẽ0,1/Ẽ),

whose difference approximates the polarity m. The LSV and jet states have been highlighted by

labels while the transition direction is indicated by arrows in panel (a). The dashed diagonal line

in panel (b) is where Ẽ1,0 + Ẽ0,1 = Ẽ.

that is always traversed counterclockwise, in a manner reminiscent of relaxation oscillations

[110], with rapid changes in m and slow changes in energy, but with the important difference

that the cycle is completed within a random time period given by the sum of the lifetimes of

jet and vortex states. Figure 19 highlights that transitions are initiated by a rapid change in

the polarization m, followed by a slow relaxation in the kinetic energy Ẽ to the new state.

2. Evolution of energy in large-scale Fourier modes

In addition to m and Ẽ defined in terms of the physical-space velocity field, the set of

(complex) Fourier coefficients spans Fourier space and thus provides a full characterization of

the fluid flow. To visualize the spectral energy distribution in the large-scale flow structures,

we use the nondimensional energy in the modes±ka,b, denoted by Ẽa,b, as defined in Eq. (10).

We reiterate that, since the inverse energy cascade concentrates the energy in the largest-

scale motions, the system is well described by the first few Fourier modes with the smallest
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wave numbers. Therefore the modal energies Ẽ1,0 and Ẽ0,1 are sufficient to characterize the

state of the system. In addition, we also consider the fraction of the total kinetic energy Ẽ

contained in Ẽ1,0 and Ẽ0,1 at any given time (recall that Ẽ changes between vortex and jet

states), given by Ẽ1,0/Ẽ and Ẽ0,1/Ẽ, respectively.

Figure 20 shows the system evolution in terms of (Ẽ1,0, Ẽ0,1) (panel (a)) and (Ẽ1,0/Ẽ, Ẽ0,1/Ẽ)

(panel (b)), with the grey point cloud again indicating the set of all instantaneous system

states and the purple/green lines corresponding to the ensemble averaged transition trajec-

tories from LSV to jet and vice versa. It should be noted that the system spends most of

its time in the regions corresponding to LSVs and jets, while occasionally traversing from

one region to the other.

In Fig. 20(a), a loop can be discerned in terms of the ensemble averaged transition

trajectories, similar to that in Fig. 19. By contrast, in Fig. 20(b), this loop collapses close

to a dashed line indicating states where the entire energy is contained within the large-scale

modes, i.e., Ẽ1,0 + Ẽ0,1 = Ẽ. It can be seen that the jet states are somewhat closer to

the dashed line than the LSV states, indicating that the remaining small-scale motions in

the LSV state are more vigorous compared to the jet state. While this difference is small

compared to the total energy, it does indicate a measurable difference between the energy

spectra of the LSV and jet states. This is consistent with the spectra shown in Fig. 2 and

with the results shown in Fig. 5.

VI. TRANSITION BETWEEN DIFFERENT NUMBERS OF JETS

When δ is increased further beyond the bistable interval discussed above, the number of

jets emerging from the inverse cascade increases. Figure 21(a) shows a space-time plot of

the stream function averaged in the y direction ⟨ψ⟩y, with the x coordinate on the vertical

axis and time in viscous units on the horizontal axis, from a run at δ ≈ 3.1, ℓ̃ = 0.53, low

Reynolds number Re = 55, with a spatial resolution of 128× 64 grid points. A spontaneous

transition from a state with two pairs of jets to a state with a single pair of jets is initiated

around t̃ ≲ 30. Since the length scale doubles during the transition from two pairs of jets to

a single pair of jets, the flow amplitude is significantly increased owing to reduced viscous

dissipation, an effect seen in Fig. 21(b) as a drastic (close to fourfold) increase in kinetic

energy during the transition. A similar coarsening-type evolution from two pairs of jets to a
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FIG. 21. (a) Space-time plot of y-averaged stream function from run J in a domain with aspect

ratio δ ≈ 3.1125, at low Reynolds number Re = 55 and ℓ̃ = 0.53, showing atransition from two

pairs of jets to a single pair of jets. The flow amplitude of the jets in this transition increases

greatly because the energy in the system is stored in larger-scale motions and is therefore less

susceptible to viscous dissipation. (b) Kinetic energy time series associated with the transition

reveals a significant energy gap overcome in the transition.

single pair of jets was observed in rapidly rotating convection in an anisotropic domain [17].

We also underline that a single pair of jets at δ > 1 corresponds to a build-up of energy

at the largest available scale, also known as the gravest mode, which is in line with the

expectation of standard theory [9]. However, when several pairs of jets are present in the

system, the inverse cascade is arrested at a scale comparable to (but somewhat larger than)

the short side length (Ly for δ > 1). The same phenomenology was observed in turbulent

rotating convection [17, 18], but there is so far no detailed explanation of this observed arrest

of the inverse cascade at scales comparable to the short side length. Moreover, jets aligned

with the short side of the domain also form in fixed-flux Rayleigh-Bénard convection in a

doubly periodic domain, where the secondary instability of an elevator mode generating a

horizontal jet requires a small enough horizontal extent [72].

In the presence of a dominant scale-independent damping mechanism, such as Rayleigh
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damping, the energy gap between states with different numbers of jets is removed, see

e.g. [51]. Previous studies of fluctuation-induced transitions between different numbers of

jets include barotropic flows in the presence of the β effect (latitudinal variation of the

Coriolis force) but similar studies of anisotropy-generated jets remain to be carried out.

VII. CONCLUSION

In this investigation, we made significant contributions to our understanding of fluctuation-

induced transitions in anisotropic 2D turbulence by performing extensive DNS and acquiring

statistical data on the impact of key system parameters on the dynamics. We have formu-

lated and verified predictions for the energy and flow polarity of LSVs and jets based on

large-scale energy balance. Furthermore, we have shown that the lifetimes of the large-scale

structures are exponentially distributed, indicating that they derive from a memoryless pro-

cess, as observed for various metastable states in other turbulent flows [38, 39, 42, 55, 99, 100].

We find that the dependence of mean lifetimes on δ is consistent with an exponential

relation, although a power-law dependence with a large exponent could not be ruled out.

This behavior differs markedly from the parameter dependence of the lifetimes observed for

3D turbulence and LSVs in thin layers [38, 39] and also from the transition to turbulence in

a pipe [93]. In both of the latter cases, the timescales involved depend super-exponentially

on the control parameter in question (Reynolds number in pipe flow and the ratio between

forcing scale and layer height in thin-layer turbulence). More generally, the history of transi-

tional shear flow studies suggests caution when extrapolating our findings to asymptotically

long lifetimes; for instance, for turbulent puffs and slugs in pipe flow, the double-exponential

dependence of lifetimes on Re is technically hard to determine, and earlier studies with less

data and smaller domains incorrectly suggested an exponential dependence on Re instead

[94] – see also the discussion in [107].

We further find that the mean lifetimes of LSVs and jets increase approximately expo-

nentially with the Reynolds number Re, as the energy gap between the LSV and jet states

grows with Re. We also showed that the mean lifetimes increase rapidly with increasing

nondimensional forcing scale ℓ̃ between the forcing scale and the domain size, in agreement

with previous work [109]. This is likely the reason why the transitions described here have

not been more widely observed, since 2D turbulence experiments are often performed with
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small-scale forcing, ℓ̃≪ 1. We also observed that for a specific forcing scale, with ℓ̃ = 1/
√
5,

the lifetime of the LSV state in a square domain was drastically reduced by a spontaneous

symmetry breaking, with frequent transitions between metastable LSVs and jets in both x

and y directions. The precise quantitative origin of this phenomenon is as yet unknown.

Our results are consistent with the existence of an Arrhenius-like law in this system,

where the anisotropy parameter δ and the LSV-jet energy gap (measured in units of the

forcing energy or large scale energy variance) control the relative and absolute lifetimes of

the two states, although no theoretical argument in favor of such a law is at present available.

We have also analyzed in detail transition trajectories between LSV and jet states, show-

ing that the transition involves a rapid change in the flow polarity m generated by efficient

nonlinear energy transfer between large-scale modes, followed by a slow subsequent change

in the kinetic energy E as the flow amplitude adjusts to the new equilibrium state. The

system trajectory in the reduced phase space spanned by (m,E) forms a loop resembling

relaxation oscillations, although the system traverses the loop at random times given by

the lifetimes of LSVs and jets. Transition paths between multistable attractors, including

turbulent flows, may be computed using the instanton formalism, cf. [51, 53, 111, 112] but

whether the properties of the observed transition paths in the present system, including

the two-step transition behavior revealed by the evolution of m and E, can be derived on

theoretical grounds remains an open question.

We also described a transition between different numbers of jets. As discussed above,

viscous damping is the only mechanism for energy dissipation retained in our model. As a

result there is a substantial energy gap between these states even at moderate Re, leading

to exceedingly rare transitions. We reiterate that the choice of purely viscous condensate

saturation was made to simplify the system as much as possible and to limit the number

of control parameters in the system to three. Alternative but scale-independent damping

terms, such as linear Rayleigh damping [3] or nonlinear damping (used to model turbulent

drag [113]), allow saturation at significantly lower kinetic energies, thereby providing benefit

for numerical simulations, while also being physically relevant. These have been included in

the study of zonal jets on the β-plane [51, 52]. In contrast with the well-studied problem of

jets on the β-plane, however, a detailed investigation of the dynamics of purely geometry-

induced jets in stochastically forced, anisotropic 2D turbulence is still outstanding, and may
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benefit from the inclusion of such alternative damping mechanisms to eliminate the large

energy gap that makes transitions between jets so exceedingly rare. Another important open

problem concerning states with multiple pairs of jets in the present system is the nature of

the arrest mechanism that prevents energy from accumulating in the gravest modes, given

that no β effect is present in our model. We leave these aspects of the problem for future

study.

Given the relatively simple transition phenomenology in terms of energy and polarity

revealed by the phase space diagram shown in Fig. 19, a promising avenue for a better

understanding of the parameter dependence of our system might be the development of a

low-dimensional reduced model. At the very least, such a reduced model needs to retain the

modes at k1,0, k0,1 and the forcing-scale modes, as well as triads facilitating the interaction

between the forcing scales and the large scales.

The present study is, of course, highly idealized owing to the assumption of exact two-

dimensionality and the use of periodic boundaries. Within these idealizations, it may be of

interest to consider the related problem of 2D, stochastically forced, viscously damped flow

on a sphere, varying the global rotation rate. On the non-rotating sphere, the final state

produced by a stochastically forced inverse cascade is a vortex quadrupole (although this is

not always observed in the unforced case due to ergodicity breaking [31, 32]), while zonal

jets (and Rossby waves) emerge when the sphere is rapidly rotating [32]. Similar results

are found in the shallow water equations on the sphere [114, 115], but in either case, the

transition between jets and vortices on the sphere remains to be analyzed. The inclusion of

boundaries in two-dimensional turbulence is known to induce a rich phenomenology [116]

and it would be of interest to study the robustness of the results presented here in that

setting. Another promising direction for future work is the inclusion of the third dimension

in the context of quasi-2D turbulence [21]. Given the established bistability between small-

scale 3D turbulence and LSVs in thin-layer turbulence near a threshold layer height [38],

there is an intriguing possibility that small-scale 3D turbulence, LSVs and large-scale jets

may coexist when horizontal anisotropy is introduced in a thin 3D layer. Furthermore, it will

also be important to clarify how the results described here for 2D flow are related to similar

transitions between jets and LSVs in 3D turbulent rotating convection within anisotropic

plane layers [17, 18] or on an inclined f -plane [33–36], a problem which has recently seen

important theoretical advances [117]. A key difference between these convection problems
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and our study is that buoyant momentum forcing is self-organized in response to the flow

field itself, and acts over a broad range of scales, in contrast to the idealized white noise

considered here. In this context, we reiterate that the longest simulations presented here

extended over more than 104 viscous time units, a time that is orders of magnitude longer

than any available simulations of 3D turbulent rapidly rotating convection. For example,

the runs presented in [18] only extend over 40 viscous time units, while the longest runs

reported within the rapidly rotating regime extended over 10tν in [17] and 0.5tν in [41].

As a result we were able to compute many more transitions and collect reliable statistical

information. Moreover, the white noise driving considered here and in much earlier work

on 2D and quasi-2D turbulence differs from the red noise (larger noise variance at small

frequencies) displayed by climatic fluctuations [118, 119], and it might be of interest to

examine the effect of such colored noise on the transitions in present system as well as their

potential experimental realization.
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Appendix A: Specification of the forcing band

In a finite, anisotropic domain, the spacing of the discrete wave numbers in the x and

y directions is not the same. Specifically, as the domain is elongated in the x direc-

tion, the spacing in this direction, Qx = 2π/Lx, is reduced. For a fixed forcing range, a

change of δ can change the specific forcing modes falling into the forcing range, thereby

changing the degree of isotropy of the forcing and leading to visible effects in the simu-

lation results. In our simulations, we endeavored to avoid this by an appropriate spec-

ification of the forcing band. For all runs in sets D1, D2 and R, which cover an inter-

val of aspect ratios δ ∈ [1, 1.1], we chose an appropriately narrow forcing range contain-

ing wave numbers k ∈ [k1, k2], with k1 = 2.34Qy, k2 = 3.17Qy and Qy = 2π/Ly. In

this way, the forcing band contains exactly the modes ka,b ≡ (aQx, bQy) with (a, b) =
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(±2, 2), (±2,−2), (±3, 0), (0,±3), (±3, 1), (±3,−1), (1,±3), (−1,±3), illustrated in Fig. 22,

for all δ ∈ [1, 1.1]. This set of forcing modes remains close to isotropic as δ is varied. The

dimensional forcing scale ℓ is taken to be the arithmetic mean of the largest and smallest

scales contained in the forcing band, which is close to 0.34Ly for sets D1, D2, and R.

For runs in set L, we kept ℓ fixed at 1, while varying the domain size Ly and maintaining

the aspect ratio δ = 1.07 unchanged. The width of the forcing range in set L was not kept

strictly constant, with the goal of maintaining the forcing as close to isotropic as possible.

In set J, we chose k1 = 1.5Qy, k2 = 2.5Qy. Finally, in set T, we picked k1 = 2.12Qy and

k2 = 2.53Qy so that only modes with wave number
√
5 were forced.

Appendix B: Remapping to the square: anisotropic diffusion and forcing

It is a simple observation that Eq. (1) in the rectangular domain (x, y) ∈ [0, Lx]× [0, Ly]

can be mapped onto to the square (x̌, y) ∈ [0, Ly] × [0, Ly] by letting x = δx̌, implying

∂x = δ−1∂x̌, such that the vorticity equation, written in terms of ψ,

∂t(−∇2ψ) + J(ψ,∇2ψ) = −ν(∇2)2ψ + fω(x, y, t), (B1)

with the Jacobian J(a, b) = (∂xa)(∂yb) − (∂ya)(∂xb) and fω = ẑ · ∇ × f , is mapped to the

following equation for the rescaled streamfunction ψ̌,

∂t(−∇̌2ψ̌) + J̌(ψ̌, ∇̌2ψ̌) = −ν(∇̌2)2ψ̌ + f̌ω(x̌, y, t), (B2)

where ψ̌ = δ−1ψ, the anisotropic Laplacian is ∇̌2 = δ−2∂2x̌ + ∂2y and the anisotropic Jaco-

bian is J̌(a, b) = (∂x̌a)(∂yb) − (∂ya)(∂x̌b). In this system the rescaled forcing f̌(x̌, y, t) =

δ−1fω(x̌, y, t) drives the flow anisotropically in an ellipsoidal wave number shell, instead of

the isotropic ring of wave numbers on which fω(x, y, t) acts. Clearly, when δ > 1, the dis-

sipation in the y direction is enhanced relative to the x̌-direction, a key ingredient for the

transition from LSVs to jets.

Incidentally, an equation of the form (B2) has been obtained for the barotropic vorticity

in quasi-geostrophic convection on a tilted f -plane characterized by misaligned rotation

and gravity axes [35, 36], where transitions between LSVs and jets were observed at finite

inclination angles, not unlike those explored further below. We stress that in [35, 36] the
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anisotropy is not geometrical but rather derives from the misalignment between gravity and

the rotation axis.
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