
UCLA
Department of Statistics Papers

Title
On Inverse Multidimensional Scaling

Permalink
https://escholarship.org/uc/item/1hn5c0wj

Author
De Leeuw, Jan

Publication Date
2012-05-22

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1hn5c0wj
https://escholarship.org
http://www.cdlib.org/

ON INVERSE MULTIDIMENSIONAL SCALING

JAN DE LEEUW

Abstract. We discuss Inverse Multidimensional Scaling, clar-

ifying and extending some results of De Leeuw and Groenen

[1997]. R code for all computations is also provided.

1. Introduction

We use standard notation for Euclidean Multidimensional Scaling

(MDS), as explained, for example, in Borg and Groenen [2005] or De

Leeuw and Mair [2009]. The stress loss function, first introduced

by Kruskal [1964a,b], is

(1) σ(X) ∆= 1
2

n∑
i=1

n∑
j=1

wij(δij − dij(X))2.

Here thewij are known non-negative weights, and the δij are known

non-negative dissimilarities. We minimize stress over the n×p con-

figurations X, the coordinates of n points in Rp.

Following De Leeuw and Heiser [1980] we introduce some matrix

notation for this problem. If the ei are unit vectors, i.e. vectors

with all elements zero except element i which is equal to one, then

we let

Aij
∆=(ei − ej)(ei − ej)′

Date: Monday 21st May, 2012 — 21h 46min — Typeset in Lucida Bright.

2000 Mathematics Subject Classification. 62H30,91C15.

Key words and phrases. Multidimensional Scaling.
1

2 JAN DE LEEUW

For an n×p configuration X, i.e. the coordinates of n points in Rp,

we define squared distance

d2
ij(x) = tr X′AijX.

Let

V ∆=
n∑
i=1

n∑
j=1

wijAij,

and, at points where dij > 0 for all i 6= j,

B(X) ∆=
n∑
i=1

n∑
j=1

wij
δij

dij(X)
Aij.

Then, assuming without loss of generality that

1
2

n∑
i=1

n∑
j=1

wijδ2
ij = 1,

we can write

(2a) σ(X) = 1− tr X′B(X)X + 1
2

tr X′VX,

and we find for the partial derivatives

(2b) Dσ(X) = (V − B(X))X.

In MDS we have data W and ∆ and we want to find X such that

Dσ(X) = 0. In Inverse MDS [De Leeuw and Groenen, 1997] we

want to find W and ∆ for a given X such thatDσ(X) = 0. Thus we

want to find all weights and dissimilarities such that configuration

X is a stationary point.

In this note we study the a slightly simpler variant of the Inverse

MDS problem, also studied in De Leeuw and Groenen [1997], in

which we have both X and W and we want to find all ∆ such that

Dσ(X) = 0. Our main contribution is some new code in R [R De-

velopment Core Team, 2012], which we then use to explore some

aspects of Inverse MDS.

INVERSE MDS 3

2. Analysis

Assume X is column-centered and of rank p. As shown in lemma A.1

the equation Dσ(X) = 0 can be written as

(3) V − B(X) = K⊥CK′⊥,

where K⊥ is an orthonormal basis for the null-space of X, and C is

a symmetric matrix. In fact, we choose K⊥ orthogonal to (1 | X), so

that all columns of K⊥ are centered. Thus K⊥ is an n×qmatrix with

q = n−p−1. Both sides of (3) are symmetric and doubly-centered.

From (3) the off-diagonal elements of the dissimilarity matrix ∆(C)
are

(4) δij(C) = dij(X)
(

1− 1
wij
k′iCkj

)
,

where the ki and kj are the rows of K⊥. Because both sides of (3)

are doubly-centered, equality of the off-diagonal elements implies

equality of the diagonal elements as well. This shows that the set

of solutions for ∆ is an affine set. If ∆1, · · · ,∆m, corresponding

with symmetric matrices C1, · · · , Cm are solutions, and
∑m
j=1αj =

1, then
∑m
j=1αj∆j is a solution as well. Note that the αj are not

required to be non-negative.

We can use unit vectors a basis for the space of symmetric matrices

is given by Est = ese′t + ete′s , for all s < t, and Ess = ese′s for all s. By

lemma A.2 the solutions to equation (4) are affine combinations of

D(X) and the matrices ∆st, with s ≤ t, and with elements

(5) dij(X)
[

1− 1
wij
(ksk′t + ktk′s)

]
.

In equation (5) the ks and kt are now columns of K⊥.

R code for computation of the spanning set of the affine subspace

is in code segment 1.

Insert Code Segment 1 about here

4 JAN DE LEEUW

The representaton we have chosen makes it easy to answer the

slightly more general question of computing the dissimilarity ma-

trices ∆(X) such that for some real λ the matrix λX is stationary.

This is simply the subspace spanned by D(X) and the ∆st. Thus

we can use the same spanning set but include the non-affine linear

combinations.

3. Non-negativity Constraints

The affine combinations of the basis matrices given in (5) can have

negative elements. If we require that δij ≥ 0 for all i and j, then the

solution set becomes a closed and bounded convex polyhedron.

The convex polyhedron is analyzed with the double description

method, as described in Fukuda [1999], and implemented in R in

the rcdd package [Geyer and Meeden, 2012].

Insert Code Segment 2 about here

4. Second Partials

To get a convenient formula for the second partials of stress we

define the direct sums

Aij = Aij ⊕ · · · ⊕Aij︸ ︷︷ ︸
p times

,

V = V ⊕ · · · ⊕ V︸ ︷︷ ︸
p times

.

Then, with x ∆=vec(X),

(6) D2σ(x) = V −
n∑
i=1

n∑
j=1

wij
δij
dij(x)

Aij − Aijxx′Aij
x′Aijx

 .
There is code to compute the second partials in code segment 3.

We also use hessian() from the numDeriv package [Gilbert, 2012]

for comparison purposes.

INVERSE MDS 5

Insert Code Segment 3 about here

By the way, equation (6) and our previous expression for deriva-

tives make it easy to implement Newton’s method for MDS. Note,

however, that D2σ(x) is always singular with at least p + 1 zero

eigenvalues.

5. Examples

If p = n − 1 then there is no null space and ∆ = D(X) is the

only solution for which X is stationary. In other words if ∆ is not

a Euclidean distance matrix then any stationary point X satisfies

rank(X) < n− 1.

If p = n − 2 then K⊥ only has a single column. Thus all solutions

for ∆ are on the line in matrix space

(7) δij(α)
∆=dij(X)

{
1−α 1

wij
kikj

}
.

Let us show in detail what happens in the example of four points

in the corners of a square, with unit weights. Thus

X =


1 1

1 −1

−1 1

−1 −1

 k =


1
2

−1
2

−1
2
1
2

 d =


0

2 0

2 2
√

2 0

2
√

2 2 2 0

 .
We find

∆(α) =


0

2(1− 1
4α) 0

2(1− 1
4α) 2

√
2(1+ 1

4α) 0

2
√

2(1+ 1
4α) 2(1− 1

4α) 2(1− 1
4α) 0

 ,
and

B(α) =


3− 1

4α −1+ 1
4α −1+ 1

4α −1− 1
4α

−1+ 1
4α 3− 1

4α −1− 1
4α −1+ 1

4α
−1+ 1

4α −1− 1
4α 3− 1

4α −1+ 1
4α

−1− 1
4α −1+ 1

4α −1+ 1
4α 3− 1

4α

 .

6 JAN DE LEEUW

5.1. Nonnegativity. The dissimilarities are non-negative for −4 ≤
α ≤ +4.

5.2. Triangle Inequality. By checking all 4 × 3 = 12 triangle in-

equalities we find that ∆(α) is a metric for −(12 − 8
√

2) ≤ α ≤ 4.

Note that 12− 8
√

2 ≈ 0.6862915.

5.3. Euclidean Distance. If we square the dissimilarities in (7) we

have

(8) δ2
ij(α) = (1+

1
16
α2)d2

ij(X)− 2αd2
ij(X)kikj

because k2
ik

2
j =

1
16 for all i, j. Define uij

∆=d2
ij(X)kikj . The Torg-

erson transformation of a matrix C is defined as τ(C) = −1
2JCJ,

with J = I− 1
nee

′ the centering operator. Apply this transformation

to both sides of (8). This gives

τ(∆(α)) = (1+ 1
16
α2)XX′ − 2ατ(U).

In this example

U =


0 −1 −1 2

−1 0 2 −1

−1 2 −1 −1

2 −1 −1 0

 ,
which is already doubly-centered, so τ(U) = −1

2U . Now define

K ∆= 1
2


1 1 1 1

1 −1 −1 1

−1 1 −1 1

−1 −1 1 1

 .
In this example K diagonalizes both XX′ and τ(U), and thus

K′τ(∆(α))K = 4(1+ 1
16
α2)


1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

− 2α


1 0 0 0

0 1 0 0

0 0 −2 0

0 0 0 0

 .

INVERSE MDS 7

Because 4(1+ 1
16α

2)− 2α ≥ 0 for all α we see that the eigenvalues

of τ(∆(α)) are non-negative for all α ≥ 0. Thus the ∆(α) are non-

negative Euclidean distances for 0 ≤ α ≤ 4.

5.4. Second Derivatives. Formula (6) shows that the Hessian is

linear in the sense that

D2σ(X,∆(α)) = D2σ(X,D(X))−αD2σ(X,D(X)∗ kk′).

This makes it easy to compute the interval where D2σ(X,∆(α)) is

positive semi-definite. It turns out that in our example X is a local

minimum for ∆(α) only if α ≤ 0.

6. Multiple Minima

As Trosset and Mathar [1997] show, it is not easy to rigorously

find non-global minima of stress. An exception is p = 1, i.e. unidi-

mensional scaling. Exact computations, for example by De Leeuw

[2005], show hundreds of local minima, even in small examples.

Inverse MDS can be used to study some aspects of the local mini-

mum problem. Suppose both X and Y are stationary values of the

same MDS problem defined by W and ∆. Then ∆ must be an affine

combination of the basis U generated by X and an affine combina-

tion of the basis T generated by Y . Thus we must find vectors α
and β that add up to one and that satisfy Uα = Tβ.

As indicated before, if we only care about the solutions up to a

proportionality factor, then constraining α and β to add up to one

is no longer necessary.

8 JAN DE LEEUW

Let us use the example of five points equally spaced on a line and

five points equally spaced on a circle.

X =



−2

−1

0

1

2


Y =



0 1

sin(2
5π) cos(2

5π)
sin(4

5π) cos(4
5π)

sin(6
5π) cos(6

5π)
sin(8

5π) cos(8
5π)


We look for the ∆ for which µX is a stationary value for some µ
and for which λY is stationary for some λ. U , generated by X, has

seven dimensions, while V , generated by Y , has four dimensions.

They are both computed by the function inverseMDS().

The 10 × 11 matrix
[
U | −V

]
turns out to have rank nine, which

means there are two linearly independent solutions f Uα = Tβ.

And there is a two-dimensional subspace of the space of hollow

symmetric matrices with the property that for each matrix in the

subspace there exist µ and λ such that µX and λY are stationary.

Insert Code Segment 4 about here

Within the subspace we can easily find the two extreme rays of the

cone of non-negative dissimilarity matrices. They turn out to be

1 [,1] [,2]

2 [1,] 0.0467 0.0989

3 [2,] 0.0989 0.0467

4 [3,] 0.0233 0.1223

5 [4,] 0.0756 0.0700

6 [5,] 0.0000 0.1456

7 [6,] 0.1456 0.0000

8 [7,] 0.0233 0.1223

9 [8,] 0.0000 0.1456

10 [9,] 0.0989 0.0467

11 [10,] 0.0467 0.0989

INVERSE MDS 9

Note that the two rows, say f1 and f2, add up to 0.1456 · · ·. If we

look at the convex combinations λf1 + (1 − λ)f2, it turns out that

these are Euclidean for 0.2282 · · · ≤ λ ≤ 0.6016 · · ·. For λ = .5 we

find the matrix with all dissimilarities equal.

For the same convex combinations we find that X, suitably nor-

malized, is a local minimum of λf1 + (1 − λ)f2 for all 0 ≤ λ ≤ 1.

This corresponds with the fact that in one-dimensional MDS we

only have local minima, no saddle-points, and no local maxima

(except for X = 0). Normalized Y is a local minimum for all

0.1712 · · · ≤ λ ≤ 1.

Clearly the techniques in this section can be generalized to deal

with solving for subspaces or cones of dissimilarity matrices that

have more than two given solutions to the stationary equations,

although it is clear that if we choose X1, · · · , Xm completely gen-

erally we will rapidly run out of dimensions for the intersection of

the dissimilarity spaces.

10 JAN DE LEEUW

Appendix A. Lemmas

Lemma A.1. Suppose K is n×p with K′K = I and K⊥ is n× (n−p)
such that K′K⊥ = 0 and K′⊥K⊥ = I. Then a real symmetric T satisfies

TK = 0 if and only if T = K⊥CK′⊥, with C real symmetric.

Proof. If T = K⊥CK′⊥ then TK = 0. For necessity write T in the

form

T =
[
K K⊥

]A B
B′ C

K′
K′⊥


Then we must have

TK =
[
K K⊥

]A
B′

 = 0,

which implies A = 0 and B = 0. �

Lemma A.2. If L is a subspace with basis x1, · · · , xm andM ∆=x0+L
is the affine subspace obtained by translating L by x0. Then each

z ∈ M can be written as an affine linear combination of x0 ∈ M
and x0 + x1 ∈M, · · · , x0 + xm ∈M.

Proof. Suppose y =
∑m
j=iαjxj . Then

z = x0 +y = (1−
m∑
j=i
αj)x0 +

m∑
j=i
αj(xj + x0).

�

INVERSE MDS 11

Appendix B. Code

Code Segment 1 Basis Computation

1 inverseMDS <- function (x) {

2 n <- nrow (x)

3 m <- ncol (x)

4 x <- apply (x, 2, function (y) y - mean (y))

5 nm <- n - (m + 1)

6 kk <- cbind (1, x, matrix (rnorm (n * nm), n, nm))

7 kperp <- as.matrix (qr.Q (qr (kk))[, -(1 : (m + 1))])

8 dd <- Euclid (x)

9 k <- 1

10 base <- matrix (0, n * (n - 1) / 2, nm * (nm + 1) / 2)

11 for (i in 1 : nm) {

12 for (j in 1 : i) {

13 oo <- outer (kperp[, i], kperp[, j])

14 if (j != i) {

15 oo <- oo + t(oo)

16 }

17 base[, k] <- lower_triangle (dd * (1 - oo))

18 k <- k + 1

19 print (c(i,j,k))

20 }

21 }

22 return (base = cbind (lower_triangle (dd), base))

23 }

12 JAN DE LEEUW

Code Segment 2 Vertex Computation

1 require("rcdd")

2

3 inversePlus <- function (base, affine = TRUE) {

4 if (affine) {

5 hrep <- makeH (a1 = d2q(-base), b1 = d2q (rep (0,

nrow (base))),

6 a2 = d2q (rep (1, ncol(base))), b2 = d2q (1))

7 } else {

8 hrep <- makeH (a1 = d2q(-base), b1 = d2q (rep

(0, nrow (base))))

9 }

10 vrep <- scdd (hrep)

11 hrep <- q2d (hrep)

12 vrep <- q2d (vrep $ output)

13 pr <- tcrossprod (hrep[, -c(1,2)], vrep[, -c(1,2)])[-1,

]

14 return (list (base = base, hrep = hrep, vrep = vrep,

pr = pr))

15 }

INVERSE MDS 13

Code Segment 3 Second Partials

1 require ("numDeriv")

2

3 second_partials_stress <- function (x, delta, w = nonDiag (

nrow (x))) {

4 n <- nrow (x)

5 p <- ncol (x)

6 d <- Euclid (x)

7 fac <- (w * delta) / (d + diag (n))

8 dd <- d * d

9 v <- vmat (w)

10 deri <- direct_sum (repList (v, p))

11 xx <- as.vector (x)

12 for (i in 1 : (n - 1)) {

13 for (j in (i + 1) : n) {

14 aa <- direct_sum (repList (aijn (i, j, n), p))

15 ax <- drop (aa %*% xx)

16 deri <- deri - fac[i, j] * (aa - outer (ax, ax)

/ dd [i, j])

17 }

18 }

19 return (deri)

20 }

21

22 second_partials_numerical <- function (x, delta, w =

nonDiag (nrow (x))) {

23 stress <- function (x, delta, w) {

24 n <- nrow (delta)

25 p <- length (x) / n

26 d <- Euclid (matrix (x, n, p))

27 res <- delta - d

28 return (sum (w * res * res) / 2)

29 }

30 return (hessian (stress, x, delta = delta, w = w))

31 }

14 JAN DE LEEUW

Code Segment 4 Two Stationary Points

1 twoPoints <- function (x, y) {

2 dx <- inverseMDS (x)

3 dy <- inverseMDS (y)

4 mx <- ncol (dx)

5 my <- ncol (dy)

6 ez <- eigen (crossprod (cbind (dx, -dy)))

7 iz <- which (abs (ez $ values) < 1e-10)

8 ax <- ez $ vectors[1 : mx, iz]

9 ay <- ez $ vectors[mx + (1 : my), iz]

10 fx <- dx %*% ax

11 fy <- dy %*% ay

12 return (list (fx = fx, fy = fy))

13 }

INVERSE MDS 15

Code Segment 5 Check Functions

1 checkMinima <- function (x, base, w = nonDiag (nrow (x))) {

2 m <- ncol (base)

3 n <- nrow (x)

4 p <- ncol (x)

5 np <- n * p

6 eval <- matrix (0, m, np)

7 for (i in 1 : m) {

8 delta <- fill_symmetric (base[, i])

9 eval[i,] <- eigen (second_partials_stress (x,

delta, w)) $ values

10 }

11 return (eval)

12 }

13

14 checkStationary <- function (x, base, w = nonDiag (nrow (x)

), scale = FALSE) {

15 n <- nrow (x)

16 m <- ncol (base)

17 d <- Euclid (x)

18 eps <- rep (0, m)

19 lbd <- rep (0, m)

20 for (i in 1 : m) {

21 delta <- fill_symmetric (base [, i])

22 b <- bmat (x, delta, w)

23 v <- vmat (w)

24 vx <- v %*% x

25 bx <- bmat %*% x

26 lbd[i] <- sum (x * bx) / sum (x * vx)

27 if (scale) {

28 eps[i] <- max (abs (lbd[i] * vx - bx))

29 } else {

30 eps[i] <- max (abs (vx - bx))

31 }

32 }

33 return (list(eps = eps, lbd = lbd))

34 }

16 JAN DE LEEUW

Code Segment 6 Utility Functions I

1 lower_triangle <- function (x) {

2 n <- nrow (x)

3 return (x[outer (1:n, 1:n, ">")])

4 }

5

6 fill_symmetric <- function (x) {

7 m <- length (x)

8 n <- 0.5 + sqrt (0.25 + 2 * m)

9 d <- matrix (0, n, n)

10 d[outer (1:n, 1:n, ">")] <- x

11 return (d + t(d))

12 }

13

14 Euclid <- function (x) {

15 c <- tcrossprod (x)

16 d <- diag (c)

17 return (sqrt (outer (d, d, "+") - 2 * c))

18 }

19

20 circular <- function (n) {

21 x <- seq (0, 2 * pi, length = n + 1)

22 z <- matrix (0, n + 1, 2)

23 z[, 1] <- sin (x)

24 z[, 2] <- cos (x)

25 return (z[-1,])

26 }

27

28 direct_sum <- function (x) {

29 n <- length (x)

30 nr <- sapply (x, nrow)

31 nc <- sapply (x, ncol)

32 s <- matrix (0, sum (nr), sum (nc))

33 k <- 0

34 l <- 0

35 for (j in 1 : n) {

36 s[k + (1 : nr[j]), l + (1 : nc[j])] <- x[[j]]

37 k <- k + nr[j]

38 l <- l + nc[j]

39 }

40 return (s)

41 }

INVERSE MDS 17

Code Segment 7 Utility Functions II

1

2 aijn <- function (i, j, n) {

3 a <- matrix (0, n, n)

4 a[i, i] <- 1

5 a[j, j] <- 1

6 a[i, j] <- -1

7 a[j, i] <- -1

8 return (a)

9 }

10

11 repList <- function(x, n) {

12 z <- list()

13 for (i in 1 : n)

14 z <- c (z, list (x))

15 return (z)

16 }

17

18 nonDiag <- function (n) {

19 return (matrix (1, n, n) - diag (n))

20 }

21

22 bmat <- function (x, delta, w = nonDiag (nrow (x))) {

23 d <- Euclid (x)

24 bmat <- -(w * delta) / (d + diag (n))

25 diag (bmat) <- -rowSums (bmat)

26 return (bmat)

27 }

28

29 vmat <- function (w = nonDiag (nrow (x))) {

30 vmat <- -w

31 diag (vmat) <- -rowSums (vmat)

32 return (vmat)

33 }

34

35 torgerson <- function (delta) {

36 n <- nrow (delta)

37 dd <- delta * delta

38 sd <- rowSums (dd) / n

39 ed <- sum (dd) / (n * n)

40 cc <- -(dd - outer (sd, sd, "+") + ed) / 2

41 return (eigen (cc))

42 }

18 JAN DE LEEUW

References

I. Borg and P.J.F. Groenen. Modern Multidimensional Scaling: The-

ory and Applications. Springer, Second edition, 2005.

J. De Leeuw. Unidimensional Scaling. In B.S. Everitt and D.C

Howell, editors, The Encyclopedia of Statistics in Behavioral Sci-

ence, volume 4, pages 2095–2097. Wiley, New York, N.Y., 2005.

URL http://www.stat.ucla.edu/~deleeuw/janspubs/2005/

chapters/deleeuw_C_05h.pdf.

J. De Leeuw and P.J.F. Groenen. Inverse Multidimensional Scaling.

Journal of Classification, 14(3–21), 1997.

J. De Leeuw and W. J. Heiser. Multidimensional Scaling with Re-

strictions on the Configuration. In P.R. Krishnaiah, editor, Mul-

tivariate Analysis, Volume V, pages 501–522, Amsterdam, The

Netherlands, 1980. North Holland Publishing Company.

J. De Leeuw and P. Mair. Multidimensional Scaling Using Majoriza-

tion: SMACOF in R. Journal of Statistical Software, 31(3):1–30,

2009. URL http://www.jstatsoft.org/v31/i03.

K. Fukuda. cdd/cdd+ Reference Manual. Institute for Operations

Research ETH, Zurich, Switzerland, 1999. URL ftp://ftp.ifor.

math.ethz.ch/pub/fukuda/cdd/cddman/cddman.html. (cdd

ver. 0.61 and cdd+ ver. 0.76, March 17, 1999).

C.J. Geyer and G.D. Meeden. rcdd: rcdd (Computational Geome-

try), 2012. URL http://CRAN.R-project.org/package=rcdd.

R package version 1.1-7.

P. Gilbert. numDeriv: Accurate Numerical Derivatives, 2012. URL

http://R-Forge.R-project.org/projects/optimizer/. R

package version 2012.3-1/r586.

J. B. Kruskal. Multidimensional Scaling by Optimizing Goodness of

Fit to a Nonmetric Hypothesis. Psychometrika, 29:1–27, 1964a.

J.B. Kruskal. Nonmetric Multidimensional Scaling: a Numerical

Method. Psychometrika, 29:115–129, 1964b.

R Development Core Team. R: A Language and Environment for

Statistical Computing. R Foundation for Statistical Computing,

http://www.stat.ucla.edu/~deleeuw/janspubs/2005/chapters/deleeuw_C_05h.pdf
http://www.stat.ucla.edu/~deleeuw/janspubs/2005/chapters/deleeuw_C_05h.pdf
http://www.jstatsoft.org/v31/i03
ftp://ftp.ifor.math.ethz.ch/pub/fukuda/cdd/cddman/cddman.html
ftp://ftp.ifor.math.ethz.ch/pub/fukuda/cdd/cddman/cddman.html
http://CRAN.R-project.org/package=rcdd
http://R-Forge.R-project.org/projects/optimizer/

INVERSE MDS 19

Vienna, Austria, 2012. URL http://www.R-project.org. ISBN

3-900051-07-0.

M.W. Trosset and R. Mathar. On the Existence on Nonglobal Mini-

mizers of the STRESS Criterion for Metric Multidimensional Scal-

ing. In Proceedings of the Statistical Computing Section, pages

158–162, Alexandria, VA, 1997. American Statistical Association.

Department of Statistics, University of California, Los Angeles, CA

90095-1554

E-mail address, Jan de Leeuw: deleeuw@stat.ucla.edu

URL, Jan de Leeuw: http://gifi.stat.ucla.edu

http://www.R-project.org

	1. Introduction
	2. Analysis
	3. Non-negativity Constraints
	4. Second Partials
	5. Examples
	5.1. Nonnegativity
	5.2. Triangle Inequality
	5.3. Euclidean Distance
	5.4. Second Derivatives

	6. Multiple Minima
	Appendix A. Lemmas
	Appendix B. Code
	References

