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Abstract

People can learn simply from observation, without ex-
plicit feedback. Natural language acquisition is per-
haps the most spectacular example, but unsupervised
learning occurs in many domains. We present 1) a
task analysis of a broad class of unsupervised learn-
ing problems and 2) an initial simulation based on
the task analysis which successfully learns all the rule
types identified in the analysis. Our task analysis
characterizes systems of interpredictive correlational
rules which could be the basis for category formation
in unsupervised learning. For example, observation
of various animals could lead to abstracting covaria-
tion rules among wings, feathers, and flight, and also
among fins, scales, and swimming. These rules in turn
could form the basis for the categories bird and fish.
Our analysis identifies three types of predictive fea-
tures and three types of rules which may be available
in input: universal, contrastive, and ezrception-based
rules. This analysis guided design of our learning pro-
cedures. Our simulation succeeds in learning all three
rule types. This is difficult because procedures which
facilitate learning one rule type may inhibit learn-
ing another. Further, our simulation is restricted in
psychologically motivated ways and succeeds despite
these requirements. We know of no other simulation
or modeling project which addresses exactly this class
of learning problems. Our results demonstrate the ex-
istence of successful procedures. However, we believe
our most valuable contributions are our task analy-
sis and framework for testing the power and limits of
domain-general learning procedures applied to unsu-
pervised learning problems.

Introduction

What procedures allow learners to discover cate-
gories from observation of instances? When con-
trastive feedback 1s provided people (and comput-
ers) can use this to guide learning. When discrimi-
native feedback about category membership is not

*We thank Richard Billington and Lyle Ungar for valu-
able input and discussion about this research.

510

provided, a greater burden is placed on the learner
to discover structure in input and set up sensible
categories. Our project investigates what learn-
ing procedures are sufficient for successful learning
under these conditions. One goal of the project
1s to develop a successful learning program; the
more fundamental goal is to develop a model of
the learning task which will allow us to investi-
gate the effects of component learning procedures
on different aspects of the learning problem.

Our core principle for explaining observational
learning is internally generated feedback: learn-
ers compare predicted and observed properties
and use the match or mismatch to guide learn-
ing. When input provides interpredictive relations
among feature values, this structure can be dis-
covered using internal feedback. Prior work be-
gan exploration of learning under these constraints
[Billm87b]. This paper presents a more sophisti-
cated model.

Systems of correlations are central to learning
categories from observation. Furthermore, repre-
sentation of correlational structure is intimately
linked to category use: The primary purpose of
categories is to organize knowledge to allow sensi-
ble inferences. Given enough information to clas-
sify something as a bird, this licenses additional in-
ferences: for example, it hatched from an egg and
will lay eggs if female. If we observe a new prop-
erty for some particular bird, say, eating worms,
we may generalize that property to other members
of the same category. While these inferences are
certainly not correct all the time, they provide us
with a valuable way of extending our knowledge.
Rosch [Rosch78] has pointed to the importance of
correlations in defining category structure. She
argued, however, that correlations are important
in leading a cultural group to discover or rely on
a category, but not that individuals use this cor-
relational structure in category learning. We are
interested in how an individual might use discov-



ery of correlations as the basis for category learn-
ing. Prior work has found that individuals do
use correlational structure in learning categories
[Garne74, Billm87b, Billm87c].

In unsupervised learning, correlational struc-
ture is even more important than when categories
are designated for the learner and explicit feed-
back about membership is provided. In learning to
distinguish categories A and B with explicit feed-
back, finding any attribute which predicts cate-
gory membership is sufficient. The learner has
no need to notice whether various predictor fea-
tures covary with one another. When no feed-
back is specified externally, concept learning will
be largely driven by discovery of interpredictive
relations among feature values. That is, subject’s
may discover coherent patterns in the observed ex-
amples and use this to set up categories.

We can understand the learning problem bet-
ter by analyzing the structure which is potentially
available in input. Specifically, we can identify
three types of predictive rules and three classes of
features. The three types of predictive rules are
universal, contrastive, and exception-based. Uni-
versal rules apply to all instances in the domain; if
the domain of learning is animals, then the system
should discover that all animals eat and breathe.
Contrastive rules could be used to divide the do-
main into major, contrasting classes. In learning
about a wide range of animals, we want the sys-
tem to discover that fins, scales, and swimming all
go together, as do wings, feathers, and flying. Dis-
covery of these rules was the initial goal in design-
ing the system. Clusters of such rules can then
form the basis for contrasting categories such as
fish and birds. We would like the system to learn
these regularities even when exceptions occur. Fi-
nally, exception-based rules represent information
about the exceptions themselves; if an animal has
wings, but looks like it is dressed in a tuxedo, it
will not fly. The system should be able to learn
about bats, whales, and penguins.

Procedures which facilitate discovery of one
class of these rules may often inhibit learning rules
of another class. Learning universal rules requires
good sensitivity to very general patterns. Learn-
ing rules about exceptions requires good sensitiv-
ity to quite specific patterns. Learning rules which
would form the basis of maximally coherent cate-
gories requires good sensitivity to features which
are related to many other features. Thus designing
a system capable of learning all three classes re-
quires accommodating conflicting demands. This
problem has not been highlighted in prior work,
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because the issue is much less important in learn-
ing with feedback. Specifically, there is no pressure
to learn universal properties when learning cate-
gories from contrastive feedback. However, when
a system is designed to seek good predictions, it
must be prevented from focusing too much on vac-
uous predictions of universal properties,

Parallel to the three types of rules are three
types of features. [Universal features do not vary
across the entire set of objects in the problem do-
main. Contrasting features are those which both
vary across the domain and covary with other fea-
tures. These are the features which we intuitively
think of a defining separate classes. Features such
as mode of locomotion, type of body covering, type
of limb, and distinctive location or habitat divide
up major classes of animals. Idiosyncratic features
are highly variable across the domain, but do not
generally covary with other features. Their predic-
tive value is primarily in conjunction with several
other features, to identify an individual or excep-
tion. Learning about penguins may require at-
tention to distinctive coloring, even though color
may not be widely predictive. Our learning model
uses this analysis of universal, contrasting, and id-
iosyncratic features in the procedures which con-
trol learning.

Problem Definition

Our modeling begins with three fundamental as-
sumptions about learning correlational patterns.
First, people and other cognitive systems do learn
about patterns of feature correlations, even in un-
supervised learning. Second, this information is
represented directly and locally, as in classifier
[Holla75, Holla86] and production [AKB79] sys-
tems, not indirectly in a set of weights distributed
across a system [Rumel86]. Direct representa-
tion of rules allow other mental procedures, as
in inference and transfer, to selectively operate
on representations of different regularities. Third,
all three types of rules, universal, contrasting,
and exception-based are important components of
learning about the correlational structure in in-
put. In addition, we place several constraints on
the available information and resources.

1. The information available to the learner is
limited. No feedback is provided and learning
takes place from unsupervised observation of
examples. Much natural learning is informal
and untutored. Feedback is often sporadic,



unreliable, or unavailable. By modeling learn-
ing with no designated feedback we investi-
gate the most difficult case; models for learn-
ing with feedback can be set up as an easier,
special case [Billm87¢]. Most researchers have
addressed learning with feedback. Whether
the learning criteria is predicting category
membership [AKB79] or earning as much of
a target resource as possible [Holla86], it is
directly specified for the learner. In our task,
the learner must discover which features are
predictable as well as which features are pre-
dictive,

2. Memory, either storage or retrieval, is limited.
Some specific information may be preserved.
However, we do not allow learning procedures
which operate over the set of previously seen
objects. Rather, an observation affects the
learner’s state of knowledge but no represen-
tation of the object as an individual need be
retained.

3. The learner’s initial knowledge is limited.
Learning should not depend heavily on the
initial state of the learner. First, the learn-
ing procedure should be sufficiently robust
so that the order of presentation of exam-
ples does not profoundly change the course of
learning. Second, learning should not depend
on extensive prior knowledge of the domain.
We are interested in specifying general learn-
ing procedures which can apply even where
the learner lacks much knowledge initially.

4. In general, we want our learning procedures
to apply homogeneously across rules without
reference to rule content. This approach con-
trasts with those where the strength of the
learning procedures depends on the content

of old knowledge.

There are undoubtedly many circumstances
where the conditions of learning are not so aus-
tere. We are interested in investigating this diffi-
cult class of learning problems because we believe
that these circumstances will tell us most about
the strengths and limits of general, data-driven
learning procedures. We investigate learning of
systems of structured representations, given mini-
mal initial knowledge and minimal information in
input. Our simulation operates under these con-
straints.
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Representation

The representation format is described here. This,
together with the procedure description to follow,
specifies all the apriori information built into the
system. The learning model is independent of the
particular domain. However, for a learner to suc-
ceed, input must provide at least some contrastive
or universal features and the learner must repre-
sent these. For this implementation, the domain
consists of birds, fish, mammals, whales, penguins
and bats. Input objects are represented as vectors
of feature values, where all features must be spec-
ified. Thus a typical object might be a red, furry
land animal with legs which weighs 200 lbs., and
eats and breathes.

Representation of Features

Both observed objects and internal rules are rep-
resented in terms of the same set of features. This
feature set is not currently altered by learning.
The simulation runs reported here used seven fea-
tures: breathes (t or f), eats (t or f), color (blue,
yellow, red, white, black, green, tuxedo, brown,
pink), weight (coded into 7 distinct ranges), lo-
comotion mechanism (legs, wings, fins), habitat
(land, air, water), and body covering (hair, feath-
ers, scales). Each feature has two associated pa-
rameters, salience and variability. Feature salience
is a function of predictive success across all the
rules in which the feature participates as a pre-
dictor. The feature variability is estimated from
storing the set of recently observed values of that
feature. This requires maintaining minimal in-
formation about the distributions of feature val-
ues. Contrastive features are variable and salient.
Universal features are homogeneous. Idiosyncratic
features are variable and have low salience. This
information about features is used in the learning
procedure.

Representation of Rules

Knowledge of regularities is represented in con-
ditional rules. Each conditional rule consists of
a condition and an implication. The condition
specifies the values of a proper subset of the ob-
servable features. The implication specifies the
value of one predicted feature. A conditional rule
might specify that, if something has scales and
fins, then it travels around in the water. Each
conditional rule has an associated strength esti-
mate. Rule strength is a function of the rule’s



predictive validity, the salience of the features in
its condition, and the variablity of its predicted
feature. The present work differs from an earlier
project [Billm87] in that we now allow multiple
features in the condition. This is a fundamental
change. First, when only single feature conditions
are specified, it is feasible to enumerate all the
representable rules. Then the learning procedure
need only select good rules from among an ini-
tially instantiated set. When multiple features are
allowed, the combinatorial explosion means that
the learner must not only decide which of a num-
ber of rules is the best, but it must also gener-
ate these rules. Second, it changes the representa-
tional power of the system. Learning higher order
regularities, subpatterns, and exceptions requires
use of multiple features.

Procedure

The learning procedure consists of major and mi-
nor cycles. In the minor cycle, objects are pre-
sented to the learner and tested. The major cycle
removes weak rules and replaces them with new,
potentially stronger rules. The rules compete with
one another, with their level of success based on
their ability to explain the domain. The rules
which provide the best model will survive while
the others will be removed.

The Minor Cycle

The learner first picks a random object to exam-
ine, samples a set of features from the object, and
then picks a rule to test given the sampled feature
set. Focused sampling alters selection probability
of the features sampled in observing an object.
It directs attention to features which have proved
predictive in the past. When a feature is sampled,
its variability is updated.

With multiple features in the condition, it is
unlikely that a particular set of feature values will
find an exact match in the condition of some rule.
Thus, we need a partial match value. The value
is a function of 1) the number of conflicts between
the rule and the set of sampled features, 2) the
number of matches, and 3) the variability of the
action feature of the rule (this helps avoid mak-
ing vacuous predictions). A rule is then picked
probabilistically as a function of its match score.

After a single rule is picked it can either be
tested or generalized. A rule is generalized if some
part of the rule’s condition conflicts with some fea-
ture values of the object. To generalize, we remove
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the conflicts and add the generalized rule back into
the rule base. The generalized rule is now free to
compete with the parent rule. Only a limited ex-
pansion of the rule base is allowed in one major cy-
cle. If a generalized rule is formed, its prediction is
tested; if not, the orginal rule is tested. If the pre-
diction is correct, the rule’s predictive validity and
the salience of the features in the condition are in-
creased. If unsuccessful, they are decreased. The
modification is done in accord with a delta rule.
The delta rule revises a parameter by moving its
current value a certain percentage closer to min-
imum or maximum value, depending on whether
the rule or feature is being increased or decreased.

The Major Cycle

A major cycle follows a block of many minor cy-
cles. Weak rules are dropped from the rule base
and new ones inserted for testing. New rules are
generated by sampling random objects and creat-
ing rules with conditions containing values for all
but one of the features with the remaining feature
in the implication part of the rule. Thus the new
rules are maximally specific. The size of the rule
base is expanded by the number of strong rules
found in the prior block of learning cycles. This
expansion allows new rules to compete more suc-
cessfully. Finally, each rule’s predictive validity is
decremented a fixed percentage. This tax helps
weaken and eliminate irrelevant rules.

Simulation Evaluation

The primary goal for the initial development phase
of the system was a sufficiency demonstration for
a test problem. We wanted to find a set of pro-
cedures and parameter values within our specified
constraints which succeeded in learning a substan-
tial amount of the structure available in the in-
put. Given this reference point, we could then use
the system to explore the effects of varying the
learning parameters. This report summarizes our
success in constructing a system which meets this
initial design goal. Our primary success criteria is
the number of target rules the system has learned
over a given time period. In addition, we are in-
terested in attentional learning, that is, discovery
of the predictive features.

Descriptive Analysis

The first method of evaluating rule learning is ex-
amination of the set of rules discovered after a sig-



nificant learning exposure. We can ask how many
universal, contrastive, and exception-based rules
were discovered and what the number and nature
of other, non-target rules were. Below, we describe
results from one simulation run. It had 40% ex-
ceptional objects in the object base and a minor
cycle of 400 iterations. We report the strong rules
found by the system during learning, from among
the 20 rules stored.

After 20 cycles, the system had already learned
rules about birds, fish and whales. It had also
learned that all things breathe. Of the nine rules
then, one is universal, five are contrastive, and
three are exceptional. There are no overly specific
rules in the top set.

(Feathers) = Wings

(Water) = Fins

(Scales Water) = Fins

Fins) = Water

(Fur Fins Water 1000) = White
(White Fur Water 1000) = Fins
(Feathers Wings) = Air

(White Fur Fins Water) = 1000
Nil = Breathes

After 40 major cycles, the system learned
about penguins. While the system had previously
learned that feathers and wings imply air, it now
knows that if the animal is dressed in what ap-
pears to be a tuxedo, we can expect to find it on
land. Also notice that there 1s now an extraneous
piece of information — (blue color) — in the sec-
ond new rule. The frequency of blue fish hasn’t
changed, but the salience of color has increased,
giving strength to overly specific rules such as this
one.

(Tuxedo Feathers Wings) = Land
(Scales Water Blue) = Fins

By 50 cycles, the system had learned about re-
lations among all the contrastive features, had pre-
dictive rules for each type of exception, and knew
the universal property of breathing. Though the
system had not learned all possible predicitively
valid rules, it had learned universal, contrastive,
and exception-based rules.

(Legs Land) = Fur
(Brown Wings Land) = Fur

Two new rules were added at 100 cycles.
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(Wings Air) = Feathers
(Fins) = Water

Good mastery of exceptions and contrasting
classes was widespread across runs with differ-
ent levels of exceptions and various parameters.
Within the present systemn configuration, univer-
sal rules were only learned with 40% exceptions
in input. Exceptions are important for success-
ful generalization since our conservative general-
ization mechanism is driven by dropping conflict-
ing features, and conflicts are only found in excep-
tions. This conservatism also means that incorrect
generalizations are never found.

Performance Statistics

During the course of each learning experiment we
collected data on how many of the contrastive and
universal rules the system has learned. We do not
include exception-based rules here because the set
of possible exception-based rules is so large. There
are a total of 27 contrastive and 2 universal rules.
The 27 contrastive rules include all combinations
of predictive relations among body covering, habi-
tat, and limb type. These form an interlocking and
redundant set of predictions, for example, predic-
tions that wings and feathers imply flying; wings
imply flying; and feathers implies flying. Thus,
percent of rules learned provides a quite conserva-
tive measure; with respect to the training domain,
predictive success could be perfect with 9 of the
27 rules.

Figure 1 shows the results of this data collec-
tion from runs with 0%, 20%, 30%, and 40% ex-
ceptions. Each line here 1s the average of two
runs with identical parameters but different ran-
dom factors in selection of objects to observe and
rules to test. Given that there are exceptions at
all, learning is slowed with a higher proportion
of exceptions. However, a different pattern holds
in the runs with no exceptions. In these runs, the
system can only learn a third of the rules, and per-
formance quickly moves to this level. Our general-
1zation mechanism is very conservative. General-
izations are only introduced when a more specific
rule is wrong. When there are no exceptions, rules
about a pair of features, such as wings and feathers
implying air, are never generalized further; wings
implying air is never produced. Thus, without ex-
ceptions, the system quickly learns each of these
nine predictive contrasting rules. This is sufficient
to correctly predict all the contrastive regularities
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found in the learning set and is another indicator
of the conservative nature of our scoring rule as
percent of all contrastive rules.

Attentional learning

In addition to learning about predictive rules, the
system also learns what features are predictive.
This information is an important part of making
knowledge about the structure of the observed ob-
jects explicit. It is important information to use in
explaining transfer (negative or positive) in learn-
ing new problems and may also facilitate learning
within one problem. Figure 2 and Figure 3 show
the salience of features in the 20% and 30% ex-
ception conditions whose rule learning curves ap-
pear in Figure 1. The constant (low) salience of
the two universal features is not shown. Atten-
tional learning is fast and produces sharp separa-
tion of the contrastive and idiosyncratic features
with 0% (not shown) and with 20% exceptions.
The system quickly learns which features are the
best predictors. As the exception level increases,
the contrastive rules are less and less reliable and
the exceptional rules become the best predictors.
Since color is a distinctive feature for each excep-
tion and is required (in combination with other
features) for predictive success, color salience rises
over the course of learning. With 40% exceptions
(not shown) color ranks as the best predictor after
about 40 learning cycles.
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Figure 3: 30% Exceptions

Summary

We summarize first the most important weak-
nesses and then the strengths of the current
project. Our system requires that all objects be
representable in the same set of features. How-
ever, in many learning problems the features rele-
vant to objects in one subdomain are not relevant
in another. Hence, the system cannot learn do-
mains where features, not just feature values, vary.
More fundamentally, there are limits to a represen-
tation based solely on conjunctions of observable
feature values; while sets of conditional rules us-
ing such feature vectors are a fairly powerful form
of representation, we do not believe it 1s sufficient
to account for induction and inference using cat-
egory knowledge. We need to add explicit repre-
sentations of categories, not just the correspond-
ing predictive rules. Our current work includes
some procedures for gathering the information col-
lected in sets of contrastive rules and building a
semantic network of explicitly represented cate-
gories. These procedures for adding categories are
very ad hoc and will require much more rigorous
development. The most serious flaw in the present
system in achieving its initial goals is our general-
ization mechanism. The system relies heavily on
exceptions for learning general rules — this results
in overly conservative learning. Stronger general-
ization procedures will be particularly important
in learning a system of hierarchical categories with
more than one level of contrastive categories.
One major strength of the current project is the
problem analysis: systems of predictive rules and
categories can be learned from observation of ex-



60".

50
3 4
E 40-
3
8
D:’d 30
S
=]
% 20 - — 0% Exceptions
- =+ 20% Exceptions
— 30% Exceptions
10 1 _
—¢=  40% Exceptions
0 ; : , v -
0 20 40 60 80
Major Cycles

Figure 1: Rule Learning Curves with Focused Sampling

amples by comparing predicted and expected fea-
ture values. We identified three types of predic-
tive rules and three possible ways that features
can covary. We use our classification of features
into universal, contrastive, and idiosyncratic cat-
egories to guide the design of our learning pro-
cedure. Specifically, we use feature salience and
variability as well as predictive success and speci-
ficity to guide learning. Second, in applying this
task analysis in the current simulations, we have
a learning system which meets the design crite-
ria specified initially and which successfully learns
contrastive, exception-based, and universal rules.
Finally, our simulation provides a flexible tool for
further research. It allows us to modify compo-
nents of the learning system and test their effects
on different aspects of learning.

References

[AKB79] Anderson, J.R., Kline, P.J., & Beasely,
C.M. (1979). A general learning theory
and 1its application lo schema abstraction.
In G.H. Bower (Ed.), The Psychology
of Learning and Motivation, Vol.13. New
York: Academic Press.

Billman, D.O., Richards, J., & Heit, E.
(1987). Abstraction of correlational rules in
implicit concept learning tasks. in review,

[Billm87]

516

[Billm87b] Billman, D.O., Heit, E., & Dorfman, J.
(1987). Facilitation from clustered features:
Using correlations in observational learn-
ing. In The Ninth Annual Conference of
the Cognitive Science Society. Hillsdale, NJ:
Erlbaum.

[Billm87¢] Billman, D.O. & Heit, E. (1987). Observa-
tional Learning From Internal Feedback: A
simulation of an adaptive learning method.
Cognitive Science. In press.

[Garne74] Garner, W.R. (1974). The Processing of in-
formation and structure. Hillsdale, NJ: Erl-
baum.

Holland, J.H. (1975) Adaptation in Natu-
ral and Artificial Systems. Ann Arbor: The
University of Michigan Press.

Holland, J.H. (1986). Escaping brittleness:
The possibilities of general-purpose learn-
ing algorithms applied to parallel rule-based
systems, In R.S. Michalski, J.G. Carbonell,
& T.M.Mitchell (Ed.), Machine Learning.
Palo Alto: Tioga Press.

Rosch, E.H. (1978). Principles of cate-
gorization. In E.H. Rosch & B.B.Lloyd
(Eds.), Cognition and Categorization Hills-
dale, N.J.: Erlbaum Publishers.

[RumelSG] Rumelhart, D. & McClelland, J. (1986).
Parallel distributed Processing. Cambridge,
MA: Bradford Books/MIT Press.

[Holla75]

[Holla86]

[Rosch 78]



	cogsci_1988_510-516



