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Abstract

Calcineurin is a calcium/calmodulin dependent protein phosphatase in eukaryotes that con-
sists of a catalytic subunit A and a regulatory subunit B. Previous studies in the filamentous
fungus Neurospora crassa had suggested that the catalytic subunit of calcineurin might be
an essential protein. We generated N. crassa strains expressing the A (cna-1) and B (cnb-
1) subunit genes under the regulation of P;,,_7, a copper-responsive promoter. In these
strains, addition of bathocuproinedisulfonic acid (BCS), a copper chelator, results in induc-
tion of cna-1 and cnb-1, while excess Cu®* represses gene expression. Through analysis
of these strains under repressing and inducing conditions, we found that the calcineurin is
required for normal growth, asexual development and female fertility in N. crassa. Moreover,
we isolated and analyzed cnb-71 mutant alleles generated by repeat-induced point mutation
(RIP), with the results further supporting roles for calcineurin in growth and fertility in N.
crassa. We demonstrated a direct interaction between the CNA-1 and CNB-1 proteins using
an assay system developed to study protein-protein interactions in N. crassa.

Introduction

Calcineurin is the only serine/threonine protein phosphatase that depends on calcium/calmod-
ulin (Ca®*/CaM) [1, 2]. The heterodimeric calcineurin protein consists of a catalytic subunit
(A) that binds to calcium sensor CaM, and a regulatory subunit (B) that contains four Ca?
"-binding domains [1-4]. CaM binds to the regulatory domain of the catalytic subunit in
response to the cytosolic Ca®*concentration, and stimulates phosphatase activity that converts
signals to various outputs by dephosphorylating target proteins [5, 6]. The functions of calci-
neurin have been studied in various organisms, including mammals, invertebrates, plants, par-
asites, and fungi [4]. The well-studied targets of calcineurin are the transcription factor
Nuclear Factor of Activated T cells (NFAT) in mammals and the calcineurin responsive zinc-
finger 1 (Crz1) in fungi, which upon dephosphorylation by activated calcineurin, are localized
to the nucleus to regulate expression of target genes [7].

In mammals, the NFAT transcription factors are essential for several processes during
organogenesis, including endocrine, immune, nervous, respiratory, skeletal and vascular
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systems [8, 9]. Defective calcineurin pathways have been linked to diseases such as cancer, car-
diac hypertrophy, diabetes, Down’s syndrome and other degenerative brain diseases in humans
[10]. Calcineurin is essential for the development of Drosophila melanogaster, in that flies with
a mutation in the calcineurin B2 gene die at the late larval or early pupal stage [11]. In the
worm Caenorhabidits elegans, calcineurin controls sensitivity to odorants, and may play a role
in either motor neuron or muscle development [12]. In plants, the calcineurin B-like proteins
(CBLs) are calcium sensors that regulate the activity of the CBL-interacting protein kinase
(CIPK) and CBL-CIPK pathways function in signaling processes including environmental
stress responses, nutrient sensing and adaptation [13]. In the malaria parasite Plasmodium fal-
ciparum, the chaperone heat shock protein 90 (Hsp90) associates with calcineurin, in a process
that is necessary for erythrocytic replication of the parasite in the host [14].

In fungi, calcineurin has been mainly studied in the budding yeast Saccharomyces cerevisiae
and certain fungal pathogens. In S. cerevisiae, the catalytic subunit is encoded by the CNA1/
CMP1 and CNA2/CMP2 genes, while the regulatory subunit is encoded by the CNB1 gene; all
three calcineurin subunits are individually or collectively non-essential for growth [15-17]. Calci-
neurin in S. cerevisige is involved in the pheromone response and tolerance to high ion stress
[15-18]. In Candida albicans, calcineurin subunits CNA and CNB are not essential, but play roles
in cation homeostasis, and are essential for survival during membrane stress, in serum-contain-
ing media, and for virulence in a mouse model of systemic infection [19, 20]. In the opportunistic
human fungal pathogen Cryptococcus neoformans, CNA1 and CNBI are essential for fungal viru-
lence and for growth at 37°C [21, 22]. In addition, calcineurin also regulates hyphal elongation
and mating in C. neoformans [23]. In the rice blast fungus, Magnaporthe oryzae, the calcineurin
catalytic subunit MCNA and the CNB-like genes play a role in infection-related differentiation
and pathogenicity [24, 25]. In Mucor circinelloides, the causative zygomycete of human mucor-
mycosis, there are three catalytic A subunit genes, cnaA, cnaB, and cnaC, and one regulatory
gene, cnbR [26]. The calcineurin pathway plays a key role in dimorphic transitions and virulence
in M. circinelloides [26]. In Ustilago maydis, a dimorphic basidiomycete that causes corn smut
disease, the ucn1 catalytic subunit regulates morphogenesis and pathogenesis [27].

In the filamentous fungus Neurospora crassa, the calcineurin catalytic subunit cna-1 has
been suggested to be an essential gene, and knock-down experiments using cna-1 antisense
RNA revealed its requirement for normal hyphal branching, growth, and maintenance of the
apical tip-high Ca** gradient [28]. In addition, analysis of insertional and repeat-induced point
mutation (RIP) [29] mutants of the calcineurin regulatory subunit B, cnb-1, suggested require-
ments for normal vegetative growth in N. crassa [30]. Moreover, it has been demonstrated that
CNB-1 binds to the calcineurin-dependent response element (CDRE) in the copper-induced
metallothionein (CuMT) gene, suggesting a putative role for calcineurin in the regulation of
CuMT in N. crassa [31]. Since homokaryotic knockout mutants of the essential calcineurin cat-
alytic subunit A are not available, and no experiments have investigated its function using tem-
perature-sensitive alleles or regulatable promoters, information regarding detailed functions of
calcineurin in N. crassa have remained elusive.

In N. crassa, the tcu-1 gene encodes a high affinity copper transporter and its expression is
precisely controlled by copper availability [32]. In addition, the kinetics of induction and
repression of heterologous genes under the tcu-1 promoter (P, ;) are rapid and stable [33].
We therefore used this system to investigate functions of cna-1 and cnb-1 by generating N.
crassa strains with these genes under the control of P, ;. We found that calcineurin is required
for normal growth, asexual development, and sexual fertility in N. crassa. These findings were
supported by results from analysis of cnb-1 mutant alleles generated by RIP. In addition, we
demonstrated a direct interaction between the CNA-1 and CNB-1 proteins using an assay sys-
tem developed to study protein-protein interactions in N. crassa [34].
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Materials and Methods
Media, Growth Conditions, and Transformation Procedure

Neurospora crassa wild type strains 74-OR23-IVA and ORS-SL6a and all other strains were
either obtained from the Fungal Genetics Stock Center (FGSC, Manhattan, KS) or generated in
our laboratory (Table 1). Strains were cultured on Vogel’s minimal medium (VM) [35] to sup-

port vegetative growth, while sexual development was induced using synthetic crossing
medium (SCM) [36]. Conidia used for inoculating cultures were propagated in 13x100 mm
glass tubes containing VM with 1% agar, and grown for 3 days at 30°C in the dark and for 4
days at 25°C in the light [37, 38]. The growth of N. crassa strains was measured essentially as
described previously [39-41]. Sorbose-containing medium (FGS) was used for ascospore ger-
mination and isolation of transformant colonies [42]. VM with proline as the nitrogen source
was used for selection with Ignite [43]. When indicated, the growth medium was supplemented
with pantothenate (Product number P2250; Sigma-Aldrich, St. Louis, MO), hygromycin (Cal-
biochem; San Diego, CA), Ignite (extracted from Finale; Farnam Companies INC.; Phoenix,

Table 1. Neurospora crassa strains used in this study.

Strain Genotype Reference

74-OR23-IVA Wild type; mat A FGSC 2489

ORS-SL6 a Wild type; mat a FGSC 4200

2074 Acnb-1::hph; mat a (heterokaryon) FGSC 2074

2173 Acna-1::hph; mat a (heterokaryon) FGSC 2173

51-4-1 Arid-1::nat; Amus-51::nat; mat a @uyang et al.,

submitted

T-51-4-1 (28) Arid-1::nat; Amus-51::nat; Apan-2::Pyc,,-¢1::cnb-1::v5::gfp; This study
mat a (heterokaryon)

52-4-9 Amus-52::nat; mat A FGSC 2479

T-52-4-9 (41) Amus-52::nat; Acna-1::hph; Apan-2::Py.,.1::icna-1::V5::gfp;  This study
mat A (heterokaryon)

T-52-4-9 (632) Amus-52::nat; Acna-1::hph; Ainl:: Pceg.s::cna-1::S-tag::rfp;  This study
mat A (heterokaryon)

T-52-4-9 (679) Amus-52::nat; Acnb-1::hph; Apan-2::P..4 s::cnb-1::V5:: This study

gfp; mat A (heterokaryon)

2994 Apan-2::Pccq.1::V5::gfo; mat a #Quyang et al.,
submitted

2995 Ainl:: Pecg.1::S-tag::rfp; mat a @Quyang et al.,
submitted

540 Acna-1::hph; Apan-2::Py.,-1::cna-1::V5::gfp; mat a This study

554 Apan-2::Py,-1::cnb-1::V5::gfp; mat A This study

555 Apan-2::Pyy.-1::cnb-1::V5::gfp; mat A This study

597 Acnb-1::hph; Apan-2::Ps,_1::cnb-1::V5::gfp; mat a This study

599 Acnb-1::hph; Apan-2::Py,_1::cnb-17"F::V5::gfo; mat A This study

600 Acnb-1::hph; Apan-2:: Pye,.1::cnb-1 R::V5::gfo; mat A This study

602 Acnb-1::hph; Apan-2::Py,.1:cnb-177::V5::gfo; mat A This study

727 Acnb-1::hph; Apan-2::Pccq.1::cnb-1::V5::gfp; mat a This study

767 Acna-1::hph; Ainl::Pcg.1::cna-1::S-tag::rfp; mat a This study

CNB-1GFP+CNA- Heterokaryon of strain 727 + strain 767 This study

1RFP#5

GFP+RFP#7 Heterokaryon of strain 2994 + strain 2995 This study

CNB-1GFP+RFP#18  Heterokaryon of strain 727 + strain 2995 This study

& Shougiang Ouyang, llva E. Cabrera, Asharie J. Campbell and Katherine A. Borkovich, submitted.

doi:10.1371/journal.pone.0151867.t001
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AZ) [44, 45], or Nourseothricin (clonNAT; WERNER BioAgents; Germany) at a concentration
of 10, 220, 400, and 50 pg/ml, respectively. Stocks of pantothenate and inositol were prepared
and used as described previously [46; http://www.fgsc.net/methods/stanford.html]. The stan-
dard VM contains 50 mM CuSO,; where indicated, bathocuproinedisulfonic acid (BCS; Cata-
log number 164060010, Acros Organics, Geel, Belgium) and copper II sulfate (CuSO,; Catalog
number 830521, Chempure, Texas, USA) were added to VM at the indicated concentrations.
All sequencing was performed at the Genomics Core, Institute for Integrative Genome Biology,
UC Riverside. E. coli strain DH50. [47] was the recipient for plasmid transformations. Trans-
formation of N. crassa strains was performed using an Eppendorf Electroporator 2510 at a set-
ting of 2000 volts as described previously [48].

Construction of Strains Expressing Tagged Versions of cna-1 or cnb-1

Acna-1:hph; Apan-2::P,,,_;::cna-1::V5::gfp; mat a (strain 540). The 2018 bp open read-
ing frame (ORF) of calcineurin catalytic subunit A (NCU03804) was PCR-amplified using the
primer pairs CNA-1-FOR and CNA-1-REV-GFP (Table 2), and gel purified. The pan-2
(NCU10048.7) locus targeting vector pRS426PVGTCUL.5 (P, ;::5xGly:: V5::gfp) [34] was line-
arized by restriction digestion with Pacl and Smal (New England Biolabs, Ipswich, MA) and
gel-purified. Approximately 100 ng each of the gel-purified linearized vector and the PCR
product were joined in the yeast strain FY834 [49] using yeast recombinational cloning [50].
DNA from the transformed yeast was isolated using the yeast smash and grab method [51] and
transformed into Escherichia coli DH50. ultra-competent cells [47]. One clone, pPRTCNA-1
(18), was confirmed by sequencing. The pRTCNA-1(18) vector was transformed into N. crassa
strain 52-4-9 (Table 1). The initial transformants were selected on FGS plates supplemented
with Ignite and pantothenate. A transformant strain, T-52-4-9 (41) (Table 1), was isolated and
crossed with a heterokaryotic Acna-1::hph; mat a strain (2173; Table 1). Ascospores from this
cross were germinated on FGS medium supplemented with pantothenate and BCS and then
screened for resistance to hygromycin and Ignite, and pantothenate auxotrophy.

We isolated a progeny with genotype Acna-1::hph; Apan-2::P,, ;::cna-1:v5:gfp; mat a (540;
Table 1) that showed resistance to hygromycin, Ignite, and requirements for pantothenate and
BCS. We verified the presence of the cna-1 allele at the pan-2 locus by PCR amplification with
primers PAN2-PTCU1-0.5-FW and CNA-1-REV-GFP (Table 2), and further confirmed by
sequencing. In addition, the Acna-1::hph allele in strain 540 was verified by PCR using primers
CNA-5F and 5HPHR (Table 2).

Acnb-1::hph; Apan-2::P,.,, j::cnb-1::V5::gfp; mat a (strains 597, 599, 600, and 602). The
1178 bp fragment of calcineurin regulatory subunit B (NCU03833) was PCR-amplified using
the primer pairs CNB-1-FOR and CNB-1-REV-GFP (Table 2) and assembled with the pan-2
locus targeting vector pRS426PVGTCUL.5 in yeast as described above. One clone, pRTCNB-1
(28), was confirmed by sequencing. The pRTCNB-1 (28) construct was transformed into the
N. crassa strain 51-4-1 (Table 1). One transformant, T-51-4-1 (28), was first crossed with wild
type mat A strain (FGSC 2489) and two homokaryotic progeny with the genotype Apan-2::P,,.
jicnb-1:v5:gfp; mat A (strains 554 and 555; Table 1) were isolated.

In order to isolate strains with the cnb-1 gene under control of the fcu-1 promoter in an oth-
erwise Acnb-1:hph background, the 554 and 555 strains were crossed with the Acnb-1::hph;
mat a strain (2074; Table 1). Ascospores from these crosses were germinated on medium sup-
plemented with pantothenate and BCS and screened for resistance to hygromycin and Ignite,
and pantothenate auxotrophy. We isolated three progeny (597, 599 and 600) from the cross of
strain 554 to strain 2074 and one progeny (602) from the cross of strain 555 to strain 2074 of
genotype Acnb-1:hph; Apan-2:P,.,, j:cnb-1:v5:¢fp; mat a (Table 1). The presence of the cna-1
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Table 2. Primers used in this study.

Primer

2CNA-1-FOR
2CNA-1-REV-GFP
2PAN2-PTCU1-0.5-FW
CNA-1-5F

P5HPHR

2CNB-1-FOR
2CNB-1-REV-GFP
CNB-1-5F
8CNA-1-pCCG-RFP-FW
8CNA-1-pCCG-RFP-RV
3CNB-1-pCCG-GFP-FW
PCCG-1-SEQ-FW
RFP-RV

GFP-RV

allele at the pan-2 locus was verified by PCR amplification and further confirmed by sequenc-
ing (Genomics core, UCR). In addition, the Acnb-1::hph allele in strain 597 was verified by
PCR using primers CNB-1-5F and 5HPHR (Table 2).

Acna-1:hph; Ainl:: Py p::cna-1:S-tag:rfp; mat a (767) and Acnb-1::hph;Apan-2::P ., ;::
cnb-1::V5:gfp; mat a (727) strains. The 2018 bp ORF of calcineurin subunit A (NCU03804)
and the 1178 bp OREF of calcineurin subunit B (NCU03833) were PCR-amplified using the
primer pairs CNA-1-pCCG-RFP-FW and CNA-1-pCCG-RFP-RV, and CNB-
1-pCCG-GFP-FW and CNB-1-REV-GFP, respectively (Table 2). PCR products for the calci-
neurin subunits A and B were assembled, respectively, in the inllocus (NCU06666.7) targeting
vector pRS426ISR (P g ;:5xGly::S-tag:rfp) and pan-2locus targeting vector pRS426PVG (P,
1:5xGly::V5::¢fp) [34] that were linearized by restriction digestion with Pacl and Smal (NEB).
These fragments were assembled in yeast as described above, and pRTCNA-1 (6) and
PRTCNB-1 (3) were isolated and confirmed by sequencing. The pPRTCNA-1(6) and pRTCNB-
1(3) constructs were transformed into N. crassa strain 52-4-9 (Table 1). The initial transfor-
mants were selected on VM supplemented with Ignite and pantothenate. Strains T-52-4-9
(632) and T-52-4-9 (679), transformed with the pPRTCNA-1(6) and pRTCNB-1(3), respec-
tively, were isolated and crossed with the heterokaryotic strains Acna-1::hph; mat a (2173) and
Acnb-1:hph; mat a (2074), respectively. From these crosses, we isolated homokaryotic strains
Acna-1:hph; Apan-2:P ., p::cna-1:S-tag:rfp; mat a (767) and Acnb-1::hph; Apan-2:P .4 ::cnb-
1::V5::gfp; mat a (727) (Table 1). The cna-1 and cnb-1 transgenes in the two strains were veri-
fied by PCR amplification with primer PCCG-1-SEQ-FW in combination with RFP-RV and
GFP-RYV, respectively (Table 2). In addition, the two strains (767 and 727) were resistant to
hygromycin B and the presence of the Acna-1::hph and the Acnb-1::hph allele in the respective
strains was confirmed, as described above for strains 540 and 597, respectively.

Western Blot and Co-Immunoprecipitation Analysis

Strains were grown in liquid VM for 16 h as described in the figure legends and whole cell
extracts were isolated essentially as described previously [52, 53]. Briefly, mycelia from these
cultures were collected on a filter using vacuum, and then pulverized to a powder using a

Sequence (5°—3)
CGCACACACATCCCCAACCAACCATGGAAAGCAACAATGGTACCGGCGC
GTTAGGGATAGGCTTTCCGCCGCCTCCGCCCGATCGCTTGCGGTCACTCAAC
CCTTGCGTATATTCTGGACCGGTACACGGAACATCTCGTGAACAAGAAGG
CTCTGAAAGAGGGCCTTGCC

ATCCACTTAACGTTACTGAAATC
CGCACACACATCCCCAACCAACCATGGGCAACACCACCAGCTCCGTCC
GTTAGGGATAGGCTTTCCGCCGCCTCCGCCGAATTGATCTGTTAAAGCGTCGACTGTC
CACCACTTCCTCTCCATGTC
CCACTTTCACAACCCCTCACATCAACCAAAATGGAAAGCAACAATGGTACCGGCGC
AGCAGCGGTTTCTTTTCCGCCGCCTCCGCCCGATCGCTTGCGGTCACTCAAC
CCACTTTCACAACCCCTCACATCAACCAAAATGGGCAACACCACCAGCTCCGTCC
CCATCATCAGCCAACAAAGC

TAGGGAGGTCGCAGTATCTG

AACTCCAGCAGGACCATGTG

@ Sequences are from Ouyang, Cabrera, Campbell and Borkovich (submitted). See Materials and Methods for details.

® Ref. [39]

doi:10.1371/journal.pone.0151867.t002
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mortar and pestle in liquid nitrogen. Extraction buffer [50 mM HEPES (pH 7.7), 2 mM EGTA
(pH 8.0), 2 mM EDTA (pH 8.0), 1% SDS, 10% glycerol, 100 mM NaCl, 1 mM Na;VO, and 1
mM NaF] was added to the mycelial powder, and the samples were heated at 85°C for 5 min,
after which 10 pl of 100 mM PMSF and 1 ul of fungal protease inhibitor cocktail (Product
number P8215; Sigma-Aldrich, St. Louis, MO) were added. The crude protein extracts from
these samples were isolated by centrifugation at 4000xg for 15 min at 4°C, and protein quantifi-
cation was performed on the supernatants using the Bradford method (Protein Assay Dye
Reagent Concentrate, Catalog number 500-0006; Bio-Rad, Hercules, CA). Samples containing
50 pg of protein were separated using a 10% SDS-PAGE gel and transferred onto a nitrocellu-
lose membrane [54]. Membranes were probed using anti-GFP antibody at a dilution of
(1:5000) (Catalog number A6455; Life Technologies; Carlsbad, CA) or anti S-tag antibody at a
dilution of 1:3000 (Catalog number A190-135A; Bethyl Laboratories, Montgomery, TX) anti-
bodies [54]. A horseradish peroxidase secondary antibody was used at a dilution of 1:2000 and
bands were visualized by chemiluminescent detection as previously described [54]. In addition,
after detecting via Western blotting, membranes were stained with an amido black solution
(0.1% amido black from the Sigma-Aldrich Product number N3393, 10% acetic acid, 25% iso-
propanol) to show all proteins as an indication of protein transfer.

For co-immunoprecipitation analysis, forced heterokaryons (Table 1) were made by co-
inoculating the individual strains in flasks containing VM agar and incubating at 30°C in the
dark for 3 days and at room-temperature for four days under constant light. Conidia were iso-
lated as described above and then inoculated in flasks containing 500 ml liquid VM at a con-
centration of 1x10° conidia/ml. Flasks were incubated at 30°C for 16 h with shaking at 200
rpm. Cells were isolated by filtration through sterile shop towels and then ground using a mor-
tar and pestle with liquid nitrogen. The powdered mycelia were transferred to a bead-beater
(Biospec Products, Bartlesville, OK) containing glass beads and extraction buffer [50 mM Tris-
Cl(pH 7.5), 1 mM EDTA, 6 mM MgCl,, 2.5 mM PMSF and 0.1% (v/v) of fungal protease
inhibitor cocktail (Product number P8215; Sigma-Aldrich, St. Louis, MO)]. Cells were broken
using three pulses of one minute each, with one minute intervals in between. The mixture was
centrifuged at 16,000xg for 15 minutes at 4°C. The supernatant containing the whole cell
extract was carefully transferred into a fresh tube and protein quantified using the Bradford
assay (Bio-Rad, Hercules, CA). Then, an aliquot of 3 pl GFP-Trap agarose beads (Product
numbergta-20; ChromoTek; GmbH, Germany) was taken in a microcentrifuge tube and beads
were equilibrated by washing once with 1 ml of ice-cold solutions of 1X Tris-buffered saline
with Tween-20 (TBST) [51] and twice with 1 ml of ice-cold extraction buffer by centrifugation
at 500xg for 1 min at 4°C. An aliquot of the sample containing 10 mg of protein extract was
then added tothe microcentrifuge tube containing the equilibrated GFP-Trap agarose beads
and incubated on a rotating shaker at 4°C overnight. The beads with bound protein were col-
lected by centrifugation at 500xg for 1 min at 4°C and then resuspended in 500 pl of ice-cold
extraction buffer, followed by centrifugation at 500xg for 1 min at 4°C. This step was repeated
once more. The bound protein was liberated by adding 30 pl of 5x Laemmli SDS-PAGE sample
buffer [54] and heating at 95°C for 5 minutes, followed by centrifugation at 500xg for 5 min at
4°C. The supernatants were removed, separated using 10% SDS-PAGE and analyzed by immu-
noblot using anti-GFP or anti-S tag antibodies as described above.

Results
Expression of cna-1 and cnb-1 under Control of the tcu-1 Promoter

Previous work in N. crassa has suggested that the catalytic subunit of calcineurin, cna-1, is an
essential gene [28], while the regulatory subunit, cnb-1, is not [30]. In order to address the
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Fig 1. Copper-regulated expression of CNA-1 and CNB-1 under control of the tcu-1 promoter. The
effect of BCS or copper sulfate on Py,,_; driven expression of CNA-1 from the Acna-1::hph; Apan-2::Py,-1::
cna-1:v5::gfp; mat a (540) strain (A), and CNB-1 from the Acnb-1::hph; Apan-2::Py,,.1::cnb-1::v5::gfp; mat a
(597) strain (B) was determined (lanes 2—12) after growth of strains in liquid medium under the indicated
conditions for 22 h. Protein isolated from the wild type strain (FGSC 2489) was used as control (lane 1).
Protein extracts were prepared and samples containing 50 pg of total protein were analyzed by Western blot
using rabbit anti-GFP antibody as indicated in the Materials and Methods. The solid lines indicate positions of
CNA-1::V5::GFP (~93 kDa) and CNB-1::V5::GFP (~48 kDa) proteins. The amido black staining of the
membrane, shown in the lower panel, was done to demonstrate equal protein loading.

doi:10.1371/journal.pone.0151867.g001

putative essential nature of cna-1, we produced strains that express cna-1 under the control of
a regulatable promoter. We included ¢nb-1 in these studies as a nonessential gene that would
serve as a control for the method. We took advantage of a recently developed system using the
copper-regulated fcu-1 promoter [33] in N. crassa, inserting the constructs at the pan-2 locus
[34]. The tcu-1 promoter is expressed in limiting copper II, which can be imposed through
addition of a copper chelator such as BCS to the growth medium [33].

To verify that expression of the CNA-1 and CNB-1 proteins was regulated by copper avail-
ability, the strains were grown in minimal medium (VM) supplemented with various amounts
of BCS and/or copper sulfate and protein expression was examined using Western analysis.
We included a wild type strain lacking the GFP-tagged constructs for CNA-1 and CNB-1 as a
negative control for the presence of the two proteins (Fig 1). The CNA-1 and CNB-1 proteins
were abundantly expressed in the medium supplemented with BCS, but not detectable in the
presence of copper sulfate (Fig 1). These observations suggest that expression of the CNA-1
and CNB-1 proteins is controlled by copper availability in the medium, similar to results dem-
onstrated for other heterologous proteins in the previous study [33].

Repression of CNA-1 and CNB-1 Results in Severe Defects in Hyphal
Growth and Aerial Hyphae Development

To test the requirement for CNA-1 and CNB-1 during growth and development of N. crassa,
we determined the effect of copper availability on morphology of the strains with cna-1 or cnb-
I under the control of the fcu-1 promoter (Figs 2 and 3). The 540 and 597 strains exhibited nor-
mal growth on agar medium supplemented with BCS; however, severe impairment was
observed on the medium supplemented with excess copper sulfate (Fig 2). The average colony
diameter of the two strains was reduced ~74% in the medium supplemented with excess BCS
vs. copper sulfate (Table 3). Furthermore, consecutive transfers of the strains on the repressing
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Wild type Pieu-1::cna-1 (540) Picy-1::cnb-1 (597) Wild type  Pyy.g:icna-1 (540) Poys::enb-1 (597)
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(250 pM)
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Fig 2. Effect of reduced expression of calcineurin on colony morphology. (A) Colony morphology. Wild type, Acna-1::hph; Apan-2::P;c,,_s::cna-1::v5::
gfp; mat a (540), and Acnb-1::hph; Apan-2::Py,.1::cnb-1::v5::gfp; mat a (597) strains were cultured on VM plates supplemented with 250 uM of BCS (upper
panel) or CuSO, (lower panel). Strains were grown for one day at 30°C in the dark, followed by two days under constant light at room temperature and
photographed using a Canon G10 camera. (B) Morphology of flask cultures. Cultures of wild type, Acna-1::hph; Apan-2::P;,,_1::cna-1::v5::gfp; mat a
(540), and Acnb-1::hph; Apan-2::Py.,,.1::cnb-1::v5::gfp; mat a (597) strains were grown in flasks containing VM agar medium supplemented with 250 uM of
BCS (upper panel) or CuSO, (lower panel). Strains were grown for three days at 30°C in dark and four days under light at room temperature and
photographed using a Canon G10 camera.

doi:10.1371/journal.pone.0151867.9002

medium continued to show severe growth impairment, but growth was reverted back to nor-
mal after inoculation of the strains on medium containing BCS (data not shown). Therefore,
the growth impairment of strains 540 and 597 by excess copper sulfate was reversible. In addi-
tion, the hyphal growth of 540 and 597 was abnormal, with bulged hyphal tips produced in the
presence of excess copper sulfate (Fig 3A). Moreover, aerial hyphae production in the 540 and
597 strains was greatly reduced in the repressing high copper medium (Fig 3B). These results
indicate thatCNA-1 and CNB-1 play an important role in regulating vegetative growth and
hyphal development in N. crassa.

Reduced Expression of CNA-1 and CNB-1 Affects Female Sexual
Fertility

To determine possible roles for CNA-1 and CNB-1 in sexual fertility, we analyzed crosses
involving strains 540 and 597 on sexual crossing medium (SCM) supplemented with either
BCS or excess copper. In the inducing BCS medium, the crosses involving strains 540 and 597
as female parents with a wild type male parent were fertile (produced thousands of ascospores;
Table 4), with strain 540 slightly less fertile than the wild type control (Table 4). Under repress-
ing conditions, crosses involving strain 540 as the female parent with a wild type male pro-
duced peithecia-like structures; however, when these were dissected, they were devoid of asci
and ascospores. Thus strain 540 is female-sterile in excess copper sulfate, indicating a strict
requirement for CNA-1 in female structures during the sexual cycle (Table 4). The need for
CNB-1 appeared to be not as critical, as crosses with strain 597 as the female parent produced
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Table 3. Average growth rate.
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Fig 3. Effect of reduced expression of calcineurin on hyphal growth. (A) Hyphal morphology. The wild
type, Acna-1::hph; Apan-2::Py,.1::cna-1::v5::gfp; mat a (540), and Acnb-1::hph; Apan-2:: Pyey-1::cnb-1::v5::
gfp; mat a (597) strains were cultured on VM medium supplemented with 250 uM of BCS (upper panel) or
CuSO0, (lower panel) for 24 h at 30°C and then photographed using a Canon G10 camera with an Olympus
SZX9 stereo microscope. (B) Aerial hyphae growth. Wild type, Acna-1::hph; Apan-2:: Py.,-1::cna-1::v5::9fp;
mat a (540), and Acnb-1::hph; Apan-2::Py,-::cnb-1::v5::gfp; mat a (597) strains in VM liquid medium
supplemented with 250 uM of BCS (upper panel) or CuSQ, (lower panel). Strains were grown for three days
at 30°C in dark and four days under light at room temperature and photographed using a Canon G10 camera.

doi:10.1371/journal.pone.0151867.g003

an intermediate number of ascospores relative to wild type (Table 4). Crosses involving wild
type as the female parent and strain 540 or 597 as the male parent in the SCM supplemented
with only pantothenate (Table 4) or minimal SCM were intermediate and fertile, respectively.
Therefore, of the two subunits of calcineurin, CNA-1 seems to be essential for female fertility
and may also influences male fertility.

cnb-1 RP-Mutants Possess Defects in Growth and Fertility

Due to the lack of a Acnb-1::hph mat A strain, it was necessary to perform two crosses using the
mat a transformants with the tcu-1 promoted version of cnb-1 in order to create the final Acnb-
L:hph; Apan-2:: Py, y::cnb-1:v5:¢fp strains (see Materials and Methods). This meant that the
cnb-1 ORF in these strains might be subjected to RIP during the second cross. For this reason,
it was necessary to sequence the cnb-1 ORF in the final cross progeny. We determined that
strains 599, 600 and 602 had accrued RIP-induced mutations spread throughout the cnb-1
gene, including the Ca®*-binding domains (Materials and Methods; S1 Fig). Several nonsynon-
ymous substitutions were also identified in the cnb-1 RIP allele of these strains (S1 Fig). Strain
599 contains a M31I (ATG —ATA codon change) mutation in the EF1 domain. Strain 600

Strain Average growth rate (cm h™)
VM+pantothenate+BCS VM+pantothenate+CuSO,
Wild type: 74-OR23-IVA 0.377 +0.031 0.380 +0.025
Strain 540: Acna-1::hph; Apan-2::Py.,.1::cna-1::V5::gfp; mat a 0.391 £0.006 0.103 £0.005
Strain 597: Acnb-1::hph; Apan-2::Py,1::cnb-1::V/5::gfp; mat a 0.303 +£0.011 0.079 +£0.004

doi:10.1371/journal.pone.0151867.t003
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Table 4. Sexual cycle phenotypes.

Female Parent

Wild type mat A
Wild type mat a
Strain 540 mat a
Strain 597 mat a
Wild type mat A
Wild type mat a
Strain 540 mat a
Strain 597 mat a
Wild type mat A
Wild type mat a
Wild type mat A
Wild type mat A
Wild type mat A

doi:10.1371/journal.pone.0151867.1004

Male Parent Supplement Phenotype

Wild type mat a Pantothenate+BCS Fertile, tens of thousands of ascospores
Wild type mat A Pantothenate+BCS Fertile, tens of thousands of ascospores
Wild type mat A Pantothenate+BCS Intermediate, few thousands of ascospores
Wild type mat A Pantothenate+BCS Fertile, tens of thousands of ascospores
Wild type mat a Pantothenate+CuSQO, Fertile, tens of thousands of ascospores
Wild type mat A Pantothenate+CuSQO, Fertile, tens of thousands of ascospores
Wild type mat A Pantothenate+CuSQO, Sterile, no ascospores

Wild type mat A Pantothenate+CuSQO, Intermediate, few hundreds of ascospores
Wild type mat a Pantothenate Fertile, tens of thousands of ascospores
Wild type mat A Pantothenate Fertile, tens of thousands of ascospores
Strain 540 mat a Pantothenate Intermediate, few thousands of ascospores
Strain 540 mat a Pantothenate+BCS Intermediate, few thousands of ascospores
Strain 597 mat a Pantothenate Fertile, tens of thousands of ascospores

contains M31I (ATG —ATA codon change) mutation in the EF1 domain, D103N
(GAC—AAC codon change), D107N (GAC—AAC codon change) and M1211 (ATG—ATA
codon change) mutations in the EF hand 3. Strain 602 contains M311 (ATG —ATA codon
change) mutation in the EF1 domain, and D105N (GAC—AAC codon change) mutation in
the EF hand loop 3, respectively.

Using Western analysis, we determined that the CNB-1 protein was expressed in the three
RIP mutant strains under inducing conditions (52 Fig). This result indicated that the RIP
mutant proteins were translated and stable. However, phenotypic analysis demonstrated that
these strains exhibited defects in colony morphology, growth rate, and aerial hyphae develop-
ment in medium supplemented with excess copper (83 Fig; S1 Table). The colony morphology
of these strains was defective even in the inducing medium, and the cnb-1 RIP (602) mutant
showed a severe growth defect (S3 Fig; S1 Table). Furthermore, aerial hyphae development in
the cnb-17*" (600) and cnb-1*" (602) mutants was defective even in inducing medium (S3
Fig). In addition, in the inducing medium, when used as a female parent with the wild type as
male parent, strain cnb-1%7 (599) exhibited an intermediate phenotype, strain cnb-17%% (600)
was fertile, and strain cnb-1%" (602) was sterile (52 Table). In the repressing medium, when
used as a female parent with the wild type as male parent, the cnb-1""" (599) and cnb-1%""
(600) strains were fertile; while strain cnb-1¥ (602) was sterile (S2 Table). All three cnb- 18-
mutants were fertile when used as males with a wild type female parent in SCM supplemented
with pantothenate or minimal SCM (S2 Table). Therefore, cnb-1 RIP (599) and cnb-1*"F (600)
mutants were fully fertile either as a male or female parent; however, cnb-17° (602) mutant
was sterile as a female parent in both inducing and repressing medium. Thus, the different
RIP-induced alterations in the cnb-1 gene of cnb-1%'"" mutants (599, 600, and 602) result in
phenotypic differences.

CNA-1 and CNB-1 Form a Complex

To test whether CNA-1 and CNB-1 form a complex in vivo, we produced N. crassa strains that
expressed RFP and GFP-tagged versions of these proteins from the inl and pan-2 loci, respec-
tively (see Materials and Methods). We isolated homokaryotic stains expressing CNA-1::S-tag::
RFP (strain 767; requires inositol) and CNB-1::V5::GFP (strain 727; requires pantothenate)
tagged proteins. The CNA-1 and CNB-1 proteins contain 562 and 174 amino acid residues hav-
ing predicted molecular weights of 64.5 and 19.8 kDa, respectively. The combined predicted
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Strain #18 #5 #7 Wild type

Input or IP '”f” P '”f“ P '”f” P '”f’” P
CNB-1-V5-GFP - + + + — — _ _
CNA-1-Stag-RFP | — — - - e | s | == -
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Fig 4. Co-immunoprecipitation of CNA-1 and CNB-1 proteins. The indicated heterokaryons (#5, 7, and 18), and the wild type strain were grown for 16 hiin
submerged culture as described in the Materials and Methods. The soluble fraction was isolated and immunoprecipitated using anti-GFP antibody coupled to
agarose beads. Samples of whole cell lysates (Input) and immunoprecipitated proteins (IP) were subjected to Western blot analysis using GFP (top), and S-
tag (bottom) antibodies as described in Materials and Methods. The line indicates position for bands of the CNB-1::V5::GFP (~48 kDa; Top Blot) and CNA-1::
S-tag::RFP (~ 93 kDa; Bottom blot) proteins. The asterisk is pointing to a smaller molecular weight molecule possibly resulted from proteolytic cleavage of
CNB-1::V5::GFP and CNA-1::S-tag::RFP.

doi:10.1371/journal.pone.0151867.9004

molecular weights of the tagged proteins, CNA-1::S-tag::RFP and CNB-1::V5::GFP, are, respec-
tively, 92.6 and 48.4 kDa. Expression of CNA-1 and CNB-1 tagged proteins of the correct size
was verified using Western analysis (data not shown).

The tagged CNA-1 and CNB-1 proteins were brought together in the same cytoplasm through
formation of forced heterokaryons between strains 767 and 727 (Table 1). The two strains were
co-inoculated on Vogel's minimal agar medium lacking inositol and pantothenate, conditions
under which only the heterokaryon will grow. Control heterokaryons contained the CNB-1-GFP
strain and a strain only expressing RFP (Fig 4; Table 1). Heterokaryons were cultivated in liquid
medium and protein extracts were prepared. Extracts were treated with anti-GFP antibody cou-
pled to agarose beads, and the immunoprecipitated proteins were analyzed by immunoblot using
anti-GFP and anti-S-tag (detects S-tag-RFP-tagged protein) antibodies (Fig 4). The results dem-
onstrated that CNB-1-V5-GFP was immunoprecipitated in all strains where it was present using
the anti-GFP beads (Fig 4). Importantly, the ~93 kDa CNA-1-S-tag-RFP protein was visible in
the input from the CNB-1-GFP+CNA-1-RFP strain and also co-immunoprecipitated with CNB-
1-GFP (Fig 4). In control reactions, CNA-1-S-tag-RFP was not co-immunoprecipitated in strains
expressing only V5-GFP, and S-tag-RFP was not co-immunoprecipitated using CNB-1-V5-GFP
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(Fig 4), showing that the fusion proteins do not interact with the fluorescent protein tags. In addi-
tion, microscopy analysis revealed co-localization of the tagged CNA-1 and CNB-1 proteins,
which supports in vivo interaction between two calcineurin subunits (S4 Fig). These results indi-
cate that CNA-1 and CNB-1 form a complex in N. crassa.

Discussion

Calcineurin is the only protein phosphatase that depends on both Ca** and CaM for its activity
[1, 2]. Calcineurin consists of two subunits, a catalytic A and a regulatory B that are, respec-
tively, encoded by the cna-1 and the cnb-1 genes in N. crassa. We studied here the cellular roles
of calcineurin via its heterologous expression under the conditional tcu-1 promoter. In this sys-
tem, expression of the heterologous gene cloned under the P, ; is controlled by copper avail-
ability in a rapid and stable manner [32, 33]. Using this system, we found that both CNA-1 and
CNB-1 were required for normal vegetative and hyphal growth, and sexual development of N.
crassa. Previous work using cna-1 antisense RNA also showed its essential role in normal
hyphal growth, morphology, and maintenance of the apical tip-high Ca** gradient [28]. More-
over, immunosuppressive fungicidal drugs cyclosporin A (CsA) and FK506 were shown to
inhibit hyphal growth of N. crassa by inactivating calcineurin. In addition, studies using the
insertional and RIP mutants of the cnb-1 suggested its requirement for normal vegetative
growth and a possible role in repressing the asexual developmental program in N. crassa [30].
Calcineurin is also required for normal hyphal growth in fungal pathogens in C. neoformans,
A. fumigatus, M. oryzae, and U. maydis, suggesting a general role of calcineurin in governing
hyphal growth [21, 22, 24, 25, 27, 55, 56].

Calcineurin also plays a role in fertility and stress response pathways in various organisms.
In the model nematode C. elegans, calcineurin regulates fertility [57]. In addition, calcineurin is
also reported to play a role in stress and pheromone response pathways in in other fungi, such
as S. cerevisiae, Schizosaccharomyces pombe, C. albicans, and C. neoformans [15-18, 23, 58].
We have demonstrated that calcineurin subunit A plays an essential role during sexual devel-
opment in N. crassa. In N. crassa, the sexual phase starts with fertilization between two oppo-
site mating type nuclei in limited nitrogen and nutrient starvation, a stress condition. In
addition, sexual development in N. crassa normally proceeds with development of protoper-
ithecia and then perithecia, but the perithecia were empty under repressing conditions for the
CNA-1 strain (540) as the female parent, suggesting that this protein must be important for
some aspect of meiosis or ascospore development. Moreover, CNA-1 strain as the male parent
was less productive, which could indicate a possible involvement of this protein in initial steps
of mating. In addition, the CNB-1 appeared to be not as critical, and thus, that the phenotypes
of the strains CNA-1 (540) and CNB-1 (597) in sexual development differ, suggesting that
CNA-1 may have novel functions independent of CNB-1. In this study, we also isolated RIP
mutated alleles of cnb-1. Among the non-synonymous substitutions, the cnb-18"" (599) allele
contains M311 alteration in the EF1. Similarly, the cnb-18"F (600) allele contains M311 in the
EF1, and D103N, D107N, and M1211 alterations in the EF3. In addition, the cnb-18* (602)
allele contains M311 and D105N alterations in the EF1 and EF3, respectively. The EF hand con-
tains a helix-loop-helix structural unit known as EF hand or Ca** binding loop that contains
characteristic 12 amino acid residues involved in the Ca®" binding [59]. Ca* is coordinated
directly by oxygen atoms provided by the side chains of residues at positions 1(+x), 3(+y), 5
(+2) and 12 (-2) [59]. The residues D103 and D107 constitute the 1(+x) and 5(+z) position of
the EF hand loop 3, respectively [59]. The Ca®* coordinating residues D103 and D107 are also
conserved among the CNB1 from different fungi, Drosophila, and mammals (data not shown).
Therefore, the D103N and D107N alterations in the cnb-1%F (600) allele are expected to cause
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a defect in Ca®" co-ordination in this mutant, and this could explain the growth defect of the
Acnb-1:hph; Apan-2:P,., ;:cnb-1 RIP::1/5::gfp; mat a (600) strain even under inducing condi-
tions (S3 Fig). EF3 of the cnb-1 RIP (600) allele contains RIP mutations both inside and outside
of the EF hand loop. The major alteration found in the cnb-1%P (602) allele was D105N in the
EF3. The D105 residue is the coordinate 3(+y) involved in Ca®* binding through the oxygen
atoms of aspartate [59]. Therefore, the cnb-1 RIP (602) allele contains an EF3 domain with
defective Ca®* binding ability and this could explain the growth and fertility defects of the
Acnb-1:hph; Apan-2:P,,,_y:cnb-1 }P:v5:gfp; mat a (602) strain in both inducing and repress-
ing medium (S3 Fig; S2 Table). The cnb-1 RIP (602) was sterile under both inducing and repress-
ing medium, while the wild type allele was fertile. This suggests that very little wild type CNB-1
protein is necessary to support female fertility, while the cnb-1""" (602) mutation impairs func-
tion so that even high levels of protein do not support female fertility. Thus, this analysis has
identified D103, D105, and D107 as critical amino acid residues in the EF3 domain of cnb-1.

Interaction between the recombinant forms of the bovine A and rat B subunits of calci-
neurin, expressed in E. coli, was demonstrated in vitro [60]. The interaction between the calci-
neurin A and B subunits were shown in S. cerevisiae using the yeast two-hybrid system [61].
We demonstrated in vivo interaction between tagged versions of CNA-1 and CNB-1 by co-
immunoprecipitation and co-localization studies which indicates formation of a complex of
these two proteins in N. crassa (Fig 4; S4 Fig).

In this study, we showed the cellular roles of calcineurin in growth, development, and fertil-
ity in N. crassa. Moreover, we demonstrated in vivo interaction between the calcineurin sub-
units, CNA-1 and CNB-1, and identified three critical amino acid residues in CNB-1. Future
work will identify the target transcription factors of calcineurin in N. crassa.

Supporting Information

S1 Fig. RIP-introduced mutations of cnb-1. A. Alignment of the wild type and cnb-1%""
alleles. Mutations in the intronic regions, and synonymous and non-synonymous substitution-
sare shown as tick, arrow head and solid arrow marks, respectively, above the alignment. B.
Alignment of the protein sequences of the CNB-1 and CNB-1*"" proteins. The positions of
the EF-hand loops, EF1-EF4 (solid line) and the calcium binding regions (dotted line) are indi-
cated above the sequence, as revealed by Uniprot analysis (http://www.uniprot.org/uniprot/
P87072). The arrows indicate the altered amino acid residues. Conserved residues are indicated
in black (100%), dark gray (>80%) and light gray (>60%).

(TTF)

$2 Fig. Copper-regulated expression of CNB-1*""proteins under the tcu-1 promoter. Effects
of BCS and copper sulfate on Py, ; driven expression of CNB-1 from the cnb-1""" strains. Sam-
ples containing 50 pug of total protein were analyzed by Western blot using rabbit anti-GFP
antibody. An extract from untransformed wild type, grown in minimal VM, was used as a con-
trol. The expression level of CNB-1::V5::GFP in extracts from Acnb-1:hph; Py, j::cnb-1:v5:
gfp:Apan-2; mat a strains (599, 600, and 602) treated with 250 uM of BCS (B) or copper (C) for
22 h, is indicated. The solid lines indicate positions of the CNB-1::V5::GFP protein of molecu-
lar weight (MW) ~ 48 in the strains 602, 600, and another band (possibly truncated) of ~25
kDa appeared in the lane for the strain 599 on the blot. The membrane was stained with amido
black as a protein loading control (lower panel).

(TTF)

IP
IR

$3 Fig. Growth phenotype of the cnb- mutants. A. Hyphal morphology. Wild type and
cnb-1""" mutants were grown for 24 h at 30°C on VM medium supplemented with 250 uM of
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BCS (upper panel) or CuSO, (lower panel). B. Colony morphology. Wild type and the cnb-
1™® mutants were cultured for 24 h at 30°C in dark and 48 h under light at room temperature
on VM plates supplemented with 250 uM of BCS (upper panel) or CuSO, (lower panel). C.
Growth of aerial hyphae. Aerial hyphae of the wild type and the cnb-1%'"" mutants grown for
72 h at 30°C in dark and four days under light at room-temperature in VM liquid medium sup-
plemented with 250 pM of BCS (upper panel) or CuSO, (lower panel). All the strains were
photographed using a Canon G10 camera.

(TIF)

S4 Fig. Microscopy analysis for localization and in vivo interaction of the two caclineurin
subunits. A heterokaryon (CNB-1GFP+CNA-1RFP#5, Table 1) expressing two fluorescent
proteins, CNA-1::S-tag::RFP and CNB-1::V5::GFP, was analyzed using a confocal microscope
to investigate the localization and in vivo interaction of the two caclineurin subunits. Forced
heterokaryons were made same as described for co-immunoprecipitation analysis (see Materi-
als and Methods), conidia were then isolated and inoculated in 5 ml liquid VM and incubated
at 30°C for 6 h with shaking at 200 rpm. Germlings were analyzed using a Leica TCS SP8
(DMi8) confocal microscope with a 63x oil objective, 4x zoom, 1024x1024 pixels resolution,
and scan speed of 400 Hz (Leica Microsystems CMS, GmbH, Germany). The CNA-1::S-tag:
RFP and CNB-1::V5::GFP heterokaryons were visualized with the Hybrid Detection system
(HyD) laser. Images were captured sequentially; RFP images were obtained with excitation at
543 nm and emission from 555-700 nm, and GFP images were obtained by excitation at 488
nm, with emission collected from 500-535 nm. DIC, RFP and GFP fluorescent, and merged
images are shown in the columns from left to right, respectively. The arrowhead, asterisk, and
solid arrow indicate CNA-1::S-tag::RFP, CNB-1::V5::GFP, and co-localization of the tagged cal-
cineurin subunits, respectively. Scale bar = 5 pm.

(TIF)

RIP

S1 Table. Average growth rate of colony diameter of the cnb-1"" mutants.

(DOCX)

$2 Table. Phenotype of crosses involving the cnb-1%'"" mutants.
(DOCX)
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